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Abstract.The generalized hypertree width GHW (H) of a hypergraph H is a measure of
its cyclicity. Classes of conjunctive queries or constraint satisfaction problems whose as-
sociated hypergraphs have bounded GHW are known to be solvable in polynomial time.
However, it has been an open problem for several years if for a fixed constant k and input
hypergraph H it can be determined in polynomial time whether GHW (H) ≤ k. Here,
this problem is settled by proving that even for k = 3 the problem is already NP-hard. On
the way to this result, another long standing open problem, originally raised by Goodman
and Shmueli in 1984 in the context of join optimization is solved. It is proven that deter-
mining whether a hypergraph H admits a tree projection with respect to a hypergraph G
is NP-complete. Our intractability results on generalized hypertree width motivate further
research on more restrictive tractable hypergraph decomposition methods that approximate
general hypertree decomposition (GHD). We show that each such method is dominated
by a tractable decomposition method definable through a function that associates a set of
partial edges to a hypergraph. By using one particular such function, we define the new
Component Hypertree Decomposition method, which is tractable and strictly more general
than other approximations to GHD published so far.
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1 Introduction and Overview
Nearly Acyclic Hypergraphs and Hypergraph Decompositions. It is well-known that acyclic
conjunctive queries, i.e. queries with an acyclic query hypergraph, are solvable in polynomial
time [7]. A similar result holds for many other problems that can be structurally characterized
through hypergraphs. Intensive efforts have been made in the last decade to generalize the class
of acyclic hypergraphs to significantly larger classes and to extend the positive complexity results
for hypergraph-based problems to the cover instances whose associated hypergraphs belong to
these larger classes. This was motivated by two facts. Firstly, it was often observed that many
relevant queries are not precisely acyclic but in some sense nearly acyclic – experimental support
for this was recently given in [26]. Secondly, there exists a very successful generalization of
graph acyclicity, namely, bounded treewidth [24]. A large number of graph-based problems are
tractable on instances of bounded treewidth [10, 4, 5, 21, 11]. There has been a quest for a suitable
hypergraph decomposition method M and associated M -width that would be a good measure of
the degree of cyclicity of a hypergraph. To be usable in the context of conjunctive query processing,
such a decomposition method must fulfill two important criteria:

– Polynomial Query Evaluation. Boolean conjunctive query evaluation must be tractable for
queries whose M -width is bounded by a constant.

– Polynomial Recognizability. For each constant k, hypergraphs (and thus queries) of M -
width (MW ) bounded by k must be recognizable in polynomial time, and for such queries
an M -decomposition of width at most k must be computable in polynomial time.

In the database and in the constraint satisfaction communities, various methods of hypergraph
decompositions have been defined. These methods all amount to clustering the query hypergraph
in a tree-like form and to using such a clustering for transforming the original cyclic query into an
acyclic query over a modified database whose relations are obtained by taking for each cluster the
natural join of the relations corresponding to the edges of that cluster. The width of the decomposi-
tion is the maximum cluster size, that is, the maximum number of edges per cluster. The different
decomposition methods differ in the way the edge clusters are determined.

An overview and comparison of most of these methods can be found in [16]. In recent years,
more general decomposition methods were studied, that yield better decompositions (of smaller
width) for larger classes of hypergraphs. The most general of these decompositions is the general-
ized hypertree decomposition (GHD) [19, 3], also called acyclic guarded cover in [9].
Generalized Hypertree Decompositions. The concept of a GHD is intuitively explained by the
following example, adapted from [2, 3].

Consider the Boolean conjunctive query over a database with a binary relation r and a ternary
relation s:

Q0 : r(X1, X2) ∧ s(X2, X3, X9) ∧ s(X3, X4, X10)∧
r(X4, X5) ∧ s(X5, X6, X9) ∧ s(X6, X7, X10)∧
s(X7, X8, X9) ∧ s(X1, X8, X10).

The hypergraph H0 = (V0, E0) associated with the query, depicted in Figure 1, has the vertex set
V0 = {v1, v2, . . . , v10}, where for each query variable Xi there is a vertex vi and and an edge set
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E0 which consists of the following edges:

e1 = {v1, v2}, e2 = {v2, v3, v9}, e3 = {v3, v4, v10},
e4 = {v4, v5}, e5 = {v5, v6, v9}, e6 = {v6, v7, v10},
e7 = {v7, v8, v9}, e8 = {v1, v8, v10}.

GHDs of width 2 and 3 of H0 (and of query Q0) are depicted in Figure 2.a and 2.b, respectively.
A GHD of a hypergraph H (in our example, H0) consists of a tree T such that each node p of T
is labeled with a set λ(p) of edges of H and a set χ(p) of vertices of H . Each edge of H must
be covered by at least one χ(p). For each node p of the tree T , the set χ(p) is covered by the
union of the edges in λ(p). For each vertex i of H , the set of all nodes of T , where i occurs in
the χ-part induces a connected subtree of T . The width GHW (D), also denoted by |D|, of a
GHD D is the maximum cardinality of λ(p) over all nodes p of the decomposition tree of D. The
generalized hypertree width GHW (H) of H is the minimum width over all possible GHDs of H .
Note that a hypergraph H is acyclic iff GHW (H) = 1. In [18] it was shown that GHDs satisfy
the Polynomial Query Evaluation property. In particular, given a Boolean query Q, with a GHD
D of width k and size g, of (the hypergraph of) Q, and a database DB whose largest relation has
size r, then Q can be answered on DB in time O(r + g)k × log(r + g). Therefore, computing
hypertree decompositions of smaller width leads to better query answering algorithms.

v1
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v3

v4

v5

v6

v7

v8

v9 v10

e1

e2

e4

e5

e6 e7

e8
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Figure 1: Hypergraph H0 of the query Q0.

Is Bounded GHW Polynomially Recognizable? A major question was whether for a fixed
constant k and an input hypergraph H , it can be determined in polynomial time if GHW (H) ≤ k,
i.e. whether bounded GHW is polynomially recognizable, and if so, whether a GHD of H of
width k can be computed in polynomial time. These questions were first posed as open problems
in 2001 (in the PODS’01 conference version of [19]) and have since been re-posed several times
by various authors, for example, in [9].

The analysis of generalized hypertree decompositions is combinatorially involved. Rather than
attacking the GHW recognition problem directly, we first dealt with a conceptually and com-
binatorially somewhat simpler related problem, namely, the problem of determining whether a
hypergraph H admits a tree projection with respect to another hypergraph G.
Tree Projections. For two hypergraphs H1 and H2 we write H1 ≤ H2 iff each edge of H1 is
contained in at least one edge of H2. Let G and H be hypergraphs such that G ≤ H . A tree
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{e1, e2, e6}{v1, v2, v3, v6, v7, v9, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10} {e7, e8}{v1, v7, v8, v9, v10}

b)

{e2, e6}{v3, v6, v7, v9, v10}

{e3, e7}{v3, v7, v8, v9, v10}

{e2, e8}{v1, v2, v3, v8, v9, v10}
a)

{e3, e5}{v3, v4, v5, v6, v9, v10}

Figure 2: a) A generalized hypertree decomposition of width 2 and b) a hypertree decomposition
of width 3 of the hypergraph H0.

projection of H with respect to G is an acyclic hypergraph H ′ such that G ≤ H ′ ≤ H . Tree
projections were studied in [14, 23, 25] in the context of query optimization. In particular, in [14]
the following Tree Projection Theorem was shown. A query program P consisting of a sequence
of projections, selections, or joins, solves a relational query Q over a database whose schema is
described by a hypergraph H1 iff the output schema of the query is described by a hypergraph H2

such that there exists a tree projection of H2 with respect to H1.
The Tree Projection Problem has as instance a pair (G,H) of hypergraphs and asks whether

H has a tree projection with respect to G. If such a tree projection exist, it is also called an
acyclic hypergraph sandwich, and the Tree Projection Problem is also referred to as the Acyclic
Hypergraph Sandwich Problem [15]. For other types of “sandwich” problems, see [12, 13]. The
complexity of the Tree Projection Problem has been repeatedly stated as an open problem for over
twenty years [14].
Relating Tree Projections to GHW . As already pointed out in [19], there is an interesting con-
nection between tree projections and generalized hypertree width. For a hypergraph H = (V, E),
denote by Hk the hypergraph (V, Ek), where Ek are all unions of k or less hyperedges from H .
The following lemma, implicit in [19], follows directly from the definitions of GHD and of tree
projections:

Lemma 1.1 ( [19]) For each hypergraph H ,
GHW (H) ≤ k if and only if Hk has a tree projection with respect to H .

