
Abstract Solvers for Dung’s Argumentation
Frameworks

Remi Brochenin1, Thomas Linsbichler2, Marco Maratea1, Johannes Peter
Wallner3, and Stefan Woltran2

1 University of Genova, Italy
2 TU Wien, Austria

3 HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract. Abstract solvers are a quite recent method to uniformly de-
scribe algorithms in a rigorous formal way and have proven successful in
declarative paradigms such as Propositional Satisfiability and Answer-
Set Programming. In this paper, we apply this machinery for the first
time to a dedicated AI formalism, namely Dung’s abstract argumenta-
tion frameworks. We provide descriptions of several advanced algorithms
for the preferred semantics in terms of abstract solvers and, moreover,
show how slight adaptions thereof directly lead to new algorithms.

1 Introduction

Dung’s concept of abstract argumentation [12] is nowadays a core formalism in
AI [2, 21]. The problem of solving certain reasoning tasks on such frameworks
is the centerpiece of many advanced higher-level argumentation systems. The
problems to be solved are however intractable and might even be hard for the
second level of the polynomial hierarchy [13, 15]. Thus, efficient and advanced
algorithms have to be developed in order to deal with real-world size data with
reasonable performance. The argumentation community is currently facing this
challenge [7] and a first solver competition4 is organized this year. Thus, a num-
ber of new algorithms and systems will be developed in the near future. Being
able to precisely analyze and compare already developed and new algorithms is a
fundamental step in order to understand the ideas behind such high-performance
systems, and to build a new generation of more efficient algorithms and solvers.

Usually, algorithms are presented by means of pseudo-code descriptions, but
other communities have experienced that analyzing such algorithms on this basis
may not be fruitful. More formal descriptions, which allow, e.g. for a uniform
representation, have thus been developed: a recent and successful approach in
this direction is the concept of abstract solvers [19]. Hereby, one characterizes
the states of computation as nodes of a graph, the techniques as arcs between
nodes, and the whole solving process as a path in the graph. This concept not
only proved successful for SAT [19], but also has been applied for several variants
of Answer-Set Programming [4, 16, 17].

4 http://argumentationcompetition.org

In this paper, we make a first step to investigate the appropriateness of
abstract solvers for dedicated AI formalisms and focus on certain problems in
Dung’s argumentation frameworks. In order to understand whether abstract
solvers are powerful enough, we consider quite advanced algorithms – ranging
from dedicated [20] to reduction-based [5, 14] approaches (see [8] for a recent
survey) – for solving problems that are hard for the second level of the poly-
nomial hierarchy. We show that abstract solvers allow for convenient algorithm
design resulting in a clear and mathematically precise description, and how for-
mal properties of the algorithms are easily specified by means of related graph
properties. We also illustrate how abstract solvers simplify the combination of
techniques implemented in different solvers in order to define new solving pro-
cedures. Consequently, our findings not only prove that abstract solvers are a
valuable tool for specifying and analysing argumentation algorithms, but also
indicate the broad range the novel concept of abstract solvers can be applied to.
To sum up, our main contributions are as follows:

• We provide a full formal description of recent algorithms [5, 14, 20] for rea-
soning tasks under the preferred semantics in terms of abstract solvers, thus
enabling a comparison of these approaches at a formal level.

• We exemplify one proof illustrating how formal correctness of algorithms can
be shown with the help of descriptions in terms of abstract solvers.

• We outline how our reformulations can be used to gain more insight into the
algorithms and how novel combinations of “levels” of abstract solvers might
pave the way for new solutions.

The paper is structured as follows. Section 2 introduces the required prelim-
inaries about abstract argumentation frameworks and abstract solvers. Then,
Section 3 shows how our target algorithms are reformulated in terms of abstract
solvers and introduces a new solving algorithm obtained from combining the
target algorithms. The paper ends in Section 4 with final remarks and possible
topics for future research.

2 Preliminaries

In this section we first review (abstract) argumentation frameworks [12] and
their semantics (see [1] for an overview), and then introduce abstract transition
systems [19] on the concrete instance describing the dpll-procedure [9].

Abstract Argumentation Frameworks. An argumentation framework (AF) is a
pair F = (A,R) where A is a finite set of arguments and R ⊆ A×A is the attack
relation. Semantics for argumentation frameworks assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions. We consider here for σ the functions adm, com,
and prf, which stand for admissible, complete, and preferred semantics. Towards
the definitions of the semantics we need some formal concepts. For an AF F =
(A,R), an argument a ∈ A is defended (in F) by a set S ⊆ A if for each b ∈ A
such that (b, a) ∈ R, there is a c ∈ S, such that (c, b) ∈ R holds.

