

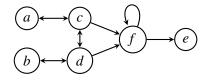


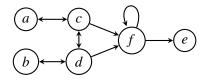
# Verifiability of Argumentation Semantics

#### Ringo Baumann, Thomas Linsbichler, Stefan Woltran

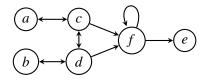
16th International Workshop on Non-Monotonic Reasoning Cape Town, South Africa

April 22, 2016





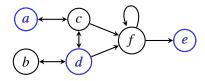
- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments



- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

 $\textit{stb}(\mathcal{F}) =$ 

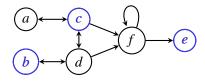
Thomas Linsbichler, April 22, 2016



- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

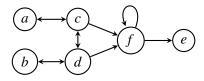
$$stb(\mathcal{F}) = \big\{\{a, d, e\},\$$

Thomas Linsbichler, April 22, 2016



- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$\textit{stb}(\mathcal{F}) = \left\{ \{a, d, e\}, \{b, c, e\} \right\}$$



- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$stb(\mathcal{F}) = \big\{\{a, d, e\}, \{b, c, e\}\big\}$$

• Further semantics: preferred, complete, semi-stable, stage, ...

• Conflict-freeness: basic requirement for argumentation semantics.

#### • Conflict-freeness: basic requirement for argumentation semantics.

#### Example

• Given conflict-free sets  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$ .

#### • Conflict-freeness: basic requirement for argumentation semantics.

#### Example

- Given conflict-free sets  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$ .
- Can we compute semantics based on this?
   ⇒ only naive semantics (maximal conflict-free sets)

#### • Conflict-freeness: basic requirement for argumentation semantics.

#### Example

- Given conflict-free sets  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$ .
- Can we compute semantics based on this?
   ⇒ only naive semantics (maximal conflict-free sets)

$$\mathcal{F}: (a, b) \quad \mathcal{G}: (a, b) \quad H: (a, b)$$

#### • Conflict-freeness: basic requirement for argumentation semantics.

#### Example

- Given conflict-free sets  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$ .
- Can we compute semantics based on this?
   ⇒ only naive semantics (maximal conflict-free sets)

$$\mathcal{F}: (a, b) \quad \mathcal{G}: (a, b) \quad H: (a, b)$$

Conflict free sets + their range: (∅, ∅), ({a}, {a,b}), ({b}, {b})
 ⇒ enough to compute stage semantics (range-maximal conflict-free sets)

#### • Conflict-freeness: basic requirement for argumentation semantics.

#### Example

- Given conflict-free sets  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$ .
- Can we compute semantics based on this?
   ⇒ only naive semantics (maximal conflict-free sets)

$$\mathcal{F}: (a, b) \quad \mathcal{G}: (a, b) \quad H: (a, b)$$

- Conflict free sets + their range: (∅, ∅), ({a}, {a,b}), ({b}, {b})
   ⇒ enough to compute stage semantics (range-maximal conflict-free sets)
- Which information on top of conflict-free sets has to be added in order to compute a certain semantics?

- Systematic comparison of argumentation semantics
  - Principle-based evaluation [Baroni and Giacomin, 2007]
  - $\Rightarrow$  Hierarchy of verification classes
  - $\Rightarrow$  Each "rational" semantics is exactly verifiable by one of these classes

- Systematic comparison of argumentation semantics
  - Principle-based evaluation [Baroni and Giacomin, 2007]
  - $\Rightarrow$  Hierarchy of verification classes
  - $\Rightarrow$  Each "rational" semantics is exactly verifiable by one of these classes
- Strong equivalence
  - Central notion in non-monotonic reasoning [Lifschitz et al., 2001, Turner, 2004, Truszczynski, 2006, Baumann and Strass, 2016]
  - Studied for most argumentation semantics [Oikarinen and Woltran, 2011, Baumann, 2016]
  - $\Rightarrow\,$  Missing results for naive and strong admissible semantics
  - $\Rightarrow\,$  Characterization theorems for intermediate semantics

#### Definition

An argumentation framework (AF) is a pair (A, R) where

- $A \subseteq \mathcal{U}$  is a finite set of arguments and
- $R \subseteq A \times A$  is the attack relation representing conflicts.

