

CS310: Third Year Project 2002/3

University of Warwick
Coventry, West Midlands, UK

PDF to HTML Conversion

Tamir Hassan

University Number: 0006417

Degree Course: Computer Science

Supervisor: Dr Ranko Lazic

Final Report PDF TO HTML CONVERSION

Page i

Abstract

This report details the work carried out over the last six months to investigate the

problem of converting from PDF to HTML and to develop a piece of software to

perform this task. A number of different layouts were investigated, including multi-

column newsprint, and the software has been written to understand these layouts and

extract the text accordingly. Due to time constraints, certain page features, such as

tables, were not studied. Suggestions are included for further development of the

project.

Keywords

• PDF

• HTML

• conversion

• Java

• CSS

• paragraph

• formatting

• columns

• layout

Note to the reader

All words in bold italics are described in the Glossary.

Acknowledgements

I would like to thank the people at IDR solutions for publishing JPedal as a free, open

source library, without which the project would not have been possible. I would also

like to thank Dr Ranko Lazic, my supervisor, for giving me guidance when I needed it

and Andrew, for letting me know about JPedal in the first place.

PDF TO HTML CONVERSION Final Report

Page ii

Final Report PDF TO HTML CONVERSION

Page iii

Table of Contents

1 INTRODUCTION... 1

1.1 Background to PDF ...1
1.2 Background to HTML ...2
1.3 Motivation...3

2 INVESTIGATION OF EXISTING SOLUTIONS ... 5

2.1 Results with PDF to HTML Recastor ..5
2.1.1 Problems with converted output ..6

2.2 Results with pdftohtml...7
2.3 Results with pdf2html converter ..8
2.4 Results with Google...9
2.5 Areas of possible improvement ..9
2.6 Conclusion...10

3 PROJECT DECISIONS ... 11

3.1 Change of aims and objectives ...11
3.2 Implementation decisions ..11
3.3 Conversion material...12
3.4 Program output ...13
3.5 Choice of language and platform ...13
3.6 The JPedal Library...13
3.7 The front end ..14

4 DESIGN AND IMPLEMENTATION... 15

4.1 Class hierarchy...15
4.2 Text extraction principles ..16
4.3 Text merging principles ...17

4.3.1 Simple text merging ...18
4.3.2 Sorting text fragments..18
4.3.3 Merging process...19
4.3.4 nextChar and nextLine methods ..20

4.4 Column-based layouts..21
4.4.1 Original column detection algorithm ...21
4.4.2 Improved column detection algorithm ...22
4.4.3 Ordering of text in columns...24

4.5 Other layout features ...25

PDF TO HTML CONVERSION Final Report

Page iv

4.5.1 Line spacing... 25
4.5.2 Styles and formatting ... 27
4.5.3 Symbols ... 28
4.5.4 Hyphenated text.. 29
4.5.5 Indentations... 29
4.5.6 Forced carriage returns .. 30
4.5.7 Raised and dropped capitals .. 31
4.5.8 Miscellaneous text fragments... 31
4.5.9 Empty text fragments .. 32

4.6 The front end .. 32
4.6.1 The -c option... 32
4.6.2 Multiple pages ... 33

5 PERFORMANCE EVALUATION ...34

5.1 Analysis of converted output ... 34
5.2 Comparison with other methods ... 35
5.3 Examples of converted output ... 35

5.3.1 Simple letter example .. 36
5.3.2 E-book example... 38
5.3.3 Simple newsletter example... 40
5.3.4 Complex newsletter example... 42

6 CONCLUSION...44

6.1 Limitation of the implementation .. 44
6.2 Author’s assessment of the project ... 44

7 FUTURE DEVELOPMENT ..46

7.1 Conversion to RTF format .. 46
7.2 Using graphical data on the page ... 46
7.3 Understanding tabular data.. 46
7.4 Inclusion of graphics in converted output.. 46
7.5 Detection of multi-level styles.. 47

GLOSSARY OF TERMS ..48

REFERENCES ..49

BIBLIOGRAPHY ..49

CONTENTS OF INCLUDED CD ...50

Final Report PDF TO HTML CONVERSION

Page 1

1 Introduction

1.1 Background to PDF

PDF started off as an internal project at Adobe based on the early ’90s dream of the

paperless office. The objective was to create a file format that would allow documents

to be distributed throughout the company and viewed on any computer running any

operating system. Adobe already had a more or less fitting technology; PostScript, a

device and platform independent page description language that was already in

widespread use in the printing industry. It was therefore natural that PDF was based

on PostScript. Before its official release, PDF was even referred to as Interchange

PostScript (IPS) by Adobe.[1]

Version 1.0 of PDF was formally released in 1992. Although very similar to PostScript

there were a number of differences. One of the most important features was

compression, which could typically reduce file size by an order of magnitude,

facilitating storage and transmission. Bookmarks and links were also included,

although you could only link internally to another page in the document at that time.

The Acrobat suite of products followed in 1993 and, at the time, you had to pay £50

for a copy of Acrobat Reader.

During the 1990s the use of the Internet became more widespread and Adobe were in a

position to take advantage of this. Future incarnations of the PDF format enabled

Adobe to take advantage of the growth of the Internet. Adobe dropped the £50 charge

for Acrobat Reader and over 100 million copies were downloaded from the web.[1]

Support for hyperlinks, scripting and, more recently, tagging were added; the latter

being a system of inserting metadata about the paragraph structure to enable re-flowing

of text on hand-held devices such as PDAs and e-books.

PDF’s biggest advantage is that it is based on a page description language. Therefore

any PDF file should display identically on any computer system irrespective of the

hardware or operating system being used. Acrobat’s printer drivers, Distiller and

PDFWriter, have made creating a PDF as easy as printing a document. This has enabled

documents created in a word processor, such as Microsoft Word, to be converted to

PDF in a single keystroke, ready for transmission or publication to the Web.

PDF TO HTML CONVERSION Final Report

Page 2

1.2 Background to HTML

In 1989, Tim Berners-Lee proposed a global hypertext project, to be known as the

World Wide Web, while he was working at the CERN particle physics laboratory in

Geneva, Switzerland. He wrote the first web server, httpd, and the first browser,

WorldWideWeb, in late 1990, and these programs became available on the Internet at

large in the summer of 1991.[2] The language used for document exchange was HTML,

HyperText Markup Language, and was invented by Berners-Lee for this particular

purpose.

As a structured hypertext language, HTML is worlds apart from PDF. Based upon the

notion of separating content from presentation, it includes tags to denote paragraphs,

heading levels and lists. These tags are understood by the client’s browser and used to

render the page in an appropriate form on the screen. This is why HTML files often

look different when displayed on different platforms or different browsers. HTML

even allows the use of external style sheets which separate the formatting information

in a different file, making it possible to alter the presentation of a whole web site by

changing only the style sheet, independently of the content.

As time has passed, technology has moved on and web designers, particularly when

working on commercial sites, felt the need to give their sites an original, distinguished

look. This required playing tricks with tables and tags such as
 (break) and

(space) to subvert HTML’s principles and get the site to display how they wish. Even

then, different browsers often interpreted the HTML differently and it was necessary to

design separate sites for different browsers! The “browser war” in the late ’90s only

added to the confusion as both Microsoft and Netscape invented their own tags, such

as the ubiquitous <BLINK>, in a hope to gain market share.

Today, HTML is used alongside other technologies, proprietary and open, such as

scripting, Flash, streaming audio and video and even PDF, to create the very rich

content that we now see on the web. Very often, HTML is not used in the way it was

originally intended, and modern HTML files include so much formatting, metadata and

other information that they are very difficult to edit. The advent of HTML editing

tools, such as Dreamweaver, has improved this situation somewhat, but it is still true

that editing a modern web site is usually more difficult and time-consuming than it

needs to be.

Final Report PDF TO HTML CONVERSION

Page 3

This project has aimed to adhere to HTML’s original principles as far as was reasonably

practical. For example, the program generates an internal style sheet in the header of

the HTML file. However, there is one case where it has been necessary to produce a

“fudge”: indentations are not supported in HTML (other than in complete paragraphs)

and most browsers simply ignore the <TAB> tag. Therefore it has been necessary to

simulate an indentation by including four spaces (). For more information, see

section 4.5.5.

1.3 Motivation

This motivation for this project arises from the need to convert PDF files to HTML for

publishing on a web site. Although PDF files can be viewed with an appropriate plug-

in or reader, it is often more appropriate to publish shorter documents in HTML for

the following reasons:

• The client must have a copy of a PDF viewer such as Acrobat Reader, which must

be executed to view the PDF. Although Adobe’s plug-in for popular browsers aims

to integrate seamlessly with browsers, there are many inconsistencies between the

user interface of a web browser and Acrobat which can be confusing to the user.

For example, to print the document the user must click the “printer” icon on the

Acrobat toolbar, not the Print button on the browser.

• Although PDF files feature compression they are, in general, still significantly larger

than the equivalent HTML content. This raises a problem for users with slower

Internet connections, particularly those who regularly view web pages without

images.

• HTML files can have a “house style” applied to them to allow them to maintain a

consistent appearance for a professional appearance. Due to the page-based nature

of PDF files, they will always look different to HTML pages, and this gives the

impression that they are not part of the main web site. PDF files also do not (and

can not) support style sheets and will have to be updated separately if, for example,

the web site adopts a new image.

• As the layout of a HTML file is flexible (and dependent on the system on which it is

being rendered), it is much easier to edit HTML files, and even make drastic

alterations, without impairing the appearance of the page.

PDF files are usually only more appropriate if the content is to be printed, rather than

to be viewed on screen. Even in newsprint, which has a very complicated layout that

PDF TO HTML CONVERSION Final Report

Page 4

cannot easily or practically be replicated in HTML, it is best to extract separate articles

and publish them in HTML, making the PDF available for download solely for printing

purposes.

Unfortunately, the ease of creating PDF files has led to the creation of many PDF

documents on the web that would be more appropriate in HTML. This is because

many documents are created in word processing packages such as Microsoft Word and

converted to PDF simply by “printing” them to an Acrobat printer driver.

Final Report PDF TO HTML CONVERSION

Page 5

2 Investigation of existing solutions

The following four solutions were found, and were investigated in detail with a variety

of PDF files.

• PDF to HTML Recastor by Archisoft

• pdftohtml sponsored by Lincoln & Co

• pdf2html by Twibright Labs

• Google’s View as HTML feature for cached PDF files

Full URLs to the web sites of these programs are given in the bibliography.

The first, PDF to HTML Recastor, is the only commercial solution that had a trial

version available for download. The next two are open-source, and Google’s feature is

an example of a server-side implementation on a web site.

The following PDF files were used in the investigation. All the files were downloaded

on October 21, 2002.

Title Type of layout Location
Boston Sunday Globe,
Today, October 20, 2002

Complex
newspaper; columns

www.boston.com/globe/acrobat/
today.pdf

White Paper: Is the
Network Slow Today?

Word-processed
document

www.netscout.com/files/
artmb_wp.pdf

Connex South Eastern
Rail Timetable #5

Tabular www.connex.co.uk/upload/
timetable/PTT05.pdf

As three of the converters, PDF to HTML Recastor, pdftohtml and Google used the

same method they generated similar results. To avoid repetition this method is

described in detail in the next section only.

