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ABSTRACT
RDF is used as a central building block for the Semantic
Web. Considering providers of learning resources, it is com-
monplace to store and exchange meta-information in XML
rather than RDF. Instead of transforming meta-data arte-
facts into RDF, we integrate these meta-data by translating
users’ queries issued against RDF into queries over XML
meta-data. We demonstrate the applicability of our query
translation method in a concrete application scenario taken
from the educational domain.

1. INTRODUCTION
The World Wide Web becomes more and more a market-

place for various informational goods and services. Providers
of educational materials and services intensively use the Web
as distribution channel and search engines help learners to
find and access appropriate learning resources. The Seman-
tic Web vision [1] depicts a possible alternative to this situ-
ation: Learning resources are described with a set of meta-
data linked to some ontology and human searchers can issue
queries against these ontologies to bring to light the learn-
ing resources needed. There are still many efforts needed to
turn this vision into reality, even for a limited domain.

In this paper we concentrate on one particular issue we
faced when trying to realize an Educational Semantic Web.
The W3C has established several working groups to create
standards for meta-data formats and ontology representa-
tion (RDF [2], OWL[3]), but currently there is a consider-
able amount of meta-data about learning resources available
which is exported into and exchanged in XML rather than
RDF. Therefore, we sought for a technique to integrate these
meta-data with meta-data already represented in RDF. In
particular, we analyzed how to transform queries expressed
in a specific query language designed for RDF, QEL (Query
Exchange Language, [4]) into corresponding XQuery queries
[5] that can be evaluated over XML repositories.

The paper is organized as follows: Section 2 describes the
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context and motivation of our work. In Section 3 we ana-
lyze mapping strategies originally proposed for integrating
XML sources and their applicability to our problem. Sec-
tion 4 then introduces our transformation method. Section
5 presents related work and Section 6 concludes the paper.

2. ELENA – INTEGRATION IN AN EDU-
CATIONAL CONTEXT

In the scope of ELENA1 we are developing a mediation
infrastructure for learning services including web-based, but
also traditional courses and learning materials. A com-
mon use scenario is the following: Providers offer meta-data
about learning materials and services at their web portals.
The web allows users to search for, visit and scan these
pages for relevant courses or learning materials. Our goal is
to improve this situation and provide an infrastructure that
enables users to search for relevant information and create
their own marketplace for learning resources. This joint ef-
fort can be seen as a step towards an Educational Semantic
Web, as envisioned for example in [6].

The mediation infrastructure, called Smart Spaces for Learn-
ing [7, 8], integrates meta-data provided by a number of
learning service providers. Though it is not intended to
build a web-scale application, the integrated information
opens way for personalized services and intelligent applica-
tions. An operative prototype designed for a human resource
development scenario using the mediation infrastructure is
available at http://www.hcd-online.com/ubp.

The currently connected providers cover a large spectrum
of heterogeneous sources, ranging from EducaNext [9], a
web-based knowledge brokerage platform, and ULI 2, a Ger-
man academic network for sharing learning resources, to
Amazon’s media store3 or the Edutella P2P network [10].

2.1 Integration Architecture
Learning object repositories hold information on learning

objects (meta-data). Our research was motivated by the
need to integrate the meta-data available at distributed and
heterogeneous learning repositories.

We apply the Learning Object Resource Interoperability

1See http://www.elena-project.org
2See http://www.uli-campus.de
3See http://www.amazon.com



(LORI) framework [11] which has lately become subject of
an international standardization process. LORI is a layered
integration architecture, which defines services to achieve in-
teroperability among learning repositories. The framework
includes core services, for example authentication, session
management and application services like query manage-
ment or provision facilities.

In most of the systems we aim at integrating meta-data
already stored in RDF (real RDF repositories) or being
bridged to RDF (virtual RDF repositories). The latter case
we experienced with various systems storing, providing or
exchanging valuable meta-data in XML. The providers of
these learning repositories cooperate during the integration
process in different manners, either by publishing their lo-
cally used meta-data schemes or by providing mappings to
ELENA’s common schema.

3. MAPPING STRATEGIES
In this section we review some generic mapping strategies

originally outlined for the integration of XML only. We
examine these methods briefly and evaluate in how far they
are applicable to our integration scenario.

The automated or assisted process of creating mappings
of two different representations of data is called represen-
tation matching. In our paper we assume that mappings
are created manually unlike discussed in [12, 13]. The con-
ceptualization and representation of matchings or mappings
differ in various domains of application, e.g. schema inte-
gration, data warehousing and data mining, knowledge base
construction and finally information integration systems [12,
13]. We restrict our work to the domain of information inte-
gration aiming at incorporating heterogeneous XML sources
into a RDF environment. Therefore, we consider conflicting
or at least varied structured representations of meta-data
characterizing learning resources as subject to our integra-
tion method. These meta-data representations might be
either encoded in XML described by Document Type De-
scriptions (DTDs) or XML Schemata (XML/S) or in RDF
described by RDF Schema (RDF/S). This concrete run-time
scenario has also been coined semantic query processing [13]
as opposed to the practice of establishing mappings when
designing federated information systems.

The term mapping denotes a set of mapping statements
consisting of mapping elements and mapping expressions
with the former declaring correspondences between repre-
sentation or syntactic elements of the source representations.
The latter describe the very nature of these relationships.
Mappings might be either organized as mapping relations
or mapping tables. The latter denote relations allowing for
the usage of variables [14].