#### Definition

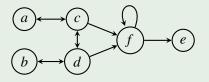
Given an AF  $\mathcal{F} = (A, R)$  and  $S \subseteq A$ ,

- *S* is conflict-free ( $S \in cf(\mathcal{F})$ ) if  $\forall a, b \in S : (a, b) \notin R$ .
- $a \in A$  is defended by S if  $\forall b \in A : (b, a) \in R \Rightarrow \exists c \in S : (c, b) \in R$
- $S_{\mathcal{F}}^+ = S \cup \{a \mid \exists b \in S : (b, a) \in R\}$  (the range of S)
- $S_{\mathcal{F}}^{-} = S \cup \{a \mid \exists b \in S : (a, b) \in R\}$  (the anti-range of S)

#### Definition

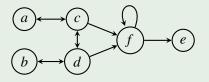
Given an AF  $\mathcal{F} = (A, R)$ , a set  $S \subseteq A$  is

- admissible set if  $S \in cf(\mathcal{F})$  and each  $a \in S$  is defended by S,
- complete extension if  $S \in ad(\mathcal{F})$  and  $a \in S$  if a is defended by S,
- naive extension if  $S \in cf(\mathcal{F})$  and  $\nexists T \in cf(\mathcal{F}) : T \supset S$ ,
- stable extension if  $S \in cf(\mathcal{F})$  and  $S_{\mathcal{F}}^+ = A$ ,
- stage extension if  $S \in cf(\mathcal{F})$  and  $\nexists T \in cf(\mathcal{F}) : T_{\mathcal{F}}^+ \supset S_{\mathcal{F}}^+$ ,
- preferred, grounded, semi-stable, ideal, eager, strongly admissible extensions



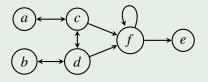
### $\textit{ad}(\mathcal{F}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, d, e\}, \{b, c, e\} \}$

Thomas Linsbichler, April 22, 2016



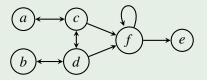
 $\begin{aligned} & \textit{ad}(\mathcal{F}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, d, e\}, \{b, c, e\} \} \\ & \textit{co}(\mathcal{F}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d, e\}, \{b, c, e\} \} \end{aligned}$ 

Thomas Linsbichler, April 22, 2016



 $\begin{aligned} & \textit{ad}(\mathcal{F}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, d, e\}, \{b, c, e\} \} \\ & \textit{co}(\mathcal{F}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d, e\}, \{b, c, e\} \} \\ & \textit{na}(\mathcal{F}) = \{ \{a, b, e\}, \{a, d, e\}, \{b, c, e\} \} \end{aligned}$ 

Thomas Linsbichler, April 22, 2016



 $\begin{aligned} & \mathsf{ad}(\mathcal{F}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, d, e\}, \{b, c, e\}\} \\ & \mathsf{co}(\mathcal{F}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d, e\}, \{b, c, e\}\} \\ & \mathsf{na}(\mathcal{F}) = \{\{a, b, e\}, \{a, d, e\}, \{b, c, e\}\} \\ & \mathsf{stb}(\mathcal{F}) = \mathsf{stg}(\mathcal{F}) = \{\{a, d, e\}, \{b, d, e\}\} \end{aligned}$ 

Thomas Linsbichler, April 22, 2016

#### Definition

We call a function  $\mathfrak{r}^x: 2^\mathcal{U}\times 2^\mathcal{U}\to \left(2^\mathcal{U}\right)^n$  which is expressible via basic set operations only^a neighborhood function. A neighborhood function  $\mathfrak{r}^x$  induces the verification class mapping each AF  $\mathcal F$  to

$$\widetilde{\mathcal{F}}^x = \left\{ \left( S, \mathfrak{r}^x(S_{\mathcal{F}}^+, S_{\mathcal{F}}^-) \right) \mid S \in \mathit{Cf}(\mathcal{F}) 
ight\}.$$