2.1 Results with PDF to HTML Recastor

This converter generated a series of HTML files from the PDF; one for each page of

the document. PNG images were also included for the graphics. The converter also

had a feature to generate a page index in a separate frame displayed on the left-hand

side of the screen.

At the first glance, the converted documents looked very realistic. The program had no

difficulty in converting the simple, word-processed document and even coped with the

PDF TO HTML CONVERSION Final Report

Page 6

multiple columns of the newspaper article. The newspaper article and railway

timetable, however, are very complex, and revealed some limitations with the

converter. These were very useful in gaining an understanding of how the converter

works.

Closer examination of the converted output revealed that this was achieved by using an

inline style sheet to give an absolute pixel position to each fragment of text. The

graphical elements of the page, including images, lines and boxes, were combined into a

single image, which was shown as the background of the HTML page.

2.1.1 Problems with converted output

The newspaper article was designed for a large (approximately A3-size) page, and could

not be viewed on an average computer screen without scrolling. The converter

attempted to resize the page to fit in an average browser window (about 800 pixels

across). This resulted in text that was too small to read, even with the magnification

facility on the converter set to its maximum. As the font sizes were specified in pixels,

altering the text size on the browser had no effect.

This problem was exaggerated by the fact that all the text displayed in the HTML file

was smaller than the text in the PDF document when viewed at a similar level of

magnification. This was understood to have been done to avoid columns of text

running into each other when viewed with different fonts or across different platforms.

What was even more striking was that the headline simply appeared as “fghijkl”.

During the creation of the newsletter, a custom font for the headline was probably

used, in which single characters were mapped to entire words in the headline. As the

converter output everything in the Arial font, the headline was displayed as “fghijkl” as

shown below. This is a rather special case, but it does illustrate the fact that PDFs can

be created in a wide variety of ways, and that it is difficult to design a program to

account for all of them.

Final Report PDF TO HTML CONVERSION

Page 7

Fig 2.1: A section of the Boston Sunday Globe newspaper (left) and as converted by the

Archisoft converter (right)

A different issue was highlighted by the conversion of the train timetable. In Figure 2.2

below, all the figures should appear under each other. However, the converter has

mistakenly detected the circled side-by-side figures as words in a line of text. Rather

than place them separately, it has placed them together as a line of text, with each

figure separated by a space. The result is that the figures are not in the right place. The

figure “1717” should actually appear underneath the figure “1713” in the line above.

Fig 2.2: A section of the railway timetable (left) and as converted by the Archisoft

converter (right)

Although most text fragments in a PDF file consist of an entire line of text, this is not

necessarily the case. Changes in font or the inclusion of symbols often necessitate that

a separate text fragment is used. Some poorly created PDFs even place each word or

each character as a separate text fragment. The feature described above is intended to

combine these fragments to create a continuous line of text, improving the appearance

when converted to HTML. Unfortunately, it also causes problems for tabular data.

2.2 Results with pdftohtml

This converter could generate two types of output, simple and complex. Complex

output was generated by using the -c command line parameter. As with the Archisoft

PDF TO HTML CONVERSION Final Report

Page 8

converter, it also had an option to generate a page index in a separate frame displayed

on the left-hand side of the screen.

In the complex mode, the results were very similar to those of the Archisoft converter.

The only noticeable difference was that the main font used was Times, not Arial. The

converter ran into exactly the same difficulties with the newspaper and railway

timetable and the results produced were almost identical.

In the simple mode, the converter output all the graphics followed by the text. Text

was not positioned absolutely, but output as ordinary paragraph text. A break (
)

was used at the end of each text fragment and no attempt was made to merge fragments

into paragraphs. However, a good attempt at ordering the text was made and, even

with the complex newspaper layout, entire articles could be read. There were,

however, no headings or paragraph markers to indicate where these articles began. An

example of this output is shown below.

Fig 2.3: A section of the Boston Sunday Globe newspaper (left) and as converted by the

pdftohtml converter in simple mode (right)

2.3 Results with pdf2html converter

This converter simply used Ghostscript to create a PNG image of each page at a

resolution appropriate for on-screen viewing. It then generated a series of HTML

pages to display each PNG image. The result was perfect, although the newspaper

article appeared to small to be readable. With this method of conversion, however, the

file size is large and all the benefits of HTML are lost.

Final Report PDF TO HTML CONVERSION

Page 9

2.4 Results with Google

As Google only offers this facility for pages stored in its cache, it was not possible to

convert the three PDF documents that were used to investigate the previous solutions.

However, similar documents were found by searching Google’s cache, and showed that

the method of conversion is identical to that of the Archisoft converter and pdftohtml

in complex mode.

Cosmetically, the output is slightly different as it combines each page into a single

HTML file. A 1 × 1 HTML table, displaying the page number, is used to rule a line

between each page.

2.5 Areas of possible improvement

Investigation of the Archisoft, pdftohtml (complex mode) and Google converters

highlighted the following improvements that would improve the result:

• an option to rasterize text above a threshold size: as many pages often use

decorative fonts for headings, this would enable the page to more closely resemble

the original. This feature would also have solved the problem of the custom font

for the headline in the newspaper article

• an option to change the horizontal size of the output: this may necessitate scrolling,

but will allow text to be displayed at a larger and more legible size.

• improved resizing of images: when the individual images were combined into one

background image, they were resized to appear proportionately to the rest of the

page. Unfortunately, the algorithm used by these converters was very simple, using

the “nearest neighbour” method. This caused much distortion in the images,

particularly as many PDF images are already at a low resolution to minimize the file

size. An algorithm utilizing bilinear or bicubic resampling would have generated a

better result

• recognition of tabular content: if the text in the PDF is recognized as belonging to a

table (e.g. where successive lines have the same x co-ordinate) the converter should

not attempt to merge this material into a single line of text

Investigation of the pdftohtml converter in simple mode made the author aware of

another possible approach to the conversion, one that will hereafter be named

intelligent text extraction in this report. This involves putting the text fragments into

the correct order so that they can be merged to create complete paragraphs of text.

PDF TO HTML CONVERSION Final Report

Page 10

Styles and formatting can then be applied to distinguish headlines from body text. A

much simpler HTML file can be created this way, which can then be published to a web

site.

2.6 Conclusion

All the above converters were found to produce good visual results from a variety of

different documents. In all cases the method of conversion allowed a “one step”

approach to be taken, without any need for configuration by the user. This is useful as

these programs are mostly aimed at inexperienced users who do not have the expertise

to perform such a task manually.

However, questions arise as to whether the approach of maintaining page layout is the

correct approach to take, and under which circumstances the generated HTML files

will be useful. With this approach most of the benefits of HTML are lost as text cannot

be re-flowed for on-screen viewing and the file cannot easily be incorporated into a

web site.

Final Report PDF TO HTML CONVERSION

Page 11

3 Project decisions

After four existing solutions to the problem were investigated, it was decided to change

the approach of the conversion from attempting to reproduce the page layout to

intelligent text extraction. The reasons for this decision, and a plan of the work to be

carried out, are shown below.

3.1 Change of aims and objectives

The original aims of the project were to perform an accurate conversion, maintaining

the page layout, fonts, graphics and other elements as closely as possible. After

investigating the existing solutions to the problem, it was found that this approach had

already been successfully implemented in three different pieces of software.

Although visually accurate, the results with these converters were not very practical.

Most of the advantages of the HTML format were lost with this type of conversion;

text was too small, could not be re-flowed and the output could not easily be converted

into a web-publishable document. It was therefore decided to change the aims of the

project to intelligent text extraction; attempting to detect elements such as paragraphs

and headings and using HTML’s features to represent them in the converted file.

This approach is far more challenging than simply maintaining the page layout as it

involves programming a computer to understand the elements of a page in such a way

that a human would. This fact had not been fully realized at the time of writing the

Progress Report, and it was therefore necessary to further modify the objectives to

simplify the implementation so that it would be completed in the time allocated for the

project. As a result, the implementation looks solely at the text elements of the PDF.

3.2 Implementation decisions

There is a huge variety of documents that are stored in PDF format ranging from

simple layouts such as manuals and research papers to complex layouts such as

newsletters, catalogues, tables and forms. All the existing solutions performed a “one-

step”, layout-independent approach that was performed an accurate conversion

reproducing the original layout, thus providing an acceptable result regardless of the

type of document.

This one step approach is not possible with intelligent text extraction, as the program

itself must understand the particular page layout. Many features in complex layouts

PDF TO HTML CONVERSION Final Report

Page 12

can only be reproduced in HTML by using tricks such as preformatted text, tables or

graphics. Simply extracting the text in this case presents many difficulties; for example

columns need to be detected and output in the correct order and line ends must be

merged to create a continuous flow of text and new paragraphs must be detected. It

was therefore decided to present the text as a simple HTML document, similar to the

style of a word-processed document.

Each type of layout must be treated differently with this approach and it was decided to

group the layouts into two categories: single-column layouts and multi-column layouts.

For each of these categories, two PDF files were found and used as the basis of the

conversion material for the project.

3.3 Conversion material

The PDF files used as the basis of the conversion material are listed below.

Single-column:

Title: Sample letter

Author: Tamir Hassan

Filename: sampleletter.pdf

Obtained: Created in Microsoft Word and Acrobat Distiller for the purposes of this

project

Features: Typical letter layout; includes addresses with forced carriage returns

Title: A Tale of Two Cities (Non-Tagged)

Author: Charles Dickens

Obtained: Downloaded from planetpdf.com

URL: http://www.planetpdf.com/A_Tale_of_Two_Cities_NT.pdf

Features: Header and footer with page numbers; indented paragraphs

Multi-column:

Title: Register of English Football Facilities Newsletter – Summer 2001

Author: Register of English Football Facilities

Filename: reffnewsletter.pdf

Obtained: Downloaded from footballfoundation.org.uk

Features: Variable line spacing; boxed quotations; variety of fonts and formatting

Title: Witness for Peace Newsletter – Winter 2002

Final Report PDF TO HTML CONVERSION

Page 13

Author: Witness for Peace

Obtained: Downloaded from witnessforpeace.org

URL: http://witnessforpeace.org/pdf/newsarch/winter_02.pdf

Features: Very complex layout; pictures with captions; boxed articles; headers and

footers; variable line spacing; paragraphs with little extra spacing

3.4 Program output

After analysing the shortcomings of the existing solutions, it was decided that the

converted HTML should be clean, legible, correctly structured, and that the correct

tags for styles and paragraphs be used where possible. An example of such a HTML

file is shown below

<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<STYLE type="text/css">
h1 {font-family: helvetica; font-size:24}
p {font-family: times}
</STYLE>
</HEAD>
<BODY>
<h1>This is a heading </h1>
<p>This is normal text </p>
<p>And this is a separate paragraph </p></BODY>
</HTML>

Fig 3.1: Example of “clean” HTML output

3.5 Choice of language and platform

Java was chosen as it was the main programming language taught at University, with

which the author was already familiar. Its multi-platform nature facilitated

development, as a combination of Windows, Linux and Solaris platforms was used. It

also allows the finished program to be run on any supported platform, which is

particularly advantageous as both PDF and HTML are also multi-platform formats.

Finally, the JPedal library, written in Java, performs the low-level operations on the

PDF file itself, allowing the project to concentrate more on the conversion aspects of

the problem.

