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Abstract. The study of extension-based semantics within the seminal abstract
argumentation model of Dung has largely focused on definitional, algorithmic
and complexity issues. In contrast, matters relating to comparisons of represen-
tational limits, in particular, the extent to which given collections of extensions
are expressible within the formalism, have been under-developed. As such, little
is known concerning conditions under which a candidate set of subsets of argu-
ments are “realistic” in the sense that they correspond to the extensions of some
argumentation framework AF for a semantics of interest. In this paper we present
a formal basis for examining extension-based semantics in terms of the sets of
extensions that these may express within a single AF. We provide a number of
characterization theorems which guarantee the existence of AFs whose set of ex-
tensions satisfy specific conditions and derive preliminary complexity results for
decision problems that require such characterizations.

1 Introduction

The last 15 years have seen an enormous effort to design, compare, and implement dif-
ferent semantics for Dung’s abstract argumentation frameworks [13], AFs for short. Not
at least this extensive study made argumentation a main topic of current AI research [7,
19]. Surprisingly, a systematic comparison of their capability in terms of multiple ex-
tensions, and thus their power in modelling multiple viewpoints with a single AF has
been neglected so far. Understanding which extensions can, in principle, go together
when a framework is evaluated with respect to a semantics of interest not only clarifies
the “strength” of that semantics but also is a crucial issue in several applications.

In this work, we close this gap by studying the signatures

Σσ = {σ(F ) | F is an AF},

of several important semantics σ namely naive, preferred, semi-stable, stage, and stable
semantics [13, 20, 10]. Finding simple criteria to decide whether a set S is contained in
Σσ for different semantics σ is essential in many aspects.

First, it adds to the comparison of semantics (see, e.g., [3]) by means of different
properties. So far these properties mostly focused on the aspects of a single extension
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S ∈ S rather than on a set S thereof. An obvious exception is incomparability (the
sets in S are not proper subsets of each other), but as we will see, all of the standard
semantics put additional (yet different) requirements on S in order to be contained in
the signature.

Second, our results are important for constructing AFs. Indeed, knowing whether
a set S is contained in Σσ is a necessary condition which should be checked before
actually looking for an AF F which realizes S via σ, i.e. σ(F ) = S. This is of high
importance when dynamic aspects of argumentation are considered [18]. As an exam-
ple, suppose a framework F possesses as its σ-extensions a set S and one asks for an
adaptation of the framework F such that its σ-extensions are given by S ∪{E}, i.e. one
extension shall be added. Before starting to think how the adapted framework should
look like, it is obviously crucial to know whether an appropriate framework exists at
all, i.e. whether S ∪ {E} ∈ Σσ . In a recent paper on revision of AFs [12], the authors
circumvent this issue by allowing revision to result in a set of AFs such that the union of
their extensions provides the desired outcome. Our results here provide exact conditions
under which circumstances their approach can be reduced to single AFs as an outcome
of a given revision.

Finally, we note a connection to instantiation-based argumentation [9], where the
concept of rationality postulates plays an important role as does the underlying princi-
ple of evaluating argumentation semantics in generic terms. Our results on signatures
show that, for a given semantics, certain outcomes (i.e. collections of extensions) are
impossible to achieve independent of the concrete way the instantiation process is car-
ried out.

Related work includes studies on enforcing [5, 6] certain outcomes, where the task
is to modify AFs in such a way that desired arguments become acceptable. However,
the issue of multiple extensions is not covered. In fact, the work which is closest to
our investigations are studies of intertranslatability issues [15, 17], where signatures of
semantics are put in relation to each other. More precisely, if there is a translation such
that θ-extensions of the transformed AF coincide with the σ-extensions of the original
AF, then θ is at least as expressive as σ, that is Σσ ⊆ Σθ in our terms. These results,
however, do not tell us anything about the actual contents of Σσ and Σθ.
To summarise, the main contributions of our work are:

• We first identify necessary conditions any set of extensions under a given semantics
σ satisfies. This not only guides us towards the exact characteristics for the signature
of σ, but also determines those sets of extensions that are impossible to be jointly
expressed with one AF.
• Then, we provide sufficient conditions for a set of extensions to be realizable under a

given semantics σ. For any such realizable set S of extensions, we moreover provide
constructions of canonical frameworks which have S as their σ-extensions. Together
with the already provided necessary conditions, these realizability results yield exact
characteristics of the signatures for the considered semantics.
• We also touch upon optimization issues and strengthen the concept of realizability

in such a way that we want to find an AF F which is solely built from arguments
occurring in S and delivers σ(F ) = S (hence, no additional arguments to express



S are required). We show that for naive semantics each S ∈ Σnaive can be strictly
realized, while this is not the case for the other semantics.
• One particular application of our results is the problem of recasting, i.e. to decide

whether the σ-extensions of a given AF can be expressed via a different semantics θ.
We give some preliminary complexity results of the recasting problem, which go up
to ΠP

2 -completeness.

2 Preliminaries

In what follows, we briefly recall the necessary background on abstract argumentation.
For an excellent recent overview, we refer to [1].