 ${}^{a}\mathfrak{r}^{x}(A,B)$  is in the language  $X ::= A \mid B \mid (X \cup X) \mid (X \cap X) \mid (X \setminus X)$ 

#### Definition

We call a function  $\mathfrak{r}^{\mathfrak{r}}: 2^{\mathcal{U}} \times 2^{\mathcal{U}} \to (2^{\mathcal{U}})^n$  which is expressible via basic set operations only<sup>a</sup> neighborhood function. A neighborhood function  $\mathfrak{r}^{\mathfrak{r}}$  induces the verification class mapping each AF  $\mathcal{F}$  to

$$\widetilde{\mathcal{F}}^x = \left\{ \left( S, \mathfrak{r}^x(S^+_{\mathcal{F}}, S^-_{\mathcal{F}}) \right) \mid S \in \mathit{Cf}(\mathcal{F}) 
ight\}.$$

 ${}^a\mathfrak{r}^x(A,B)$  is in the language  $X::=A\mid B\mid (X\cup X)\mid (X\cap X)\mid (X\setminus X)$ 

#### Example

$$\mathcal{F}: a$$
  $b$   $c$ 

$$\begin{split} \mathfrak{r}^{+} &: \mathfrak{r}^{x}(A,B) = A \\ \widetilde{\mathcal{F}}^{+} &= \{(\emptyset,\emptyset), (\{a\}, \{a,b\}), (\{c\}, \{b,c\}), (\{a,c\}, \{a,b,c\})\} \\ \mathfrak{r}^{-\pm} &: \mathfrak{r}^{x}(A,B) = (B,A \setminus B) \\ \widetilde{\mathcal{F}}^{-\pm} &= \{(\emptyset,\emptyset,\emptyset), (\{a\}, \{a,b\}, \emptyset), (\{c\}, \{c\}, \{b\}), (\{a,c\}, \{a,b,c\}, \emptyset)\} \end{split}$$

• Neighborhood functions for n = 1:

$$\mathfrak{r}^{\epsilon}(A,B) = \emptyset$$
  

$$\mathfrak{r}^{+}(A,B) = A$$
  

$$\mathfrak{r}^{-}(A,B) = B \setminus A$$
  

$$\mathfrak{r}^{\pm}(A,B) = B \setminus A$$
  

$$\mathfrak{r}^{\pm}(A,B) = A \setminus B$$
  

$$\mathfrak{r}^{\cap}(A,B) = A \cap B$$
  

$$\mathfrak{r}^{\cup}(A,B) = A \cup B$$
  

$$\mathfrak{r}^{\Delta}(A,B) = (A \cup B) \setminus (A \cap B)$$

2<sup>7</sup> + 1 syntactically different neighborhood functions
r<sup>x1,...,xn</sup>(A, B) ::= (r<sup>x1</sup>(A, B), ..., r<sup>xn</sup>(A, B))

Thomas Linsbichler, April 22, 2016

#### Definition

For neighborhood functions  $\mathfrak{r}^x$  and  $\mathfrak{r}^y$ , we say that  $\mathfrak{r}^x$  is more informative than  $\mathfrak{r}^y$ , short  $\mathfrak{r}^x \succeq \mathfrak{r}^y$ , if there is a function  $\delta : (2^{\mathcal{U}})^n \to (2^{\mathcal{U}})^m$  such that for any  $A, B \subseteq \mathcal{U}$ , it holds that  $\delta (\mathfrak{r}^x(A, B)) = \mathfrak{r}^y(A, B)$ . In case  $\mathfrak{r}^x \approx \mathfrak{r}^y$  ( $\mathfrak{r}^x \succeq \mathfrak{r}^y$  and  $\mathfrak{r}^y \succeq \mathfrak{r}^x$ ), we say that  $\mathfrak{r}^x$  represents  $\mathfrak{r}^y$ .