Definition 1. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F),
denoted S ∈ cf(F), if there are no a, b ∈ S such that (a, b) ∈ R. For S ∈ cf(F),
it holds that

– S ∈ adm(F) if each a ∈ S is defended by S;
– S ∈ com(F) if S ∈ adm(F) and for each a ∈ A defended by S, a ∈ S holds;

and
– S ∈ prf(F) if S ∈ adm(F) (resp. S ∈ com(F)) and there is no T ∈ adm(F)

(resp. T ∈ com(F)) with T ⊃ S.

Given an AF F = (A,R), an argument a ∈ A, and a semantics σ, the problem
of skeptical acceptance asks whether it is the case that a is contained in all σ-
extensions of F . While skeptical acceptance is trivial for adm and decidable in
polynomial time for com, it is ΠP

2 -complete for prf, see [10, 12, 13]. The class
ΠP

2 = coNPNP denotes the class of problems P , such that the complementary
problem P can be decided by a nondeterministic polynomial time algorithm that
has (unrestricted) access to an NP-oracle.

Abstract Solvers. Most SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (dpll) procedure [9]. We give an abstract transition system for dpll
following the work of Nieuwenhuis et al. in [19]. We start with basic notation for
Boolean logic.

For a Conjunctive Normal Form (CNF) formula ϕ (resp. a set of literals
M), we denote the set of atoms occurring in ϕ (resp. in M) by atoms(ϕ) (resp.
atoms(M)). We identify a consistent set E of literals (i.e. a set that does not
contain complementary literals, for example a and ¬a) with an assignment to
atoms(E) as follows: if a ∈ E then a maps to true, while if ¬a ∈ E then a maps
to false. For sets X and Y of atoms such that X ⊆ Y , we identify X with an
assignment over Y as follows: if a ∈ X then a maps to true, while if a ∈ Y \X
then a maps to false. By Sat(ϕ) we refer to the set of satisfying assignments of
ϕ.

We now introduce the abstract procedure for deciding whether a CNF for-
mula is satisfiable. A decision literal is a literal annotated by d, as in ld. An
annotated literal is a literal, a decision literal or the false constant ⊥. For a set
X of atoms, a record relative to X is a string E composed of annotated literals
over X without repetitions. For instance, ∅, ¬ad and a ¬ad are records relative
to the set {a}. We say that a record E is inconsistent if it contains ⊥ or both a
literal l and its complement l, and consistent otherwise. We sometimes identify a
record with the set containing all its elements without annotations. For example,
we identify the consistent record bd ¬a with the consistent set {¬a, b} of literals,
and so with the assignment which maps a to false and b to true.

Each CNF formula ϕ determines its dpll graph DPϕ. The set of nodes of
DPϕ consists of the records relative to the set of atoms occurring in ϕ and the
distinguished states Accept and Reject . A node in the graph is terminal if no
edge originates from it; in practice, the terminal nodes are Accept and Reject .
The edges of the graph DPϕ are specified by the transition rules presented in

Oracle rules

Backtrack EldE′′ ⇒ El if

{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagate E ⇒ El if

l does not occur in E and

all the literals of C occur in E and
C ∨ l is a clause in ϕ

Decide E ⇒ Eld if

{
E is consistent and

neither l nor l occur in E

Failing rule
Fail E ⇒ Reject if

{
E is inconsistent and decision-free

Succeeding rule
Succeed E ⇒ Accept if

{
no other rule applies

Fig. 1. The transition rules of DPϕ.

Figure 1. In solvers, generally the oracle rules are chosen with the preference
order following the order in which they are stated in Figure 1, while the failing
rule has a higher priority than all the oracle rules.

Intuitively, every state of the dpll graph represents some hypothetical state
of the dpll computation whereas a path in the graph is a description of a process
of search for a satisfying assignment of a given CNF formula. The rule Decide
asserts that we make an arbitrary decision to add a literal or, in other words,
to assign a value to an atom. Since this decision is arbitrary, we are allowed
to backtrack at a later point. The rule UnitPropagate asserts that we can add
a literal that is a logical consequence of our previous decisions and the given
formula. The rule Backtrack asserts that the present state of computation is
failing but can be fixed: at some point in the past we added a decision literal
whose value we can now reverse. The rule Fail asserts that the current state of
computation has failed and cannot be fixed. The rule Succeed asserts that the
current state of computation corresponds to a successful outcome.

To decide the satisfiability of a CNF formula it is enough to find a path in
DPϕ leading from node ∅ to a terminal node. If it is Accept , then the formula
is satisfiable, and if it is Reject , then it is unsatisfiable. Since there is no infinite
path, a terminal node is always reached.