Lemma 1.1 can be seen as an easy polynomial-time reduction from the GHW recognition
problem to the tree projection problem. This means that if checking “GHW (H) ≤ k” turned out to
be NP-complete for some constant k, then the tree projection problem would be NP-complete, too.
Conversely, if the tree projection problem is tractable, then so is the GHW recognition problem.
Given that, in addition, the tree projection problem appeared to be simpler, we first attacked this
problem.
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Complexity of the Tree Projection Problem. We are able to exhibit a polynomial-time transfor-
mation from 3SAT into the tree projection problem. We thus obtain the following result:

The tree projection problem is NP-complete.

This result is of independent interest. It entails hardness results for problems of query opti-
mization discussed in [14, 23, 25].

Complexity of GHW recognition. By using a similar but noticeably more involved con-
struction as for the tree projection problem, we are able to polynomially transform 3SAT into the
problem of checking whether a hypergraph has generalized hypertree width at most 3. The addi-
tional difficulty arises from the fact that now it is no longer sufficient to polynomially transform a
3SAT instance into a pair of hypergraphs (G,H) such that H has tree projection with respect to
G. Instead, according to Lemma 1.1, we shall transform 3SAT into an instance of the tree projec-
tion problem of the form (G,G3). To achieve this, we make use of involved coding and padding
methods. We thus obtain the following result:

Deciding if GHW (H) ≤ 3 is NP complete.

Thus, unless P=NP, even for bounds as low as 3, bounded GHW is not polynomially recog-
nizable, and bounded GHDs, if they exist, cannot be computed in polynomial time.
Approximating GHDs. The unfavorable complexity results related to generalized hypertree de-
compositions motivate the search for somewhat weaker hypergraph decomposition methods that
in some sense approximate GHDs, and that fulfill the criteria of polynomial query evaluation and
polynomial recognizability. In this paper, we concentrate on decomposition methods M which
associate with each hypergraph H a set M(H) of generalized hypertree decompositions of H
and search for a GHD in M(H) of minimal width. Intuitively, we thus consider methods which
“approximate GHD from above”. The width MW (H) of a hypergraph H according to some de-
composition method M is the minimum GHW of a decomposition in M(H). For two methods M
and N we write M ≤ N iff for each hypergraph H , MW (H) ≤ NW (H). If M ≤ N and there is
some hypergraph H such that MW (H) < NW (H), then we write M < N .

The only method we are aware of, that does not fit into this framework is the fractional hyper-
tree decomposition method (FHD) [22]. This method is based on principles different from “near
acyclicity”. It was shown in [22] that FHD < GHD, but the computational properties of FHD
are unexplored (we conjecture FHD is not polynomially recognizable unless P=NP).

The following well-known approximation methods will be considered here. Query Decomposi-
tion (QD)[8] with the associated notion of query width (QW), hypertree decompositions (HD) [18]
, with the associated notion of hypertree width (HW ), and spread cut decomposition (SCD) [9]
with the associated notion of spread cut width (SCW). All these decomposition methods explicitly
restrict the sets χ(p) that may appear at a decomposition node p. In a QD, each set χ(p) must
coincide with the union of all edges in λ(p). This is a very strong restriction. The more general
HD merely requires that any element v that appears in some edge of λ(p) but not in χ(p), does not
occur in χ(p′) of any descendent p′ of p in T either. SCDs are defined through a similar condition
(see Section 6). Of the three decompositions only HDs are polynomially recognizable; QDs and
SCWs are not (unless P=NP)
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By results1 of [18, 3, 2, 9], GHD < HD < QD, and GHD < SCD < QD, while SCD and
HD are incomparable. Note also that the term “approximation method” is also appropriate in the
complexity theoretic sense. In fact, in [3] it was shown that for each hypergraph H , GHW (H) ≤
HW (H) ≤ 3×GHW (H)+1, and thus both query width and hypertree width approximate GHW
by a factor of 3.
Subedge-Based Decomposition Methods. Motivated by the goal to improve hypertree decompo-
sitions, we define the concept of subedge-based decomposition methods. A subedge of a hyper-
graph H is a subset of some edge of H . A subedge-based decomposition method M relies on a
subedge function. This is a function f which associates to each integer k > 0 and each hyper-
graph H a set f(H, k) of subedges of H . Moreover, the set of k-width M -decompositions can be
obtained as follows: (1) obtain a hypertree decomposition D of H ′ = (V, E ∪ f(H, k)), and (2)
convert D into a GHD of H by replacing each subedge e ∈ λ(p), for each decomposition node p,
by some edge e′ of H such that e ⊆ e′. We call such a decomposition method M subedge-based.
We derive the following result:

For each polynomially recognizable
decomposition method M ≤ GHD,there
exists a polynomially recognizable
subedge-based decomposition method
M ′ such that M ′ ≤ M .

The above result is useful from a methodological point of view. In fact, it tells us that when
searching for some new decomposition method M such that GHD < M < HD, then we may
concentrate on subedge-based decomposition, and thus study appropriate subedge functions. This
is what we did.
Component Hypertree decompositions. We found one particularly interesting subedge function
fC , whose definition is based on structural properties of the input hypergraph H . In particular,
each subedge in fC(H, k) is obtained from a full edge e and some candidate decomposition block
M of ≤ k edges containing e, by eliminating from e all vertices that are edge-connected to some
induced component of V (H) − vertices(M), or all vertices that are not edge-connected to any
component of V (H) \ M , or all vertices from e \ ∪(M \ {e}) that are edge-connected to some
component of V (H) \ vertices(M). The new subedge based decomposition method based on this
subedge functionfC is called component hypertree decomposition (CHD) and its associated width
is referred to as component hypertree width (CHW ). We show that:

Component hypertree decompositions
fulfill both criteria, polynomial query an-
swering and polynomial recognizability.

We also compared CHD to HD and SCD and found the following:

CHD < HD and CHD < SCD.

1The relation SC < QW follows from the definitions of [9].
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In particular, for the hypergraph H0 of Figure 1, we have HW (H0) = 3 but CHW (H0) =
SCW (H0) = GHW (H0) = 2.

The method of component hypertree decompositions is thus currently the most general known
polynomially recognizable hypergraph decomposition method.
Future Research We think that the following questions are of particular interest for future re-
search: (i) The best known approximation factor for GHW is 3. Is it possible to define a de-
composition method with a better approximation factor? (ii) Are fractional hypertree decomposi-
tions [22] polynomially recognizable? (iii) The best known upper bound for computing a hypertree
decomposition of width k is exponential in 2k. Can we do better?
Structure of the Paper In Section 2 we give some definitions. In Section 3 we show that the
hypergraph projection problem is NP-complete. In Section 4 we show that determining whether
GHW (H) ≤ 3 is NP-complete. In Section 5 we introduce the concept of subedge-based decom-
position and prove our general result about subedge-based decompositions. In Section 6 we define
component hypertree decompositions and we compare CHDs to HDs and SCDs and show that
CHDs are strictly more general than the others.