3.6 The JPedal Library

JPedal, the Java Pdf Extraction, Decoding and Access Library, was used to access the

data from the PDF. JPedal is compatible with PDF files up to version 1.3; the

specification for PDF 1.4 has not been fully released by Adobe. Therefore it does not

provide access to the tags that are provided in certain e-books that denote paragraph

PDF TO HTML CONVERSION Final Report

Page 14

information. It also has a few other limitations, including that it will not work with

encrypted PDF files.

JPedal was written by IDR Solutions as part of their commercial PDF extraction

package, Storypad. JPedal is, however, published under the Lesser GNU Public License

(LGPL) allowing it to be freely used and modified. The source code is provided, which

included a generic class, PdfGenericGrouping, to extract and group the text. It was

decided to extend this class to provide an enhanced class, PdfGrouping, to merge

paragraphs, detect columns, re-order the text blocks and include style information.

More information about the use of JPedal is given in the next section.

3.7 The front end

As the PdfGrouping class performed all the processing it was necessary to include a

front end, pdf2html, to perform all the input, file accesses and output. It has a

command line interface that can be called by a script or GUI.

Final Report PDF TO HTML CONVERSION

Page 15

4 Design and implementation

This section details the steps taken in designing and implementing the conversion

software. As the author had decided to attempt a new approach, it was not possible to

produce a complete design at the outset. Instead, small sections of the program were

designed and implemented at a time. Many of the later features were included as a

result of viewing the program’s output and carrying out modifications and

improvements where necessary.

Section 4.1 briefly describes the class hierarchy in which the program is organized.

Sections 4.2 and 4.3 describe the two main processes in converting from PDF to

HTML, text extraction and text merging. The next two sections describe

improvements to the implementation to cope with more complex PDF files; section 4.4

describes the modifications made to cope with multi-column layouts and section 4.5

describes a number other features in the layout, such as hyphenation and line spacing,

and how they have been understood by the conversion software. The final section, 4.6,

describes the front end’s role in the implementation.

4.1 Class hierarchy

The class PdfGenericGrouping was provided in JPedal as a base class for which

grouping and merging routines could be added. The PdfGrouping class was written to

extend PdfGenericGrouping, adding merging, ordering and other routines necessary for

the conversion software, as shown below.

org

jpedal

grouping

PdfGeneric
Grouping

PdfGrouping

Fig 4.1: PdfGrouping: class hierarchy

PDF TO HTML CONVERSION Final Report

Page 16

The main method, processPageFragments, is used to interface between the front end

and PdfGrouping itself. It was designed to replace the method decodePageFragments

from PdfGenericGrouping although decodePageFragments is still accessible if un-

merged data is sought.

The only method that has been replaced is getUnusedFragments as it was necessary to

pass a value, usedFragments, in order for it to function properly. Otherwise the code

remains identical to that included in PdfGenericGrouping.

The front end, pdf2html, requires PdfGrouping and all its dependencies but is

otherwise stand-alone.

4.2 Text extraction principles

The general procedure to open a PDF file and extract text fragments with JPedal is

shown below.

Open PDF file

Create instance of
PdfDecoder object

Get page count

Decode page(s)

PdfDecoder.openPdfFile(filename)

Constructor PdfDecoder(false)

PdfDecoder.getPageCount()

PdfDecoder.decodePage(false, pageno)

Task Method

Get data object decode_pdf.getPdfData()

Run merging/grouping
algorithm

pdf_grouping.processPageFragments
(data_object , pageno , column_flag)

Get text element count data_object .getTextElementCount()

Extract individual text
elements

data_object .getTextElementAt(position)

Extract data from text
elements

text_element .getAttributeValue(attribute)

Fig 4.2: Text extraction process

Final Report PDF TO HTML CONVERSION

Page 17

Text in a PDF is held as a series of text fragments. These fragments may be written to

the PDF file (and hence extracted by JPedal) in any order. Each text fragment usually

contains one full line of text although changes in formatting and the inclusion of

certain symbols require the line to be separated into separate fragments. Some PDF file

creators place each word or character as a separate fragment.

Each text fragment is held as an XML Element, containing the various attributes

holding information about the text fragment itself. The only attribute used at this stage

was content, which was a string including the text embedded in XML/HTML

formatting information, START and END tags, as shown below:

<~START>The quick
brown fox jumps over the lazy dog<~END>

Fig 4.3: Example of output from JPedal

It is therefore necessary to process the string to separate the text from the formatting

information and the method textOf does this. Other data, such as co-ordinates and

font size information, were accessed directly from the arrays by the PdfGrouping class.

4.3 Text merging principles

The processPageFragments method in the PdfGrouping class performs the text merging

procedure, calling other methods in the PdfGrouping class and interfacing between the

front end and the library.

In the PdfGrouping class text fragment data is held in a number of arrays, each being

the same size as the total number of text fragments. The contents of these arrays is

updated when the copyToFragmentArrays method is called at the beginning of the

processPageFragments method. Each array holds information about one particular

attribute and data about a particular text fragment is held in the same index across all

the arrays. Hence heights[36], f_start_font_size[36], contents[36] and text_length[36]

are all attributes of the same text fragment.

The attributes that were used in the grouping and merging algorithms include:

• contents[]: the actual text embedded in XML/HTML formatting information

• f_x1[], f_x2[], f_y1[], f_y2[]: co-ordinates of the bounding box of the text fragment

• heights[]: the height of the text fragment

• f_start_font_size[] and f_end_font_size[]: start and end font sizes respectively

PDF TO HTML CONVERSION Final Report

Page 18

• f_is_horizontal[]: a boolean variable set to true if the text is horizontal

• isUsed[]: a Boolean variable provided to flag elements that have already been

merged into other elements

Once the data has been processed the writeFromFragmentArrays method is called to

write the modified data back to the PdfData object.

4.3.1 Simple text merging

The general procedure for merging text fragments is shown below. For simple page

layouts this sort is simply in order of Y co-ordinate then X co-ordinate. The text

fragments will then be in the correct order so that successive fragments can be

appropriately merged together to form a continuous flow of text.

Sort array indices

Merge previous fragment
with current fragment

Mark previous fragment
as unused

Write used fragments to
PdfData object

Find indices of current
and previous fragments

Remove all fragments
from memory on exit

For each
text

fragment

Fig 4.4: Basic text extraction method

4.3.2 Sorting text fragments

As the text fragments were held in a series of arrays it would be necessary to sort every

single array identically to ensure that all data is preserved. As this method was felt to

be inefficient and clumsy, it was decided not to sort the arrays but to create a new

array, Order[], which would keep track of the current order of the indices of the

Final Report PDF TO HTML CONVERSION

Page 19

elements. Initially this array was set to count 0, 1, 2, … , up to the highest numbered

text fragment.

The sort was carried out by using a modified version of the XYComparator method

downloaded from java.sun.com[3] and calling the Arrays.sort(Comparator) method.

A further problem was encountered when investigating the co-ordinates of each text

fragment. The vertical co-ordinates of fragments on the same line were found to differ

slightly. This was because certain fragments included capital letters, symbols or

characters such as “g” which extend beyond the baseline. This sometimes caused the

text to be merged in the incorrect order. The figure below illustrates this problem.

high game make –

Fig 4.5: Example of words and symbols with different y co-ordinates

This problem was overcome by the creation of the sameLine method which works in

two steps. First, both y1 and y2 co-ordinates are examined, and returns true if either

co-ordinates intersect. Secondly, an “error margin” of 25% of the line height is used

and, if the fragments are within this margin, the method also returns true.

A new comparator was created, YErrComparator, which calls sameLine with two

successive fragments and sorts these fragments in X order if it evaluates to true.

4.3.3 Merging process

Merging of text fragments is performed by the mergeTextObjects method in

PdfGrouping. Text fragments are processed in the order that they are sorted, and each

fragment is merged with the next, building up a continuous page of text. The

relationship between two successive text fragments determines how they will be

merged, and is ascertained by examining both sets of co-ordinates, as performed in the

sameLine, nextChar and nextLine methods.

PDF TO HTML CONVERSION Final Report

Page 20

A simplified version of the procedure for each pair of text fragments is shown in the

diagram below. Features such as dropped capitals, hyphenation and variable line

spacing have made this process more complex and these are covered in later sections.

Are the text fragments on
the same line?

sameLine(cur,prev)

Is the current fragment
horizontally adjacent to the

previous fragment?

nextChar(cur,prev)

Concatenate the two text
fragments

Is the current fragment
directly below the previous

fragment?

nextLine(cur,prev)

Next word in paragraph:
concatenate the two

fragments adding a space in
between

Next word in paragraph:
concatenate the two

fragments adding a space in
between*

Next paragraph:
concatenate the two
fragments adding a

paragraph space in between

YES

YES

YES

NO

NO NO

Fig 4.6: Text merging process

4.3.4 nextChar and nextLine methods

The nextChar method returns true if two text fragments are horizontally adjacent. It is

unnecessary to evaluate vertical co-ordinates as this method is only ever called when

sameLine has evaluated to true. An “error margin” of 25% of the line height is used,

and the x1 co-ordinate of the current text fragment has to be equal to, or within the

error margin of, the x2 co-ordinate of the previous fragment.

If nextChar evaluates to true, the merging algorithm concatenates the two fragments

without inserting an intermediate space. Otherwise, it assumes that the two fragments

are separate words and inserts a space between them.

* At this stage, two separate lines are detected as

belonging to the same paragraph and are concatenated

Final Report PDF TO HTML CONVERSION

Page 21

The nextLine method returns true if two text fragments are vertically adjacent.

Originally this method was programmed to return true if the y1 co-ordinate of the

current text fragment was equal to the y2 co-ordinate of the previous fragment, or

within an error margin of 30% of the line height. However, this method was rewritten

when the program was improved to allow for varying line spacing. This is covered in

section 4.5.1.

If nextLine evaluates to true, the simple merging algorithm assumes that the text

fragments are separate words that have been wrapped to the next line, and belong to

the same paragraph. It therefore concatenates the two fragments, inserting a space in

between. Otherwise, it assumes that the two fragments belong to different paragraphs

and inserts the appropriate HTML tags to indicate this.

4.4 Column-based layouts

This section describes how column-based layouts, such as those of a typical newsletter,

were detected and processed so that the text was extracted in the correct order. The

general approach was to use the array group[] to group the text fragments according to

which column they belong, and to output each group (column) of fragments in order

from left to right. Since the fragments were already sorted on their vertical co-

ordinate, a stable sort on the group number was all that is required. Two different

methods of grouping the fragments were tried; the original method was found not to

work reliably in practice and was replaced by a different method which was found to

give better results.

4.4.1 Original column detection algorithm

The original method was to partition the page into several blocks which would

correspond to separate columns and possibly separate articles, as shown in the figure

below. A class called rectangle was created to hold the co-ordinates of the bounding

boxes of these blocks of text. Each fragment was examined in the order that they were

sorted (Y then X) and compared to each bounding box. If the fragment looked like it

was part of an existing text block; for example by being directly under it, the bounding

box would be grown to encompass the text fragment. If, on the other hand, the text

fragment did not fit into any of the existing text blocks, a new text block would be

created with the co-ordinates of the bounding box of the text fragment.