3 Algorithms for Preferred Semantics

In this section we abstract two SAT-based algorithms for preferred semantics,
namely PrefSat [5] (implemented in the tool ArgSemSat [6]) for extension enu-
meration, and an algorithm for deciding skeptical acceptance of cegartix [14].
Moreover, we abstract the dedicated approach for enumeration of [20]. In Sec-
tion 3.4 we show how our graph representations can be used to develop novel
algorithms, by combining parts of PrefSat and parts of the dedicated algorithm.

We will present these algorithms in a uniform way, abstracting from some mi-
nor tool-specific details. Moreover, even if abstract solvers are mainly conceived
as a modeling formalism, in our solutions a certain level of systematicity can be
outlined, that helps in the design of such abstract solvers. In fact, common to
all algorithms is a conceptual two-level architecture of computation, similar to
Answer Set Programming solvers for disjunctive logic programs [4]. The lower
level corresponds to a dpll-like search subprocedure, while the higher level part
takes care of the control flow and drives the overall algorithm. For PrefSat and
cegartix, the subprocedures actually are delegated to a SAT solver, while the
dedicated approach carries out a tailored search procedure.

Each algorithm uses its own data structures, and, by slight abuse of nota-
tion, for a given AF F = (A,R) we denote their used variables in our graph
representation by atoms(F). For this set it holds that A ⊆ atoms(F), i.e. the
status of the arguments can be identified from this set of atoms. The states of
our graph representations of all algorithms are either

1. an annotated triple (ε, E′, E)i where i ∈ {out , base,max}, ε ⊆ 2A is a set of
sets of arguments, and both E′ and E are records over atoms(F); or

2. Ok(ε) for ε ⊆ 2A; or
3. a distinguished state Accept or Reject .

The intended meaning of a state (ε, E′, E)i is that ε is the set of already
found preferred extensions of F (visited part of the search space), E′ is a record
representing the current candidate extension (which is admissible or complete in
F), and E is a record that may be currently modified by a subprocedure. Note
that both E and E′ are records, since they will be modified by subprocedures,
while found preferred extensions will be translated to a set of arguments before
being stored in ε. The annotation i denotes the current (sub)procedure we are in.
Both base and max correspond to different lower level computations, typically
SAT calls, while out is used solely for (simple) checks outside such subprocedures.
Transition rules reflecting the higher level of computation shift these annotations,
e.g. from a terminated subprocedure base to subprocedure max , and transition
rules mirroring rules “inside” a SAT solver do not modify i.

The remaining states denote terminated computation: Ok(ε) contains all so-
lutions, while Accept or Reject denote an answer to a decision problem.

The SAT-based algorithms construct formulas by an oracle function f s.t.
A ⊆ atoms(f(ε, E, F, α)) ⊆ atoms(F) for all possible arguments of f , in partic-
ular for α ∈ A. The formulas f(ε, E, F, α) are adapted from [3]. The argument
α is relevant only for cegartix to decide skeptical acceptance of α. Finally, we
use e(M) = M ∩A to project the arguments from a record M .

3.1 SAT-based Algorithm for Enumeration

PrefSat (Algorithm 1 of [5]) is a SAT-based algorithm for finding all preferred
extensions of a given AF F . The algorithm maintains a list of visited preferred
extensions. It first searches for a complete extension not contained in previously

i-oracle rules (i ∈ {base,max})

Backtrack i (ε, E′, EldE′′)i ⇒ (ε, E′, El)i if

{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagatei (ε, E′, E)i ⇒ (ε, E′, El)i if

l does not occur in E and

all the literals of C occur in E and
C ∨ l is a clause in fcom

i (ε, E′, F, α)

Decidei (ε, E′, E)i ⇒ (ε, E′, Eld)i if

{
E is consistent and

neither l nor l occur in E

Succeeding rules
Succeedbase (ε, E′, E)base ⇒ (ε, E, ∅)max if

{
no other rule applies

Succeedmax (ε, E′, E)max ⇒ (ε, E, ∅)max if
{

no other rule applies

Failing rules
Failbase (ε, E′, E)base ⇒ Ok(ε) if

{
E is inconsistent and decision-free

Failmax (ε, E′, E)max ⇒ (ε∪{e(E′)}, ∅, ∅)base if
{
E is inconsistent and decision-free

Fig. 2. The rules of EnumF
f

.

found preferred extensions. If such an extension is found, it is iteratively extended
until we reach a subset-maximal complete extension, i.e. a preferred extension.
This preferred extension is stored, and we repeat the process.

In PrefSat we have two subprocedures that are delegated to a SAT solver. The
first has to generate a complete extension not contained in one of the enumerated
preferred extensions, and the second searches for a complete extension that is a
strict superset of a given one.