2 Preliminaries
A hypergraph is a pair H = 〈V, E〉 consisting of a set V of vertices and a set E of hyperedges.
A hyperedge e ∈ E is a subset of V . We adopt the usual logical representation of a relational
database [1], where data tuples are identified with logical ground atoms and conjunctive queries are
represented as datalog rules. There is a very natural way to associate a hypergraph H(Q) = (V, E)
to a query Q: the set of vertices consists of all variables occurring in Q, and the hyperedges are all
sets of variables of A , such that A is an atom in the body of Q. A query is acyclic if its associated
hypergraph is acyclic. We refer to the standard notion of hypergraph acyclicity in database theory
[1].

A join tree JT (Q) for a conjunctive query Q is a tree whose vertices are the atoms in the body
of Q such that whenever the same variable X occurs in two atoms A1 and A2, then A1 and A2 are
connected in JT (Q) and X occurs in each atom in the unique path linking A1 and A2. In other
words, the set of nodes, where X occurs induces a connected subtree of JT (Q). Acyclic queries
can be characterized in terms of join trees: A query is acyclic iff it has a join tree (see [6]).

A hypertree for a hypergraph H = (V, E) is a triple 〈T, χ, λ〉, where T = (N,F ) is a (rooted)
tree and χ and λ are labeling functions that associate each node p ∈ N with two sets: χ(p) ⊆ V
and λ(p) ⊆ E. We denote the subtree rooted at node p ∈ N with Tp and let
χ(Tp) = {v | v ∈ χ(w), w ∈ Tp}.

Definition 2.1 ([18]) A hypertree decomposition of a hypergraph H = (V, E) is a hypertree
HD = 〈T, χ, λ〉, such that the following conditions hold:

1. for each edge e ∈ E, there is a node p ∈ N , such that vertices(e) ⊆ χ(p),

2. for each vertex v ∈ V , the set {p ∈ N | v ∈ χ(p)} induces a connected subtree of T ,

3. for each p ∈ N , χ(p) ⊆ vertices(λ(p)),
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4. for each p ∈ N , vertices(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The width of a hypertree decomposition is defined as |HD| = maxp∈N |λ(p)|. The hypertree
width of a hypergraph is the minimum width over all of its hypertree decompositions. We call a
hypertree decomposition complete, if for all edges e of the hypergraph H , there is a node p ∈ N
such that e ∈ λ(p) and vertices(e) ⊆ χ(p). We refer to the condition 4 of Definition 2.1 as the
“special condition”. A hypertree 〈T, χ, λ〉 is called a generalized hypertree decomposition, if the
conditions 1-3 of Definition 2.1 hold.

Let H = (V,E) be a hypergraph and let X, Y ∈ V be two vertices of H and S ⊆ V a subset of
vertices. X and Y are [S]-adjacent if there is an edge e ⊆ E, such that {X, Y } ⊆ vertices(e) \S.
The maximum [S]-connected sets are called [S]-components. We use the same short notation as
in [18]: a [p]-component denotes a [χ(p)]-component. In the case of hypertree decompositions,
the [p]-components and [vertices(λ(p))]-components coincide (see lemma 5.8 in [18]). This does
not hold for generalized hypertree decompositions, where a [p]-component may have nonempty
intersection with several [vertices(λ(p))]-components.

Normal form hypertree decompositions play a crucial role in the proofs in [18].

Definition 2.2 ([18]) A generalized hypertree decomposition 〈T, χ, λ〉 of a hypergraph H is in
normal form, if for each vertex r of T and for each child s of r, all the following conditions hold:

1. there is exactly one [r]-component Cr, such that
χ(Ts) = Cr ∪ (χ(r) ∩ χ(s))

2. Cr ∩ χ(s) 6= ∅, where Cr is the [r]-component from condition 1,

3. vertices(λ(s)) ∩ χ(r) ⊆ χ(s).

Proposition 2.3 (Gottlob et al.[18]) If H has a generalized hypertree decomposition of width k,
then H has a generalized hypertree decomposition of width k in normal form.

3 Complexity of the tree projection problem
Theorem 3.1 TREE PROJECTION is NP-complete.

Proof Clearly, TREE PROJECTION is in NP. The proof of NP-hardness is by a reduction from

3SAT. Let ϕ =
m∧

i=1

(Li1 ∨ Li2 ∨ Li3) be a 3SAT formula with m clauses and variables x1, . . . , xn.

We construct hypergraphs H1 = (V,E1) and H2 = (V, E2) such that H1 has a join tree with
respect to H2 if and only if ϕ is satisfiable.

V has the following elements:

– for each i ≤ n there are yi and y′i,

– for each i ≤ m + 1 and j ≤ 2n + 2 there is aj
i .
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In the following, Y denotes {y1, . . . , yn} and Y ′ denotes {y′1, . . . , y′n}. Further, Y−i is Y −{yi}
and Y ′

−i = Y ′ − {y′i}.
We will use the convention that hyperedges of H1 are denoted by lower case letters e··· and

hyperedges of H2 by upper case symbols E···.
The hyperedges of H1 are the following.

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, there is a hyperedge ej
i = {aj

i , a
j
i+1},

– for each j, 1 ≤ j ≤ 2n + 1, there is a hyperedge ej
m+1 = {aj

m+1, a
j+1
1 },

– for each i, 1 ≤ i ≤ n, there is a hyperedge ei = {yi, y
′
i}, and

– there are hyperedges e = {a1
1} ∪ Y and e′ = {a2n+2

m+1 } ∪ Y ′.

H2 has the hyperedges E = {a1
1} ∪ Y ∪ Y ′, E ′ = {a2n+2

m+1 } ∪ Y ∪ Y ′ and, for each i, j, k,
1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, 1 ≤ k ≤ 3, a hyperedge Ej

ik depending on Lik as follows:

– if Lik = xp, for some p then Ej
ik = {aj

i , a
j
i+1} ∪ Y ∪ Y ′

−p,

– if Lik = ¬xp, for some p then Ej
ik = {aj

i , a
j
i+1} ∪ Y−p ∪ Y ′.

Finally, for each j ≤ 2n + 1, there is a hyperedge Ej
m+1 = {aj

m+1, a
j+1
1 } ∪ Y ∪ Y ′.

We show next that ϕ is satisfiable if and only if H1 has a join tree with respect to H2.
Let us assume first that ϕ has a satisfying truth assignment ρ. Then T can be chosen as follows

(See Figure 3).

– for each i, j, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ 2n + 2, T has a node vj
i . There are two further nodes,

v and v′,

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, there is an edge {vj
i , v

j
i+1}, and

– for each j, 1 ≤ j ≤ 2n + 1, there is an edge {vj
m+1, v

j+1
1 },

– there are two additional edges: between v and v1
1 , and between v2n+2

m+1 and v′.

Thus, T is a line from v to v′.

v v′

v1
1 vj

i vj
i+1 vj

m+1 vj+1
1 v2n+2

m+1

Figure 3: Join tree

In order to define χ and λ, we fix, for each i, a ki, 1 ≤ ki ≤ 3 such that the i-th clause of ϕ,
Li1 ∨ Li2 ∨ Li3, is satisfied by Liki

, i.e. Liki
= 1 under ρ. Let us choose pi, such that Liki

= xpi
or

Liki
= ¬xpi

.
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For each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n+2, we let λ(vj
i ) = Ej

iki
and, for each j, 1 ≤ j ≤ 2n+1,

we let λ(vj
m+1) = Ej

m+1. Finally, λ(v) = E and λ(v′) = E ′.
Let Z be the set {yi | ρ(xi) = 1} ∪ {y′i | ρ(xi) = 0}. We define χ as follows.

– χ(v) = {a1
1} ∪ Y ∪ Z, χ(v′) = {a2n+2

m+1 } ∪ Y ′ ∪ Z,

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, let χ(vj
i ) = {aj

i , a
j
i+1} ∪ Z, and

– for each j, 1 ≤ j ≤ 2n + 1, let χ(vj
m+1) = {aj

m+1, a
j+1
1 } ∪ Z.