Throughout the paper we assume a countably infinite domain A of arguments. An
argumentation framework (AF) is a pair F = (A,R) where A ⊆ A is a non-empty,
finite set of arguments and R ⊆ A×A is the attack relation. The collection of all AFs is
given as AFA. We write a 7→R b for (a, b) ∈ R and S 7→R a (resp. a 7→R S) if ∃s ∈ S
such that s 7→R a (resp. a 7→R s). We drop subscript R in 7→R if there is no ambiguity.
For S ⊆ A, the range of S (wrt. R), denoted S+

R , is the set S ∪ {b | S 7→R b}.
Given F = (A,R), an argument a ∈ A is defended (in F ) by a set S ⊆ A if for

each b ∈ A, such that b 7→R a, also S 7→R b. A set T of arguments is defended (in F )
by S if each a ∈ T is defended by S (in F ). The following result is in spirit of Dung’s
fundamental lemma. We will need it later.

Lemma 1. Given an AF F = (A,R) and two sets of arguments S, T ⊆ A. If S defends
itself in F and T defends itself in F , then S ∪ T defends itself in F .

Given an AF F = (A,R), a set S ⊆ A is conflict-free (in F ), if there are no
arguments a, b ∈ S, such that (a, b) ∈ R. We denote the set of all conflict-free sets in
F as cf(F ). S ∈ cf(F ) is called admissible (in F ) if S defends itself. We denote the set
of admissible sets in F as adm(F ).

The semantics we focus in this work are the naive, stable, preferred, stage, and semi-
stable extensions. Given F = (A,R) they are defined as subsets of cf(F ) as follows:

– S ∈ naive(F ), if there is no T ∈ cf(F ) with T ⊃ S
– S ∈ stb(F ), if S 7→ a for all a ∈ A \ S
– S ∈ pref(F ), if S ∈ adm(F ) and @T ∈ adm(F ) s.t. T⊃S
– S ∈ stage(F ), if @T ∈ cf(F ) with T+

R ⊃ S
+
R

– S ∈ sem(F ), if S ∈ adm(F ) and @T ∈ adm(F ) s.t. T+
R ⊃ S

+
R

The objects of our interest are the signatures of a semantics.

Definition 1. The signature Σσ of a semantics σ is defined as

Σσ = {σ(F ) | F ∈ AFA}

For characterizing the signatures of the semantics of our interest we will make fre-
quent use of the following concepts.

Definition 2. Given S ⊆ 2A, ArgsS denotes
⋃
S∈S S and PairsS denotes {(a, b) |

∃S ∈ S : {a, b} ⊆ S}. S is called an extension-set (over A) if ArgsS is finite.

As is easily observed, for all considered semantics σ each element S ∈ Σσ is an
extension-set.



3 Properties of Argumentation Semantics

Our ultimate goal is to characterize the signatures of the semantics under considera-
tion. In this section, we provide necessary conditions for an extension-set S to be in
the signature. We do so by abstracting away from the syntactical structure of a given
AF; instead we provide characterizations for the sets σ(F ). The first properties, which
we define next, enable us to characterize conflict-free sets and naive, stable and stage
extensions.

Definition 3. Let S ⊆ 2A. The downward-closure, dcl(S), of S is given by {S′ ⊆ S |
S ∈ S}. Further we call S

– downward-closed if S = dcl(S);
– tight if for all S ∈ S and a ∈ ArgsS it holds that if S ∪ {a} /∈ S then there exists

an s ∈ S such that (a, s) /∈ PairsS ;
– incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each
S, S′ ∈ S, S ⊆ S′ implies S = S′.

In words, an extension-set is downward-closed, if for each element of the extension-
set, all subsets of this element are in the extension-set too. The notion of being tight, in
a way, limits the multitude of incomparable elements of an extension-set.

Proposition 1. For each AF F = (A,R),

1. cf(F ) is non-empty, downward-closed and tight;
2. naive(F ) is non-empty, incomparable and its downward-closure is tight;
3. stage(F ) is non-empty, incomparable and tight;
4. stb(F ) is incomparable and tight.

Proof. The properties of being non-empty and incomparable are clear. Likewise, it is
easy to see that cf(F ) = dcl(cf(F )).

To show that cf(F ) is tight let S ∈ cf(F ) and a ∈ Argscf(F ), such that S ∪ {a} /∈
cf(F ). It follows that S 6= ∅. Moreover there exists an argument s ∈ S such that s 7→ a
or a 7→ s. Then {a, s} /∈ cf(F ) and since cf(F ) is downward-closed, {a, s} 6⊆ T for
any T ∈ cf(F ). It follows that (a, s) /∈ Pairscf(F ).