PDF TO HTML CONVERSION Final Report

Page 22

Fig 4.7: Example of newsletter partitioned into columns and articles

In practice this method was unreliable as miscellaneous items of text could sometimes

be included in other text blocks, severely altering their dimensions and including other

columns within the same text block. Sometimes the algorithm recognized the gap

between two columns as a gap between two words and grew the text block to

encompass the neighbouring column.

After studying the layout of a newsletter it became clear that indicates to the reader that

there are two distinct columns is a continuous vertical gap. Hence it was decided to create

a new algorithm based on detecting gaps between the columns instead of blocks of text.

4.4.2 Improved column detection algorithm

The new method, findColumnGaps, used the type rectangle to store the co-ordinates of

gaps between text fragments rather than the co-ordinates of the text itself. These

rectangles were held in a Vector named gaps.

Text fragments were, again, processed in the order that they had been sorted. When a

horizontal gap between successive fragments was found, a rectangle was created with

the horizontal co-ordinates of the gap, and the highest and lowest vertical co-ordinates

of the two text fragments, as shown below.

Fig 4.8: First two steps in gap detection algorithm

Final Report PDF TO HTML CONVERSION

Page 23

After each gap in the text was found, its co-ordinates were compared to those of the

rectangles that had already been created. This was performed by the

rectangle.checkAndUpdate method. If the horizontal co-ordinates were identical or

intersected each other, instead of creating a new rectangle, the existing rectangle was

“grown” downwards so that its bottom co-ordinates became equal to those of the

lowest text block. If the horizontal co-ordinates partly intersected those of the existing

rectangle, the rectangle was “shrunk” horizontally so that it no longer intersected the

text block, as shown below.

Fig 4.9: Both rectangles have been “grown” vertically; the left rectangle

has also been “shrunk” horizontally.

If the existing gap was totally intersected by a text block it was grown only to the top

of the text block and marked as “closed”. After the gap was marked as closed it would

no longer be possible to grow the gap to accommodate further gaps and any further

gaps in that horizontal position would lead to the creation of new rectangles, as shown

below.

Fig 4.10: The rectangle on the left has been “closed” such that any future

gaps in that horizontal position will lead to the creation of new rectangles

The checkAndUpdate method returns true if it manages to grow the current rectangle

to accommodate the gap between the supplied co-ordinates. This informs the

findColumnGaps method that it is not necessary to create a new rectangle object.

In order not to allow small gaps (e.g. between words) to interfere with the algorithm, a

threshold height of 36 points and a threshold width of 4 points were set; all rectangles

PDF TO HTML CONVERSION Final Report

Page 24

below the threshold height or width are removed from the vector. This value was

taken after finding the smallest likely gap with very small (6 point) newsprint.

Newspapers often use very narrow gaps, ruling a line between the two columns to

compensate visually for this.

Finally, once the number of rectangles is fixed, they are copied to an array, gap[], and

sorted to facilitate grouping of the text fragments in the correct order.

4.4.3 Ordering of text in columns

In order to work with the majority of column layouts, it was decided to order the text

by column, starting at the left most column, working down the column and moving

horizontally onto the next column as shown below.

This is achieved by sorting the gap[] array in order of x2 co-ordinate. This array is

then passed to the groupTextElements method that assigns a group[] to each text

fragment based on the horizontally closest gap to its left. Text fragments that do not

have a gap to their left (i.e. the first column) are assigned to group 0.

The text fragments are then sorted in group order using the GroupComparator. As this

is a stable sort, the existing Y-then-X order inside each column remains.

Fig 4.11: Example of column ordering

Final Report PDF TO HTML CONVERSION

Page 25

This method was found to work well for simpler layouts, such as the one above. It did

not always work for more complex layouts, particularly where different articles were in

columns of different horizontal positions or in boxed sections.

However, it is very difficult to distinguish between different articles on the page,

particularly by looking solely at the text itself. One improvement, which is beyond the

scope of this project but a suggestion for further work, is to look at other graphical

elements, such as lines, boxes and shaded regions.

4.5 Other layout features

This section describes how other features of the page layout were understood and

handled by the conversion software.

4.5.1 Line spacing

Originally the program was written to assume that all the text in the PDF is single

spaced. The nextLine method was written to return true if the y1 co-ordinate of the

current text fragment was equal to the y2 co-ordinate of the previous text fragment, or

within an error margin of 30% of the line height. However, both the newsletters

studied here (as described in section 3.3) contained a large amount of text that was not

single-spaced and, in those cases, each line was detected as a separate paragraph.

One early improvement was to create a method, findModalTextSize, to process each

text fragment and find the most frequently occurring text size in the page. This size

would almost definitely correspond to the size of the body text. Another method,

findLineSpacing, was used to find the average line spacing between successive lines of

text of that size. This line spacing was then used to proportionally adjust the error

margin that was used by the nextLine method to determine whether the next line was

part of the same paragraph.

This improvement worked, and enabled text that wasn’t single spaced to be converted

properly. However, as it worked on a page-by-page basis, it did not cope where

different sections of the page had different line spacings or different text sizes, as

shown in the example below.

PDF TO HTML CONVERSION Final Report

Page 26

Fig 4.12: Line spacing not correctly detected for introductory text, which is slightly

larger than main body text

The solution was to actively track the line spacing as the text fragments are being merged.

The findLineSpacing method does this by taking the current fragment index and looking at

the next two lines. It then returns the smallest of the spaces between the two lines. As the

diagram shows below, this ensures that the correct line spacing is always returned.

This is body text at the

end of a paragraph

This is a new paragraph

space1

space2

Case 2: space1 < space2

space1 returned

This is body text in the

middle of a paragraph

and more text in the

same paragraph

space1

space2

Case 3: space1 space2=~

space1 or space2 returned

Heading or end of paragraph

This is a new paragraph

and more body text in the

same paragraph

space1

space2

Case 1: space1 > space2

space2 returned

Fig 4.13: Detection of line spacing from the two following lines

Final Report PDF TO HTML CONVERSION

Page 27

If the line spacing is greater than 2.5 times the line height or less than half the line

height the line height is instead returned as the line spacing. This is to stop incorrect

values due to the line spacing being judged between two lines in different parts of the

page or in different columns. If space1 or space2 cannot be evaluated, as is the case at

the very bottom of the page, the line height is also returned.

The mergeTextObjects method keeps track of the current line spacing and recalls the

findLineSpacing method to obtain a new value every time a new paragraph or column

is encountered.

In addition, every time a new line in the PDF is encountered (i.e. nextLine evaluates to

true) the method changeLineSpacing is called to detect whether the line spacing has

changed. changeLineSpacing returns true if the gap between the two lines is too small,

i.e. less than 70% of the current line spacing. This ensures that, if the line spacing is

reduced (for example, double spaced text becomes single spaced), the line spacing

continues to be tracked correctly, ensuring that new paragraphs are correctly detected.

4.5.2 Styles and formatting

Although JPedal provided access to all the font information in each text fragment, it

was decided to use “standard” font families, Times and Helvetica, in order to allow the

HTML to display properly on systems that did not have the fonts that were used to

create the PDF. Depending on the system, these fonts, or their known equivalents, are

available either in bitmap form or as extensively hinted vectors to generate a clear,

easy-to-read image at typical screen resolutions.

Two distinct HTML styles were used, h1 and p (standard paragraph), which were

chosen based on the size of the text in the PDF. These styles are included in an internal

CSS style sheet in the header of the HTML file. The threshold between the two sizes

was set at 14 points; any text over 14 points in size is therefore classified as a heading.

An example of the output of both styles is shown below.

Fig 4.14: Example of formatting information (left) preserved in the HTML conversion (right)

PDF TO HTML CONVERSION Final Report

Page 28

Additional formatting information was retained in body text. JPedal gives the name of

the entire font as a single string; if this string included “Bold” or “Italic” the and

<I> tags were used to change the appearance of the text. While sub-headings, which

may be under 15 points in size, were sometimes recognized as body text, the bold

attribute was still preserved, giving an appropriate appearance in HTML.

This method was found to detect formatted text in most cases, although it did not work

for fonts that use a synonym to describe their formatting, such as “Cursive” for italic. It

also does not work on Multiple Master fonts which have a continuously variable weight

instead of the usual denominations such as “Light”, “Book”, “Medium”, “Bold”, etc.

HTML provides a much wider range of heading styles, and one possible improvement

would be to detect various heading levels in a document. As this was not the main

focus of this project, this remains as a suggestion for further development.

Formatting information is detected by the findHeadings method which works through

each text fragment in order, removing all formatting information from the contents

attribute and setting the boolean isHeading[], isBold[] and isItalic[] attributes to true or

false as appropriate.

These attributes are added to the HTML during merging of the text fragments as this

gives an opportunity to ensure that tags are not unnecessarily repeated and that each

opening tag (e.g. <P>) is met with its respective closing tag (e.g. </P>).

4.5.3 Symbols

Certain symbols, including typographical quotation marks (e.g. “ and ”) and dashes,

were found to display correctly in the Windows environment but not on other systems

using other character sets. As HTML is a platform independent format it was decided

to replace typographical quotation marks with straight ones and dashes with hyphens

with a space on either side. This was performed in the replaceSymbols method in the

pdf2html class.

Fig 4.15: Straight quotation marks (left) and typographical quotation marks (right)

Final Report PDF TO HTML CONVERSION

Page 29

4.5.4 Hyphenated text

As this conversion method creates text that can be re-flowed, words that were

hyphenated in the PDF often appear, in the output, at the beginning or in the middle of

a line. As newspapers and books contain a large number of hyphenated words it was

decided to merge them into single words to make the text more readable.

The method isHyphenated takes the indices of two successive text fragments and

returns true if:

• the current fragment begins with a letter and

• the previous fragment ends in a letter followed by a hyphen.

The method also strips the hyphen from the end of the previous fragment.

This method is used in the mergeTextObjects method at the stage where nextLine

evaluates to true. If isHyphenated evaluates to true the text fragments are simply

concatenated, without a space in between.

4.5.5 Indentations

Paragraphs are typically denoted in two ways; either by a larger line space or by an

indentation. Some documents even use both.

There is, however, no proper way of performing an indent in HTML and the <TAB> tag

is ignored by most browsers. It is possible to include a HTML paragraph style to

indent the first line of each paragraph but this method always leaves a line space at the

end of the paragraph. This method was found to be unsuitable for texts such as the

Dickens, where paragraphs can be shorter than one line in length.

The solution was to use four spaces, , to simulate an

indentation. Although this is a “trick” and therefore not recommended HTML

practice, it was the only way to obtain the required result.

Indentations are detected at the merging stage. As each text fragment is processed, the

variables left_margin and right_margin are updated to keep track of the left and right

margins of the text. If a new line is encountered that is more than 6 points from the

margin it is recognized as an indentation.

PDF TO HTML CONVERSION Final Report

Page 30

Every time a new column is encountered the margins are reset to allow for the different

horizontal position of the new column.

Dropped capitals caused a problem with this method as text adjacent to them is always

at a distance from the margin. This was solved by using another variable,

indent_guard, which is updated in the same way as left_margin. However, when two

text fragments of differing sizes are encountered, the indent_guard is set to the x1

position of the rightmost fragment, ensuring that any text adjacent to a dropped capital

isn’t recognized as being indented.