It is not hard to see that 〈T, χ, λ〉 is indeed a join tree for H1 with respect to H2. The crucial
point is that, for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, χ(vj

i ) ⊆ λ(vj
i ), since Liki

= 1 and
Liki

= xpi
or Liki

= ¬xpi
, therefore Z contains the “right” element for Ej

iki
.

It remains to show that the existence of a join tree implies satisfiability of ϕ. To this end, let
〈T, χ, λ〉 be a join tree for H1 with respect to H2.

Let v, v′ be nodes of T that cover the hyperedges e and e′, i.e. e ⊆ χ(v) and e′ ⊆ χ(v′).
Let P = v1, . . . , vl (v1 = v, vl = v′) be the path from v to v′ in T . For each 1 ≤ i ≤ m + 1,
1 ≤ j ≤ 2n + 2 let P j

i be the set of nodes w ∈ P with aj
i ∈ χ(w). Clearly, each P j

i is a subpath of
P , and for j < j′ and i ≤ m, the subpaths P j

i are disjoint from the subpaths P j′
i and the former are

closer to v than the latter. We denote, for each j, 1 ≤ j ≤ 2n + 2, the node of P j
1 which is closest

to v by uj . Further, we set u2n+3 = v′. Clearly, for each j ≤ 2n + 2, the nodes of P covering the
hyperedges of the form ej

i lie between uj and uj+1.
Let, for each j, 1 ≤ j ≤ 2n+2, Xj be the set χ(uj)∩(Y ∪Y ′) and let X2n+3 be χ(v′)∩(Y ∪Y ′).

As Y ⊆ χ(v) and Y ′ ⊆ χ(v′), the sequence X1 ∩ Y, . . . , X2n+3 ∩ Y is non-increasing and the
sequence X1∩Y ′, . . . , X2n+3∩Y ′ is non-decreasing. Furthermore, as the hyperedges ei = {yi, y

′
i}

of H1 must be covered, for each i and j it holds yi ∈ Xj or y′i ∈ Xj .
Thus, there is a j ≤ 2n + 2 such that Xj = Xj+1. And for all nodes u between uj and uj+1 it

holds Xj ⊆ χ(u).
We derive a truth assignment for x1, . . . , xn from Xj as follows. For each i ≤ n, we set

ρ(xi) = 1 if yi ∈ Xj and otherwise ρ(xi) = 0. Note that in the latter case y′i ∈ Xj .
We claim that ρ is a satisfying assignment for ϕ. Indeed, for each i, there must be a node u

between uj and uj+1 which covers the hyperedge ej
i . The only candidates are Ej

i1, Ej
i2 and Ej

i3.
Thus, there must be a k such that Xj ⊆ χ(u) ⊆ Ej

ik. Consequently, if Lik = yp then yp must be in
Xj and if Lik = ¬yp then y′p must be in Xj . In either case Lik is satisfied by ρ on xp. Therefore, ρ
satisfies ϕ. ¤

4 Generalized hypertree decomposition
In this section we show the following result.

Theorem 4.1 Testing whether a hypergraph has generalized hypertree width at most 3 is NP-
complete.
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The proof uses the same basic idea as the proof of Theorem 3.1. Nevertheless, the construction
is considerably more complicated as, opposed to that proof, we can not choose H2 freely but rather
are forced to choose H2 = H3

1 . Here, H3
1 denotes the hypergraph with the same elements as H1

whose hyperedges are all unions of three hyperedges of H1.
Before we present the complete proof of Theorem 4.1, we describe the construction of a sub-

hypergraph of H1 with a particular property.
To this end, let V0 = {b1, b2, b3, c1, c2, c3, d}.Let A1, A2, A3 be further sets of elements, pairwise

disjoint and disjoint from V0. We write A for A1∪A2∪A3. Let H1 = (V, E) be a hypergraph with
V0 ∪ A1 ∪ A2 ∪ A3 ∪ {a} ⊆ V such that the only hyperedges containing elements from V0 are as
follows.

– {a, b1} ∪ A1, {b1, c1} ∪ A1, {c1, d} ∪ A1,

– {a, b2} ∪ A2, {b2, c2} ∪ A2, {c2, d} ∪ A2,

– {a, b3} ∪ A3, {b3, c3} ∪ A3, {c3, d} ∪ A3,

– {b1, c2}, {b1, c3}, {b2, c1}, {b2, c3}, {b3, c1}, {b3, c2}.

The set containing these hyperedges is denoted by E0.
Claim 1. Every join tree T of H1 with respect to H3

1 has nodes v1, v2, v3 with the following
properties:

– {a, b1, b2, b3} ⊆ χ(v1)

– {b1, b2, b3, c1, c2, c3} ⊆ χ(v2)

– {c1, c2, c3, d} ⊆ χ(v3)

– v2 is on the path from v1 to v3

The proof of the above claim is included in the full version of this paper [20]. We are now
prepared to present the proof of Theorem 4.1.

Proof [of Theorem 4.1] The problem is clearly in NP. The lower bound is again by a reduction
from 3SAT. Let ϕ be a propositional formula in conjunctive normal form with m clauses ϕi of the
form Li1 ∨ Li2 ∨ Li3 and variables x1, . . . , xn. For convenience and without loss of generality we
assume that ϕ1 = ¬x1 ∧ ¬x2 ∧ ¬x3 and ϕm = x4 ∧ x5 ∧ x6. This can always be accomplished by
adding 2 new clauses and 6 new variables without affecting the satisfiability.

We describe next the construction of a hypergraph H1 = (V1, E1) that has a join tree with
respect to H3

1 if and only if ϕ is satisfiable.
In a nutshell, H1 consists of two copies C,C ′ of the hypergraph of the above claim plus addi-

tional hyperedges connecting C and C ′ in a similar fashion as in the proof of Theorem 3.1. To this
end, we use the same sets Y, Y ′ related to the variables of ϕ and elements of the form ai

j . In order
to control (and restrict) the ways in which hyperedges are combined in T we use an additional
large set S of further elements.

We then make sure that C contains S as well as Y and that C ′ contains S and Y ′ and that each
pair {yi, y

′
i} occurs in some node. Thus, all nodes on the path of T which connects C with C ′ must

contain S and, just as in Theorem 3.1, for each i, one of yi and y′i.
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We now describe the construction of H1 more formally. Let l = (2n + 2)(m + 1). Let S be
{1, . . . , l}3 × {0, 1}5. The elements of H1 are

– a, b1, b2, b3, c1, c2, c3, d,

– a′, b′1, b
′
2, b

′
3, c

′
1, c

′
2, c

′
3, d

′,

– y1, . . . , yn,

– y′1, . . . , y
′
n,

– all elements of the form aj
i with 1 ≤ i ≤ m + 1,

1 ≤ j ≤ 2n + 2

– all elements from S.

Let again Y denote {y1, . . . , yn} and Y ′ denote {y′1, . . . , y′n}.
We introduce some notation for subsets of S next. We write elements of S in the form

(i1, i2, i3; j1, j2, j3; k1, k2), thereby splitting the 8 components into 3 groups. The wildcard ∗ in-
dicates that the respective component can carry arbitrary values. E.g., (∗, ∗, ∗; 1, ∗, ∗; ∗, ∗) denotes
the set of tuples with j1 = 1. If the wildcard occurs in all components of a group we replace by
one wildcard *. Thus we can denote the above set also by (*; 1, ∗, ∗; *).

For i, j, k with k = (j − 1)(m + 1) + i, we write Si,j for the set (k, ∗, ∗; *; *)∪ (∗, k, ∗; *; *)∪
(∗, ∗, k; *; *).