3.1 Mapping between different XML repre-
sentations

Aguliera et al. [15] compare several approaches for map-
ping XML data. Here we outline their cases and analyze
whether they can be applied to our RDF scenario. The map-
ping strategies discussed consider different levels of struc-
tural information and distinguish three types of mappings
between XML trees.

Nevertheless, the mapping strategies are derived from gen-
eral tree-structured data so that they can equally be applied
to other data models than XML. As the following sections
will show, various follow-up approaches, in particular bor-

rowing from conceptual modelling, have applied these map-
ping strategies in their specific integration scenarios. The
terms node and path are considered as general as possible
for the purpose of the following evaluation. It will turn
out that the actual conceptualization of nodes and paths
for the respective mediating representations differ consider-
ably from approach to approach depending on the underly-
ing data models.

3.1.1 node-to-node (tag-to-tag)
When establishing correspondences between individual nodes

– referring to XML elements in this case – mappings do not
consider the document structure. Therefore, they do not
take into account semantic information expressed in struc-
tural configurations. Mapping relations resulting from node-
to-node mappings consist of tuples of mediating nodes and
multiple corresponding nodes in the local information repre-
sentations. The query translation algorithm simply replaces
the label of a mediating node with its local correspondences
in the respective query body issued against the mediating
schema.

Figure 1 illustrates this mapping style for two mediat-
ing nodes, a learning resource and its title. A node-to-node
mapping relation would thus be defined as MR1 whereas
the resource’s title would be identified by the local sources’
elements in MR2:

MR1( LearningResource , Pub l i ca t i on )
MR2( Ti t l e , T i t l e )

If we consider both the mediating schema and its local
sources being expressed in XML, a query over the mediating
schema might be expressed in XPath as e.g. /LearningRe-
source/Title. An algorithm based on these mapping rela-
tions would, for instance, generate a corresponding XPath
statement over local source A of the form //Activity/Activ-
ityLabel. As for local source B, the translation would result
in a corresponding query //Publication/Title with the latter
being invalid considering the structure of this repositorium.
Therefore, node-to-node mappings will certainly result in
erroneous query transformations as the mappings and map-
ping relations do not reflect the structural configuration of
the underlying information sources.

Node-to-node mappings or atomic element-level mappings
[13] are thus easily perceivable but considerably limited in
terms of mapping precision and mapping complexity. The
increased complexity is due to the multiplicity of node-to-
node mapping resulting from the entire set of possible cor-
respondences.

3.1.2 tree-to-tree
This mapping strategy resembles characteristics of defin-

ing and creating views in a relational setting. Views as no-
tion and concrete technique have been discussed both as
derived and encapsulating constructs, for example rules or
classes, and as subschemas of any underlying schema-like
representation. In either case, views are essentially query
definitions or unions of individual query bodies over a tar-
geted schema. Tree-to-tree mappings are comparable to
defining views inasmuch as any node in the mediating rep-
resentation points to a set of concrete, isolated queries over
the various source representations. The union of these in-
dividual query definitions bound to individual mediating
nodes describe the entire mediating representation and thus



Figure 1: Mapping strategies

its structure. Tree-to-tree mappings may therefore be con-
ceived as an ordered set of node-to-path mappings from the
mediating representation’s perspective in a global- as-view
setting. In Figure 1 only such a single node-to-path map-
ping stands representatively for additional ones needed for
each node of the mediating representation. To sum it up,
tree-to-tree mappings are stored queries or unions of sub-
queries over local information sources, XPath expressions in
this case. Figure 1 depicts such a scenario. The mapping
relations outlined above for local source B transform into:

MR1( LearningResource , / Organizat ion /
Pub l i c a t i onL i s t / Pub l i ca t i on )

MR2( Ti t l e , / Organizat ion / Pub l i c a t i onL i s t /
Pub l i ca t i on / Desc r ip t i on / T i t l e )

The query /LearningResource/Title would therefore be
translated into a single view-generating query. Unless the es-
tablished mapping relations are extended to mapping tables,
this basic practice of tree-to-tree-mappings would create a
certain redundancy in terms of irrelevant mapping elements
i.e. path constructs. This becomes evident when considering
that MR1 is implicitly reflected in any mapping pointing to
subtrees below the entry node. Introducing an appropriate
variable syntax and therefore extending mapping relations
to mapping tables would allow for a certain reduced map-
ping complexity. These more flexible mapping tables could
take the following form:

MT1( LearningResource , / Organizat ion /
Pub l i c a t i onL i s t / Pub l i ca t i on )

MT2( Ti t l e , MT1/ Act iv i tyLabe l , MT1/ T i t l e )

This mapping strategy, similarly described as higher-level
or non-atomic element-level mappings by [13], considers a
high level of structural information. These view-like map-
pings do not cause redundant or irrelevant mapping state-
ments for a single local source. Nonetheless, they do not al-
low for any factorization between mappings of different local
sources although there might occur considerable structural
similarities within a common domain, as the educational one
for instance.

3.1.3 path-to-path
The next available mapping strategy aside from node-to-

node and tree-to-tree mappings is called path-to-path. In

this case correspondences between paths in the mediating
representation and paths in the various local source repre-
sentations are created.

