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Introduction

Abstract Argumentation Framework (AF) [Dung, 1995]:
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Evaluation: argumentation semantics

Extension: set of jointly acceptable arguments

stb(F) =

{
,
}

Further semantics: preferred, complete, semi-stable, stage, . . .
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Introduction

Conflict-freeness: basic requirement for argumentation semantics.

Example

Given conflict-free sets ∅, {a}, {b}.

Can we compute semantics based on this?
⇒ only naive semantics (maximal conflict-free sets)

aF : b aG : b aH : b

Conflict free sets + their range: (∅, ∅), ({a}, {a, b}), ({b}, {b})
⇒ enough to compute stage semantics (range-maximal conflict-free sets)

Which information on top of conflict-free sets has to be added in
order to compute a certain semantics?

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 2
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Introduction

Systematic comparison of argumentation semantics
Principle-based evaluation [Baroni and Giacomin, 2007]

⇒ Hierarchy of verification classes
⇒ Each “rational” semantics is exactly verifiable by one of these classes

Strong equivalence
Central notion in non-monotonic reasoning [Lifschitz et al., 2001,
Turner, 2004, Truszczynski, 2006, Baumann and Strass, 2016]
Studied for most argumentation semantics
[Oikarinen and Woltran, 2011, Baumann, 2016]

⇒ Missing results for naive and strong admissible semantics
⇒ Characterization theorems for intermediate semantics
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Background

Definition
An argumentation framework (AF) is a pair (A,R) where

A ⊆ U is a finite set of arguments and

R ⊆ A× A is the attack relation representing conflicts.

Definition
Given an AF F = (A,R) and S ⊆ A,

S is conflict-free (S ∈ cf(F)) if ∀a, b ∈ S : (a, b) /∈ R.

a ∈ A is defended by S if ∀b ∈ A : (b, a) ∈ R⇒ ∃c ∈ S : (c, b) ∈ R

S+
F = S ∪ {a | ∃b ∈ S : (b, a) ∈ R} (the range of S)

S−F = S ∪ {a | ∃b ∈ S : (a, b) ∈ R} (the anti-range of S)

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 4



Background

Definition
Given an AF F = (A,R), a set S ⊆ A is

admissible set if S ∈ cf(F) and each a ∈ S is defended by S,

complete extension if S ∈ ad(F) and a ∈ S if a is defended by S,

naive extension if S ∈ cf(F) and @T ∈ cf(F) : T ⊃ S,

stable extension if S ∈ cf(F) and S+
F = A,

stage extension if S ∈ cf(F) and @T ∈ cf(F) : T+
F ⊃ S+

F ,

preferred, grounded, semi-stable, ideal, eager, strongly admissible
extensions

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 5



Background

Example

a

b d

c
f e

ad(F) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {a, d, e}, {b, c, e}}

co(F) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, d, e}, {b, c, e}}
na(F) = {{a, b, e}, {a, d, e}, {b, c, e}}
stb(F) = stg(F) = {{a, d, e}, {b, d, e}}
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Verifiability

Definition

We call a function rx : 2U × 2U →
(
2U
)n which is expressible via basic

set operations onlya neighborhood function. A neighborhood function rx

induces the verification class mapping each AF F to

F̃ x =
{(

S, rx(S+
F , S

−
F )
)
| S ∈ cf(F)

}
.

arx(A,B) is in the language X ::= A | B | (X ∪ X) | (X ∩ X) | (X \ X)

Example

aF : b c

r+ : rx(A,B) = A
F̃+ = {(∅, ∅), ({a}, {a, b}), ({c}, {b, c}), ({a, c}, {a, b, c})}

r−± : rx(A,B) = (B,A \ B)
F̃−± = {(∅, ∅, ∅), ({a}, {a, b}, ∅), ({c}, {c}, {b}), ({a, c}, {a, b, c}, ∅)}

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 7
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Verifiability

Neighborhood functions for n = 1:

rε(A,B) = ∅
r+(A,B) = A

r−(A,B) = B

r∓(A,B) = B \ A

r±(A,B) = A \ B

r∩(A,B) = A ∩ B

r∪(A,B) = A ∪ B

r∆(A,B) = (A ∪ B) \ (A ∩ B)

27 + 1 syntactically different neighborhood functions

rx1,...,xn(A,B) ::= (rx1(A,B), . . . , rxn(A,B))

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 8



Verifiability

Definition
For neighborhood functions rx and ry, we say that rx is more informative
than ry, short rx � ry, if there is a function δ :

(
2U
)n →

(
2U
)m such that

for any A,B ⊆ U , it holds that δ (rx(A,B)) = ry (A,B).
In case rx ≈ ry (rx � ry and ry � rx), we say that rx represents ry.