We now represents PrefSat via abstract solver. The graph EnumF
f

for an

AF F = (A,R) and a vector of oracle functions f is defined by the states
over atoms(F) and the transition rules presented in Figure 2. Its initial state is
(∅, ∅, ∅)base . We assume the functions fcombase and fcommax that generate CNF formulas
for ε ⊆ 2A, a record E, and an argument α ∈ A such that:

1. {e(M) | M ∈ Sat(fcombase(ε, E, F, α))} = {E′′ ∈ com(F) | ¬∃E′ ∈ ε : E′′ ⊆
E′};

2. {e(M) |M ∈ Sat(fcommax (ε, E, F, α))} = {E′′ ∈ com(F) | e(E) ⊂ E′′}.

We remark that α is not relevant for enumeration of extensions and only
used for acceptance later on. In a state (ε, E′, E)i, the set ε represents preferred
extensions found as of now, E′ is a record for the complete extension found in
the previous subprocedure, and E is a record for the complete extension that the
current oracle is trying to build. The annotation i ∈ {base,max} corresponds to
different kinds of SAT calls.

If the conditions of a rule with annotation i check for consistency, we implic-
itly refer to the formula generated by fcomi . That is, if a Fail i rule is applied to
the state (ε, E′, E)i for i ∈ {base,max}, the formula fcomi (ε, E′, F, α) is unsatisfi-

a b

c

d

Fig. 3. AF F with prf(F) = {{a, c}, {a, d}}.

able. Conversely, when a Succeed i rule is applied, the formula fcomi (ε, E′, F, α) is
satisfied by E. Notice that Fail i and Succeed i might shift i to reflect a change of
type of SAT calls. When i = base, the oracle searches for a complete extension
that has not been found before. In case of failure all the preferred extensions
have been found. In case of success, it is necessary to search whether there are
strictly larger complete extensions than the one found. This is handled by sub-
procedure max . In case of success, Succeedmax is applied and the procedure
is repeated, since the current complete extension might still not be maximal.
Failure by Failmax means we have found a preferred extension.

Example 1. Consider the AF F depicted in Figure 3, where nodes of the graph
represent arguments and edges represent attacks. F has two preferred extensions,
namely {a, c} and {a, d}. Figure 4 shows a possible path in the graph EnumF

f
.

As expected, the computation terminates in the state Ok({{a, d}, {a, c}}). Note
that we abbreviate the parts of the path where we are “inside” the SAT-solver.
Also, we only show literals over A, and do not state the extra literals that may
have been assigned during the call to the SAT-solver. By unsat we represent an
inconsistent and decision-free record.

Initial state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b,¬c, d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, unsat)max

Failmax : ({{a, d}}, ∅, ∅)base
base-oracle : ({{a, d}}, ∅, E3 ⊇ {a,¬b, c,¬d})base
Succeedbase : ({{a, d}}, E3, ∅)max

max -oracle : ({{a, d}}, E3, unsat)max

Failmax : ({{a, d}, {a, c}}, ∅, ∅)base
base-oracle : ({{a, d}, {a, c}}, ∅, unsat)base
Failbase : Ok({{a, d}, {a, c}})

Fig. 4. Path in EnumF
f

where F is the AF from Figure 3.

It remains to show that EnumF
f

correctly describes PrefSat by showing that

we reach a terminal state containing all preferred extensions of F . We begin with

a lemma stating that we only add preferred extensions to ε which have not been
found at this point.

Lemma 1. For any AF F = (A,R), if the rule Failmax is applied from state
(ε, E′, E)max in the graph EnumF

f
then e(E′) ∈ prf(F) and e(E′) /∈ ε.

Proof. Let S1 = (ε1, E
′
1, E1)max be the state from which Failmax is applied. This

means that fcommax is unsatisfiable, hence, by the definition of formula fcommax , there
is no C ∈ com(F) with C ⊃ e(E′

1). To get e(E′
1) ∈ prf(F) it remains to show that

e(E′
1) ∈ com(F). Observe that Succeedbase is applied at least once, since every

framework has a complete extension. Moreover, an update of the value of E′
1 is

only done by an application of Succeedbase or Succeedmax . In both cases e(E′
1)

corresponds to a complete extension of F , since E′
1 is a satisfying assignment of

the formula fcombase or fcommax , respectively. Therefore E′
1 is a complete extension of

F .
Since the initial state is (∅, ∅, ∅)base , an application of Succeedbase must pre-

cede Failmax . From this application of Succeedbase it follows that there is a
record E′ such that ¬∃C ∈ ε : e(E′) ⊆ C follows. Moreover every application of
Succeedmax updates E′ by a proper superset of itself. Therefore e(E′

1) ⊇ e(E′)
and also ¬∃C ∈ ε : e(E′

1) ⊆ C, in particular e(E′
1) /∈ ε. ut

Now we are ready to show correctness of EnumF
f

.