Next, observe that dcl(naive(F )) = cf(F ). It follows that dcl(naive(F )) is tight.
Also note that if a set S ⊆ 2A is tight, then the subset-maximal elements in S form
a tight set S ′ too (since for each S ∈ S ′ and a ∈ ArgsS′ , if S ∪ {a} /∈ S ′ then
S ∪ {a} /∈ S; and moreover, PairsS = PairsS′ ). In other words, since dcl(naive(F )) is
tight, it follows that naive(F ) is tight. Finally, for each incomparable S ⊆ 2A it holds
that if S is tight then S ′ is tight for each S ′ ⊆ S. Using stb(F ) ⊆ stage(F ) ⊆ naive(F ),
the result thus follows. ut

Example 1. For the AF F in Figure 1, we have S =stb(F )= stage(F )= {{a1, b2, b3},
{a2, b1, b3}, {a3, b1, b2}}. S is indeed tight. Take, for instance, E = {a1, b2, b3}; then
none of (a1, b1), (a1, a2), (a1, a3) is contained in PairsS . The other two extensions
behave in a symmetric way. However, dcl(S) is not tight. In fact, {b2, b3} ∈ dcl(S) and
now for b1, {b1, b2, b3} /∈ dcl(S) but (b1, b2) and (b1, b3) are contained in Pairsdcl(S) =
PairsS . By Proposition 1, thus no AF Gwith naive(G) = S exists (note that naive(F ) =
S ∪ {{b1, b2, b3}}).
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Fig. 1. Argumentation framework F used in Example 1.

We now turn to admissible sets.

Definition 4. A set S ⊆ 2A is called adm-closed if for each A,B ∈ S the following
holds: if (a, b) ∈ PairsS for each a, b ∈ A ∪B, then also A ∪B ∈ S.

The property adm-closed is related to aforementioned properties as follows:

Lemma 2. For any extension-set S ⊆ 2A it holds that if S is downward-closed and
tight, then S is adm-closed.

The reverse of Lemma 2 does not hold, i.e. there is an extension-set (e.g. {{a, b},
{a, c, e}, {b, d, e}}), which is adm-closed, but not tight. The following proposition gives
necessary conditions for sets of extensions obtained from the admissible semantics.

Proposition 2. For each AF F = (A,R), adm(F ) is an adm-closed extension-set con-
taining ∅.

Proof. By definition ∅ is always admissible. We show that adm(F ) is adm-closed.
Towards a contradiction, assume B,C ∈ adm(F ) such that for all b, c ∈ B ∪ C,
(b, c) ∈ Pairsadm(F ), but B ∪ C /∈ adm(F ). From Lemma 1 we know that B ∪ C
defends itself in F . So for B ∪ C /∈ adm(F ) there must be a conflict in B ∪ C, i.e.
∃(b, c) ∈ R such that {b, c} ⊆ B ∪ C. But then, for all D ∈ adm(F ), {b, c} 6⊆ D.
Hence, (b, c) /∈ Pairsadm(F ), a contradiction. ut

The next property characterizes preferred and semi-stable semantics.

Definition 5. A set S ⊆ 2A is pref-closed if for each A,B ∈ S, A 6= B, there exist
a, b ∈ A ∪B such that (a, b) 6∈ PairsS .

It is easy to verify that each pref-closed extension-set is incomparable. Moreover,
for an incomparable set, pref-closed is a stricter notion than tight. Lemma 3 together
with Example 2 will show this.

Lemma 3. For a set S ⊆ 2A it holds that if S is incomparable and tight, then S is
pref-closed.

Proof. Consider some incomparable and tight extension-set S ⊆ 2A and assume that
S is not pref-closed. That means that there are some A,B ∈ S with A 6= B such that
∀a, b ∈ (A ∪ B) : (a, b) ∈ PairsS . Since S is incomparable, B 6= ∅ and ∀b ∈ B :
(A∪{b}) /∈ S. Considering an arbitrary b ∈ B we get ∃a ∈ A : (a, b) /∈ PairsS by the
fact that S is tight, a contradiction to ∀a, b ∈ (A ∪B) : (a, b) ∈ PairsS . ut



a′

b′

a

b c

d e

f

Fig. 2. Argumentation framework F used in Example 2.

We relate the notions of adm- and pref-closed and then show our final characteriza-
tion result.

Lemma 4. A set S ⊆ 2A is pref-closed iff it is incomparable and adm-closed.

Proof. Let S be incomparable and adm-closed and A,B ∈ S. If A 6= B, then A∪B /∈
S (by incomparability). Since S is adm-closed, there exist a, b ∈ A ∪ B such that
(a, b) /∈ PairsS . It follows that S is pref-closed. Now consider a set S ⊆ 2A not
incomparable, i.e. ∃A,B ∈ S : A ⊂ B. But then for all a, b ∈ A ∪ B = B : (a, b) ∈
PairsS and thus S is not pref-closed. Finally consider an incomparable S which is not
adm-closed. Then there are A,B ∈ S such that for all a, b ∈ A ∪ B : (a, b) ∈ PairsS
and again S is not pref-closed. ut

Proposition 3. For each AF F = (A,R), σ ∈ {pref, sem}, σ(F ) is a non-empty, pref-
closed extension-set.