The conceptualization of path constructs varies consider-
able in various approaches adopting the path-to-path strat-
egy depending on the data models used for the mediating
representation and local information sources. Early contri-
butions defined them as conventional XPath location paths
or derivates thereof considering only XML element types, so
called tree paths [16, 17]. XPath location paths as mapping
elements are not limited to XML-like mediating represen-
tations. A recent approach uses location paths as mapping
elements to create correspondences with a mediating rep-
resentation based on the datalog model (see [18]). Follow-
up approaches (see e.g. [19, 20, 21]) employed conceptual
models (Entity-Relationship model, ORA-SS and others) as
mediating representation and offer a different path concept.
Amann et al. [21] identify for instance two types of so called
conceptual paths: On the one hand role paths, on the other
hand concept paths. The former are either constituted by
single roles, i.e. ER relationship types, or a conjunction of
single roles, also referred to as derived roles as they link two
distanced concepts directly. Concept paths consist either of
a single ER entity, i.e. concept, or a chain of concepts and
roles. Considering paths in RDF we adopted the concept
of triple paths as mapping element for ELENA’s mediating
representation (see Section 4.1 for details).

Mapping between paths resembles and combines major
characteristics of the previously sketched techniques: On
the one hand it inherits the property of node-to-node map-
pings allowing multiple occurrences of a mapping element,
for example nodes and paths respectively, within the same
set of mapping relations. On the other hand they increase
the degree of how much structural information is considered,
though to a lesser extent than tree-to-tree mappings. They
incorporate rather substructures than the entire structural
configuration of mediating and local representations into the
mapping.

An example for path-to-path mappings can be constructed
within the scope of Figure 1. The path /LearningResource/Ti-
tle can be mapped to the local path //Organization/Publi-
cationList/Publication/Description/Title for local source B.

As compared to tree-to-tree mappings, this last strategy



does not preserve the structure of entire (sub-)trees but
rather the structural context of single nodes. At the same
time it allows for the factorization of mapping elements, i.e.
path constructs, as path structure might reveal consider-
able similarities for a single and even different local sources.
Therefore the path-to-path approach represents an option
that inherits advantages of both previous strategies and al-
lows for the design of a mapping language convenient for the
human integration engineer.

4. TRANSFORMING QEL QUERIES INTO
XQUERY

4.1 Mapping language
In the following sections we outline a language for set-

ting up mappings between elements of ELENA’s mediating
representation expressed in RDF and local educational in-
formation sources casted in XML. The mapping information
is then used by the query translation algorithm in order to
transform QEL into corresponding XQuery queries.

A single mapping is an XML application which comprises
three logical sections: a header section and two body sec-
tions.

4.1.1 Defining the target
We distinguish between logical and physical information

sources. A logical source may contain several physical ones,
a logical information source does not necessarily correspond
to a single XML document. A logical entity might be ei-
ther casted in a single XML document or scattered across
a collection of XML documents. The header section of the
entire mapping requires to state a single, logical information
source.

The header section may take the following form when ap-
plied to information source B in Figure 1, assuming first
that we are dealing with a both logically and physically sole
information source:

<q2xq : source id=”pub” document=” sourceB . xml”
contextNode=”/ Organizat ion / Pub l i c a t i onL i s t /
Pub l i ca t i on ” />

The q2xq:source element contains three attributes. First,
name allows for defining a name for a physical – and under
the current assumption also logical – information source .
The second attribute provides information on the storage
name of the XML information source, i.e. a XML Document
either physically stored in the SQI target’s filesystem or in
a native XML data base system such as eXist [22]. The last
attribute, contextNode, marks the node of entry or rather
the absolute context node for the resulting XQuery query
statement. It is absolute insofar as it serves as absolute
point of reference for the subsequent mapping statements in
the second body section.

Take the example of local source B in Figure 1. The
source’s structure embeds the actual learning resource, i.e.
the Publication element, into a superordinate element, i.e.
PublicationList, that can be structurally and semantically
neglected in the subsequent correspondences between iden-
tified mapping elements. In this respect, the header section
provides an optional selection of relevant subtrees of the
source’s document structure and thus facilitates establish-
ing the actual mapping statements. In terms of the result-
ing XQuery expression, the header element will be casted

in a FLWOR expression. In other words, the values of doc-
ument and contextNode will constitute the required input
expression of such a FLWOR statement.

We now drop the initial assumption the logical informa-
tion source under consideration consists only of a single
physical XML Document. We continue our considerations
assuming a logical source that is splitted up into several
physical carriers. Just imagine the aforementioned example
featuring a publication list and publications being a generic
XML dump of a relational storage system. In that case,
the original relations publication list and publications will
constitute two separate XML documents to be joined.

<q2xq : source id=” pub l i s t ” document=” sourceB 1 .
xml” />

<q2xq : source id=”pub” document=” sourceB 1 . xml”
/>

In order to combine these two physical data sources into a
single logical one, the proposed mapping language provides
another bridging facility to XQuery’s FLWOR expression
and its WHERE clause [23]. By expanding the header sec-
tion with q2xq:source elements for each physical information
source, the query translation algorithm is instructed to cre-
ate a join between them.

4.1.2 Setting-up mapping statements
Referring to the methodological taxonomy presented in

Section 3, we opted for a path-to-path mapping strategy
for the reasons already discussed. Therefore, the mapping
elements to be related to one another are path constructs.

Paths in RDF: In a general sense, a RDF path is con-
sidered a sequence of the form node - predicate - node as
depicted in [2]. To put it differently, paths are equated with
the concept of triples in RDF and corresponding serializa-
tion formats such as N-Triples [24] for instance. Therefore,
RDF paths can be conceived as directed sequences of the
form subject node - predicate or property edge - object node
and might be coined triple paths.