The hyperedges of H1 are as follows:

– all hyperedges as mentioned before Claim 1 in this section with A1 = Y , A2 = (*; *; 0, ∗),
A3 = (*; *; 1, ∗);

– all hyperedges as mentioned before Claim 1 with
a′, b′1, b

′
2, b

′
3, c

′
1, c

′
2, c

′
3, d in place of a, b1, b2, b3, c1, c2, c3, d and with A1 = Y ′, A2 = (*; *; ∗, 0),

A3 = (*; *; ∗, 1);

– e1
1 = {a, a1

1} ∪ (S − S1,1), e2n+2
m+1 = {a′, a2n+2

m+1 } ∪ (S − Sm+1,2n+2);

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, the hyperedge ej
i = {aj

i , a
j
i+1} ∪ (S − Si,j);

– for each j, 1 ≤ j ≤ 2n + 1, the hyperedge ej+1
m+1 = {aj

m+1, a
j+1
1 } ∪ (S − Sm+1,j);

– for each i, 1 ≤ i ≤ n, there is a hyperedge ei = {yi, y
′
i};

– finally there are, for each i, j, (1 ≤ j ≤ 2n + 2, 1 ≤ i ≤ m + 1) six special hyperedges as
follows.

- If Li,1 is xp, for some p, then H1 has the hyperedges Y ∪ (Si,j ∩ (*; 0, ∗, ∗; *)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; 1, ∗, ∗; *)).

- If Li,1 is ¬xp, for some p, then H1 has the hyperedges (Y −{yp})∪(Si,j∩(*; 0, ∗, ∗; *))
and Y ′ ∪ (Si,j ∩ (*; 1, ∗, ∗; *)).
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- If Li,2 is xp, for some p, then H1 has the hyperedges Y ∪ (Si,j ∩ (*; ∗, 0, ∗; *)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; ∗, 1, ∗; *)).

- If Li,2 is ¬xp, for some p, then H1 has the hyperedges (Y −{yp})∪(Si,j∩(*; ∗, 0, ∗; *))
and Y ′ ∪ (Si,j ∩ (*; ∗, 1, ∗; *)).

- If Li,3 is xp, for some p, then H1 has the hyperedges Y ∪ (Si,j ∩ (*; ∗, ∗, 0; *)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; ∗, ∗, 1; *)).

- If Li,3 is ¬xp, for some p, then H1 has the hyperedges (Y −{yp})∪(Si,j∩(*; ∗, ∗, 0; *))
and Y ′ ∪ (Si,j ∩ (*; ∗, ∗, 1; *)).

Now we show that H1 has a join tree with respect to H3
1 if and only if ϕ is satisfiable.

To this end, let us first assume that ϕ is satisfiable. Let ρ be a satisfying truth assignment. Let
Z be the set
{yi | ρ(xi) = 1} ∪ {y′i | ρ(xi) = 0}.

v v′

v1
1 vj

i vj
i+1 vj

m+1 vj+1
1 v2n+2

m+1

vbva vc v′b v′av′c

Figure 4: Join tree

We construct T as a path vc, vb, va, v, v1
1 , . . ., v1

m+1, v2
1 , . . ., v2

m+1, . . ., v2n+2
m+1 , v′, v′a, v′b,

v′c, see Figure 4. Here λ(vc) is composed by the hyperedges with {c1, d}, {c2, d} and {c3, d}
and χ(vc) = {d, c1, c2, c3} ∪ S ∪ Y . Analogously, χ(vb) = {c1, c2, c3, b1, b2, b3} ∪ S ∪ Y and
χ(va) = {b1, b2, b3, a} ∪ S ∪ Y .

The nodes v′c, v
′
b, v

′
a are defined analogously with Y ′ instead of Y .

The remaining nodes are defined such that the following holds.

– χ(v) = {a, a1
1} ∪ S ∪ Z ∪ Y ,

– χ(v′) = {a′, a2n+2
m+1 } ∪ S ∪ Z ∪ Y ′,

– for each 1 ≤ j ≤ 2n + 1, χ(vj
1) = {aj

m+1, a
j+1
1 } ∪ S ∪ Z , and

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, χ(vj
i ) = {aj

i , a
j
i+1} ∪ S ∪ Z.

It is not hard to see, that λ (and χ) can be chosen in this way and that all hyperedges of H1 are
covered by T . It should be noted here that each special hyperedge is either covered by vc or v′c.

It remains to show that ϕ is satisfiable if H1 has a join tree with respect to H3
1 . To this end, let

T be such a join tree. Let C denote the subtree it has because of Claim 1 (with nodes v1, v2, v3)
and let C ′ denote the corresponding subtree for the a′, b′i, c

′
i, d elements (with nodes v′1, v

′
2, v

′
3). It

is not hard to show that each node v on the path P of T from v1 to v′1 has the following properties.

– S ⊆ χ(v)
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– a ∈ χ(v) or a′ ∈ χ(v) or some aj
i ∈ χ(v).

– for each i ≤ n, yi ∈ χ(v) or y′i ∈ χ(v).

Furthermore, for each i ≤ n, there is a node v in P with {yi, y
′
i} ⊆ χ(v).

It is easy to see that there can be no node in P which is composed by two or more hyperedges
of the form ej

i : indeed there is no way to cover all of S by only one additional hyperedge.
Thus, P consists of disjoint subpaths P0, P

1
1 , . . . , P 2n+2

m+1 , P ′
0 such that each node v in P j

i fulfills
ej

i ⊆ λ(v), for some i, j. To cover all of S, λ(v) must also contain two corresponding special
hyperedges.

We fix a node v1 with {a, a1
1} ⊆ χ(v1) and, for each j, 2 ≤ j ≤ 2n + 2, we fix a node

vj with {aj−1
m+1, a

j
1} ⊆ χ(vi). Similar to the proof of Theorem 3.1 we define, for each j, Xj =

χ(vj)∩ (Y ∪ Y ′). Again, there must be a j such that Xj = Xj+1. Just as in that proof, we obtain a
truth assignment ρ by taking, for each i ≤ n, ρ(xi) = 1 if yi ∈ Xj and otherwise ρ(xi) = 0. And
again it is easy to show that ρ is actually a satisfying assignment for ϕ.

This completes the proof of the theorem. ¤

5 Subedge-based GHDs
Our intractability results on generalized hypertree width motivate further research on tractable
decomposition methods that approximate generalized hypertree decompositions. In this section
we show that each such method is basically a combination of a method to add (sub-hyper-) edges
to the hypergraph with hypertree decomposition.

The following proposition, which is merely a simple observation, sets up the stage for the
considerations in this section.

Proposition 5.1 Let H be a hypergraph and let D = 〈T, χ, λ〉 be a GHD for H . Then D′ =
〈T, χ, λ′〉, where λ′(p) = {e ∩ χ(p) | e ∈ λ(p)},for each node p of T is a HD of H ∪ {e ∩ χ(p) |
p ∈ T, e ∈ λ(p)}. Furthermore, the width of D′ is at most the width of D.

The proposition follows basically from the definitions of GHD and HD. Nevertheless, it explains,
at least to some extent, the relationship between HD and GHD. More importantly, it opens a
systematic way to find tractable decomposition methods as will be detailed below.

Before we dive into that, let us have a closer look at decomposition methods. Recall that,
in this paper, a decomposition method M associates with each hypergraph H a set M(H) of
allowed GHDs. In principle, we would be interested in methods that can be implemented by
tractable algorithms. But as the experience from HD (and from tree decompositions in the case of
graphs) shows, we cannot expect algorithms whose running time is polynomial, independent of the
parameter k. Thus, we say an algorithm A implements a decomposition method M if A on input
(H, k) outputs a GHD from M(H) of width ≤ k, if it exists, otherwise “fail”.

Now we turn to the particular decomposition methods we are interested in. We call a subset of a
hyperedge e of a hypergraph H a subedge of H . Informally, each function f mapping a hypergraph
H to a set of subedges of H induces a decomposition method: (1) Compute f(H), (2) compute a
minimal HD D of H ∪ f(H). As (2) is only feasible, for each fixed k, it makes sense, to allow
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f to depend on the given k as well. Thus, a subedge function is a function f , mapping each pair
(H, k) to a set of subedges of H . To avoid technical complications, we further require that subedge
functions be monotone in the following sense: for each i < j,
f(H, i) ⊆ f(H, j).