Proof. By definition both semantics σ ∈ {pref, sem} always propose at least one exten-
sion. Since sem(F ) ⊆ pref(F ) holds for all AFs F , it is sufficient to show that pref(F )
is pref-closed. Towards a contradiction, let B,C ∈ pref(F ) (B 6= C), such that for all
a, b ∈ B ∪ C, (a, b) ∈ Pairspref(F ). It follows that B ∪ C ∈ cf(F ) and by Lemma 1,
B ∪ C ∈ adm(F ). Since B ∪ C ⊃ B, this is a contradiction to B ∈ pref(F ). ut

Example 2. Consider the AF F in Figure 2 and let A = {a, b}, B = {a, c, e}, C =
{b, d, e}, and S = {A,B,C}. We have pref(F ) = sem(F ) = S and, indeed, S is
pref-closed: b, c ∈ A ∪ B and (b, c) /∈ PairsS ; a, d ∈ A ∪ C and (a, d) /∈ PairsS ;
c, d ∈ B ∪ C and (c, d) /∈ PairsS . However, we also observe that S is not tight, since
A ∪ {e} /∈ S but both (a, e) and (b, e) are contained in PairsS .

4 Realizability and Signatures

In the previous section we have given necessary characteristics for the extension-sets
S ∈ Σσ , where σ ∈ {cf, adm, naive, stb, stage, pref, sem} are the semantics of our
interest. Now we will show that these characteristics are also sufficient. To this end, we
require the concept of realizability. In words, an extension-set S ⊆ 2A is σ-realizable
if there exists an AF F ∈ AFA, such that σ(F ) = S. This turns our characteristics into
the desired characterizations for Σσ .

We start with the following concept of a canonical argumentation framework, which
will underlie all subsequent results on realizability.



Definition 6. Given an extension-set S, we define the canonical argumentation frame-
work for S as

F cf
S =

(
ArgS , (ArgS × ArgS) \ PairsS

)
.

The underlying idea for the framework is simple. Whenever two arguments occur jointly
in a set S ∈ S, we must not draw a relation between these two arguments; otherwise
we do so. Thus, for any S, F cf

S is symmetric and does not contain any self-attacking
arguments. For T = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}, {b1, b2, b3}}, F cf

T has the
same structure as the AF from Figure 1, but with all attacks being symmetric (in fact,
orientation does not matter for naive semantics) and naive(F cf

T ) = T holds. When we
consider S = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}, i.e. S = T \ {{b1, b2, b3}}, we
obtain the same framework F cf

T = F cf
S . In terms of naive semantics, this is not problem-

atic since S (as discussed in Example 1) cannot be realized via naive semantics, at all.
However, this observation readily suggests that realizing S with, say, stable semantics,
requires additional concepts. We will come back to this issue, but first state some formal
results on the canonical framework.

Proposition 4. For each non-empty, downward-closed and tight extension-set S it holds
that cf(F cf

S ) = S.

Proof. Let F cf
S = (ArgsS , R

cf
S). To show cf(F cf

S ) ⊆ S, observe that for each E ∈
cf(F cf

S ), (a, b) ∈ PairsS for all a, b ∈ E, by construction of Rcf
S . Now suppose there

exists E′ ∈ cf(F cf
S ) such that E′ /∈ S. Wlog. let E′ be ⊆-minimal with this property.

Then E′ = S∪{c} for some S ∈ S. As S is tight and c ∈ ArgsS by construction of F cf
S

there is an s ∈ S such that (s, c) 6∈ PairsS , a contradiction to the above observation. To
show cf(F cf

S ) ⊇ S , let S ∈ S . All a, b ∈ S are contained as pairs (a, b) in PairsS , thus
by construction, (a, b) 6∈ Rcf

S . Hence S ∈ cf(F cf
S ). ut

We approach the characterization for naive-realizable sets by the following result,
which will be useful later.

Lemma 5. For each incomparable and tight extension-set S it holds that S ⊆ naive(F cf
S ).

Proof. Assume there is an S ∈ S such that S /∈ naive(F cf
S ). If S /∈ cf(F cf

S ), ∃a, b ∈
S : (a, b) /∈ PairsS , a contradiction to S ∈ S. Thus ∃S′ ⊃ S : S′ ∈ cf(F cf

S ). Then
by construction of F cf

S ∀a, b ∈ S′ : (a, b) ∈ PairsS . Since S is tight also S′ ∈ S, a
contradiction to S being incomparable. ut

We are now ready to give the full characterization.

Proposition 5. For each incomparable and non-empty extension-set S , where dcl(S)

is tight it holds that naive(F cf
S ) = S.

Proof. Since dcl(S) is surely downward-closed, as well as tight and non-empty by def-
inition, we know from Proposition 4 that cf(F cf

S ) = dcl(S) (note that Fdcl(S) = F cf
S ). By

construction of dcl(S) the⊆-maximal sets in dcl(S) are the sets S ∈ S (S is incompara-
ble by assumption) and as naive sets are just ⊆-maximal conflict-free, naive(F cf

S ) = S.
ut
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Fig. 3. Excluding the naive extension {b1, b2, b3} from F cf
S .

So far, in order to realize a set S we used a framework from AFA of the form
(A,R) with A = ArgsS . For the subsequent results we require, in general, frameworks
with ArgsS ⊂ A. In the next section, we will show that this cannot be avoided. For the
moment, we recall thatA is infinite, hence there are always enough arguments available
in A.