Triple paths especially fulfil the requirement of unambi-
guity in order to be used as mapping elements. The RDF
model can be seen as a directed, vertex- and edge-labelled
graph. The labels attached to graph edges correspond to
RDF predicates or properties. This raises the issue of un-
ambiguity of edge labels or predicates as the multiple occur-
rence of predicate titles is not restricted or prohibited in the
RDF syntax.

Consider first that path constructs in RDF are only iden-
tified by their predicates’ labels. This assumption can be
represented in a N-Triples-like style with <∗> denoting an
arbitrary, unspecified node element:

<∗> <pr ed i c a t e> <∗> .

Consider the two examples given in Figure 2. Both cases
refer to the case of a publication list linking to publications
but in two different settings. Setting 1 shows a publication
list (n1) that contains a single publication (n2) both hav-
ing either one or more detailed descriptions (n3, n4, n5) at-
tached. Setting 2 exhibits a publication list (n1) containing
two publications (n2, n3) with both of them being described
in further detail (n4, n5) but having the same title (n6). The
fact that these two settings point to the multiple occurrence
of semantically identical predicates, both at the same or
different structural levels, might be considered an artifical
construction. Whereas it is not appropriate with respect to



designing mediating representations for meta-data, it is not
restricted or prohibited in the RDF model as such. There-
fore, this assumption is satisfactory to outline the problem of
unambiguity. When identifying paths in RDF only by edge

Figure 2: Unambuigity of paths

labels, only two distinct paths can be identified in Setting
1, i.e. containsPub and dc:description. Establishing a single
correspondence between dc:description and a corresponding
XML element at the local information source containing de-
scription information about a learning resource would not
be unambiguous as it would be equally applied to describe
the entire publication list. Even establishing multiple cor-
respondences would not resolve the problem as they could
not be assigned uniquely.

In order to resolve the problem of unambiguity, a first step
could be the further identification of paths by considering
further subject or object nodes:

<sub j e c t> <pr ed i c a t e> <∗> .

<∗> <pr ed i c a t e> <ob j e c t> .

In Setting 1 the predicate path dc:description could only be
located twice provided that the source node, i.e. the subject,
is considered. When identifying a path by its target node,
i.e. the object, all three occurrences could be uniquely de-
termined. The latter is not correct when applied to Setting
2 as the predicate path dc:title could not be characterized
clearly by its target node. Therefore, considering only a sin-
gle identifier, either subject or object node, does not allow
to construct unambiguous correspondences with mapping
elements at the local information sources that hold in both
settings.

Concluding from that, resolving the issue related to iden-
tifying paths unambiguously can only be achieved by pin-
pointing paths both by their source and object nodes, i.e.
the subject and object connected. We therefore consider in
accordance with the RDF specification triple paths the ap-
propriate path construct and mapping element in the scope
of our mapping language. Triple paths are thus RDF pred-
icates extended by two node identifiers.

<sub j e c t> <pr ed i c a t e> <ob j e c t> .

The first body section of a mapping thus contains an un-
ambiguous set of triple paths, expressed in a straight forward
XML format. Referring to Figure 1, the triple paths that
are derived from the simplified mediating representation de-
scribing learning resources are shown in Example 2 at lines
6-9.

The triple notation is entirely adopted with the attribute
id of each triplepath element serving as the binding variable
to the right-hand or XML side of the mapping statements.

Paths in XML: Considering XML and the query model
targeted, i.e. XQuery, path constructs are gathered from

XQuery 1.0 and XPath 2.0 data model. XQuery path ex-
pressions are considered proper location paths as in XPath
1.0 [25] and are therefore identical to XPath 2.0. Nonethe-
less, the common data model of XQuery 1.0 and XPath 2.0
introduces various modifications compared to XPath 1.0.
These include ordered sequences of nodes as return type
of path expressions instead of unordered node-sets and both
limitations and extensions in terms of location steps avail-
able, e.g. a reduced set of axis, generalized predicate state-
ments and minor syntactic deviations in terms of comparison
operators etc [23]. The proposed mapping language thus al-
lows for the usage of XQuery path expressions or XPath 2.0
location paths as mapping elements with respect to local
XML sources.

We refer to the mapping statement depicted in the path-
to-path scenario in Figure 1 for the following remarks. The
establishment of a correspondence between the RDF triple
path <LearningResource><dc:title><Title> and the seman-
tically analogous XML location Path /Organisation/PublicationList

/Publication/Description/Title is realized in the second body
section of a mapping. This section binds the afore-created
descriptions of RDF triple paths to the corresponding lo-
cation path and completes the mapping statements as such.
The right-hand-side mapping element and the necessary bind-
ing to the first body section are achieved by the q2xq:mapping
elements shown in Example 2 at lines 11-27.

The mapping language thus describes mapping statements
as a binding between two XML elements. The left-hand or
RDF side is represented by a q2xq:triplepath element in the
first body section, the right-hand or XML side is casted
into a q2xq:mapping element in the second body section.
The latter allows for declaring a XPath location path in a
specific XML document by referring to the header section
and its target definitions by passing the respective value to
the attribute source.