Theorem 1. For any AF F , the graph EnumF(fcom
base ,f

com
max)

is finite, acyclic and the

only terminal state reachable from the initial state is Ok(ε) where ε = prf(F).

Proof. In order to show that EnumF
f

is finite, consider some state (ε, E′, E)i

of EnumF
f

. Since both E and E′ are records over atoms(F), and F is finite by

definition, the number of possible records E and E′ is finite. Similarly, there
is only a finite number of sets of sets of arguments ε. Finally, EnumF

f
only

contains states with i ∈ {base,max}. Thus the number of states is finite in the
graph EnumF

f
.

In order to show that it is acyclic consider two states S1 = (ε1, E
′
1, E1)i1 and

S2 = (ε2, E
′
2, E2)i2 . For a record E let s(E) = |L0|, |L1|, . . . , |Lp|, where E is

of the form L0l1L1 . . . lpLp with l1, . . . , lp being the decision literals of E. We
define the strict partial order on states such that S1 < S2 iff

(i) ε1 ⊂ ε2, or
(ii) ε1 = ε2 and i1 <i i2, or
(iii) ε1 = ε2 and i1 = i2 and e(E′

1) ⊂ e(E′
2), or

(iv) ε1 = ε2 and i1 = i2 and e(E′
1) = e(E′

2) and E1 <l E2,

where base <i max and E1 <l E2 iff s(E1) is lexicographically smaller than
s(E2). We show that each transition rule is increasing with respect to <: First of
all, the i-oracle rules (i.e. Backtrack i, UnitPropagatei, and Decidei) fulfill S1 <
S2 because of (iv). For all of these rules ε1 = ε2, E′

1 = E′
2 and i1 = i2, but s(E1)

is lexicographically smaller than s(E2), therefore E1 <l E2. Moreover, Failmax

fulfills S1 < S2 due to (i) since e(E′
1) /∈ ε1 by Lemma 1. Succeedbase guarantees

S1 < S2 because of (ii). Finally, Succeedmax fulfills S1 < S2 due to (iii), since the
max -oracle rules work on the formula fcommax and the extension associated with a
satisfying assignment E1 = E′

2 thereof must be a proper superset of e(E′
1). We

have shown that each transition rule is increasing with respect to <. Therefore,
for any two states S1 and Sn such that Sn is reachable from S1 in EnumF

f
it

holds that S1 < Sn, showing that the graph is acyclic.
The only terminal state reachable from the initial state is Ok(ε) (via rule

Failbase) since all states S = (ε, E,E′)i of EnumF
f

have i ∈ {base,max} and for

each i ∈ {base,max} there is a rule Succeed i with the condition “no other rule
applies”. It remains to show that, when state Ok(ε) is reached, ε coincides with
prf(F). Since elements are only added to ε by application of the rule Failmax

we know from Lemma 1 that for each P ∈ ε it holds that P ∈ prf(F). To reach
Ok(ε), the rule Failbase must have been applied from state a (ε, E′, E)base . This
means, by the definition of fcombase , that for each complete extension C of F there
is some P ∈ ε such that C ⊆ P . Hence ε = prf(F). ut

3.2 SAT-based Algorithm for Acceptance

cegartix [14] is a SAT-based tool for deciding several acceptance questions for
AFs. We focus here on Algorithm 1 of [14] for deciding skeptical acceptance un-
der preferred semantics of an argument α ∈ A. Similarly as PrefSat, cegartix
traverses the search space of a certain semantics, generates candidate extensions
not contained in already visited preferred extensions, and maximizes the candi-
date until a preferred extension is found. The main differences to PrefSat are
(1) the parametrized usage of the base semantics σ (the search space), which
can be either admissible or complete semantics, and (2) the incorporation of the
queried argument α. To prune the search space, it is required that α is contained
in the candidate σ-extension before maximization. Again, we have two kinds of
SAT-calls.

The graph Skept-prfF,α
f

for an AF F , an argument α and a vector of oracle

functions f is defined by the states over atoms(F) and the rules in Figure 2
replacing the Fail i rules and adding the out rules as depicted in Figure 5. The
initial state is (∅, ∅, ∅)base . For σ ∈ {adm, com} we assume the functions fσbase
and fσmax such that:

1. {e(M) | M ∈ Sat(fσbase(ε, E, F, α))} = {E′′ ∈ σ(F) | α /∈ E′′ ∧ ¬∃E′ ∈ ε :
E′′ ⊆ E′};

2. {e(M) |M ∈ Sat(fσmax (ε, E, F, α))} = {E′′ ∈ σ(F) | e(E) ⊂ E′′}.