Let us proceed with stable and stage semantics. Stable semantics are the only se-
mantics that can realize S = ∅. Note that S = ∅ is easily stb-realizable, for instance
with the framework ({a}, {(a, a)}). In Proposition 1 the only difference between stable
and stage semantics was the case S = ∅. The next result shows that this indeed is the
only difference between the signatures for stable and stage semantics.

The idea of the construction used in the forthcoming proof is to suitably extend
the canonical framework from Definition 6 such that undesired stable and stage exten-
sions are excluded4. Coming back to our example with S = {{a1, b2, b3}, {a2, b1, b3},
{a3, b1, b2}}, recall that F cf

S had one such undesired extension, E = {b1, b2, b3}. To get
rid of it we add a new argument which is attacked by all other sets from S but not by
E, see Figure 3 for illustration.

Proposition 6. For each non-empty, incomparable and tight extension-set S, there ex-
ists an AF F such that stb(F ) = stage(F ) = S.

Proof. Since S is non-empty, showing existence of an AF F with stb(F ) = S is suffi-
cient (for each F with stb(F ) 6= ∅, stb(F ) = stage(F ) holds).

By Lemma 5 we already know that S ⊆ naive(F cf
S ). Let X = naive(F cf

S ) \ S and
consider the AF extending F cf

S as follows: F ′
S = (ArgsS ∪ {Ē | E ∈ X}, R′

S) with
R′

S = {((ArgsS × ArgsS) \ PairsS) ∪ {(Ē, Ē), (a, Ē) | E ∈ X , a ∈ ArgsS \E}) (this
construction is borrowed from [15]). We show that stb(F ′

S) = S.
stb(F ′

S) ⊆ S: Let E ∈ stb(F ′
S). As all new arguments Ē are self-attacking, also

E ∈ naive(F ′
S) = naive(F cf

S ) = X ∪ S. If E ∈ X , by construction of F ′
S , E 67→ Ē and

also Ē /∈ E, thus E /∈ stb(F ′
S). Hence it must be that E ∈ S.

stb(F ′
S) ⊇ S: Let E ∈ S . By Lemma 5, E ∈ naive(F cf

S ), and, as F cf
S is symmetric,

E ∈ stb(F cf
S ). Now consider F ′

S . As we do not change attacks between the arguments
ArgsS , E ∈ naive(F ′

S) and E attacks all arguments in ArgsS \ E. Now consider an
arbitrary argument Ē′ for E′ ∈ X . Ē′ is attacked by all arguments a ∈ ArgsS \E′ and

4 Recall that in every symmetric AF F it holds that naive(F ) = stb(F ) = stage(F ).



as E,E′ are both naive sets (and thus incomparable) at least one of these arguments
must be contained in E. Hence E ∈ stb(F ′

S) follows. ut

Towards a suitable canonical AF for admissibility-based semantics we introduce the
following technical concept.

Definition 7. Given an extension-set S, the defense-formula DS
a of an argument a ∈

ArgsS is > if {a} ∈ S and ∨
S∈S s.t. a∈S

∧
s∈S\{a}

s

otherwise. DS
a converted to (a logical equivalent) conjunctive normal form in clause-

form is then called CNF-defense-formula CS
a of a (in S).

Intuitively, DS
a describes the conditions for the argument a being in an extension.

The variables coincide with the arguments. Each disjunct represents a set of arguments
which jointly allows a to “join” an extension, i.e. represents a collection of arguments
defending a.

Example 3. Consider T = {{a}, {b, c}, {a, c, d}}. Then DT
a = >, DT

b = c, DT
c =

b ∨ (a ∧ d) and DT
d = a ∧ c. The corresponding CNF-defense-formulas are given as

CT
a = {}, CT

b = {{c}}, CT
c = {{a, b}, {b, d}}, and CT

d = {{a, c}}.

The following lemma shows that the (CNF-)defense-formula for any argument a
really captures the intuition of describing which arguments it takes for a in order to join
an element of the given extension-set.

Lemma 6. Given an extension-set S and an argument a ∈ ArgsS , for each S ⊆ ArgsS
with a ∈ S the following holds: (S \ {a}) is a model of DS

a (resp. CS
a ) iff there exists

an S′ ⊆ S with a ∈ S′ such that S′ ∈ S.

Proof. The if-direction follows straight by definition of DS
a .

To show the only-if-direction consider some S ⊆ ArgsS with a ∈ S where S \ {a}
is a model of DS

a . If DS
a = > then by Definition 7 it holds that {a} ∈ S.For S \ {a} to

be a model of DS
a 6= >, there must be some disjunct δ ∈ DS

a , whose elements form a
subset of S \ {a}. Consider such a term δ ∈ DS

a . Then by construction of DS
a there is

some S′ ∈ S with a ∈ S′, where S′ \ {a} coincides with the elements of δ. So S′ ⊆ S.
Since DS

a ≡ CS
a , these formulas can be used interchangeably in this context. ut

Having at hand a formula for each argument, where its models coincide with the
sets of arguments that defend this original argument, we can give the construction of
our canonical defense-argumentation-framework.