If D = 〈T, χ, λ〉 is a HD of a hypergraph H ∪ f(H, k) and D′ = 〈T, χ, λ′〉 is a GHD of H ,
we say that D′ covers D if, for each p, each e ∈ λ(p) is a subedge of some e′ ∈ λ′(p).

With each subedge function f we associate the decomposition method Mf as follows: Mf (H)
is the set of all GHDs D′ of H for which there exists a k such that k ≤ |D′| and there exists a HD
D of the hypergraph H ∪ f(H, k), such that D′ covers D. . We call a decomposition method of
the form Mf subedge-based.

The hypertree decomposition method is subedge-based, as it is defined by the function f(H) =
∅. On the other extreme, GHD is a subedge-based decomposition, too. In particular, GHD is
equal to Mf+ , where for each H and k, f+(H, k) = subedges(H). A related remark was made by
Adler [2].

The latter example shows that, in general, f(H, k) does not need to be of polynomial size.
Nevertheless, as we are interested in tractable methods, we call a subedge function f polynomially
computable (logspace computable) if for each fixed k, f(H, k) can be computed in polynomial
time (logarithmic space).

Lemma 5.2 (a) If f is polynomially computable, then, for each fixed constant k, whether MfW (H) ≤
k can be decided in polynomial time, and there is a tractable algorithm Af that implements
Mf .

(b) If f is logspace computable, then deciding whether
MfW (H) ≤ k is in the parallel complexity class
LOGCFL.

Proof For (a), given H and k, Af first computes f(H, k) and then uses the algorithm of [18] to
compute a HD D of width i ≤ k for H ∪ f(H, k), if one exists. Note that for each subedge e used
in D, there is an edge e′ of H with e ⊆ e′. Thus, by replacing each such e by the respective e′

yields a GHD D′ of width i for H .
Note that D′ might not be in Mf (H) as |D′| ≥ k does not hold. Thus, let p be a node of the

underlying tree T of D′ with |λ(p)| = i and let e1, . . . , ek−i be hyperedges2 of H which are not yet
in |λ(p)|. By adding these edges to λ(q) for each node q of T we get a GHD of width k, which
is the output of Af . As Af works in polynomial time, the decision problem can be answered in
polynomial time as well. The case of (b) is similar: one only has to carefully compose the logspace
computation to compute f(H, k) with the LOGCFL check [18, 17] whether the hypertree width of
H ∪ f(H, k) is ≤ k (in the standard way known from complexity theory). ¤

From the proof of Lemma 5.2 we can conclude:

Corollary 5.3 For a hypergraph H , MfW (H) is the smallest k for which HW (H∪f(H, k)) ≤ k.

For reference in the next section we state the following, which can be shown by a similar argument.

2If no such edges exist, then H has less than k hyperedges and MfW (H) ≤ k holds trivially by definition of Mf .
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Theorem 5.4 Let A and B be two subedge defined decomposition methods, defined by the func-
tions fA and fB, respectively. If for all positive integers i, fA(i,H) ⊆ fB(i,H), then BW (H) ≤
AW (H).

We have seen that decomposition methods Mf with tractable f lead to tractable GHD-computations.
We next show that, on the other hand, each tractable decomposition method is basically of the form
Mf .

Theorem 5.5 For each decomposition method M which can be implemented by a polynomial
algorithm A there is a polynomial subedge function f such that Mf ≤ M .

Proof Let M and A as stated. Given a hypergraph H and a number k, let D = 〈T, χ, λ〉 be the
GHD of width k for H computed by A. Let D′ = 〈T, χ, λ′〉 be defined as in Proposition 5.1. Then
we define f(H, k) =

⋃
p

λ′(p), where p ranges over all nodes of T . As A(H, k) can be computed

in polynomial time, f(H, k) is polynomial.
Furthermore, D′ has width ≤ k and is in Mf (H). As this holds, for every MW (H) ≤ k we

can conclude MfW (H) ≤ MW (H). ¤
Of course, the function f in the proof of Theorem 5.5 depends on the ability of already com-

puting a GHD. Thus, the reader might get the impression that the detour through f is not very
useful. Nevertheless, in the next section we exhibit a polynomial subedge function f which is
defined entirely in terms of H and does not involve the construction of a decomposition.

6 Component hypertree decomposition
In this section we give an example of a subedge defined decomposition, called “component hy-
pertree decomposition”, that strictly generalizes both hypertree decomposition [18] and spread cut
decomposition [9] and it is also tractable.

6.1 Definitions
Definition 6.1 Let M be a set of edges of the hypergraph H . We define prop(e,M), the proper
part of an edge related to M as prop(e, M) = e \⋃

e′∈M,e 6=e′ e
′.

Definition 6.2 Let M be a set of edges of the hypergraph H and let e be an edge in M . We
define the set internal(e,M) = {v | v ∈ vertices(e), e ∈ M and there exists no [vertices(M)]-
component C, such that
v ∈ vertices(edges(C))}.

Definition 6.3 Let H be a hypergraph, let M be a set of edges of H and let C be a [vertices(M)]-
component. The function elim(M,C, e) associates a set containing the following three subedges
to a triple (M, C, e)

1. e ∩ vertices(edges(C)),
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2. prop(e,M) ∩ vertices(edges(C)),

3. internal(e,M).

Definition 6.4 Let H be a hypergraph, let M be a set of edges of H and let C be a [vertices(M)]-
component and e ∈ M . We define the subedge function fC as:

fC(H, k) = {e \ e′ | M is a set of ≤ k hyperedges of H ,
e ∈ M ,
C is a [vertices(M)]-component,
and e′ ∈ elim(M,C, e)}.

The decomposition method MfC referred as component hypertree decomposition (CHD).

According to our definition, the generalized hypertree decomposition of figure 2 a) is a com-
ponent hypertree decomposition. A hypertree decomposition of the hypergraph H ∪ f(H, 2) is
depicted on figure 5.

{e2, e8}{v1, v2, v3, v8, v9, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10}

{e′2, e6}{v3, v6, v7, v9, v10}

{e′3, e7}{v3, v7, v8, v9, v10}

Figure 5: Hypertree decomposition of width 2 of the hypergraph H ∪ fC(H, 2), e′2(v3, v9) ⊆ e2,
e′3(v3, v10) ⊆ e3. Note that {e′2, e′3} ⊆ fC(H, 2).

Let us note that for fixed k, the set fC(H, k) is computable using only logarithmic space. In this
case, the sets M and N are of constant size k, the [vertices(λ(p))]-components can be represented
also in logarithmic space, and all of the required computations (computing connected components,
intersections and difference of sets) is feasible in logspace, see e.g. [17]. Therefore, by lemma 5.2,
deciding whether for a fixed constant k, a given hypergraph H has component hypertree width at
most k, is feasible in LOGCFL.

6.2 Comparison with other tractable decompositions
Definition 6.5 ([9]) A normal form 3 generalized hypertree decomposition 〈T, χ, λ〉 of a hyper-
graph H is called spread cut decomposition (SCD) if additionally the following conditions hold:4

3Personal communication from the authors of [9]: the original definition in [9] does not ensure the existence of
a tractable recognition algorithm. While finishing the present paper, we learnt that the authors of [9] have recently
defined a new tractable variant of spread cut decomposition. We plan to compare this new decomposition method to
subedge defined decompositions in the full version of this paper.

4Condition 3 follows from the “canonical form” theorem, proven in [9] (Theorem 7.6). We find it convenient to
include this condition in the definition.
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1. for each node p of T , each [p]-component meets at most one [vertices(λ(p))]-component,

2. for each node p of T , for all pairs of edges e1, e2 ∈ λ(p), (e1 6= e2), e1 ∩ e2 ⊆ χ(p).