Figure 3: A cyclic mediating structure

Mapping of graph cycles: Concluding this section on
the expressivity of the mapping language proposed, we would
like to drop the simplifying assumption about directed acyclic
graphs and consider the case of simple cycles in the RDF
mediating representation. The description of the mediat-
ing RDF structure in terms of triple paths allows for the
representation of graph cycles with cycles forming predicate
paths such that the first node of the path corresponds to the
last. Consider an extended example of the mediating repre-
sentation given in Figure 1. Meta-data on learning resources
are likely to comprise description information about related
or even recommended learning resources, e.g. references.
In that case the mediating representation in Figure 1 could
be enriched by an additional node Reference representing a
learning resource in the scope of ELENA’s common schema:
This cycle can be easily represented by two triple path state-
ments. Cycles having a predicate path length greater than
1 may be represented as well. Cycles can be recognized by



looking for a node occurring at least once as subject and
once as object in two distinct triple paths. A mapping for
the cycle in Figure 3 takes the following form:

<q2xq : t r i p l e pa th id=”A” sub j e c t=”
LearningResource ” p r ed i c a t e=” d c : r e l a t i o n ”
ob j e c t=” Reference ” />

<q2xq : t r i p l e pa th id=”B” sub j e c t=” Reference ”
p r ed i c a t e=” rd f : t y p e ” ob j e c t=”
LearningResource ” />

Note that in a global-as-view setting such a self-referential
structure has to occur and find its correspondence within
a single logical local source. The actual mapping element
at the local XML source depends on the realization of the
conceptual self-reference in terms of document structure. In
XML this might be achieved for instance vertically by nest-
ing elements of the same type in a recursive way or hori-
zontally by making use of ID-IDREF relations. Both can
be reflected in XQuery syntax, either using recursive func-
tions in the former or ID-IDREF-based navigational func-
tions built in XQuery such as xf:id [5] in the latter case. The
representability of cyclic structures is nevertheless limited to
simple cycles. On the one hand this is due to the manual
generation of mappings and thus to the human perception of
complex cyclic structures. On the other hand the processing
of complex cycles in RDF has to be considered non-trivial
as documented for instance in [26, 27].

4.2 Query translation algorithm
Our query translation algorithm transforms the input QEL

query into a XQuery query by making use of the mapping
rules. Regarding the global-as-view approach adopted in
ELENA, query transformation basically consists of a trans-
lation of an input into an output query to be evaluated over
a local XML source. Query transformations in local-as-view
settings are usually referred to as query rewriting and in-
volve an incomparably more complex transformation.

4.2.1 A primer for QEL
Query Exchange Language (QEL) is a query language spe-

cially designed for RDF, and is based on datalog. The QEL
specification provides two different encoding styles, on the
one hand datalog-QEL, on the other hand RDF/XML-QEL
[4]. For reasons of clarity, the following section is in accor-
dance with QEL’s datalog notation. Consider a simple QEL
query over the mediating representation described in Figure
1:

Example 1: A sample input QEL query
@pref ix qe l : <http ://www. edu t e l l a . org / qe l#>.
@pre f ix lom−r i g h t s : <http :// l t s c . i e e e . org

/2002/09/ lom−r i g h t s#>.
@pre f ix dc : <http :// pur l . org /dc/ e lements /1.1/ > .
?− qe l : s ( LearningResource , dc : t i t l e , T i t l e ) ,
q e l : l i k e ( T i t l e , ’%educat ion%’ ) ,
q e l : s ( LearningResource , dc : cont r ibutor ,

Contr ibutor ) ,
q e l : s ( LearningResource , dc : language , Language ) ,
q e l : s ( LearningResource , lom−r i g h t s :

c o py r i g h t a nd o t h e r r e s t r i c t i o n s ,
L ega lRe s t r i c t i on ) .

The given datalog-QEL query might be intuitively inter-
preted as the following request: Give me the title, the con-
tributor or provider, the language and possible legal restric-

tions of all learning resources containing the term ”educa-
tion” in its title.

The key concept borrowed from datalog are predicate ex-
pressions with QEL distinguishing between matching and
constraint predicates. The most important pre-defined match-
ing predicate in QEL is qel:s denoting a so called statement
literal. The underlying common data model considers RDF
data being organized in triple structures of the form subject
- predicate - object. The range of allowed value types for
subjects, predicates and objects are in accordance with the
RDF specification [2]. The QEL matching predicate (qel:s)
resembles this structure of RDF triples and serves as match-
ing or binding facility to be used in queries. Corresponding
to the range of value types in a RDF triple, each argument in
a qel:s construct might be filled with an appropriate value
type. Literals are thus proper values in datalog predicate
expressions, URI references correspond to constant names.
In addition, arguments can represent variables identified by
capitalized names. Predicate expressions that contain vari-
ables as arguments are also referred to as query literals.

When examining the first matching predicate in Exam-
ple 1 qel : s(LearningResource,dc:title ,Title) both subject and
object are variables whereas the predicate corresponds to
a proper URI reference. Variables in qel:s constructs are
bound to the entire spectrum of possible subject and ob-
ject values stored in a RDF triple repository. Therefore, the
qel:s construct taken from Example 1 selects all triples that
contain the RDF predicate ”dc:title” without any further
restrictions.

Apart from matching predicates, the QEL syntax com-
prises another category of pre-defined predicates. This set of
predicates helps constraining further the selection of matched
triples based upon comparison operations on the RDF triples’
values. They are referred to as constraint predicates
and provide conventional value-based comparisons such as
equals-, like-, greater-than- and less-than operators and ver-
ifications for node types and language encodings [4]. The
construct qel : like (Title , ’%education%’) in Listing 1 shows
such a value constraint, a like-operator more precisely, on
all matching triples pre-selected by the qel:s construct men-
tioned before.