Definition 8. Given an extension-set S, the canonical defense-argumentation-frame-
work F def

S = (Adef
S , Rdef

S ) extends the canonical AF F cf
S = (ArgsS , R

cf
S) as follows:

Adef
S = ArgsS ∪

⋃
a∈ArgsS

{αa,γ | γ ∈ CS
a }, and

Rdef
S = Rcf

S ∪
⋃

a∈ArgsS

{(b, αa,γ), (αa,γ , αa,γ), (αa,γ , a) | γ ∈ CS
a , b ∈ γ}.
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Fig. 4. AF F def
T used in Example 4

F def
S consists of all arguments given in the extension-set plus a certain amount of

additional arguments, αa,c. Each αa,c attacks argument a and is attacked by all argu-
ments occurring as literals in clause c of the CNF-defense-formula of a. So in F def

S for
a to be defended from αa,c it takes at least one argument of these occurring as atoms in
clause c of CS

a , simulating the intended meaning of the defense-formulas.
The following proposition shows that, given any extension-set S, each element of

S is admissible in the canonical defense-argumentation-framework F def
S .

Proposition 7. For each extension-set S it holds that S ⊆ adm(F def
S ).

Proof. Let S ∈ S . If S = ∅, the assertion trivially holds. If S = {a}, then CS
a is

the empty set of clauses. By definition of Rdef
S , a is then defended in F def

S and thus
S ∈ adm(F def

S ). Thus let S ∈ S contain at least two arguments. By construction, S
is conflict-free in F def

S . It remains to show that each s ∈ S is defended by S in F def
S .

Let s ∈ S. If {s} ∈ S, we know from the one-element case that {s} ∈ adm(F def
S ), so

s is defended. On the other hand, if {s} /∈ S , we know from Lemma 6 that S \ {s}
is a model of DS

s as well as of CS
s . Hence, each clause γ ∈ CS

s contains at least one
variable tγ ∈ S \ {s}. Thus, by construction of Rdef

S , S \ {s} 7→ αs,γ for each γ ∈ CS
s ,

i.e. S \ {s} defends s in F def
S . ut

While S ⊆ adm(F def
S ) holds for any extension-set, F def

S may contain additional
admissible sets which do not occur in S. In order to ensure that adm(F def

S ) coincides
with S it takes S to be adm-closed and to contain ∅. Before showing this we give an
example.

Example 4. Again consider the extension-set T = {{a}, {b, c}, {a, c, d}}. We have
given the CNF-defense-formulas in Example 3. F def

T thus is given by the AF in Figure 4.
Considering, for instance, argument c, where CT

c = {{a, b}, {b, d}}, one can see that
in F def

T it takes a or b in order to defend c from αc,{a,b}, and b or d in order to defend c
from αc,{b,d}.

Proposition 8. For each adm-closed extension-set S where ∅ ∈ S it holds that
adm(F def

S ) = S.



Proof. By Proposition 7, S ⊆ adm(F def
S ) holds for every extension-set S.

It remains to show adm(F def
S ) ⊆ S . Consider some S ∈ adm(F def

S ). First of all,
S cannot contain any of the self-attacking arguments αa,γ . For S = ∅, S ∈ S by
definition. If S consists of exactly one argument, i.e. S = {a}, it must hold that ∀b ∈
A s.t. b 7→ a : a 7→ b. For that, CS

a = {} must hold, therefore S ∈ S. Now
assume S contains at least two arguments. S being conflict-free, by construction ofRcf

S ,
guarantees that ∀a, b ∈ S : (a, b) ∈ PairsS . Let s ∈ S with {s} /∈ adm(F def

S ). Then
we have αs,γ 7→ s for each γ ∈ CS

s . Since s is defended by S, for each γ ∈ CS
s ,

∃tγ ∈ (S \ {s}) : tγ 7→ αs,γ . By definition of F cf
S , thus tγ occurs in the clause γ. It

follows that T = {tγ | c ∈ CS
s } is a model of CS

s and thus also of the defense-formula
DS
s . Then by Lemma 6 there is some S′

s ⊆ T ∪ {s} (note that also S′
s ⊆ S) with

s ∈ S′
s such that S′ ∈ S . Recall also that in case {s} ∈ adm(F def

S ), we know from
above that {s} ∈ S (say S′

s = {s}). Knowing that ∀a, b ∈ S : (a, b) ∈ PairsS , since S
is adm-closed we get S′

s1 ∪ S
′
s2 ∈ S for any s1, s2 ∈ S. Hence S ∈ S. ut

Lemma 7. For each incomparable extension-set S, it holds that S is pref-closed iff
S ∪ {∅} is adm-closed.

Proof. Follows immediately from Lemma 4, the fact that PairsS = PairsS∪{∅} for all
S ⊆ 2A, and Definition 4. ut

Proposition 9. For each non-empty, pref-closed extension set S it holds that
pref(F def

S ) = S.