#### Definition

For neighborhood functions  $\mathfrak{r}^x$  and  $\mathfrak{r}^y$ , we say that  $\mathfrak{r}^x$  is more informative than  $\mathfrak{r}^y$ , short  $\mathfrak{r}^x \succeq \mathfrak{r}^y$ , if there is a function  $\delta : (2^{\mathcal{U}})^n \to (2^{\mathcal{U}})^m$  such that for any  $A, B \subseteq \mathcal{U}$ , it holds that  $\delta (\mathfrak{r}^x(A, B)) = \mathfrak{r}^y(A, B)$ . In case  $\mathfrak{r}^x \approx \mathfrak{r}^y (\mathfrak{r}^x \succeq \mathfrak{r}^y$  and  $\mathfrak{r}^y \succeq \mathfrak{r}^x$ ), we say that  $\mathfrak{r}^x$  represents  $\mathfrak{r}^y$ .

#### Example

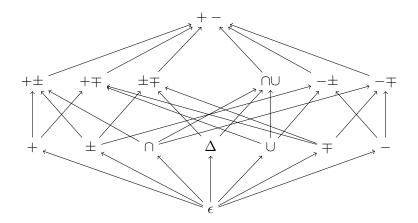
• 
$$\delta_1(\mathfrak{r}^{+\pm}(A,B)) = \delta_1(A,A \setminus B) =_{def} (A,A \setminus (A \setminus B)) = (A,A \cap B) = \mathfrak{r}^{+\cap}(A,B);$$

- $\delta_2(\mathfrak{r}^{+\cap}(A,B)) = \delta_2(A,A\cap B) =_{def} (A \setminus (A\cap B), A\cap B) = (A \setminus B, A \cap B) = \mathfrak{r}^{\pm\cap}(A,B);$
- $\delta_3(\mathfrak{r}^{\pm\cap}(A,B)) = \delta_3(A \setminus B, A \cap B) =_{def} ((A \setminus B) \cup (A \cap B), A \setminus B) = (A, A \setminus B) = \mathfrak{r}^{+\pm}(A, B).$

 $\Rightarrow \ \mathfrak{r}^{+\pm} \approx \mathfrak{r}^{+\cap} \approx \mathfrak{r}^{\pm\cap}$ 

#### Lemma

All neighborhood functions are represented by the ones depicted below and the  $\prec$ -relation represented by arcs holds.



#### Definition

A semantics  $\sigma$  is verifiable by the verification class induced by the neighborhood function  $\mathfrak{r}^x$  (or simply, *x*-verifiable) iff there is a function  $\gamma_{\sigma}: (2^{\mathcal{U}})^n \times 2^{\mathcal{U}} \to 2^{2^{\mathcal{U}}}$  s.t. for every AF  $\mathcal{F}$ :

$$\gamma_{\sigma}\left(\widetilde{\mathcal{F}}^{x}, A_{\mathcal{F}}\right) = \sigma(\mathcal{F}).$$

Moreover,  $\sigma$  is exactly *x*-verifiable iff  $\sigma$  is *x*-verifiable and there is no  $\mathfrak{r}^y$  with  $\mathfrak{r}^y \prec \mathfrak{r}^x$  such that  $\sigma$  is *y*-verifiable.

### Proposition

Complete semantics is exactly +--verifiable.

#### Proof

• Verifiability:

$$\begin{split} \gamma_{\rm CO}(\widetilde{\mathcal{F}}^{+-}, A_{\mathcal{F}}) &= \{S \mid (S, S^+, S^-) \in \widetilde{\mathcal{F}}^{+-}, (S^- \setminus S^+) = \emptyset, \\ &\forall (\bar{S}, \bar{S}^+, \bar{S}^-) \in \widetilde{\mathcal{F}}^{+-} : \bar{S} \supset S \Rightarrow (\bar{S}^- \setminus S^+) \neq \emptyset) \} \end{split}$$

• Exactness:

• 
$$\widetilde{\mathcal{F}_1}^{+\pm} = \{(\emptyset, \emptyset, \emptyset), (\{a\}, \{a\}, \emptyset)\} = \widetilde{\mathcal{F}_1'}^+$$

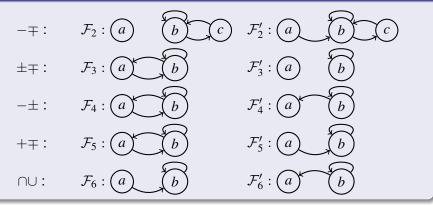
•  $\operatorname{co}(\mathcal{F}_1) = \{\emptyset\} \neq \{\{a\}\} = \operatorname{co}(\mathcal{F}'_1)$ 

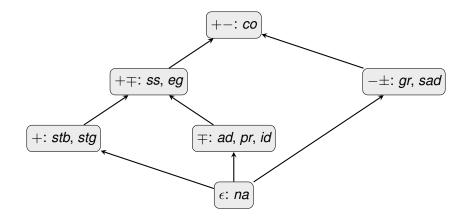
 $\Rightarrow$  *co* is not +±-verifiable

### Proposition

Complete semantics is exactly +--verifiable.

### Proof (ctd.)





Thomas Linsbichler, April 22, 2016

### Definition

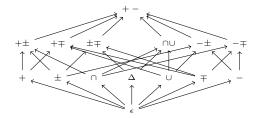
We call a semantics  $\sigma$  rational if self-loop-chains are irrelevant. That is, for every AF  $\mathcal{F}$  it holds that  $\sigma(\mathcal{F}) = \sigma(\mathcal{F}^l)$ , where  $\mathcal{F}^l = (A_{\mathcal{F}}, R_{\mathcal{F}} \setminus \{(a, b) \in R_{\mathcal{F}} \mid (a, a), (b, b) \in R_{\mathcal{F}}, a \neq b\}).$ 

### Definition

We call a semantics  $\sigma$  rational if self-loop-chains are irrelevant. That is, for every AF  $\mathcal{F}$  it holds that  $\sigma(\mathcal{F}) = \sigma(\mathcal{F}^l)$ , where  $\mathcal{F}^l = (A_{\mathcal{F}}, R_{\mathcal{F}} \setminus \{(a, b) \in R_{\mathcal{F}} \mid (a, a), (b, b) \in R_{\mathcal{F}}, a \neq b\}).$ 

#### Theorem

Every semantics which is rational is exactly verifiable by a verification class induced by one of the neighborhood functions below.



#### Definition

Given semantics  $\sigma$ , two AFs  $\mathcal{F}$  and  $\mathcal{G}$  are strongly equivalent w.r.t.  $\sigma$  $(\mathcal{F} \equiv_E^{\sigma} \mathcal{G})$  iff for all AFs  $\mathcal{H}$ :  $\sigma(\mathcal{F} \cup \mathcal{H}) = \sigma(\mathcal{G} \cup \mathcal{H})$ 

#### Definition

Given semantics  $\sigma$ , two AFs  $\mathcal{F}$  and  $\mathcal{G}$  are strongly equivalent w.r.t.  $\sigma$ ( $\mathcal{F} \equiv_E^{\sigma} \mathcal{G}$ ) iff for all AFs  $\mathcal{H}$ :  $\sigma(\mathcal{F} \cup \mathcal{H}) = \sigma(\mathcal{G} \cup \mathcal{H})$ 

#### $\Rightarrow$ syntactical criteria exist

#### Example (stable semantics)

• *stb*-kernel: 
$$\mathcal{F}^{k(stb)} = (A, R \setminus \{(a, b) \mid a \neq b, (a, a) \in R\}).$$

• Theorem:  $\mathcal{F}^{k(stb)} = \mathcal{G}^{k(stb)} \Leftrightarrow \mathcal{F}$  and  $\mathcal{G}$  are strongly equivalent.

$$\mathcal{F}: a \qquad b \qquad \mathcal{G}: a \qquad b$$

We have  $\mathcal{F}^{k(stb)} = \mathcal{G}^{k(stb)} = \mathcal{G}$ . Thus,  $\mathcal{F}$  and  $\mathcal{G}$  are strong equivalent.