This method was found to give good results. Its only shortcoming is that it cannot

detect indented text at the top of the page as, at that stage, it has not processed the text

further below to find the left margin.

4.5.6 Forced carriage returns

Forced carriage returns are carriage returns that are included not as a result of word

wrapping, but to enforce a particular layout, for example with an address. By default,

the paragraph detection algorithm was found to merge each line of the address into a

single line as shown below.

Fig 4.16: Address merged into a single line

It is not always possible to tell whether a carriage return is forced or a result of word

wrapping. However, when a line is much shorter than the width of the page, it is

usually as a result of a forced carriage return (or being the last line in a paragraph).

Different methods of detecting forced carriage returns were used on single- and multi-

column layouts. With single-column layouts the width of the entire text across the page

was calculated by the findTextWidth method. Multi-column layouts are more complex

and the text width only for a particular column was sought. As the left and right

margins are already being tracked during the merging process (see section 4.5.5) the text

width can simply be calculated by deducting the left margin from the right margin.

University of Warwick,
Gibbet Hill Road,
Coventry,
West Midlands
CV 4 7AL

Final Report PDF TO HTML CONVERSION

Page 31

A forced carriage return is detected if the current line was less than 70% of the full text

width, or 60% of the column text width for multi-column layouts. The smaller figure

was used for multi-column layouts as they usually have fewer words per line, increasing

the probability of false positives. This detection occurs in the mergeTextObjects

method when a new line in the same paragraph is reached (i.e. nextLine evaluates to

true).

4.5.7 Raised and dropped capitals

Raised and dropped capitals were catered for by altering the findHeadings method to

assign the capital the p (normal paragraph) style even though the character is usually

over 14pt in size. Raised and dropped capitals are detected by a text fragment

containing one character followed by another text fragment on the same line using the

sameLine method. As the sameLine method evaluates to true whenever the co-

ordinates intersect it will always be true for raised or dropped capitals.

Once the character is assigned the paragraph style it is successfully merged into the

following paragraph by the mergeTextObjects method.

Dropped capitals also caused a problem with the algorithms used for the detection of

indentations in text; these are documented in section 4.5.5.

4.5.8 Miscellaneous text fragments

Miscellaneous text fragments include page numbers, copyright notices and other small

text fragments that are not a main part of the page content itself. These objects often

appeared in the middle of the flow of text, usually between two different columns,

interrupting the flow of the text. It was therefore decided to attempt to detect these

items and move them to the bottom of the page.

Miscellaneous items are detected by the isMiscellaneous method which returns true if

the item is not within 24 points of the boundary of any other text block, or if it

includes vertical-running text.

After each text fragment has been assigned a group[], the processPageFragments

method creates a new group and assigns all miscellaneous fragments to it. This ensures

that, when the items are all sorted by group, the miscellaneous items will be moved to

the bottom of the page.

PDF TO HTML CONVERSION Final Report

Page 32

4.5.9 Empty text fragments

Empty text fragments are fragments that do not contain any text, or a string of spaces.

These are sometimes inserted by word processors between paragraphs, for example.

Although these fragments do not display any text, their existence could cause problems

with the paragraph and column detection methods.

They are therefore detected by the isEmpty method and removed from the sort order in

the processPageFragments method, before any column grouping or merging takes

place.

4.6 The front end

The front end was designed to take two command line parameters, an input file and an

output file. If the second parameter is omitted it generates the output file name by

removing the “.pdf” extension if there is one and appending the “.html” extension. If

there are any errors with the parameters it displays an error message and exits.

The tasks performed by the front end are as follows:

• open input file

• get PdfData object

• enumerate pages in PDF file

• append header (including style information) to output string

• for each page:

o append a “Page x” heading if there is more than one page

o call PdfGrouping.processPageFragments and append the result

• append </HTML> to output string

• write output string to output file

4.6.1 The -c option

The -c option was included to instruct the converter to attempt to detect columns;

without this option column detection is automatically turned off. This was because

column detection occasionally detected false positives in single-column layouts,

resulting in the text being output in the wrong order. In general, a better result can be

obtained for single-column layouts by omitting the -c option.

This option is passed to processPageFragments as a boolean parameter,

detect_columns, which determines whether groupTextElements will be called.

Final Report PDF TO HTML CONVERSION

Page 33

4.6.2 Multiple pages

The conversion software has been designed to convert each page independently from

each other, as the process of correctly decoding the data from a single page had already

presented a significant challenge. Each page is therefore decoded in turn. If there is

more than one page in the PDF file, the front end adds a “Page x” heading to the

beginning of each page in the HTML output.

PDF TO HTML CONVERSION Final Report

Page 34

5 Performance evaluation

This section evaluates the results given by the conversion software. Annotated

examples of the program’s output from each of the four PDF files are given, together

with an analysis of the results. These results are then compared to the results given by

the existing solutions which are covered in section 2.

5.1 Analysis of converted output

Overall, the conversion software was found to produce good results with simple and

moderately complex documents, including the four PDF files that comprise the

conversion material chosen in section 3.3.

In most cases, simple multi-column layouts were correctly detected and the columns

were output in the correct order. More complex layouts, such as the US Military Force

in Columbia article in section 5.5, where an article spans two columns, gave less

successful results. Occasionally, elements on the page such as headers, footers and

captions, appeared in between the columns instead of being recognized as

miscellaneous and moved to the bottom of the page. One major improvement, which

is given as a suggestion for further work, would be to look at graphical elements of the

page such as lines and rectangles. These elements often indicate to the reader where

different articles start and end.

Most features of the page layout, as described in section 4.5, were detected and

handled correctly. In particular, the line spacing detection algorithm worked very

successfully and did not result in any unwanted new paragraphs. Some of the feature

detection methods, such as the hyphenation detection, corrected some errors but

caused others. This was because, where it met a double barrel word that was wrapped

to the next line (such horse-pistols as described in section 5.3.2) it would still remove

the hyphen and merge the two parts of the word into one. From the information

available to the program it is impossible to tell whether the hyphen should remain in

place or be removed. Only by understanding the text itself can this decision be made.

One solution here would be to use a dictionary of hyphenated words, although this was

beyond the scope of the project.

Similarly, the detection of forced carriage returns depended on the ratio of the line

width to the text width. Therefore, forced carriage returns are not recognized in

longer lines and are merged into a complete line of text. Again, without understanding

Final Report PDF TO HTML CONVERSION

Page 35

the meaning of the text itself it is impossible to tell whether a carriage return is forced

or a result of word wrapping.

Ultimately, when a PDF is created from a word processing or desktop publishing

package, some information is lost. Some of this information is required when

converting the page to another layout. This project has attempted to intelligently

“guess” some of this data and, based on these guesses, perform the conversion to a new

layout. Because of this, it is highly unlikely that any program to convert PDF to HTML

will ever be written to work perfectly.

5.2 Comparison with other methods

Although the results with the other converters were more accurate, the results with the

intelligent text extraction method were far better in a practical sense. Text was always

displayed at a readable size which could be resized by the user if necessary. The ability

to re-flow the text also aided on-screen reading. In all cases the converted output more

closely resembled a word processed document than the original, and one of the

suggestions given for further work is to extend the converter to convert to RTF

(Microsoft Rich Text) format.

In terms of web use, the files generated by this method are far more suitable for

publication to a web site. In order to match the appearance of an existing web site, all

that is necessary is to remove the style sheet from the header and replace it with a link

to an existing CSS file on the web site. Alternatively, to use only part of the document,

the relevant HTML can be copied out and pasted into another web page.

It is worth noting, however, that the method used here is far more complex and needs

to be written specifically for each type of page layout. While the other converters will

give acceptable results for almost any PDF document, a large number of PDFs will not

work with this method at all. There are also cases where it is preferable to preserve the

layout of the page, and use of the other method may be preferred for this very reason.

Ultimately, the choice of method depends on the source files and the intended result.

5.3 Examples of converted output

Annotated examples of the converted output are shown overleaf, together with copies

of the original PDF files. The simple layouts were converted with no command line

options; the complex layouts were converted with the -c option.

Tamir Hassan
Flat 3
91 Victoria Terrace
Royal Leamington Spa
Warwickshire
CV 31 3AB

25 April 2003

Recruitment Unit
Acme Bank plc
1 Canada Square
Canary Wharf
Docklands
London
E 14 1AA

Dear Sirs

Re: Summer Analyst Scheme

Please find enclosed signed copies of my contract, Declaration of Personal
Interests form, Personal Details form, Medical Questionnaire and Equal
Opportunities Monitoring form.

I have spoken to Maureen Chambers regarding tax documentation and have
enclosed the P38 (Student Employees declaration) and P60 (End of Year
Certificate 2002); this being the latest P60 that I have received.

Please could I ask that the P60 be returned to me, at the above address, as
soon as possible as I will require it to reclaim tax from the Inland Revenue.

I have already provided a copy of my passport and have been advised that it
is not necessary to include it here.

I hope that I have included all of the required documentation and look
forward to receiving full confirmation of your offer of employment.

Yours faithfully

Tamir Hassan

Encs

1

3

5

2

4

Page 36

PDF TO HTML CONVERSION

5.3.1 Simple letter example

Final Report

1 Forced carriage returns
in the addresses have
been detected and
reproduced correctly.

The fact that one of
the addresses was at a
different horizontal
position did not cause
any problems.

2 Bold text detected and
reproduced correctly

3 The extra line spaces after
both these successive lines
of text have caused the
program to interpret this
as double spaced text.

The two lines have not
been merged into a single
paragraph as the program
has correctly detected
forced carriage returns

5 The large space after
is too

large to confuse the
line spacing detection
algorithms. Therefore
single line spacing is
assumed and is
correctly positioned in
a new paragraph

Yours faithfully

Encs

4 New paragraphs correctly
detected and reproduced

Page 37

PDF TO HTML CONVERSIONFinal Report

A Tale of Two Cities

10 of 670

companions. In those days, travellers were very shy of
being confidential on a short notice, for anybody on the
road might be a robber or in league with robbers. As to
the latter, when every posting-house and ale-house could
produce somebody in ‘the Captain’s’ pay, ranging from
the landlord to the lowest stable non-descript, it was the
likeliest thing upon the cards. So the guard of the Dover
mail thought to himself, that Friday night in November,
one thousand seven hundred and seventy-five, lumbering
up Shooter’s Hill, as he stood on his own particular perch
behind the mail, beating his feet, and keeping an eye and a
hand on the arm-chest before him, where a loaded
blunderbuss lay at the top of six or eight loaded horse-
pistols, deposited on a substratum of cutlass.

The Dover mail was in its usual genial position that the
guard suspected the passengers, the passengers suspected
one another and the guard, they all suspected everybody
else, and the coachman was sure of nothing but the horses;
as to which cattle he could with a clear conscience have
taken his oath on the two Testaments that they were not
fit for the journey.

‘Wo-ho!’ said the coachman. ‘So, then! One more pull
and you’re at the top and be damned to you, for I have
had trouble enough to get you to it!—Joe!’