Proof. Let S ′ = S ∪ {∅}. By construction, F def
S′ = F def

S . From Lemma 7 and Proposi-
tion 8 we thus obtain adm(F def

S ) = S ′. As preferred extensions are ⊆-maximal admis-
sible sets and since S is incomparable (Lemma 4), pref(F def

S ) = S. ut

This result together with the fact that for each AF F ′ there is an AF F such that
pref(F ′) = sem(F ) (see [17]), yields the following result.

Proposition 10. For each non-empty, pref-closed extension set S, there exists an AF F ,
such that sem(F ) = S.

We now have all results at hand to characterize the signatures for the semantics
we deal with in this paper. All relations in the subsequent theorem follow immediatly
from results in this section together with the corresponding characterizations given in
Proposition 1–3.

Theorem 1. The signatures for the considered semantics are given by the following
collections of extension sets.

Σcf = {S 6= ∅ | S is downward-closed and tight}
Σadm = {S 6= ∅ | S is adm-closed and contains ∅}
Σnaive = {S 6= ∅ | S is incomparable and dcl(S) is tight}
Σstb = {S | S is incomparable and tight}
Σstage = {S 6= ∅ | S is incomparable and tight}
Σpref = Σsem = {S 6= ∅ | S is pref-closed}



Theorem 2. The following relations hold:

Σnaive ⊂ Σstage ⊂ Σsem = Σpref, Σstb = Σstage ∪ {∅}
{dcl(S) | S ∈Σnaive} = Σcf ⊂ Σadm ⊃ {S ∪ {∅} | S ∈Σpref}

Proof. In what follows, we make implicit use of the results from Theorem 1. First, if
an incomparable extension-set S is tight, then also dcl(S) is tight (using PairsS =
Pairsdcl(S)). Thus, Σnaive ⊆ Σstage; Σnaive ⊂ Σstage, i.e. that the relation is proper,
can been seen from the AF discussed in Example 1. Relation Σstage ⊆ Σsem follows
from Lemma 3. Σstage ⊇ Σsem does not hold by Example 2, therefore Σstage ⊂ Σsem.
Σcf ⊂ Σadm follows in the same manner by Lemma 2 and the fact that S = {∅, {a, b}}
is adm-closed but not downward-closed and therefore S ∈ Σadm, but S /∈ Σcf. The re-
maining relations in the second line follow from the definition of dcl(·) and respectively
Lemma 7. ut

5 Strict Realizability

Inspecting the proofs of Propositions 4 and 5 shows that for each extension set S that
is realizable w.r.t. conflict-free sets (or naive semantics), there is an AF of the form
F = (ArgsS , R) (that is, without additional arguments) with the same outcome. Given
a semantics σ, let us thus call an extension set S ⊆ 2A strictly σ-realizable, if there
exists an AF F = (ArgsS , R) such that σ(F ) = S. Next, we show that such a property
does not hold for the remaining semantics.

Example 5. Consider S = {∅, {a}, {a, b}}. S is adm-closed, cf. Definition 4. Indeed
for F = ({a, b, c}, {(a, c), (c, b)}), we have adm(F ) = S, thus S ∈ Σadm. However,
there does not exist an F ′ = (A,R) with σ(F ′) = S and A = {a, b}, since by {a, b} ∈
S there cannot be any attack in F ′. But then adm(F ′) = {∅, {a}, {b}, {a, b}} 6= S is
obvious.

Example 6. Consider S = {{a, b}, {a, c, e}, {b, d, e}}. Figure 2 shows an AF (with
additional arguments) realizing S as its semi-stable, and respectively, preferred ex-
tensions. Suppose there exists an AF F = (ArgsS , R) such that σ(F ) = S. Since
{a, c, e}, {b, d, e} ∈ S, it is clear that R must not contain an edge involving e. But then,
e is contained in each E ∈ σ(F ) (for the case of semi-stable extensions, since e is not
attacked in such F ). It follows that σ(F ) 6= S.

The previous example does not apply to stable and stage semantics (S is not tight
cf. Definition 3). In fact, we need a different, slightly more involved, argument.

Example 7. Consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′},
{a′, b, c}, {a′, b, c′}, {a′, b′, c}}. It is easy to verify that S is non-empty, incomparable
and tight. Hence, by Proposition 6, S is stb-realizable. However the AF provided by
Proposition 6 makes use of an argument not in ArgsS = {a, b, c, a′, b′, c′}. We now
show that there is no AF F = (ArgsS , R) such that stb(F ) = S or stage(F ) = S. First,
given that the sets in S must be conflict-free the only possible attacks in R are (a, a′),



Table 1. Complexity of the recasting problem.

stb stage pref sem

stb - NP-c NP-c NP-c

stage trivial - trivial trivial

pref ΠP
2 -c ΠP

2 -c - trivial

sem ΠP
2 -c ΠP

2 -c trivial -

(a′, a), (b, b′), (b′, b), (c, c′), (c′, c). We next argue that all of them must be in R. First
consider the case of stb. As {a, b, c} ∈ stb(F ) it attacks a′ and the only chance to do so
is (a, a′) ∈ R and similar as {a′, b, c} ∈ stb(F ) it attacks a and the only chance to do
so is (a′, a) ∈ R. By symmetry we obtain {(b, b′), (b′, b), (c, c′), (c′, c)} ⊆ R. Now let
us consider the case of stage. As {a, b, c} ∈ stage(F ) ⊆ naive(F ) either (a, a′) ∈ R
or (a′, a) ∈ R. Consider (a, a′) 6∈ R then {a′, b, c}+ ⊃ {a, b, c}+, contradicting that
{a, b, c} is a stage extension. The same holds for pairs (b, b′) and (c, c′); thus for both
cases we obtain R = {(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)}. However, for the
resulting framework F = (A,R), we have that {a′, b′, c′} ∈ stb(F ) = stage(F ), but
{a′, b′, c′} 6∈ S.