#### Definition ( $\sigma$ -kernel)

Let  $\mathcal{F} = (A, R)$ . We define  $\sigma$ -kernels  $\mathcal{F}^{k(\sigma)} = (A, R^{k(\sigma)})$  whereby **1**  $R^{k(stb)} = R \setminus \{(a, b) | a \neq b, (a, a) \in R\},$  **2**  $R^{k(ad)} = R \setminus \{(a, b) | a \neq b, (a, a) \in R, \{(b, a), (b, b)\} \cap R \neq \emptyset\},$  **3**  $R^{k(gr)} = R \setminus \{(a, b) | a \neq b, (b, b) \in R, \{(a, a), (b, a)\} \cap R \neq \emptyset\},$  **4**  $R^{k(co)} = R \setminus \{(a, b) | a \neq b, (a, a), (b, b) \in R\}.$ **5**  $R^{k(na)} = R \cup \{(a, b) | a \neq b, \{(a, a), (b, a), (b, b)\} \cap R \neq \emptyset\}.$ 

A relation ≡ is characterizable through kernels if there is a kernel k, s.t. F ≡ G ⇔ F<sup>k</sup> = G<sup>k</sup>,

Thomas Linsbichler, April 22, 2016

#### Theorem

Strong equivalence is characterizable through kernels (see below).

| stg    | stb    | SS    | eg    | ad    | pr    | id    | gr    | sad   | со    | na    |
|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| k(stb) | k(stb) | k(ad) | k(ad) | k(ad) | k(ad) | k(ad) | k(gr) | k(gr) | k(co) | k(na) |

- Note that *stb* and *stg* are both characterizable through k(stb).
- Does this also hold for arbitrary semantics σ with stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?

- Note that *stb* and *stg* are both characterizable through *k*(*stb*).
- Does this also hold for arbitrary semantics σ with stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?

#### Example

- "Stagle semantics":
  - $S \in sta(\mathcal{F}) \Leftrightarrow S \in cf(\mathcal{F}), S^+_{\mathcal{F}} \cup S^-_{\mathcal{F}} = A_{\mathcal{F}} \text{ and } \forall T \in cf(\mathcal{F}) : S^+_{\mathcal{F}} \not\subset T^+_{\mathcal{F}}$

- Note that *stb* and *stg* are both characterizable through *k*(*stb*).
- Does this also hold for arbitrary semantics σ with stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?

#### Example

• "Stagle semantics":  $S \in sta(\mathcal{F}) \Leftrightarrow S \in cf(\mathcal{F}), S_{\mathcal{F}}^+ \cup S_{\mathcal{F}}^- = A_{\mathcal{F}} \text{ and } \forall T \in cf(\mathcal{F}) : S_{\mathcal{F}}^+ \not\subset T_{\mathcal{F}}^+$   $\mathcal{F} : a \qquad b \qquad c$ •  $stb(\mathcal{F}) = \emptyset \subset sta(\mathcal{F}) = \{\{b\}\} \subset stg(\mathcal{F}) = \{\{b\}, \{c\}\}.$ 

- Note that *stb* and *stg* are both characterizable through k(stb).
- Does this also hold for arbitrary semantics σ with stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?

#### Example

• "Stagle semantics":  

$$S \in sta(\mathcal{F}) \Leftrightarrow S \in cf(\mathcal{F}), S_{\mathcal{F}}^{+} \cup S_{\mathcal{F}}^{-} = A_{\mathcal{F}} \text{ and } \forall T \in cf(\mathcal{F}) : S_{\mathcal{F}}^{+} \not\subset T_{\mathcal{F}}^{+}$$

$$\mathcal{F} : a \qquad b \qquad c$$
•  $stb(\mathcal{F}) = \emptyset \subset sta(\mathcal{F}) = \{\{b\}\} \subset stg(\mathcal{F}) = \{\{b\}, \{c\}\}.$ 

$$\mathcal{F}^{k(stb)} : a \qquad b \qquad c$$
•  $sta(\mathcal{F}^{k(stb)}) = \{\{b\}, \{c\}\} \Rightarrow \mathcal{F} \not\equiv_{E}^{sta} \mathcal{F}^{k(stb)}, \mathcal{F}^{k(stb)} = (\mathcal{F}^{k(stb)})^{k(stb)}$ 