A Tale of Two Cities

11 of 670

‘Halloa!’ the guard replied.
‘What o’clock do you make it, Joe?’
‘Ten minutes, good, past eleven.’
‘My blood!’ ejaculated the vexed coachman, ‘and not

atop of Shooter’s yet! Tst! Yah! Get on with you! ‘
The emphatic horse, cut short by the whip in a most

decided negative, made a decided scramble for it, and the
three other horses followed suit. Once more, the Dover
mail struggled on, with the jack-boots of its passengers
squashing along by its side. They had stopped when the
coach stopped, and they kept close company with it. If
any one of the three had had the hardihood to propose to
another to walk on a little ahead into the mist and
darkness, he would have put himself in a fair way of
getting shot instantly as a highwayman.

The last burst carried the mail to the summit of the hill.
The horses stopped to breathe again, and the guard got
down to skid the wheel for the descent, and open the
coach-door to let the passengers in.

‘Tst! Joe!’ cried the coachman in a warning voice,
looking down from his box.

‘What do you say, Tom?’
They both listened.
‘I say a horse at a canter coming up, Joe.’

2

4

6

3

5

1

Page 38

PDF TO HTML CONVERSION

5.3.2 E-book example

Final Report

1 Hyphenated text correctly
detected and merged,
although this does not
take into account the
context of the hyphenation.

In this case the word
was not

hyphenated due to word
wrapping and should remain
hyphenated even when
the text is reflowed.

horse-pistols

2 As there is no extra gap
between paragraphs, the
paragraph recognition fails
to recognize the new
paragraph.

Fortunately the indentation
is recognized and preserved
so that the reader identifies
the following text as
belonging to a new
paragraph

3 Curly quotation marks
replaced with straight
ones and the dash is replaced
with a spaced-out hyphen
to allow for display on
different character sets

5 As the first lines of the page
are indented, the program
does not know the correct
margins of the text until it
has already processed the
indented lines. Therefore
these lines do not appear
indented in the conversion.

6 Indentations correctly
detected and handled

4 Header and footer correctly
detected as miscellaneous
items and moved to bottom
of page

Page 39

PDF TO HTML CONVERSIONFinal Report

Introduction
This newsletter is intended to be a source of

information for all those involved in the

Register of English Football Facilities (REFF)

project until its launch in 2002.

REFF is an important part of the revolution

taking place in grass roots investment in

sporting facilities in this country. By creating a

definitive database, the Football Foundation

will be able to identify the quality, quantity,

and demand for facilities in every part of the

country, highlighting hotspots and areas

where conditions are inadequate.

The findings of the project will be made available to the

general public via an interactive website. The National

Game Division of the Football Association will use the

findings to develop itsfuture strategy.

FA Chief Executive Adam Crozier said:

“Over the next five years, The FA will contribute

£20 million a year to the Football Foundation for

its charitable work. Before new and improved

community facilities can be provided it is essential

to know what is already out there. That’s why this

project is so important.”

The project will be funded directly by the Football

Foundation, with the backing of its funding partners the

FA Premier League, The Football Association, Sport

England and the DCMS. It will provide a comprehensive

survey of the estimated 70,000 pitches in England to

identify which are used for football and other sports, the

numbers of games played and the quantity and quality of

the other facilities on the site. The data compiled will lead

to the development of County Facility Strategies, which

will enable the targeting of priority areas, encouraging

multi-bids from local councils and County FAs, getting

funding to where it is needed most.

The details provided in the REFF Project will be available

on-line for members of the public to find their local sports

facilities and will be constantly revised and up-dated,

creating a comprehensive and fully inclusive database so

that football facilities can be better used for charitable

purposes.

Peter Lee, Chief Executive of the Football Foundation, said

of the project:

“For the first time we will have a compehensive

vision of the state of the grass roots of community

football. The REFF project will be the essential

backdrop to all our work in transforming sporting

facilities in our parks and schools for charitable

use, enabling the Foundation to direct resources

into areas crying out for support.”

The project is being delivered by a team of consultants

led by PricewaterhouseCoopers and also including

PMP Consultancy, a niche sports and leisure group

whose staff and associates are based across England.

More details of the key people on the ground are included

in this newsletter.

Register of English Football Facilities
Summer 2001

The most frequently asked
questions... and some answers:

What is the Football Foundation?

The Football Foundation is a charity launched in July

2000 by the Prime Minister with the object of providing

sporting facilities and promoting education by:

putting in place a new generation of modern sporting

facilities in parks, local leagues and schools

providing capital and revenue support for the running of

grass roots football and other sports

strengthening the links between football and the

community and to harness its potential as a force for

good in society

The FA Premier League, The Football Association, Sport

England and Government fund the Foundation to the tune

of over £200 million over a four-year period.

Is The Football Association involved in

this project?

The FA is one of the funders of the Football Foundation

and from the outset, contributed time and other resources

to the Foundation’s work by helping to develop the scope

for the project, advising on the selection of the consultants

and serving as a key member of the Steering Group

guiding the work.

Are you targeting particular areas?

The audit will cover the whole of England: there is no

pre-conception that specific areas will be targeted for

funding as a result of the work.

How long will the project take?

We are currently talking to the various stakeholders,

including local authorities, sporting and educational

institutions, the MoD and other major landowners on which

football facilities are located. Site visits and benchmarking

must be completed by September 2001. Issues papers,

drawing together the findings from the audit, will be

prepared in September and October and distributed to

interested parties. The completed Register and County

Facility Strategies will be submitted to the Football

Foundation by December 2001, with a public launch

anticipated in the New Year.

Why should owners of football facilities return

the questionnaires? Many Leisure Departments

in local authorities are overworked and

underfunded.

The benefits of the project will be wide ranging and the

Football Foundation hopes to be able to provide funding

to a large number of community sport schemes. The data

collected will complement the LA’s own work on

developing Asset Registers and Playing Pitch Strategies.

We appreciate the time and budgetary constraints local

authorities may have to work to and the REFF team will

offer every assistance in the completion of the

questionnaires.

How long will the database remain relevant?

The database will be designed to allow constant updating

and improvement. With up-to-date information, it should

remain relevant and operable for the foreseeable future.

The Football Foundation is appointing specific regional

staff, part of whose role will be to ensure that the Register

remains current.

1

2

5

7

8

4

6

10

3

9

Page 40

PDF TO HTML CONVERSION

5.3.3 Simple newsletter example

Final Report

1 Headings detected
correctly

2 Line spacing correctly
detected, although the
text is larger (and
therfore more spaced)
than the body text

3 Curly quotation marks
replaced with straight
ones to allow for
display on different
character sets

4 Columns output in correct order
but a new paragraph is incorrectly
inserted where the paragraph flows
from one column to the next

5 Italic text correctly
detected.
Although paragraph is
indented horizontally
this does not cause a
problem with the
methods for column
recognition or single-
line indentations

6 Heading detected
correctly and merged
into single line

7 Bullets not recognized
as they are graphics
not symbols.
Indentation of the
paragraph, as before,
does not cause a
problem

8 New paragraphs
correctly detected

9 Forced carriage returns not always
detected; this is not always possible.
In these two cases the line width is
approaching the text width

Bold text correctly
detected

10

Page 41

PDF TO HTML CONVERSIONFinal Report

3

Little Red Beans
Dangerous Food? BY THE WFP NICARAGUA TEAM

Nicaragua
I

n Genara’s kitchen in Matagalpa, Nicaragua, her
family enjoys this season’s first plate of fresh red
beans. The successful bean harvest this year was

especially joyous after experiencing five years of
drought. Mother Nature finally cooperated with
Matagalpan farmers, and provided a season of
abundant rain to produce the fruit of their labor: the
small red bean that is perhaps the most important
staple of the Nicaraguan diet.

In Matagalpa, as the rains continue to fall, Genara’s
practiced hands shell her family’s first bushel of little red
beans by candlelight. These beans will dry in the sun and
be stored in small grain silos inside the house to provide
food for the family year-round. Coming from
generations of bean farmers, Genara is used to dealing
with the weather, natural disasters, and insect plagues
that threaten her harvest each year.

One might be surprised that in Nicaragua, a country
where farmers face both the harshest droughts and
most destructive floods, a great threat to Genara’s
survival as a small farmer may be a little red bean from
the United States. This bean sits in a laboratory at
Washington State University. Its name is Rojo
Chiquito, or “little red,” and it looks a lot like the
beans that Genara grows in Matagalpa.

Why is this little red bean such a threat to rural families
like Genara’s? The bean’s creator, research geneticist
Philip Miklas explains, “we released 'Rojo Chiquito' ...the
first cultivar developed in the U.S. specifically for the
‘Central American Small Red’ dry bean market class.
This bean cultivar will be produced primarily for export
to Central America.” In other words, this little red bean,
once it becomes widely available on the global market,
could put small, traditional bean producers like Genara
out of business.

The Rojo Chiquito, developed in part by the U.S.
Department of Agriculture, will grow well in U.S. soils,
especially in the Pacific Northwest. It was engineered to
resist certain diseases and grow in narrow rows for an
increased yield. Farmers in the United States benefit
from government subsidies and access to the latest
technology, so U.S. companies would be able to export
this high quality bean cheaply and efficiently.

The unfair practice of subsidizing U.S. farmers while
expanding free trade agreements—which would require
Latin American nations to essentially eliminate any
remaining agricultural subsidies-- will likely allow Rojo
Chiquito to ruin the livelihood of thousands of
Nicaraguan families. Farmers in the U.S. will be excited
to know that they have a promising new product and the
possibility of a new market under the Central American
Free Trade Agreement (CAFTA) that will be negotiated
between the U.S. and Central America in January. But
what might this little red bean mean for the food
security and livelihood of Nicaraguan farmers?

Local Food Supply In Crisis
“This little bean will become the greatest threat that
Nicaragua will ever face,” comments economist Álvaro
Fonseca. The potential impacts of importing Rojo
Chiquito are hard to fathom, but its introduction to
the Nicaraguan market could have a devastating effect
on the already weak small farmer economy.
Nicaragua’s food supply is largely based on small-scale
local production of staple crops like corn and beans.
Most farmers grow crops for their own consumption,
and sell their surplus in local markets. Because
production and consumption is local, small farmers
have not been dependent on the international market
to determine their success or their ability to provide
food for their own families.

By current estimates, a flood of cheap, imported beans
could wipe out 200,000 Nicaraguan family farms,
affecting nearly 1.5 million people, a quarter of the
population. In a country where the under and
unemployment rate is over 60 percent, financially
burdened consumers will choose the cheapest beans on
the market, regardless of whether they were grown in the
mountains of Nicaragua, or the Pacific Northwest of the
United States. And while providing cheaper beans for
impoverished Nicaraguan consumers is a good idea, it is
important to consider the real cost of these savings.

With a flood of Rojo Chiquito from subsidized U.S.
farms, small farmers like Genara would no longer be
able to sell their surplus bean crop to provide for their
families' many needs. Most likely, they will be forced
to take the advice of neoliberal economists, who
would suggest that Genara find a new crop to grow
for export now that her beans are no longer
profitable. Genara would compete in a free market,
where a lack of trade barriers would supposedly help
her to export a new crop, while she buys cheap
imported beans from the USA.