The graph Skept-prfF,α
f

is nearly identical to EnumF
f

. It differs only in case

of failure in subprocedure base or max . When all the preferred extensions have
been enumerated in subprocedure base, we can report a positive outcome with
Accept , since we have ensured that α belongs to all of them. In subprocedure
max , when a preferred extension has been found, it is here necessary to check
whether α belongs to it. The out rules correspond to an if-then-else construct:

Failing rules
Failbase (ε, E′, E)base ⇒ Accept if

{
E is inconsistent and decision-free

Failmax (ε, E′, E)max ⇒ (ε, E′, ∅)out if
{
E is inconsistent and decision-free

Failout (ε, E′, E)out ⇒ (ε ∪ {e(E′)}, ∅, ∅)base if
{
α ∈ e(E′)

Succeeding rules
Succeedout (ε, E′, E)out ⇒ Reject if

{
α /∈ e(E′)

Fig. 5. Changed transition rules for Skept-prfF,α
f

.

if the condition α /∈ E′ holds then we follow the Succeedout rule else follow the
Failout rule. In other words, if α is not in the extension then the procedure can
terminate with a negative answer; else proceed as in the previous graph: add the
preferred extension to ε and search for a new one by going back to base.

Example 2. Again consider the AF F from Figure 3 and note that skeptical
acceptance of the argument c is rejected since c is not contained in the preferred
extension {a, d} of F . Accordingly, the possible path of the graph Skept-prfF,c

f

which is depicted in Figure 6 (with base semantics adm) terminates in the Reject-
state.

Inital state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b, c,¬d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, unsat)max

Failmax : (∅, E2, ∅)out
Failout : ({{a, c}}, ∅, ∅)base
base-oracle : ({{a, c}}, ∅, E3 ⊇ {a,¬b,¬c, d})base
Succeedbase : ({{a, c}}, E3, ∅)max

max -oracle : ({{a, c}}, E3, unsat)max

Failmax : ({{a, c}}, E3, ∅)out
Succeedout : Reject

Fig. 6. Reject-path for argument c in Skept-prfF,c
f

.

On the other hand, argument a is skeptically accepted under preferred seman-
tics in F as it belongs to all preferred extensions enumerated in {{a, d}, {a, c}}.
For checking whether a is skeptically accepted in F , a possible path in the graph
Skept-prfF,a

f
(again with base semantics adm) is shown in Figure 7. As ex-

pected, the path terminates in the state Accept .

Initial state : (∅, ∅, ∅)base
base-oracle : (∅, ∅, E1 ⊇ {¬a,¬b,¬c,¬d})base
Succeedbase : (∅, E1, ∅)max

max -oracle : (∅, E1, E2 ⊇ {a,¬b,¬c,¬d})max

Succeedmax : (∅, E2, ∅)max

max -oracle : (∅, E2, E3 ⊇ {a,¬b,¬c, d})max

Succeedmax : (∅, E3, ∅)max

max -oracle : (∅, E3, unsat)max

Failmax : (∅, E3, ∅)out
Failout : ({{a, d}}, ∅, ∅)base
base-oracle : ({{a, d}}, ∅, unsat)base
Failbase : Accept

Fig. 7. Accept-path for argument a in Skept-prfF,a
f

.

Theorem 2. For any AF F = (A,R), argument α ∈ A, and σ ∈ {adm, com},
the graph Skept-prfF,α(fσ

base ,f
σ
max)

is finite, acyclic and any terminal state reachable

from the initial state is either Accept or Reject; Accept is reachable iff α is
skeptically accepted in F w.r.t. prf.

3.3 Dedicated Approach for Enumeration

Algorithm 1 of [20] presents a direct approach for enumerating preferred exten-
sions. One function is important for this algorithm, which is called IN-TRANS.
It marks an argument x ∈ A as belonging to the currently built extension, and
marks all attackers {y | (y, x) ∈ R} and all attacked arguments {y | (x, y) ∈ R}
as outside of this extension. Intuitively, IN-TRANS decides to accept x, and
then propagates the immediate consequences to the neighboring nodes. It ac-
tually does an additional task. It labels the attacked arguments as “attacked”,
and the attackers that are not yet labelled as attacked as “to be attacked”: this
allows later to easily check the admissibility of the extension by just looking
whether there is any argument “to be attacked”.

The algorithm is recursive, and stores the admissible extensions in a global
variable. First, it checks whether all the arguments are marked as either belong-
ing or outside the extension, and if so it returns after adding the extension to the
global variable if the extension is actually admissible. Second, it applies the func-
tion IN-TRANS to some unmarked argument and calls itself recursively. Third,
it reverts the effects of IN-TRANS, marks the argument it chose as outside of
this extension, and calls itself recursively. This can be seen as a backtrack.