4.2.2 Translating a simple QEL query
In the following, we outline an algorithm to transform a

QEL query as depicted in Example 1 into a corresponding
XQuery query according to the mapping example given in
Section 4.1. The entire mapping can be found in Example 2
attached to this paper. The translation algorithm is guided
by the syntactic structure of XQuery’s FLWOR expression
(see [5]). QEL queries require to iterate through instances
of learning resource elements. The analogous iteration can
be achieved by a FLWOR expression in XQuery.

The translation algorithm uses only FOR, WHERE and
RETURN blocks. The algorithm is therefore organized in
three block declaring steps with the latter two distinguishing
between a phase of query parsing and a phase of mapping
correspondences. The parsing of the input QEL query aims
at identifying relevant query elements, particularly constrain-
ing and matching constructs. In addition, all mapping state-
ments relevant to this specific query elements are identified.
The binding phase refers to the construction of an output
XQuery query based on the previously identified QEL con-
structs and mapping statements.



Declaring the FOR clause: In a first step, the algo-
rithm parses the mapping information of the header section
of a given mapping file (see Section 4.1.1). Each q2xq:source
element is considered and based on its attributes’ value a
FOR block is created. A XQuery FOR construct binds cus-
tom variables to some sort of input expression, e.g. the
input function doc in our case. This input function returns
the document node or some sub-level node of the physical
XML document identified by both the attribute document
and contextNode, pointing to a specific subtree as entry point
for the iteration. This node of entry is bound to the variable
defined by the attribute id. The heading mapping element
given in Example 4.1.1 is thus transformed into the following
partial XQuery expression:

f o r $pub
doc ( ” sourceB . xml” ) / Organizat ion / Pub l i c a t i onL i s t

/ Pub l i ca t i on

Provided that several q2xq:source elements are recognized
they are attached to this initiating FOR block in terms of an
additional variable-node binding and can be used to create
joins between multiple XML documents at a later stage.

Declaring the WHERE clause: In a next step, the
algorithm aims at extracting relevant constraint predicates
in order to build a WHERE clause. This WHERE state-
ment eliminates XML elements which do not match certain
conditions. First, the algorithm identifies required mapping
statements to map the constraining RDF elements. Then,
the XPath location paths expressed in the identified map-
ping statements are attached to the previously defined path
variables being context nodes. The XML element identified
thereby serves as basis for the conditional operation. The
extracted constraint predicate constructs specify the nature
of these filtering conditions with conventional comparison
operators (e.g. qel:equals, qel:greaterThan) being trans-
formed into their XQuery equivalents (e.g. ”=”, ”>”). More
complex operators such as qel:like are equated with specific
built-in functions of XQuery, contains() for instance. The
constraint predicate statement qel : like (Title,’%education%’)

in Listing 1 would therefore be transformed in to the follow-
ing WHERE clause:

where f n : c o n t a i n s ($pub/ Desc r ip t i on / Ti t l e , ”
educat ion ” )

The WHERE block is equally relevant when considering
the transformation of conjunctions, disjunctions and nega-
tions expressed in the input QEL query.

Declaring the RETURN clause: The closing block,
the RETURN clause, builds the result of the previously de-
fined for-where expression. In other words, it exclusively re-
turns tuples that match the constraints and allows for cast-
ing them in an user-defined XML output format. The latter
is determined by QEL which requires a specific result for-
mat serialized in RDF/XML. The entire QEL result block
comprises two interrelated sections, on the one hand the
actual QEL ResultSet in terms of a RDF sequence contain-
ing result values, on the other hand another RDF sequence
carrying the QEL result variables [4]. The two collections
are related insofar as the sequential ordering determines the
binding of result variables in the latter to the result values in
the former. In order to populate these two result sections,
the algorithm needs to identify all matching predicates of
the input QEL query. Unlike datalog, QEL determines the

order of result tuples. The qel:s constructs contain the in-
formation needed, particularly the result variables.

The two result sections are produced by another parsing
and binding procedure. At first, the algorithm examines the
input QEL query for all matching predicates and extracts
their respective RDF objects, the result variables in QEL’s
terminology. By finding all mapping statements and thus lo-
cation path correspondences to the triple paths represented
by the matching predicates the first section is constructed.
Each matching predicate is transformed into a RDF list item
(rdf:li) whose value is determined by a corresponding XML
element. This is identified by an absolute XPath location
path composed of the context node variable and the location
path from the respective mapping statement. Finally the ob-
ject element of the respective matching predicate is added
to the sequential list of result variables and thus bound to
the previously rendered value. The entire output XQuery
query resulting from the QEL query in Example 1 and the
underlying mapping in Example 2 are attached to this pa-
per. The two result section described above are shown at
lines 14-29.

4.2.3 Issues
At this stage we would like to discuss important aspects

concerning more complex transformations. They include
brief accounts on the correspondence of negation operators
as well as transforming conjunctive and disjunctive QEL
queries into their XQuery representations.

Negation: As there is no negation of matching predicates
available in QEL, negations in a limited sense may exclu-
sively be applied to constraint predicates. In the course of
parsing the input QEL query when declaring the WHERE
clause the identified constraint predicates are checked for
QEL’s negation operator (”-”). Following this, they are
transformed similar to non-negated constraint predicates where
the negation operator (”not”) is added. The negated con-
straint predicate −qel:like (Title , ’%education%’) would there-
fore be transformed into not(fn:contains($pub/Description/Title

,”education”))

Conjunction: Conjunctions in QEL are represented by
comma-separated sequences of predicate expressions [4]. Once
again matching and constraint predicates have to be distin-
guished: Conjunctive sets of the former as given in Exam-
ple 1 pre-select a set of triples subject to further restric-
tions. Conjunctions between constraint predicates are di-
rectly translated into a logical AND operator in the WHERE
clause of the corresponding XQuery.