But in order for Genara to switch from bean farming to
a successful, different crop, she would need financing,
access to market information, technical assistance and
time—four things small Nicaraguan farmers can only
dream of having. Even if she could miraculously change
crops—and grow, say, cantaloupes—she would likely
face season trade barriers imposed by the U.S. to protect
their local production. With its enormous negotiating
leverage, the U.S. can keep such protective tariffs, while
demanding countries like Mexico and Nicaragua drop
theirs. So, even changing crops would likely doom this
small farmer to failure.

Rather than switching to a different crop, Genara
might be more likely to sell her land to a bigger land
owner, while she and her family move to the city, along
with thousands of other landless campesinos. There,
she might find work in the informal economy or in a
textile assembly maquila, an industry that exploits
Nicaragua’s “comparative advantage”: cheap labor

provided by a desperate workforce. And, of course,
another option would be emigrating to Costa Rica or
the United States in search of enough income to send
home to support her family. But in spite of all the
negative effects for ordinary Nicaraguans like Genara,
the U.S. government continues to push to formalize
free trade agreements that will impact countries like
Nicaragua for years to come.

Do As I Say, Not As I Do
In February 2002 President Bush announced his plan
to expand free trade throughout Central America
under CAFTA, as a stepping stone to the hemisphere-
wide Free Trade Area of the Americas (FTAA).
Secretary of State Colin Powell clearly declared the
intent of the FTAA to “assure for American
corporations control of the territory that runs from the
North Pole to the Antarctic free access without any
hindrance or difficulty for our products, services,
technology and capital through the hemisphere.”1 Free
trade agreements seek to open foreign markets by
eliminating tariffs and “barriers” to trade, under the
pretext of fair and equal competition in open markets.

While Bush and Powell began promoting CAFTA in
Central America, Congress was beginning to debate this
year's farm bill, which will give U.S. farmers $100 billion
dollars in subsidies over the next 8 years. Small farmers
in both Nicaragua and the U.S. are losers in the current
system. U.S. subsidized agriculture does not generally
benefit small U.S. farmers either, as they receive a mere
16% of all subsidies, while they have to compete with the
mega-production of the much more heavily subsidized
corporate agribusinesses.

Thus, U.S.- grown products—especially those farmed
primarily on large corporate farms—such as corn and
rice, can be exported at artificially depressed prices to
countries like Nicaragua. These prices do not reflect the
real cost of production. “We would have to see if a
farmer from the great prairies of the United States in his

air conditioned tractor would be capable of producing
without subsidies at the same costs as farmers in the
valley of Jalapa, Estelí, Muy Muy, or other rural areas of
Nicaragua,” challenges Álvaro Fonseca. As free trade
policies become more comprehensive and are expanded
throughout the hemisphere, in a country where the
average annual family income is about $430, Nicaraguan
farmers will be forced to compete on an even larger scale
with U.S. farmers who receive thousands of dollars per
year in subsidies.

In the name of free market development, the United
States has pushed to open foreign markets to U.S.
exports and investment. Free trade agreements force
countries like Nicaragua to lower tariffs and to eliminate
subsidies and other “barriers” to trade. But, as
Nicaraguan economist Carlos Pacheco points out, “The
attitude of the United States towards free trade has been
do as I say, not as I do.”

Although the U.S. pledged to reduce agricultural
subsidies during the last round of World Trade
Organization negotiations, the recent Farm Bill flew in
the face of that commitment. Furthermore, the recent
increase represents just one of many that have occurred
over the last decade, as the U.S. and other industrialized
nations continue to increase their level of farm subsidies.
Given the clout of the U.S. in the major International
Financial Institutions, and given the large scale of the
U.S. economy, the United States has not been forced to
keep its own promises or follow its own rules. By
subsidizing U.S. agriculture and maintaining some
tariffs, the U.S. continues to protect itself from the
international “barrier-free” competition it promotes and
demands of its impoverished neighbors.

Genara is thankful that up until now her family has been
able to survive by producing the food they need and
selling some of their crop to local markets. “This year
will be better than the last, and right now that's all we
can hope for.” Small farmers confront the challenges of
Mother Nature to provide for their families and local
communities. A strong local food economy has allowed
small Nicaraguan farmers to get by, while the U.S.
government’s free trade agenda threatens the food
security of Nicaragua, and the whole of Latin America.

Where would Genara turn without a local market for
her beans? Failing farms will continue to produce the
mass migration of unemployed workers to the cities
and to the United States, hoping to support their
families and communities with the hard won wages
they send home.

Only the strong survive in export economies, and
impoverished Nicaraguan farmers are not equipped
with the necessary technology, financing, and
protection needed during the transition to a new style
of production to compete with larger economies. The
logic of importing products such as Rojo Chiquito to
Nicaragua that could be grown locally, puzzles
professor Bayardo Ortiz. “Why bring beans from
another place to replace our traditional bean? Why
don’t they help our farmers to plant the bean that our
land has produced for centuries? Why would you bring
them from another place when we have the seed and
the land here? Why don't we grow our own beans so

continued on page 9

M
el

in
d

a
St

.L
o

u
is

In rural Nicaragua, the whole family participates in the cultivation of red beans.

1 “Otra América es Posible.” Centro de Estudios Internacionales. Managua, Nicaragua. 2002.

This little bean will become

the greatest threat that

Nicaragua will ever face.

–economist Alvaro Fonseca

4

Co
lo

m
bi

a

U.S. Military Force in Colombia
Protecting Oil Interests BY THE WFP COLOMBIA TEAM

continued on page 10

I
n the province of Arauca in the Northeastern corner
of Colombia where the Orinoco River drains the
jungle plains, U.S. Special Forces train Colombian

soldiers in the craft of counterinsurgency war. It’s not
the first time that U.S. soldiers have instructed their
Colombian counterparts. Only this time the focus isn’t
combating drug trafficking.

U.S. Ambassador to Colombia, Anne Patterson, explains
growing US interest in the region: “To speak frankly,
after September 11th, the issue of oil security has
become a priority for the United States…This is
something we must do. It’s important for our oil sources
and the confidence of our investors.”

Deep within the subsoil of the rich Orinoco basin are
some of Colombia’s largest oil reserves. Since 1985
Occidental Petroleum of Los Angeles has been operating
over 200 wells in the Caño Limón field, at one time the
largest oil field in Colombia, through a partnership with
the Colombian state-owned oil company, Ecopetrol. In
order to transport the oil from the fields in Arauca to the
Caribbean coast where it can be refined and cheaply
exported to the US, it must be pumped through a 470
mile long pipeline crossing the jungle, up and over the
Andes, down the coastal lowlands, and finally to the port
at Coveñas.

Weaving its way through regions of intense conflict, the
Caño Limón-Coveñas pipeline is the target of frequent
guerrilla attacks. Recently the guerrillas have intensified
their campaign to disable the pipeline, culminating last
year in a record 170 attacks. By blowing up the pipeline
the guerrillas strike one of Colombia’s most important
resources and increase their leverage to extort Occidental
and other multinationals operating in the region.

Citing the United States’ increased need for secure oil
sources, last winter the Bush Administration announced
a proposal to the US Congress to initiate a protection
plan specifically for the Caño Limón-Coveñas pipeline.
The proposal would send nearly $100 million to bolster
the Colombian Army brigades in charge of safeguarding
the pipeline. The plan provides training and equipment
to the existing 18th Brigade and to the newly formed 5th
Mobile Brigade. The Bush Administration managed to
push through a $6 million “jump start” for the pipeline

protection plan this last summer, and in late October
U.S. Green Berets started training Colombian soldiers
from the 18th Brigade.

Operating at maximum levels, the pipeline is only able
to provide one half of one percent of total oil
consumption in the United States. This alone does not
seem to merit the $98 million investment that the
Bush Administration wants to put into protecting the
pipeline. However, between 1995 and 2000 Occidental,
who co-owns the pipeline, spent $1.5 million in
congressional and presidential campaign contributions
and another $8.7 million in lobbying efforts, primarily
regarding Colombia.

Until 2000, the Colombian Tax Code included a war tax
to be paid by foreign oil companies operating in
Colombia. The tax required oil companies to pay $1.25
per barrel of oil produced. Interestingly, it was the U.S.
government, through the Office of the U.S. Trade Repre-
sentative, which called for the Colombian government to
eliminate this policy. Complaining that the Colombian
government “has not taken steps to make [oil operating
fields] more profitable to investors,” in 1996 the Office of
the U.S. Trade Representative urged Colombia to

withdraw the “war tax” because it “acts as an economic
disincentive” to foreign investment.

Today the U.S. government, after lobbying the
Colombian government to remove war taxes on
multinational oil corporations, is calling on U.S.
taxpayers to pay them instead. In fact, not only would
U.S. citizens be called on to assume Occidental’s security
costs, but, in addition, rather than a $1.25 per barrel
security tax, the Bush Administration would have U.S.
taxpayers pay a $3.70 subsidy for every barrel. Occidental
itself pays only 50 cents per barrel for security even
though it posted a net income of more than $1.1 billion
in 2001.

Close examination of the potential recipients of this
aid and the danger inherent to any U.S. military
involvement in Colombia reveals that to send this
money would be a grave error.

Due to their historic involvement in human rights
violations and collaboration with illegal armed actors,
Colombian Armed Forces units that receive military
aid from the United States must meet a set of three
conditions. These conditions, when enforced, ensure
that if Colombian Army forces have collaborated with
the paramilitary or have committed gross violations of
human rights they will not receive military aid from
the United States.

The primary paramilitary force, the United Self Defense
Forces of Colombia (AUC), has been included on the list
of U.S State Department-designated Foreign Terrorist
Organizations for its consistent and brutal violations of
human rights; estimated to be approximately 70% of all
violations in Colombia during 2001.

It is the opinion of many human rights organizations
including Witness for Peace, that the 18th Brigade fails
to meet at least one of the three conditions and should
therefore be ineligible to receive military aid from the
United States, including any aid under the pipeline
protection plan. The condition states that the military
must be actively severing links to the paramilitary
groups. There is no indication that the commanders of
the 18th Brigade are severing links, and in fact an
abundance of evidence indicates continued
collaboration between the 18th Brigade and the AUC
paramilitary block operating in the area.

Recently, Witness for Peace documented Colombian
army movements apparently coordinated with the AUC.

Uribe Consolidates Power
“You have set up a very effective example of the way we need to go on to fight and to defeat terrorism,” Colombian
president Alvaro Uribe told George Bush in a recent meeting at the Oval Office. Uribe’s comments came in response to
Bush’s assertion that, “The only path to peace and security is the path of action.”

Bush’s call to “action” has not gone unheeded by his Colombian counterpart.

In May Colombians elected a president who campaigned on a “firm hand and a big heart.” So far there has been no
sign of a big heart. Since his August 7th inauguration, Uribe’s list of actions reflects the model that Bush has established
in the U.S. Uribe has declared a “state of public unrest” that affords him significantly greater executive powers and
reduces congressional authority. By presidential decree Uribe announced that state security forces may, without
warrant, search and seize private property, tap communications devices, and detain civilians. In certain areas of the
country, denoted Rehabilitation and Consolidation Zones, the Colombian President authorizes a military commander
to supercede the authority of the local governors, mayors and town council members in issues pertaining to the
operations of the state security forces. The new government also has sent a clear message to the international
community working for peace in Colombia. In the first month and a half, a dozen Spanish and Canadian citizens have
been deported, three Belgians have been detained, and Colombian consulates in the exterior have refused visas to
church and NGO representatives.

