
dynPARTIX 2.0 - Dynamic Programming
Argumentation Reasoning Tool

Günther CHARWAT 1 and Wolfgang DVOŘÁK
Institute of Information Systems E184, Vienna University of Technology,

A-1040 Vienna, Austria

Abstract. Most reasoning tasks in abstract argumentation are in general compu-
tationally hard. One approach of dealing with such problems stems from the field
of parameterized complexity theory. For so called fixed-parameter tractable algo-
rithms, one identifies problem parameters, e.g. the graph parameter tree width, such
that the run-time of algorithms heavily scales with the parameter but only poly-
nomially with the input size. The dynPARTIX system turns these fixed-parameter
tractability results into practice by implementing dynamic programming algorithms
for the graph parameter tree width.

Aim of Work. The tool dynPARTIX 2.0 aims at the efficient evaluation of problems that
are defined for abstract argumentation frameworks (AFs). By implementing algorithms
that are based on fixed-parameter tractability we want to provide a system that turns
complexity-theoretic results into practice. An important parameter of graphs (and hence
for argumentation frameworks) is the tree width which is defined on certain tree decom-
positions of graphs. The fixed-parameter tractable algorithms that underlie dynPARTIX
are defined on such tree decompositions. Our goal is to develop an easy-to-use tool that
performs especially good for instances of small tree width and that is capable of handling
large input instances.

Capabilities. First algorithms using tree decompositions for the evaluation of problems
in this field where developed in [3]. The original prototype of dynPARTIX was devel-
oped in 2011 by Nopp et.al. [4]. It supported the computation of admissible as well as
preferred semantics. The enhanced system dynPARTIX 2.0 significantly increases the
overall run-time performance and furthermore introduces support for stable as well as
complete semantics. A description of these novel algorithms can be found in [1].
The following features are provided by dynPARTIX 2.0:

• Support of admissible, preferred, stable and complete semantics.
• Enumeration of extensions.
• Counting the number of extensions (without explicit computation of extensions).
• Deciding credulous and skeptical acceptance.
• Simple command-line interface.
• Support of normalized as well as semi-normalized tree decompositions.

The system dynPARTIX 2.0 and a detailed documentation are publicly available at:
www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix

1Corresponding Author: Günther Charwat, E-mail: gcharwat@dbai.tuwien.ac.at.



System Interface. As input, dynPARTIX expects an argumentation framework (AF) as
introduced by Dung [2]. This AF is given as directed graph consisting of arguments
(vertices) and an attack relation (directed edges in the graph). One may specify this AF
using the ASPARTIX2 input format:
arg(a). arg(b). % Arguments a and b.

att(a,b). % Attack: a attacks b.

A possible program call may be of the following format:
./ dynpartix -f inputfile.af -n semi -s admissible --cred a

Technical Background. After parsing the input (specified with -f inputfile.af) a
normalized (-n norm) or semi-normalized (-n semi) tree decomposition is generated
with help of the SHARP3 framework. A tree decomposition is a mapping from an AF to
a tree where the nodes in the tree contain bags of arguments from the AF. Each argument
appears in at least one bag, adjacent arguments are together in at least one bag and bags
containing the same argument are connected.

The width of the tree decomposition is defined as the maximal number of arguments
in the bags, minus one. The tree width is the minimal width over all tree decomposi-
tions. Semi-normalized tree decompositions solely consist of binary branch nodes and
exchange nodes where the latter allows for arbitrarily many arguments to be added to
or removed from the bag of the node. Normalized tree decompositions are composed of
binary branch nodes as well. Instead of exchange nodes they consist of introduction and
removal nodes (where exactly one argument is added or removed) and leaf nodes.

Given a tree decomposition we apply a dynamic programming algorithm [1,3] cor-
responding to the specified semantics (e.g. -s admissible) and reasoning mode (e.g.
--cred a). The tree is traversed in bottom-up order where at each node possible candi-
date solutions are computed. After a full traversal we obtain our result at the root node.

Performance. Our benchmarks show that the run-time performance of dynPARTIX
heavily depends on the tree width, which reflects the theoretical results from [3]. Com-
paring our tool with a state-of-the-art reasoning system, i.e. ASPARTIX (in conjunction
with dlv4), we achieve that, for instances of small tree width, dynPARTIX outperforms
ASPARTIX. However, for AFs of high tree width the ASPARTIX system still performs
better. Finally, our benchmarks show that using semi-normalized instead of normalized
tree decompositions significantly improves the performance of dynPARTIX 2.0.

References

[1] Günther Charwat. Tree-Decomposition based Algorithms for Abstract Argumentation Frameworks. Mas-
ter’s thesis, Vienna University of Techology, 2012.

[2] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77(2):321 – 357, 1995.

[3] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable algorithms
for argumentation. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, KR 2010, pages
112 – 122. AAAI Press, 2010.

[4] Wolfgang Dvořák, Michael Morak, Clemens Nopp, and Stefan Woltran. dynPARTIX - A dynamic pro-
gramming reasoner for abstract argumentation. In INAP 2011, CoRR, abs/1108.4804, 2011.

2http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
3http://www.dbai.tuwien.ac.at/research/project/sharp/
4http://www.dlvsystem.com/


