
Masterstudium:

Computational Intelligence

Diplomarbeitspräsentation

Implementing Variations of
the Traveling Salesperson Problem in
a Declarative Dynamic Programming

Environment

Marius Liviu Moldovan

Technische Universität Wien
Institut für Informationssysteme

Arbeitsbereich: Datenbanken und Artificial Intelligence

Betreuer: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran

Mitwirkung: Projektass.(FWF) Dipl.-Ing. Michael Abseher

Context

◮ The Traveling Salesperson Problem without Repetitions (TSP-NR) is an NP-hard

combinatorial optimization problem defined as follows: Given the distances

between n cities, return the cheapest tour that visits each of them once.

◮ The Traveling Salesperson Problem with Repetitions (TSP-R) is a generalization

of the former. It stipulates that for each city the range between minimum and

maximum allowed number of visits can be specified (otherwise the default value

is exactly one visit).

0 1

234

5 6

5

3

2

2

4

3

3
1

3

4

2

Figure 1: Graph with optimal solution for

TSP-NR (blue) and TSP-R, where node 3

must be visited exactly twice and all

others at least once (red).

a:{}

b:{0,3,4}

c:{3,4,5,6}

d:{}

e:{0,2,3}

f:{0,1,2}

g:{}

Figure 2: A tree decomposition for the

shown graph.

◮ Dynamic Programming (DP) is a mathematical and computer engineering

method used mainly for solving discrete optimization problems by first solving

subproblems and storing their solutions and then combining the latter into a

complete solution.

◮ Answer Set Programming (ASP) is a form of fact-driven declarative programming

that is based on the semantics of stable models. ASP is highly maintainable and

flexible, however often with the price of a higher running time and memory

consumption.

◮ The motivation for our work derives from the need to easily prototype dynamic

programming algorithms for relevant problems, such as the TSP, without losing

on efficiency.

Methodology

◮ The D-FLAT System, developed by the dbai Group, both promises flexibility and

handles large amounts of data efficiently.

◮ It decomposes the input graph into a tree, such that each edge and each vertex

of the graph must belong to at least one node of the decomposition. Further, if a

vertex belongs to two different nodes, it must belong to all nodes on the path

between the former.

◮ At every node, D-FLAT executes an ASP program, which is tailored to the

problem to be solved, stores the results for each node in a table and finally

recomposes the optimal solutions by looking up all tables.

Store

table
ASP call

Parse

instance
Decompose Done?

no

yes

Visit next

node in

post-order

Materialize

solution

Figure 3: Control flow in D-FLAT, adapted from Figure 4 in [1].

◮ The goals were to:

◮ Develop a dynamic programming concept for the TSP.

◮ Prove the flexibility and efficiency of D-FLAT by encoding the TSP-NR and

TSP-R based on the developed concept.

◮ Show that they are more performant than state-of-the-art ASP encodings on

instances with small treewidth, the latter denoting a limited cyclicity of a graph.

References: [1] M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and

S. Woltran. D-FLAT: Progress report. Technical Report DBAI-TR-2014-86,

Vienna University of Technology, 2014.

Solution

◮ In order to comply to the principle of dynamic programming we always work only

on vertices that are in the current node.

◮ When traversing the tree, we do the following for every tree node using ASP:

◮ For every newly introduced vertex (such as vertex 3 in node e of the tree

decomposition in Figure 2) we guess whether to select the edges that lead to

an adjacent current vertex (0 and 2) to be part of the tour.

◮ If in a join node (here node b) the edge selection on the left branch does not

correspond to the one on the right, we discard the solution candidate.

◮ We keep a counter for the selected adjacent edges of each current vertex.

◮ When a vertex was removed (e.g. vertex 1 in node e), we check the counter. If

it is different from 2 for the TSP-NR, or not in the specified range times 2 for

the TSP-R, we eliminate the solution candidate.

◮ We memorize for each pair of current vertices (e.g. 0,2,3 in node e) if it is

connected by a path.

◮ If at removal, a vertex is not connected to any other current vertex we cannot

obtain a connected tour and the candidate is discarded.

Results

20 25 30 35 40 45 50

1

2

5

10

20

50

100

200

500

●

●

●

●

●

●

A
v

e
ra

g
e

 R
u

n
ti

m
e

 (
in

 s
)

Graph Size

50 100 150 200 250 300

1

2

5

10

20

50

100

200

500

Graph Size

●

Solvers

clingo 'auto'

clingo 'handy'

D−FLAT

Figure 4: Minimum, average and maximum runtime of TSP-NR encoding for D-FLAT

vs. standard ASP TSP-NR encoding with clingo (two configurations) on 8-connected

full grids of treewidth 4.

◮ For treewidths 2, 3 and 4, our D-FLAT encoding of the TSP-NR can solve all our

generated full grid instances in less than 10 minutes up to a graph size of 6000,

2100 and 900 vertices, whereas the ASP encoding only terminates up to a graph

size of 450, 45 and 30 in the same time span, respectively.

◮ The memory consumption is also lower with D-FLAT for treewidths 2 & 3.

Tram1 Tram2 Tram3 Tram4 Tram5 Tram6
1
2

5
10
20

50
100
200

500
1k
2k

3.6k

A
v

e
ra

g
e

 R
u

n
ti

m
e

 (
in

 s
)

Instance

clingo 'auto'

clingo 'handy'

D−FLAT semi−norm.

D−FLAT weakly norm.

Figure 5: Average runtime of TSP-R encoding for D-FLAT vs. standard ASP TSP-NR

encoding with clingo (two configurations each) on real world instances based on

Vienna’s tramway system (402 stations, treewidth 6). Dashed lines illustrate the

minimum and maximum values.

Inst. Sat. To Visit maxVisits

Tram1 4 10

Tram2 X 4 10

Tram3 X 4 1

Tram4 X 15 1

Tram5 X 24 1

Tram6 X 24 10

Figure 6: Instance name, satisfiability,

number of vertices that must be visited

once and maximum number of visits for the

remaining vertices (the minimum number

being 0 for all), for the Viennese tramway

system instances.

◮ The following holds for instances based on the same graph: The more vertices

must be visited, the faster our encoding becomes.

◮ One condition must be met for success: The number of maximum visits for the

remaining vertices must be restricted.

Contact: marius.moldovan@lasting.ro