#### $\Rightarrow$ Stagle semantics is not compatible with the stable kernel.

Thomas Linsbichler, April 22, 2016

#### Theorem

For each semantics  $\sigma$  which is +-verifiable and stb-stg-intermediate, it holds that

$$\mathcal{F}^{k(\textit{stb})} = \mathcal{G}^{k(\textit{stb})} \Leftrightarrow \mathcal{F} \equiv_{E}^{\sigma} \mathcal{G}.$$

#### Theorem

For each semantics  $\sigma$  which is +-verifiable and stb-stg-intermediate, it holds that

$$\mathcal{F}^{k(stb)} = \mathcal{G}^{k(stb)} \Leftrightarrow \mathcal{F} \equiv_{E}^{\sigma} \mathcal{G}.$$

#### Theorem

For each semantics  $\sigma$  which is  $+\mp$ -verifiable and  $\rho$ -ad-intermediate with  $\rho \in \{ss, id, eg\}$ , it holds that

$$\mathcal{F}^{k(ad)} = \mathcal{G}^{k(ad)} \Leftrightarrow \mathcal{F} \equiv_{E}^{\sigma} \mathcal{G}.$$

#### Theorem

For each semantics  $\sigma$  which is  $-\pm\text{-verifiable}$  and gr-sad-intermediate, it holds that

$$\mathcal{F}^{k(gr)} = \mathcal{G}^{k(gr)} \Leftrightarrow \mathcal{F} \equiv^{\sigma}_{E} \mathcal{G}.$$

Thomas Linsbichler, April 22, 2016

#### Summary:

- Hierarchy of verification classes
- Each "rational" semantics is exactly verifiable by a certain class
- Characterization of strong equivalence for intermediate semantics

#### Future work:

- Semantics not captured by the approach, e.g. *cf2* semantics [Baroni et al., 2005]
- Investigating labelling-based semantics [Caminada and Gabbay, 2009]

## **References I**



#### Baroni, P. and Giacomin, M. (2007).

On principle-based evaluation of extension-based argumentation semantics. Artif. Intell., 171(10-15):675–700.



Baroni, P., Giacomin, M., and Guida, G. (2005). SCC-Recursiveness: A general schema for argumentation semantics. Artif. Intell., 168(1-2):162–210.



Baumann, R. (2016).

Characterizing equivalence notions for labelling-based semantics. In Principles of Knowledge Representation and Reasoning: Proceedings of the 15th International Conference, pages 22–32.



Baumann, R. and Strass, H. (2016).

An abstract logical approach to characterizing strong equivalence in logic-based knowledge representation formalisms.

In Principles of Knowledge Representation and Reasoning: Proceedings of the 15th International Conference, pages 525–528.



Caminada, M. and Gabbay, D. M. (2009). A logical account of formal argumentation. Studia Logica, 93(2):109–145.

## **References II**



#### Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–357.



Lifschitz, V., Pearce, D., and Valverde, A. (2001). Strongly equivalent logic programs. ACM Transactions on Computational Logic, 2(4):526–541.



Oikarinen, E. and Woltran, S. (2011). Characterizing strong equivalence for argumentation frameworks. Artif. Intell., 175(14-15):1985–2009.



Truszczynski, M. (2006).

Strong and uniform equivalence of nonmonotonic theories - an algebraic approach. Annals of Mathematics and Artificial Intelligence, 48(3-4):245–265.



#### Turner, H. (2004).

Strong equivalence for causal theories.