Disjunction: Disjunctions are expressed as in datalog:
several rules with the same rule head. The rule head itself is
a query literal on the left-hand side of a rule definition while
at the right-hand side an arbitrary order of query literals,
both matching and constraint predicates, can be specified.

A disjunction comprising constraint predicates is trans-
formed into conditional elements of a WHERE clause, con-
nected by a logical OR operator.

5. RELATED WORK
Several fields of research emerged as relevant and related

to our efforts. In the educational domain, in particular in the
scope of Edutella, Qu and Nejdl [28] staged a comparable ap-
proach to integrate a SCORM meta-data repository stored
in XML with a RDF-based P2P infrastructure by means of
– though not exclusively – query translation. The entire in-



tegration involves first a replication and modification of the
targeted XML repository into a generic RDF-graph-based
meta-data view which is represented in a XML serialization
of RDF triples. Second, they offer a complementary wrap-
per implementation that translates between users’ QEL and
XQuery queries over the replicated, normalized and XML-
encoded RDF meta-data repository. Their contribution dif-
fers at least in two aspects: On the one hand they provide
a technique to integrate arbitrary common RDF represen-
tations and QEL queries with a specific and complex lo-
cal meta-data representation (SCORM) whereas we provide
a facility to target arbitrary and less complex local XML
meta-data storages through a specific and pre-defined RDF
mediating representation. On the other hand their approach
reflects an integration scenario which allows replicating en-
tire repositories with our translation technique being appli-
cable to more restricted scenarios where only pre-selected
meta-data are exposed by integration partners.

In the more general discussion on integrating heteroge-
neous XML sources some key approaches can be distin-
guished. One group applies XML itself as mediating rep-
resentation. Their relevance to our efforts results from their
analysis of mapping strategies, already discussed in Section
3. Important contributions in this group include Xyleme [17,
29, 15] and Lee et al. [30]. A second group of authors [20,
21] criticize the use of XML as a mediating schema and pro-
posed conceptual models for the integration of XML sources
instead. Although they use self-defined conceptual models
or ER derivates, they adopt the mapping strategies devel-
oped for XML. Relevant projects include STyX [20, 21] and
ORA-SS [19].

Finally, we identified several approaches using the RDF
graph model, i.e. either RDF or RDF/S, as mediating ve-
hicle for integrating XML. PEPSINT [31] is a Peer-to-Peer
system based upon a super-peer infrastructure and a global
RDF ontology against which RDQL queries are evaluated.
Depending on the target’s meta-data model the original
RDQL query is either simply reformulated according to map-
ping rules or syntacticly translated into a XQuery query over
a XML repository. In a global-as-view setting the mapping
is realized - in contrast to our solution - semi-automatically
both at the global and local stage. First a local RDF/S on-
tology is generated for each RDF and XML repository with
the local ontology preserving structural or nesting informa-
tion of XML trees. At the local level PEPSINT applies a
tree-to-tree mapping strategy as each concept in the local
RDF/S ontology is mapped to a XML location path. In a
second step, a node-to-node mapping is established between
single concepts of the global and local RDF/S meta-data
representations. Based upon this combined mapping strat-
egy the query translation algorithm provides for a transla-
tion back and forth between XQuery and RDQL. Contrast-
ing to PEPSINT, query translation in ELENA is performed
only in a single direction (from RDF to XML).

Another research project focusing on integration of RDF
and XML is SWIM [18]. The SWIM server hosts the mediat-
ing and query transformation facilities, which integrate not
only XML meta-data but also relational databases. SWIM
does not apply the mediator-wrapper architecture but it re-
lies on a single wrapper solution. This implies that SWIM
is based on a centralized mapping methodology whereas
ELENA and PEPSINT operate in a decentralized manner
with respect to mappings and query translation. This re-

quires the employment of a single mapping methodology
which provides the expressivity to represent all data mod-
els subject to integration. SWIM achieves this by using a
datalog-based mapping language which incorporates XPath
location paths as datalog atoms. As for query transforma-
tion, the proposed algorithm translates between RQL over
the virtual mediating RDF/S representation and XQuery
queries over local XML repositories.

Piazza [32] is also a mediating infrastructure that enables
the integration of XML data into a RDF-based environment.
Zachary et al. adopt a local-as-view integration technique
and apply an extenstion to XQuery as mapping language to
expose XML meta-data as virtual RDF repositories. Due
to the usage of an extended XQuery syntax they propose
a necessary query evaluation algorithm. In contrast to Pi-
azza our approach can be applied to any standard XQuery
processor.

Other aspects relevant to our work are handling RDF
cycles and designing mapping languages. Barton [26], for
instance, applies indexing to RDF structures and resolve
cycles in this context. Various mapping languages are pro-
posed in the context of integrating heterogeneous XML sources.
A rule-based XML syntax called LMX (Language for Mapping
XML) has been applied by [33] underlining its applicabil-
ity for the tool-assisted mapping generation by human in-
tegration engineers. Other approaches on integrating XML
use datalog syntax [18], RDF/XML [34] and XQuery [32] as
mapping languages.