Example

δ1(r+±(A,B)) = δ1(A,A \ B) =def (A,A \ (A \ B)) = (A,A ∩ B) =
r+∩(A,B);

δ2(r+∩(A,B)) = δ2(A,A ∩ B) =def (A \ (A ∩ B),A ∩ B) =
(A \ B,A ∩ B) = r±∩(A,B);

δ3(r±∩(A,B)) = δ3(A \ B,A ∩ B) =def ((A \ B) ∪ (A ∩ B),A \ B) =
(A,A \ B) = r+±(A,B).

⇒ r+± ≈ r+∩ ≈ r±∩

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 9
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Verifiability

Lemma
All neighborhood functions are represented by the ones depicted below
and the ≺-relation represented by arcs holds.

+−

+± +∓ ±∓ ∩∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 10



Verifiability

Definition
A semantics σ is verifiable by the verification class induced by the
neighborhood function rx (or simply, x-verifiable) iff there is a function
γσ :

(
2U
)n × 2U → 22U s.t. for every AF F :

γσ

(
F̃ x,AF

)
= σ(F).

Moreover, σ is exactly x-verifiable iff σ is x-verifiable and there is no ry

with ry ≺ rx such that σ is y-verifiable.

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 11



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof
Verifiability:

γco(F̃+−,AF ) = {S | (S, S+, S−) ∈ F̃+−, (S− \ S+) = ∅,

∀(S̄, S̄+, S̄−) ∈ F̃+− : S̄ ⊃ S⇒ (S̄− \ S+) 6= ∅)}

Exactness:

+± : aF1 : b aF ′1 : b

F̃1
+±

= {(∅, ∅, ∅), ({a}, {a}, ∅)} = F̃ ′1
+±

co(F1) = {∅} 6= {{a}} = co(F ′1)

⇒ co is not +±-verifiable

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 12



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof (ctd.)

−∓ : aF2 : b c aF ′2 : b c

±∓ : aF3 : b aF ′3 : b

−± : aF4 : b aF ′4 : b

+∓ : aF5 : b aF ′5 : b

∩∪ : aF6 : b aF ′6 : b

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 13



Verifiability

ε: na

+: stb, stg ∓: ad, pr, id

+∓: ss, eg −±: gr, sad

+−: co

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 14



Verifiability

Definition
We call a semantics σ rational if self-loop-chains are irrelevant.
That is, for every AF F it holds that σ(F) = σ(F l), where
F l = (AF ,RF \ {(a, b) ∈ RF | (a, a), (b, b) ∈ RF , a 6= b}).

Theorem
Every semantics which is rational is exactly verifiable by a verification
class induced by one of the neighborhood functions below.

+−

+± +∓ ±∓ ∩∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε
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Strong Equivalence

Definition
Given semantics σ, two AFs F and G are strongly equivalent w.r.t. σ
(F ≡σE G) iff for all AFs H: σ(F ∪H) = σ(G ∪ H)

⇒ syntactical criteria exist

Example (stable semantics)

stb-kernel: F k(stb) = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R}).
Theorem: F k(stb) = Gk(stb) ⇔ F and G are strongly equivalent.

aF : b aG : b

We have F k(stb) = Gk(stb) = G. Thus, F and G are strong equivalent.

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 16
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Strong Equivalence

Definition (σ-kernel)

Let F = (A,R). We define σ-kernels F k(σ) =
(
A,Rk(σ)

)
whereby

1 Rk(stb) = R \ {(a, b) |a 6= b, (a, a) ∈ R},
2 Rk(ad) = R \ {(a, b) |a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩ R 6= ∅},
3 Rk(gr) = R \ {(a, b) |a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R 6= ∅},
4 Rk(co) = R \ {(a, b) |a 6= b, (a, a), (b, b) ∈ R}.
5 Rk(na) = R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩ R 6= ∅} .