In 7th International Conference on Logic Programming and Nonmonotonic Reasoning, Proceedings, volume 2923 of Lecture Notes in Computer Science, pages 289–301. Springer.

$$\begin{split} &\gamma_{na}(\widetilde{\mathcal{F}}_{A}^{\epsilon}) = \{S \mid S \in \widetilde{\mathcal{F}}, S \text{ is } \subseteq \text{-maximal in } \widetilde{\mathcal{F}}\}; \\ &\gamma_{slg}(\widetilde{\mathcal{F}}_{A}^{+}) = \{S \mid (S,S^{+}) \in \widetilde{\mathcal{F}}^{+}, S^{+} \text{ is } \subseteq \text{-maximal in } \{C^{+} \mid (C,C^{+}) \in \widetilde{\mathcal{F}}^{+}\}\}; \\ &\gamma_{slb}(\widetilde{\mathcal{F}}_{A}^{+}) = \{S \mid (S,S^{+}) \in \widetilde{\mathcal{F}}^{+}, S^{+} = A\}; \\ &\gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}) = \{S \mid (S,S^{+}) \in \widetilde{\mathcal{F}}^{+}, S^{\mp} = \emptyset\}; \\ &\gamma_{pr}(\widetilde{\mathcal{F}}_{A}^{+}) = \{S \mid S \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}), S \text{ is } \subseteq \text{-maximal in } \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+})\}; \\ &\gamma_{ss}(\widetilde{\mathcal{F}}_{A}^{+\mp}) = \{S \mid S \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}), S^{+} \text{ is } \subseteq \text{-maximal in } \{C^{+} \mid (C,C^{+},C^{\mp}) \in \widetilde{\mathcal{F}}^{+\mp}, C \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+})\}\}; \\ &\gamma_{id}(\widetilde{\mathcal{F}}_{A}^{+}) = \{S \mid S \text{ is } \subseteq \text{-maximal in } \{C \mid C \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}), C \subseteq \bigcap \gamma_{pr}(\widetilde{\mathcal{F}}_{A}^{+})\}\}; \\ &\gamma_{eg}(\widetilde{\mathcal{F}}_{A}^{+\mp}) = \{S \mid S \text{ is } \subseteq \text{-maximal in } \{C \mid C \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}), C \subseteq \bigcap \gamma_{ps}(\widetilde{\mathcal{F}}_{A}^{+\mp})\}\}; \\ &\gamma_{sad}(\widetilde{\mathcal{F}}_{A}^{-\pm}) = \{S \mid S \text{ is } \subseteq \text{-maximal in } \{C \mid C \in \gamma_{ad}(\widetilde{\mathcal{F}}_{A}^{+}), C \subseteq \bigcap \gamma_{ps}(\widetilde{\mathcal{F}}_{A}^{+\mp})\}\}; \\ &\gamma_{gad}(\widetilde{\mathcal{F}}_{A}^{-\pm}) = \{S \mid (S,S^{-},S^{\pm}) \in \widetilde{\mathcal{F}}^{-\pm}, \exists (S_{0},S_{0}^{-},S_{0}^{\pm}), \dots, (S_{n},S_{n}^{-},S_{n}^{\pm}) \in \widetilde{\mathcal{F}}^{-\pm}: \\ & (\emptyset = S_{0} \subset \cdots \subset S_{n} = S \land \forall i \in \{1,\ldots,n\}: S_{i}^{-} \subseteq S_{i-1}^{\pm})\}; \\ &\gamma_{gr}(\widetilde{\mathcal{F}}_{A}^{-\pm}) = \{S \mid S \in \gamma_{sad}(\widetilde{\mathcal{F}}_{A}^{-\pm}), \forall (\bar{S},\bar{S}^{-},\bar{S}^{\pm}) \in \widetilde{\mathcal{F}}^{-\pm}: \bar{S} \supset S \Rightarrow (\bar{S}^{-} \backslash S^{\pm}) \neq \emptyset)\}. \end{split}$$

Thomas Linsbichler, April 22, 2016