6 Complexity

In this section we exploit our results to give a preliminary complexity analysis in terms
of the problem of recasting: given an AF F1 ∈ AFA and semantics σ1 and σ2, decide
whether there exists an F2 ∈ AFA, such that σ1(F1) = σ2(F2). By the very nature of
signatures, this is equivalent to test σ1(F1) ∈ Σσ2

. Table 1 shows our results: an entry
for row σ1 and column σ2 gives the complexity of deciding whether σ1(F ) ∈ Σσ2

.
C-c abbreviates completeness for class C; ”trivial“ means that each instance is a “Yes”-
instance.

Theorem 3. The complexity results depicted in Table 1 hold.

Proof (Sketch). The “trivial” results are immediate by Theorem 2. Further using that
Σstb = Σstage ∪ {∅} and Σstage ⊂ Σsem = Σpref we have that stb(F ) ∈ Σσ (σ ∈
{stage, pref, sem}) iff stb(F ) 6= ∅. Deciding whether an AF has a stable extension is
well-known to be NP-complete.

Finally, we consider the ΠP
2 -entries, i.e. σ1 ∈ {pref, sem}, σ2 ∈ {stb, stage}. Since

σ1(F ) 6= ∅ for any AF F , andΣstb = Σstage∪{∅}, we can stick to σ2 = stb. Membership
is by an algorithm disproving, given an F = (A,R), σ1(F ) ∈ Σstb: guess sets B ⊆ A,
{As ⊆ A | s ∈ B} and a ∈ A \B; use an NP-oracle to check B ∈ σ1(F ) [14, 16]; for
all s ∈ B check As ∈ adm(F ), {a, s} ⊆ As. Intuitively, the algorithm accepts (i.e. all
checks holds), if B ∈ σ1(F ) violates tightness for σ1(F ).

We show ΠP
2 -hardness for σ1 = pref (as pref semantics can be efficiently reduced to

sem semantics [17], the result for σ1 = sem follows): Given QBF Φ = ∀Y ∃Zϕ(Y,Z),
where ϕ is a CNF

∧
c∈C c with each c ∈ C a disjunction of literals from X = Y ∪ Z,

let FΦ = (AΦ, RΦ) with AΦ = {ϕ, g} ∪ C ∪X ∪ X̄ ∪ {a, b, c, d, e, f} and



RΦ = {〈c, ϕ〉 | c ∈ C} ∪ {〈x, x̄〉, 〈x̄, x〉 | x ∈ X}∪
{〈x, c〉 | x occurs in c} ∪ {〈x̄, c〉 | ¬x occurs in c}∪
{〈ϕ, g〉, 〈g, g〉} ∪ {(g, z), (g, z̄) | z ∈ Z}∪
{(a, d), (d, a), (b, c), (c, b), (c, d), (d, c), (c, f),

(d, f), (f, e), (f, f), (ϕ, f)}

We illustrate FΦ for the QBF Φ = ∀y1, y2∃z3, z4
(
(y1 ∨ y2 ∨ z3)∧ (y2 ∨¬z3 ∨¬z4)∧

(y2 ∨ z3 ∨ z4)
)
.

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

g

a

b c

d e

f

FΦ links the reduction from [14] with the AF from Figure 2 via ϕ 7→ f . One can show
that pref(FΦ) ∈ Σstb iff ϕ is contained in each E ∈ pref(GΦ). ut

7 Discussion

In this work, we initiated a study on the characteristics the set of extensions w.r.t. a given
semantics satisfy. For the semantics naive, stable, stage, preferred, and semi-stable we
have an exact picture fully describing their signatures Σσ . These results also tell about
the limits of global disagreement (a notion introduced in [8]) that can be modelled
within AFs, e.g. our results show that preferred and semi-stable semantics are able to
express more disagreement than stage semantics: Σstage ⊂ Σpref = Σsem.

We have also touched the concept of strict realizability, i.e. the question whether
a set S of extensions can be realized by an AF F having no additional arguments (all
arguments of F appear in S). Exact characterizations for strict signatures are impor-
tant foundations for simplifications of AFs and thus a natural next step for our studies.
In general, we believe that results on signatures yield useful methods for pruning the
search space in algorithms for abstract argumentation.

Further directions of future work are an investigation of other important semantics,
in particular complete [13], resolution-based grounded [2], and cf2-semantics [4], and
an according extension of our complexity analysis. Finally, since we have viewed se-
mantics here only in an extension-based way, it would also be of high interest to extend
our studies to labelling-based semantics [11].
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