6. CONCLUSION AND FUTURE WORK
We realized a query translation method, and successfully

integrated XML data with a RDF-based application based
on a manually created mapping language. These efforts
involved an analysis of existing XML mapping techniques
that we adapted for our RDF-XML scenario, resulting in a
XML-encoded mapping language and a corresponding query
translation algorithm. We were able to translate all user
queries in our application and integrate entire XML meta-
data repositories into ELENA’s RDF environment. The
mapping language enables engineers to design complex map-
pings, however in case of big structures it can become im-
practicably complex. Translating QEL queries and evaluat-
ing the resulted XQuery performed equally well as process-
ing the same QEL query on a RDF meta-data set of the
same size.

We did not formally analyze the soundness of our method.
Therefore, we are currently pursuing a number of research
directions to identify limitations to our prototype imple-
memtation. If we also formalize the application specific con-
straints, such a formal proof is thinkable. In the context of
meta-data integration we consider this kind of translation
technique complementary to the use of emerging versatile
query languages [35] applicable both to RDF and XML.
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Example 2: A sample mapping
1 <?xml version=” 1 .0 ” encoding=” i so −8859−1”?>
2 <QEL2XQueryMapping xmlns:q2xq=” ht tp : //www. elena−p r o j e c t . o r f /ns#q2xq”>
3
4 <q2qx : source id=”pub” document=” sourceB . xml” contextNode=”/ Organizat ion / Pub l i c a t i onL i s t /

Pub l i ca t i on ”/>
5
6 <q2xq : t r i p l e pa th id=”A” sub j e c t=”LearningResource ” p r ed i c a t e=” dc : c on t r i bu t o r ” ob j e c t=”

Contr ibutor ” />
7 <q2xq : t r i p l e pa th id=”B” sub j e c t=”LearningResource ” p r ed i c a t e=” d c : t i t l e ” ob j e c t=” T i t l e ” />
8 <q2xq : t r i p l e pa th id=”C” sub j e c t=”LearningResource ” p r ed i c a t e=”

l om : c o py r i g h t a nd o t h e r r e s t r i c t i o n s ” ob j e c t=” Lega lRe s t r i c t i on ” />
9 <q2xq : t r i p l e pa th id=”D” sub j e c t=”LearningResource ” p r ed i c a t e=” dc : language ” ob j e c t=”Language

” />
10
11 <q2xq:mapping>
12 <q2xq : l h s t r i p l e p a t h=”A” />
13 <q2xq : rhs source=”pub” l o ca t i onpa th=”/Author” />
14 </q2xq:mapping>
15 <q2xq:mapping>
16 <q2xq : l h s t r i p l e p a t h=”B” />
17 <q2xq : rhs source=”pub” l o ca t i onpa th=”/ Desc r ip t i on / T i t l e ” />
18 </q2xq:mapping>
19 <q2xq:mapping>
20 <q2xq : l h s t r i p l e p a t h=”C” />
21 <q2xq : rhs source=”pub” l o ca t i onpa th=”/Copyright ” />
22 </q2xq:mapping>
23 <q2xq:mapping>
24 <q2xq : l h s t r i p l e p a t h=”D” />
25 <q2xq : rhs source=”pub” l o ca t i onpath=”/Language” />
26 </q2xq:mapping>
27
28 </QEL2XQueryMapping>

Example 3: A sample output XQuery query
1 xquery ve r s i on ” 1 .0 ” ;
2 <rdf:RDF
3 xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
4 xmlns:edu=” ht tp : //www. edu t e l l a . org / qe l#”
5 xmlns:RDF/S=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
6 xmlns:dc=” ht tp : // pur l . org /dc/ e lements /1 .1/ ”>
7 <r d f :D e s c r i p t i o n>
8 <r d f : t y p e rd f :par seType=”LearningResource ”/>
9 <r d f : t y p e r d f : r e s o u r c e=” ht tp : //www. edu t e l l a . org / qe l#Resu l tSet ”/>

10 {
11 f o r $pub doc ( ” sourceB . xml” ) / Organizat ion / Pub l i c a t i onL i s t / Pub l i ca t i on
12 where f n : c o n t a i n s ($pub/ Desc r ip t i on / Ti t l e , ” educat ion ” )
13 re turn
14 <e du : r e s u l t>
15 <r d f : S eq>
16 < r d f : l i> { s t r i n g ($pub/Author ) } </ r d f : l i>
17 < r d f : l i> { s t r i n g ($pub/ Desc r ip t i on / T i t l e ) } </ r d f : l i>
18 < r d f : l i> { s t r i n g ($pub/Copyright ) } </ r d f : l i>
19 < r d f : l i> { s t r i n g ($pub/Language ) } </ r d f : l i>
20 </ rd f : S eq>
21 </ e du : r e s u l t>
22 <e du : r e s u l tVa r i a b l e s>
23 <r d f : S eq>
24 < r d f : l i r d f : r e s o u r c e=”#Contr ibutor ”/>
25 < r d f : l i r d f : r e s o u r c e=”#T i t l e ”/>
26 < r d f : l i r d f : r e s o u r c e=”#Lega lRe s t r i c t i on ”/>
27 < r d f : l i r d f : r e s o u r c e=”#Language”/>
28 </ rd f : S eq>
29 </ edu : r e s u l tVa r i a b l e s> }
30 </ r d f :D e s c r i p t i o n>
31 </rdf:RDF>