The central argument of the Uribe Administration is that the new measures are essential to ensure a victory over the
illegal armed groups. Yet, Colombian analysts claim they will do little to curb the actions of the illegal armed groups
and instead will jeopardize democracy and sacrifice civil liberties. Gustavo Gallón of the Colombian Commission of
Jurists calls the state of public unrest “cowardly, useless, and dangerous.”“It doesn’t confront the combatants, but
instead [it confronts] the civil population…opening up Colombians’ homes to the Armed Forces.”

These new measures have already affected groups working for peace in the country. At 4:45 on the morning of October
25th, forty members of the Judicial Police, the Colombian Army and the Department of Security raided and searched
the offices of the Permanent Assembly for Peace in Bogotá. This coalition has been working for six years to bring peace
to Colombia. Witness for Peace regularly participates in the Permanent Assembly’s meetings. The search of their offices
was tragic and gained much media attention – what didn’t gain media attention were the over 200 raids of homes in
Bogotá’s poor neighborhoods that same week.

US Government reaction to Uribe’s measures has been supportive. When asked whether the US Government supports
Uribe’s national security plan, Marc Grossman, Undersecretary of State for Political Affairs, responded, “I imagine
Colombians will use this on Capitol Hill to show they are defending their own democracy and we will support that.”

Above: One of Occidental's processing facilities in Caño Limon. Below: Bombed pipeline, 2002.

Tw
o

Ph
o

to
s:

Je
ss

H
u

n
te

r

1

2

7

4

5

3

66

66

65

6568

9

Page 42

PDF TO HTML CONVERSION

5.3.4 Complex newsletter example

Final Report

1

2

3

4

7

5

6

5

8

Page 43

PDF TO HTML CONVERSIONFinal Report

Notes

1. Titles detected correctly. As the converter does not distinguish between different heading levels,
the same style is used for both headings

2. Dropped capital detected and handled correctly

3. This quotation is included in between the paragraphs, just like in the original. For on-screen
reading it is usually more appropriate to include the quotation elsewhere on the page.

4. As this text uses a Multiple Master font it has not been possible to detect it as bold. This is
described in detail in section 4.5.2

5. The footnote and picture caption have not been detected as miscellaneous items as they are very
close to the main text

6. These miscellaneous items have been correctly detected and handled

7. As the space between this text block and the previous text block coincide with the space between
each column, part of the text has been incorrectly detected as belonging to the next column

8. Despite there being very little extra spacing between paragraphs, these paragraphs have been
correctly detected and handled

9. This sub-article caused problems as it spans over 2 columns. It is included after the first column
of the first article and followed by the remaining columns

PDF TO HTML CONVERSION Final Report

Page 44

6 Conclusion

Overall, this project has led to the successful design and implementation of a piece of

software to convert PDF files to HTML. After investigating the existing solutions to

the problem it was found that they were mostly based upon the original aim of

preserving page layout. This method was found to have a large number of drawbacks,

and there seemed little advantage in simply repeating this work.

It was therefore decided to reject the original aim of the project and to use a new

method, intelligent text extraction, to perform the conversion. As this is a far more

complex approach, many of the initial objectives, and some of the modified objectives

stated in the Progress Report, have not been fulfilled.

Implementation of this approach has shown that the results, although less accurate, are

more practical for on-screen viewing, and far more suitable for inclusion into an

existing web site.

The resulting program is a useful tool for anyone who wishes to extract text from PDF

files, and gives good results for simple and moderately-complex documents. It also

serves as a good starting point for anyone wishing to develop further work on this topic

in an academic or commercial environment.

6.1 Limitation of the implementation

This implementation looks solely at the text elements in the page. It does not convert

graphics, or use any graphical information to obtain information about how the page is

structured.

Given the imposed time constraints, the implementation centred around reproducing

the features in the four PDF files listed in Section 3.3. Certain page features, such as

tables, have not been covered. While the program will work with other PDF files, these

features will not be converted properly.

6.2 Author’s assessment of the project

What is the technical contribution of this project?

The work carried out in this project was to design and develop a piece of software to

convert PDF files into HTML format. This was begun by investigating and analysing

Final Report PDF TO HTML CONVERSION

Page 45

existing solutions to the problem. From the investigation it was decided to use a

different method to the existing solutions to perform the task.

Although a third-party library was used to access the data held in the PDF file itself, a

lot of technical work was involved in creating algorithms to order and merge the text

correctly. The algorithms had to understand a variety of complex page layouts and

process the text accordingly. The algorithms were designed to detect a variety of

features on the page including columns, paragraphs, formatting, hyphenation and

indentations. The output is in a “clean” HTML format using styles and paragraph tags

where appropriate.

How can others make use of the work in this project?

The software developed in this project can be used to extract text and complete pages

from PDF files for inclusion in web pages or for importing into a word processing

package. The method that was used in this project generates output that is far more

suitable for this purpose than the output from the existing converters that were studied.

Why should this project be considered an achievement?

Although the direction of the project had changed considerably since the specification

stage and, consequently, some of the objectives were not fulfilled, the project has

instead led to the development of a new method of converting between the two file

formats with potentially far more useful results.

What are the weaknesses of this project?

The column detection methods are still far from perfect, and additional work would

improve the converter’s ability to process very complex page layouts. This project

concentrated solely on analysing the textual elements of the page; extra information

could be gained from analysing graphical objects, such as lines and boxes, which could

improve the results for complex page layouts (see section 7.2).

PDF TO HTML CONVERSION Final Report

Page 46

7 Future development

Given the wide range of PDF files that are available, there are various areas of future

development for this project, and it could be extended to meet a variety of academic or

business requirements. This section gives some examples of further work that the

author believes to be important or beneficial.

7.1 Conversion to RTF format

In Section 5.2 it was concluded that the output of the converter closely resembled a

word processed document. Although HTML files can be imported into most word

processors, such as Microsoft Word, it would be more useful if it would be possible to

convert directly to RTF (Microsoft Rich Text Format). This would not be a

complicated task, and would require little more than replacing HTML tags with their

RTF equivalents. Because of the class structure of the program, it would even be

possible to write a new front-end to perform the conversion to RTF, using the existing

back-end software to process the PDF file itself.

7.2 Using graphical data on the page

So far, the implementation has only looked at the textual data on the page to obtain

information about its structure. Although this has led to an acceptable result with

simpler multi-column layouts, more complex layouts have sometimes led to errors in

the conversion (see section 5.3.4). Such layouts often use lines and boxes to inform the

reader where different articles begin on the page. It was suggested in sections 4.4.3,

5.1 and 6.1 that the project could be extended to analyse these graphical elements to

improve the column recognition algorithm.

7.3 Understanding tabular data

Due to time constraints, no attempt was made to convert PDF files that contained data

in tables. With the current implementation, these tables will be merged to form

meaningless paragraphs of text. The project could be extended to analyse the x and y

co-ordinates of each text fragment to detect these tables and reproduce them as HTML

tables using the correct tags.

7.4 Inclusion of graphics in converted output

The current implementation ignores any graphics on the page. The project could be

extended to extract all the graphics, resize them and convert them to an appropriate

Final Report PDF TO HTML CONVERSION

Page 47

format for web use. A further improvement would then be to insert these graphics into

the converted HTML text at the appropriate point.

7.5 Detection of multi-level styles

Currently the implementation utilizes only two styles, h1 for heading and p for

paragraph text. Headings are detected simply by being above a certain threshold size.

This is adequate for shorter documents. Longer documents, like this one, often use

various heading levels and various levels of indentation. The project could be extended

to analyse all the text fragments to detect the various style and indentation levels and

reproduce them in the converted HTML.

PDF TO HTML CONVERSION Final Report

Page 48

Glossary of terms

break a HTML tag (
) that informs the browser to display

the following text on a new line without beginning a new

paragraph

forced carriage return see section 4.5.6

Ghostscript a third party (non-Adobe), open source program for

viewing and printing PostScript and PDF files

intelligent text extraction the name given in this report to describe the method of

extracting text from the PDF, which requires

understanding the layout of the page in order to sort,

group and merge the text correctly

JPedal see section 3.6

miscellaneous text fragment see section 4.5.8

resampling the process of changing the pixel size of a bitmap image.

The “nearest neighbour” method duplicates or removes

pixels as necessary, often causing distortions as a result.

Better methods use bilinear or bicubic interpolation,

estimating the values of missing pixels based on those

either side, and leading to a smoother result

stable sort a sorting algorithm that preserves the order of elements

that have equal key values

style sheet a structure for including style definitions in a HTML

document; can either be external (in a different file),

internal (in the header) or inline (inside a particular

HTML element)

Final Report PDF TO HTML CONVERSION

Page 49

References

[1] L Leurs: The History of PDF, The Prepressure Page,

 http://www.prepressure.com/pdf/history/history01.htm

[2] Inventor Tim Berners-Lee, The Great Idea Finder,

 http://www.ideafinder.com/history/inventors/berners-lee.htm

[3] Dan Gross: Creating a Comparator to Sort Objects, java.sun.com,

 http://developer.java.sun.com/developer/qow/archive/106/index.html

Bibliography

Description of PDF, Adobe.com

http://www.adobe.com/products/acrobat/adobepdf.html

PDF to HTML Recastor, Archisoft,

http://www.archisoftint.com/logiciels/recr_us.htm

PDFtoHTML Conversion Program, Sourceforge.net,

http://pdftohtml.sourceforge.net

View as HTML feature, Google.com,

http://www.google.com

Java PDF Extraction Decoding & Access Library, IDR Solutions,

http://jpedal.org

CSS Tutorial, w3schools.com,

http://www.w3schools.com/css/

Jim Barchuk: The Vagaries of Stupid HTML Indent Tricks, jbarchuck.com,

http://www.jbarchuk.com/indent/

How to Write Comments for the Javadoc Tool, java.sun.com,

http://java.sun.com/j2se/javadoc/writingdoccomments/

PDF TO HTML CONVERSION Final Report

Page 50

Contents of Included CD

The following material is included in the root directory of the CD:

• the source code

o pdf2html.java

o PdfGrouping.java

• javadoc of the source code

o files in /javadoc subdirectory

• the compiled code (compiled under J2SDK 1.4.1 for Windows)

o pdf2html.class

o PdfGrouping.class

o PdfGrouping$GapComparator.class

o PdfGrouping$GroupComparator.class

o PdfGrouping$rectangle.class

o PdfGrouping$XYComparator.class

o PdfGrouping$YErrComparator.class

• the required libraries

o jpedal.jar

o jdom.jar

• the PDF files used in the investigation of existing solutions

o artmb_wp.pdf

o today.pdf

o ptt05.pdf

• the PDF files used as conversion material for the implementation

o sampleletter.pdf

o A_Tale_Of_Two_Cities_NT.pdf

o reffnewsletter.pdf

o winter_02.pdf

• converted versions of the above four PDF files

o sampleletter.html

o A_Tale_Of_Two_Cities_NT.html

o reffnewsletter.html

o winter_02.html

To compile the program under Windows, use the following command:
 javac –classpath .;jpedal.jar;jdom.jar pdf2html.java

To compile the program under Unix, use the following command:
 javac –classpath .:jpedal.jar:jdom.jar pdf2html.java