We have defined an equivalent representation of this algorithm that follows
the framework of abstract solvers with binary logics as previously used in this
article. Binary truth values are sufficient to represent the arguments marked, but
we see the labels “attacked” and “to be attacked” as an optimization as they can
be easily recovered at the end of the algorithm. Indeed, they correspond to the

Oracle rules

Backtrack ′
max (ε, ∅, EadE′′)max ⇒ (ε, ∅, E¬a)max if

{
EadE′′ is inconsistent and
E′′ contains no decision literal

Propagate′max (ε, ∅, E)max ⇒ (ε, ∅, E¬a)max if
{
E attacks a or a attacks E

Decide ′
max (ε, ∅, E)max ⇒ (ε, ∅, Ead)max if

E is consistent and
neither a nor ¬a occur in E and
Propagate ′

max does not apply

Succeeding and failing rules
Failmax (ε, ∅, E)max ⇒ Ok(ε) if

{
E is incons. and decision-free

Succeedmax (ε, ∅, E)max ⇒ (ε, ∅, E)out if
{

no other rule applies

Failout (ε, ∅, E)out ⇒ (ε, ∅, E⊥)max if

∃E′ ∈ ε : E ⊆ E′ or
there is an argument a s.t.
E does not attack a and
a attacks E

Succeedout (ε, ∅, E)out ⇒ (ε∪{e(E)}, ∅, E⊥)max if
{

no other rule applies

Fig. 8. The rules of the graph DirectF .

condition “there is an argument a such that E does not attack a and a attacks
E′′ of the rule Failout.

The graph DirectF for an AF F is defined by the states over atoms(F) and
the transition rules presented in Figure 8. Its initial state is (∅, ∅, ∅)max . The
structure of the graph is similar to that of EnumF

f
. It differs from this graph in

two ways. First, it has only one subprocedure. Second, the rules of the oracle
differ from the previous oracle rules since they are not a call to a SAT solver;
we primed them to emphasize the difference.

More precisely, among the oracle rules, propagation now only occurs so as to
negatively add an atom if it attacks or is attacked by an atom of the extension
being built. The Decide ′

max rule only adds atoms positively, which is useful
in Algorithm 2 of [20], but does not seem to be crucial here. When a record
assigning all arguments is found, the rule Succeedmax is applied so as to allow
the test of the outer rules to be carried on. If the record corresponds to a preferred
extension, then it is stored by Succeedout and the process of trying all possible
records continues. In both Succeedout and Failout , the use of one of the rules
Backtrack ′

max or Failmax is forced by making the record inconsistent. This way
the process of browsing records is forced to continue.

Theorem 3. For any AF F , the graph DirectF is finite, acyclic and the only
terminal state reachable from its initial state is Ok(ε) where ε = prf(F).

3.4 Combining Algorithms

We can now define a new algorithm which is a combination of the PrefSat ap-
proach and the dedicated approach. In fact, it replaces the loop of SAT-calls for

Succeeding and failing rules
Succeedbase (ε, ∅, E)base ⇒ (ε, ∅, e(E))max if

{
no other rule applies

Succeedout (ε, ∅, E)out ⇒ (ε ∪ {e(E)}, ∅, ∅)base if
{

no other rule applies

Fig. 9. The rules of the graph mix-prfF
f

.

maximizing a complete extension of PrefSat by a part of the dedicated algorithm
of [20]. In particular, instead of having subsequent oracle calls for maximization,
we utilize the dedicated algorithm with a different initialization and stop already
when the first preferred extension has been found. The graph mix-prfF

f
repre-

senting this algorithm consists of the oracle rules and the rules Succeedmax and
Failout of DirectF , the base-oracle rules and the rule Failbase of EnumF

f
and

the rules in Figure 9. The initial state is (∅, ∅, ∅)base .
As in EnumF

f
, whenever a Succeedbase rule is applied, a complete extension

has been generated and it has to be validated or extended by the subprocedure
identified with max . When Succeedmax is applied, a preferred extension has been
found and the search for another complete extension can be started. Whenever
an extension has been found by procedure base, there is a preferred extension
that is a superset of the found extension. Hence, there is no need for a rule
Failmax , since subprocedure max will always succeed.

Theorem 4. For any AF F , the graph mix-prfF
f

is finite, acyclic and the only

terminal state reachable from its initial state is Ok(ε) where ε = prf(F).

4 Discussion and Conclusions

In this paper we have shown the applicability and the advantages of using a
rigorous formal way for describing certain algorithms for solving decision prob-
lems for AFs through graph-based abstract solvers instead of pseudo-code-based
descriptions. Both SAT-based and dedicated approaches for solving hard prob-
lems have been analyzed and compared. Moreover, by a combination of these
approaches we have obtained a novel algorithm for enumeration of preferred
extensions.