3. for each node p of T , for each edge e ∈ λ(p),

(a) either ∀v ∈ internal(e,M), v ∈ χ(p),

(b) or ∀v ∈ internal(e,M), v 6∈ χ(p) and for all
[vertices(λ(p))]-components C,
vertices(edges(C) ∩ e) ⊆ χ(p).

Lemma 6.6 Let 〈T, χ, λ〉 be a spread cut decomposition of a hypergraph H . Let p be a node of T .
For each e ∈ λ(p), exactly one of the following conditions is true:

1. e \ χ(p) = internal(e, λ(p)),

2. there exists a unique [vertices(λ(p))]-component Ce,
such that e \ χ(p) = prop(e,M) ∩ vertices(edges(Ce)).

Proof (sketch) Assume that e\χ(p) contains a vertex from internal(e, λ(p)). Then, by condition
3 of definition 6.5, e \ χ(p) = internal(e, λ(p)). Now, assume, e \ χ(p) does not contain any
internal vertex, then let us assume indirectly that v, w ∈ vertices(e) \ χ(p), (v 6= w) and there
are two different [vertices(λ(p))]-components C and D, such that v ∈ vertices(edges(C)) and
w ∈ vertices(edges(D)). Then v and w are [p]-connected, since {v, w} ⊆ vertices(e)\χ(p). So,
there exist two different vertices vC ∈ C and vD ∈ D, such that vC and vD are [p]-connected to v
and w, respectively, therefore also vC and vD are also [p]-connected. From this follows that the [p]-
component containing v and w meets more than one [vertices(λ(p))]-components. Contradiction.
¤

Definition 6.7 For M , H C and e as in definition 6.3 let elim∗(M, C, e) be defined as in definition
6.3 except that we only associate two subedges to a triple (M,C, e), namely those mentioned in
points 2 and 3 in Def. 6.3.

Definition 6.8 We define the subedge function f ∗ as f ∗(H, k) = {e \ e′ | M is a set of at most k
hyperedges of H , e ∈ M , C is a [vertices(M)]-component, e′ ∈ elim∗(M, C, e)}.

Note that for each hypergraph H and for each positive k, f ∗(H, k) ⊆ fC(H, k).

Lemma 6.9 Mf∗ ≤ SC

Proof (sketch) Let D = 〈T, χ, λ〉 be a spread cut decomposition of H of width k. It is sufficient
to show that for each node p of T and for each edge e in λ(p), e∩χ(p) ∈ subedges(H∪f ∗(H, k)).
But this follows from the definition of f ∗ (Definition 6.8) and Corollary 5.3. ¤

Theorem 6.10 CHD < HD and CHD < SCD.
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Proof (sketch) Clearly, by Corollary 5.3, CHD ≤ HD. For hypergraph H0 in the introduction,
see figure 1, HW (H) = 3, CHW (H) = 2, therefore CHD < HD.

Let us first prove first that CHD ≤ SCD. Given that for each hypergraph H and for each
positive k, f ∗(H, k) ⊆ fC(H, k), by Corollary 5.3 and Lemma 6.9,
CHD = MfC ≤ Mf∗ ≤ SCD.

For the hypergraph H on Figure 6, which is an adaptation of an example from Adler [2] for our
purposes, CHW (H) = 5, SCW (H) = 6, therefore CHD < SCD. The hypergraph is defined
as follows. The vertices of H are the “ground” vertices {A,B, C, D, E, F, A1, B1, C1, D1, E1, F1}
and the 32 “balloon” vertices, represented as stars on the figure. Each balloon vertex is connected
by an edge to each ground vertex. All other edges are depicted in the figure.

A

B

C

D

E

F

A1B1C1D1

E1

F1

Figure 6: HW (H) = 6, SCW (H) = 6, GHW (H) = 5, CHW (H) = 5

It is easy to see that CHW (H) = 5. (A CHD of H of width 5 is included in the full version
of this paper [20].) Similarly, an SCD of width 6 can be found therefore SCW (H) ≤ 6. Assume
that SCW (H) = 5. By using the Robber and Marshals game described in [19], it can be shown
that for every CHD D of width 5, there must exists at least one decomposition node p, such that
one of the vertices E, F , E1 or F1 is in (vertices(λ(p)) \ χ(p)). However, this is forbidden by
condition 2 in the definition of SCD (Def. 6.5). Contradiction. ¤
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Appendix
The appendix contains proofs and examples, which have been excluded from the paper because of
space limitations.

Section 4

For a tree T and subtrees s, t of T we write s ∩ t for the set of nodes that s and t have in common.
We will need two results about subtrees of trees from [?] which are summarized in the following

proposition.

Proposition 6.11 Let T be a tree.

(a) If t1, . . . , tk are subtrees of T , k ≥ 4, such that, for each i < k, ti∩ ti+1 6= ∅ and tk ∩ t1 6= ∅,
then there are i and j, i 6= j ± 1 (modulo k) with ti ∩ tj 6= ∅.

(b) If t1, . . . , tk are subtrees of T such that ti∩tj 6= ∅, for each i, j ∈ {1, . . . , k}, then T contains
a node v which is in every ti.

Property (a) can be stated in more general terms. A tree T and subtrees t1, . . . , tn induce a
graph G in the following way: the vertices of G are t1, . . . , tn, (ti, tj) is an edge if ti ∩ tj 6= ∅. It is
shown in [?] that a graph is chordal if and only if it can be obtained in such a way.

Claim 1. Every join tree T of H1 with respect to H3
1 has nodes v1, v2, v3 with the following

properties:

– {a, b1, b2, b3} ⊆ χ(v1)

– {b1, b2, b3, c1, c2, c3} ⊆ χ(v2)

– {c1, c2, c3, d} ⊆ χ(v3)

– v2 is on the path from v1 to v3

Proof

db2a

b1

b3

c1

c2

c3

Figure 7: Hypergraph

For an element z of V0, we denote by tz the subtree of T induced by the nodes of T containing
z.
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We show first, that there is a j such that ta and tcj
are disjoint. Towards a contradiction assume

that, for each j, ta ∩ tcj
6= ∅. As all hyperedges of E0 have to be covered by T , for each i, j, k it

holds that td ∩ tci
6= ∅, tci

∩ tbj
6= ∅, tbj

∩ tck
6= ∅ and tck

∩ ta 6= ∅. Because of Proposition 6.11
(a), we can conclude that, for each i, j, k, td ∩ tbj

6= ∅ or tci
∩ tck

6= ∅. It follows that, for every
j, td ∩ tbj

6= ∅, or, for every i, k, tci
∩ tck

6= ∅. In the latter case, because of our assumption, we
can conclude that none of ta, tb1 , tc1 , tc2 , tc3 , are pairwise disjoint. Thus, by Proposition 6.11 (b),
they all have one node in common. This leads to a contradiction, as 3 hyperedges can not cover
a, c1, c2, c3. Thus, we conclude that, for every j, td ∩ tbj

6= ∅.
We now consider cycles of the form tbi

, tcj
, tbk

, tcp . Because of Proposition 6.11 (a), tbi
∩ tbk

6=
∅, for every i, k or tcj

∩ tcp 6= ∅, for every j, p. By symmetry we assume the former. But then
ta, tb1 , tb2 , tb3 , tc1 , td induce a clique and thus have a common node, again a contradiction.

We therefore have shown that there is a j such that ta and tcj
are disjoint. In an analogous

fashion it can be shown that there is an i such that td ∩ tbi
6= ∅.

