

12th International Conference on Logic Programming and Nonmonotonic Reasoning

ARVis: Visualizing Relations between Answer Sets

Thomas Ambroz Günther Charwat Andreas Jusits Johannes Peter Wallner Stefan Woltran {gcharwat, wallner, woltran}@dbai.tuwien.ac.at

Institute of Information Systems, Vienna University of Technology

Motivation

Improve answer set programming (ASP) versatility:

- Tools for user support needed
- In particular tools with GUI

Several existing tools that support answer set visualization:

- ASPViz
- IDPDraw

Visualization of relations can be used for

- Expressing preference criterion
- Representation of results that build upon graph structure
- Debugging

ARVis - "Answer Set Relationship Visualizer"

- Kara (part of SeaLion)
- ► ASPIDE

However, no system for visualization of *relations* between answer sets

System Concept

Program 1, Program 2 and Instance are given as input

Key features:

- Problem and relations each expressed in an ASP encoding
- Results visualized as an interactive graph

Case Study: Abduction

Abduction problem:

- Consists of background theory, manifestations and hypotheses
- Goal: Find subsets of hypotheses that explain manifestations
- Furthermore, relate these explanations w.r.t. their "quality" (e.g., cardinality, subset inclusion, ...)

Implementation for ARVis:

Program 1: Provides possible explanations for manifestations
Program 2: Relates all explanations

🏦 💿	Answer Set Relationship Visualizer				$\otimes \otimes \otimes$
ARVis					
A R	ASP Program 1 (Nodes) Flattening As	SP Program 2 (Relations)	Edge Selection	Visualization	
Graph model: Model 1	Graph Visualization:	Filter	predicates: hesis		

Workflow

Workflow, consisting of five steps, guides user through process

ARVis allows one to intuitively inspect obtained explanations:

- Nodes represent explanations
- Edges represent relation (here: subset inclusion)

System facts:

- Platform-independent Implemented in Java, using Jung library
- Solver-independent Support for Potassco family and DLV
- Domain-independent Problems solely specified in ASP
- High performance Handles 100s of nodes with 1000s of relations
- Versatile Supports export and post-processing of graph and answer sets

Application areas:

Any problem where preferences between solutions are relevant
 Problem domains with an underlying graph structure

Successfully applied:

- Abduction: Express preferences over explanations for observed behavior
- Argumentation: From a given knowledge base, obtain and visualize argumentation frameworks

http://www.dbai.tuwien.ac.at/proj/arvis/

Supported by the Austrian Science Fund (FWF) under grant P25607, and by the Vienna University of Technology special fund "Innovative Projekte" (9006.09/008).

Der Wissenschaftsfonds.