Our work shows the potential of abstract transition systems to describe, com-
pare and combine algorithms also in the research field of abstract argumentation,
as already happened in, e.g. SAT, SMT and ASP. In particular, the last feature,
which allows the design of new solving procedures by combining reasoning mod-
ules from different algorithms, seems to be particularly appealing. However, we
do not claim about the efficiency of a new tool built on this basis, given that
it usually requires many iterations of theoretical analysis, practical engineering,
and domain-specific optimizations to develop efficient systems.

We have focused on the well-studied preferred semantics, and we have pre-
sented core algorithms. However, the machinery can be easily employed to de-

scribing algorithms for solving other reasoning tasks, such as credulous accep-
tance, or different semantics, e.g. semi-stable and stage semantics, as employed
in cegartix [14]. Moreover, specific optimization techniques can be taken into
account by means of modular addition of transition rules to the graph describing
the core parts of the algorithms. As future work we plan to make these points
more concrete.

Concerning further future work we envisage to formally describe further al-
gorithms for reasoning tasks within abstract argumentation (e.g. [11, 18], see [8]
for a comprehensive survey). In particular, the results of the upcoming compe-
tition will suggest promising candidates for the application of the newly gained
technique of algorithm combination via abstract solvers.

Acknowledgements

This work has been funded by the Austrian Science Fund (FWF) through project
I1102, and by Academy of Finland through grants 251170 COIN and 284591.

References

1. Baroni, P., Caminada, M.W.A., Giacomin, M.: An introduction to argumentation
semantics. The Knowledge Engineering Review 26(4), 365–410 (2011)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15), 619–641 (2007)

3. Besnard, P., Doutre, S.: Checking the Acceptability of a Set of Arguments. In: Del-
grande, J.P., Schaub, T. (eds.) Proceedings of the Tenth International Workshop
on Non-Monotonic Reasoning, NMR 2004. pp. 59–64 (2004)

4. Brochenin, R., Lierler, Y., Maratea, M.: Abstract disjunctive answer set solvers. In:
Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European
Conference on Artificial Intelligence, ECAI 2014. Frontiers in Artificial Intelligence
and Applications, vol. 263, pp. 165–170. IOS Press (2014)

5. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred exten-
sions in abstract argumentation: A SAT-based approach. In: Black, E., Modgil, S.,
Oren, N. (eds.) Proceedings of the Second International Workshop on Theory and
Applications of Formal Argumentation, TAFA 2013. Lecture Notes in Computer
Science, vol. 8306, pp. 176–193. Springer (2014), http://dx.doi.org/10.1007/

978-3-642-54373-9_12

6. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: Solving argumentation prob-
lems using SAT. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Proceed-
ings of the Fifth International Conference on Computational Models of Argument,
COMMA 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp.
455–456. IOS Press (2014)

7. Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M.: A benchmark framework
for a computational argumentation competition. In: Parsons, S., Oren, N., Reed,
C., Cerutti, F. (eds.) Proceedings of the Fifth International Conference on Com-
putational Models of Argument, COMMA 2014. Frontiers in Artificial Intelligence
and Applications, vol. 266, pp. 459–460. IOS Press (2014)

8. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
Solving Reasoning Problems in Abstract Argumentation - A Survey. Artificial In-
telligence 220, 28–63 (2015)

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (1962)

10. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science 170(1-2), 209–244 (1996)

11. Doutre, S., Mengin, J.: Preferred extensions of argumentation frameworks: Query
answering and computation. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceed-
ings of the First International Joint Conference on Automated Reasoning, IJCAR
2001. Lecture Notes in Computer Science, vol. 2083, pp. 272–288. Springer (2001)

12. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial In-
telligence 77(2), 321–358 (1995)

13. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artifi-
cial Intelligence 141(1/2), 187–203 (2002)

14. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive deci-
sion procedures for abstract argumentation. Artificial Intelligence 206, 53–78 (2014)

15. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Information Processing Letters 110(11), 425–430 (2010)

16. Lierler, Y.: Abstract answer set solvers with backjumping and learning. Theory
and Practice of Logic Programming 11(2-3), 135–169 (2011)

17. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artificial Intelligence 207, 1–22 (2014)

18. Modgil, S., Caminada, M.W.A.: Proof theories and algorithms for abstract ar-
gumentation frameworks. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in
Artificial Intelligence, pp. 105–129. Springer (2009)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract davis–putnam–logemann–loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

20. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument
systems under preferred semantics. Artificial Intelligence 207, 23–51 (2014)

21. Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer
(2009)