We can conclude that ta ∩ td 6= ∅ does not hold, as follows. Assume otherwise and let us
consider ta, tbi

, tcj
, td. By applying Proposition 6.11 (a) again, we get ta ∩ tcj

6= ∅ or tbi
∩ td 6= ∅,

contradicting our above conclusions.
By considering ta, tbi

, tcj
, tbk

, we similarly obtain that tbi
∩ tbk

6= ∅, for each i, k and analo-
gously, tci

∩ tck
6= ∅, for each i, k. Hence, the tbi

and tcj
are pairwise connected and therefore by

Proposition 6.11 they have a node in common. Let v0 be such a node, i.e., {b1, b2, b3, c1, c2, c3} ⊆
χ(v0). Correspondingly, a, b1, b2, b3 and d, c1, c2, c3 induce cliques therefore there must be v1 and
v3 with {a.b1, b2, b3} ⊆ χ(v1) and {d, c1, c2, c3} ⊆ χ(v3). By the connectivity property of T , all
nodes between v0 and v1 contain b1, b2, b3 and all nodes between v0 and v3 contain c1, c2, c3. Thus,
all nodes that are on both these paths contain {b1, b2, b3, c1, c2, c3}. We can thus choose such a node
v2 which is on the path from v1 to v3 .

From the claim it follows that λ(v1), λ(v2), λ(v3) only use hyperedges from E0 and a, d 6∈
χ(v2). In particular, in T , there can be no node v with a, d ∈ χ(v) and thus ta and td are disjoint
and connected by a path containing v2. As A must be covered in both ta and td we can conclude
that A ⊆ χ(v2).

This completes the proof of Claim 1. ¤

Section 6

We define the following hypergraphH = (V , E), which is an adaptation of an example from Adler
[2], for our purposes.

B = {Gij|i, j ∈ {1, 2, 3, 4}} ∪ {Fij|i, j ∈ {1, 2, 3, 4}}
V = B ∪ {A,B,C, D,E, F, A1, B1, C1, D1, E1, F1}
E = {(g, p)|g ∈ B, p ∈ V \ B} ∪ {a1, a2, a3, a4, b1, b2, b3, b4}∪ (A,A1), (A,B), (B, C),

(A,D), (C,D), (D,E), (D, F ) (A1, B1), (B1, C1), (A1, D1), (C1, D1), (D1, E1), (E1, F1) where
a1 = (G11, G12, G13, G14, F11, F12, F13, F14, E1)
a2 = (G21, G22, G23, G24, F21, F22, F23, F24, E1),
a3 = (G31, G32, G33, G34, F31, F32, F33, F34, D),
a4 = (G41, G42, G43, G44, F41, F42, F43, F44, D),
b1 = (G11, G21, G31, G41, F11, F21, F31, F41, E),
b2 = (G12, G22, G32, G42, F12, F22, F32, F42, E),
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b3 = (G13, G23, G33, G43, F13, F23, F33, F43, D1),
b3 = (G14, G24, G34, G44, F13, F23, F33, F44, D1).

The vertices in B are called balloon vertices, the other vertices are called ground vertices. For
simplicity, we use the following notation gij = {Fij, Gij}. The hypergraph is depicted on Figure
8.

A

B

C

D

E

F

A1B1C1D1

E1

F1

g11 g12 g13 g14

g21 g23

b1 b2 b3 b4

a1

a2

a3

a4

g31 g32 g33 g34

g41 g42 g43 g44

g22 g24

Figure 8: HW (H) = 6, SCW (H) = 6, GHW (H) = 5, CHW (H) = 5

Lemma 6.12 GHW (H) = 5, CHW (H) = 5, HW (H) = 6, SCW (H) = 6.

Proof (sketch) The proof is essentially the same as in Adler [2]. We changed her example only
to construct a hypergraph whose component hypertreewidth is strictly smaller than its spread cut
width. We show that in our example, none of the generalized hypertree decompositions of H of
width 5 is a spread cut decomposition, therefore its spread cut width is at most 6.

Gottlob et al. [19] gave a characterization of k-hypertreewidth hypergraphs in terms of a “Rob-
ber and Marshal” games played on hypergraphs. They show that k monotone marshals have a
winning strategy on H iff the hypertreewidth of H is at most k. They relate the game trees of
the monotonic robber and marshals games to hypertree decompositions. The systematic construc-
tion of hypergraph examples in [2] made it possible to identify, exactly at which vertices a non-
monotonic step can occur. No decomposition corresponding to a non-monotonic game tree with 5
marshals is a spread cut decompositions, because it violates condition 2 of definition 6.5.

We use the notation (M, Comp) for a R&M game position, where M denotes the set of hyper-
edges occupied by the marshals, and C is the escape space for the robber.

Claim 6.13 Let (M, Comp) be a game position such that |M | ≤ 5. Then, a) there exists a ground
vertex in V \ vertices(M) and b) if B 6⊆ vertices(M), where B is the set of balloon vertices, then
V \ vertices(M) is connected.
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Proof a) There are 12 ground vertices and 5 marshals can occupy only at most 10 at the same
time. b) Analogous to Claim 3.1, b) in [2]. ¤

Claim 6.14 Let (M, Comp) be a game position, such that |M | ≤ 5. If B ⊆ vertices(M), then
{a1, a2, a3, a4} ⊆ M or {b1, b2, b3, b4} ⊆ M .

Proof Suppose that {a1, a2, a3, a4} 6⊆ M or
{b1, b2, b3, b4} 6⊆ M . Then M contains at most 4 edges from
{a1, a2, a3, a4, b1, b2, b3, b4}. They cover at most 3 × 8 + 2 = 26 vertices from B. Each of the
remaining edges covers at most one vertex from B. Contradiction. ¤

Claim 6.15 There is no winning strategy for < 5 marshals on H.

Proof Analogous to Claim 3.4 in [2]. ¤

Claim 6.16 There is no monotone winning strategy for ≤ 6 marshals on H. There exists a non-
monotonic winning strategy for 5 marshals. Furthermore, for all winning strategies with 5 mar-
shals on H, the escape space of the robber is extended by one of the vertices {E,F,E1, F1}.

Proof Let us argue indirectly. Because of Claim 6.14 , in a game position (M,Comp), {a1, a2, a3, a4} ⊆
M or {b1, b2, b3, b4} ⊆ M . The balloon vertices must be covered in each step of the game, see
Claim 3.2 in [2]. Let us assume without loss of generality, that {a1, a2, a3, a4} ⊆ M holds. Then,
the robber may move into the circle
(A1, B1, C1, D1, E1). This is possible, because at least one vertex of the circle is not occupied by
the marshals, but then the 5th marshal alone cannot capture the robber in the circle. Now, the only
possible choice for the marshals if they want to capture the robber, to move to {b1, b2, b3, b4}, but
in this case the escape space of the robber is extended either by E or by F1. Contradiction. ¤

The λ sets of a generalized hypertree decomposition of H of width 5 are:
{a1, a2, a3, a4, (A, A1)},
{a1, a2, a3, a4, (A, B)},
{a1, a2, a3, a4, (B, C)},
{a1, a2, a3, a4, (C, D)},
{a1, a2, a3, a4, (D, F )},
{b1, b2, b3, b4, (A1, B1)},
{b1, b2, b3, b4, (B1, C1)},
{b1, b2, b3, b4, (C1, D1)},
{b1, b2, b3, b4, (D1, F1)}.

This decomposition of H of width 5 is at the same time also a component hypertree decom-
position, as one can construct a hypertree decomposition of H ∪ fC(H, 5) using the following
subedges: (g11, g12, g13, g14),
(g21, g22, g23, g24),
(g31, g32, g33, g34),
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(g41, g42, g43, g44),
(g11, g21, g31, g41),
(g12, g22, g32, g42),
(g13, g23, g33, g43),
(g14, g24, g34, g44).

The λ sets of a generalized hypertree decomposition of H of width 6 are:
{a1, a2, a3, a4, (A,A1)},
{a1, a2, a3, a4, (A,B)},
{a1, a2, a3, a4, (B, C)},
{a1, a2, a3, a4, (C, D)},
{a1, a2, a3, a4, (D,F )},
{a1, a2, a3, a4, (A1, E1), (C1, D1)},
{a1, a2, a3, a4, (A1, B1), (B1, C1)}.

This decomposition is at the same time also a spread cut decomposition. This completes the
proof of lemma 6.12. ¤