A relation ≡ is characterizable through kernels if there is a kernel k,
s.t. F ≡ G ⇔ F k = Gk,

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 17



Strong Equivalence

Theorem
Strong equivalence is characterizable through kernels (see below).

dstgp dstbp dssp degp dadp dprp didp dgrp dsadp dcop dnap

k(stb) k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(gr) k(co) k(na)

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 18



Intermediate Semantics

Note that stb and stg are both characterizable through k(stb).
Does this also hold for arbitrary semantics σ with
stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?

Example
“Stagle semantics”:
S ∈ sta(F)⇔ S ∈ cf(F), S+

F ∪ S−F = AF and ∀T ∈ cf (F) : S+
F 6⊂ T+

F

aF : b c

stb(F) = ∅ ⊂ sta(F) = {{b}} ⊂ stg(F) = {{b}, {c}}.

aF k(stb) : b c

sta
(
F k(stb)

)
= {{b}, {c}} ⇒ F 6≡sta

E F k(stb), F k(stb) =
(
F k(stb)

)k(stb)

⇒ Stagle semantics is not compatible with the stable kernel.

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 19
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Intermediate Semantics

Theorem
For each semantics σ which is +-verifiable and stb-stg-intermediate, it
holds that

F k(stb) = Gk(stb) ⇔ F ≡σE G.

Theorem
For each semantics σ which is +∓-verifiable and ρ-ad-intermediate with
ρ ∈ {ss, id, eg}, it holds that

F k(ad) = Gk(ad) ⇔ F ≡σE G.

Theorem
For each semantics σ which is −±-verifiable and gr-sad-intermediate, it
holds that

F k(gr) = Gk(gr) ⇔ F ≡σE G.

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 20
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F k(ad) = Gk(ad) ⇔ F ≡σE G.

Theorem
For each semantics σ which is −±-verifiable and gr-sad-intermediate, it
holds that

F k(gr) = Gk(gr) ⇔ F ≡σE G.
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Conclusion

Summary:

Hierarchy of verification classes

Each “rational” semantics is exactly verifiable by a certain class

Characterization of strong equivalence for intermediate semantics

Future work:

Semantics not captured by the approach, e.g. cf2 semantics
[Baroni et al., 2005]

Investigating labelling-based semantics
[Caminada and Gabbay, 2009]
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Verifiability

γna(F̃ε
A) = {S | S ∈ F̃ , S is ⊆-maximal in F̃};

γstg(F̃+
A ) = {S | (S, S+) ∈ F̃+, S+ is ⊆-maximal in {C+ | (C,C+) ∈ F̃+}};

γstb(F̃+
A ) = {S | (S, S+) ∈ F̃+, S+ = A};

γad(F̃∓A ) = {S | (S, S∓) ∈ F̃∓, S∓ = ∅};

γpr(F̃∓A ) = {S | S ∈ γad(F̃∓A ), S is ⊆-maximal in γad(F̃∓A )};

γss(F̃+∓
A ) = {S | S ∈ γad(F̃∓A ), S+ is ⊆-maximal in {C+ | (C,C+,C∓) ∈ F̃+∓,C ∈ γad(F̃∓A )}};

γid(F̃∓A ) = {S | S is ⊆-maximal in {C | C ∈ γad(F̃∓A ),C ⊆
⋂
γpr(F̃∓A )}};

γeg(F̃+∓
A ) = {S | S is ⊆-maximal in {C | C ∈ γad(F̃∓A ),C ⊆

⋂
γss(F̃+∓

A )}};

γsad(F̃−±A ) = {S | (S, S−, S±) ∈ F̃−±, ∃(S0, S
−
0 , S
±
0 ), . . . , (Sn, S−n , S

±
n ) ∈ F̃−± :

(∅ = S0 ⊂ · · · ⊂ Sn = S ∧ ∀i ∈ {1, . . . , n} : S−i ⊆ S±i−1)};

γgr(F̃−±A ) = {S | S ∈ γsad(F̃−±A ), ∀(S̄, S̄−, S̄±) ∈ F̃−± : S̄⊃S⇒ (S̄−\S±)6=∅)}.
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