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ABSTRACT
Information on the Web is not only abundant but also re-
dundant. This redundancy of information has an important
consequence on the relation between the recall of an infor-
mation gathering system and its capacity to harvest the core
information of a certain domain of knowledge. This paper
provides a new idea for estimating the necessary Web cover-
age of a knowledge acquisition system in order to achieve a
certain desired coverage of the contained core information.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Measurement, Theory

Keywords: Information extraction, Recall, Redundancy,
Quantitative performance measures, Web metrics

1. INTRODUCTION
Recall is a well established measure in information re-

trieval (IR) and information extraction (IE) for evaluating
the effectiveness of either retrieving relevant documents or
extracting relevant statements with statements considered
to be the smallest bits of information about entities [5]. For
information gathering (IG) or knowledge acquisition from
the Web [3, 4] – which can be modeled as a consecutive pro-
cess of IR, IE and Information Integration (II) – the actual
goal is not to locate and extract all appearances of relevant
information, but to extract as much unique information as
possible, disregarding all similar or redundant appearances.
For domains with large portions of redundant information
on the Web, such as digital consumer products or news, the
dominant part of relevant information can be gathered even
with low overall recall. As an example, a domain-specific
recall of r = .0001 would probably be enough for learning
the information that Shizuka Arakawa won the gold medal
in figure skating at the Winter Olympic Games 20061.

Therefore, this paper argues to shift the attention from
the redundant representation of information to the actual
core information stripped off of all redundancy (Fig. 1).
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Figure 1: The actual target of IG is the core infor-
mation Au, not its redundant representation A.

2. UNIQUE RECALL
In what follows, we consider relevance to be a binary de-

cision. Similarly, we disregard the issue of conflicting in-
formation and assume two statements to either express the
same information, and hence be redundant, or not.

Definition 1. (Redundancy) Let a be the number of rel-
evant statements and au be the number of unique statements
among them, which is the smallest number of statements
that contain all relevant information or the core relevant
information. We define the term redundancy as

ρ =
a

au
. (1)

Definition 2. (Unique recall) Let au be the number of
unique statements within the total set of relevant state-
ments, and let bu be the number of gathered unique rele-
vant statements, stripped off of all redundancy. We define
the term unique recall as

ru =
bu

au
. (2)

Proposition 1. (Unique recall formula) Assume re-
dundancy (ρ) to be equal among all subsets of relevant state-
ments. Further assume the probability of each occurrence of
relevant information to be extracted by a given mechanism
equal and expressed by the measure recall (r). Then the ex-
pected value of unique recall ru can be approximated by

ru = 1− (1− r)ρ . (3)
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Figure 2: Relations between recall r, unique recall ru and varying distributions f(η) of redundancy ρ.

Figure 2(a) shows equation 3 for example values of ρ. De-
spite the apparent innocence of this formula, its derivation
is not straightforward. The proof succeeds by applying a
limit value consideration to a geometric model of a proba-
bilistic lottery. Figure 2(b) illustrates this approximation to
be suitable and to hold strongly for n → ∞ with n being
the number of unique occurrences of relevant information.

By building on Proposition 1, we can formulate the gen-
eral equation for arbitrary redundancy distributions with
ρmax layers of partly redundant information as

ru = 1−
ρmaxX
i=1

αi (1− r)i , (4)

s.t.
Pn

i=1 αi and
Pn

i=1 iαi = ρ, with αi being the fractions
of the total amount of unique information contained within
a block with redundancy ρ = i = const, i ∈ {1, 2, ...ρmax}.

Calculating the first derivative and then taking the limit
value for r → 0, we further learn the approximation

ru ≈ ρr, for r → 0. (5)

Figure 2(d) depicts equation 5 together with the closed so-
lutions for the three canonical redundancy distributions ho-
mogeneous, linear and geometric from Fig. 2(c).

3. DISCUSSION AND FUTURE WORK
To the author’s best knowledge, no prior attempt has

been made to incorporate the effects of redundant informa-
tion sources into a single effectiveness measure for the whole
knowledge acquisition process, nor is the seemingly simple
proposition 1 contained in major mathematical literature.

To demonstrate its practical relevance, assume we want
to know the fraction r of available redundant information
instances we have to retrieve and extract in order to learn a
certain portion of the core information from a given domain
of interest. Further assume the redundancy distribution of
information within this domain to follow a known function
f(η) with η ∈ [0, 1] and

R 1

0
f(η)dη = ρ. The inverse function

ru
−1(r) of equation 4 then gives us the required joint recall

rreq of the IR and IE steps of our IG system.
Deriving a particular analytic solution is not always sim-

ple, mainly due to the required transitions between discrete
and continuous viewpoints. However, given our derived ap-
proximation of ru(r) for r → 0 from equation 5, which holds
even stronger for ru → 0 with ru ≥ r, we can state the

following approximation, independent of the actual distri-
bution f(η):

rreq ≈ ru

ρ
, for small ru. (6)

Figure 2(d) shows that this relation holds well for small ru,
and since we defined ρ as the average redundancy, this result
seems to contrast claims that the feature ’mean’ has little
practical value for skewed distributions [1].

The intriguing open and relevant problem is to derive the
analytic solution for a generalized Zipf redundancy distri-
bution, as this distribution is generally assumed to approx-
imate well the frequency of appearance of individual pieces
of information on the Web [6, 7]. A more playful formula-
tion of the research question is as follows: Assume the Zipf
distribution with exponential parameter γ ≈ 2 of Fig. 2(c)
adequately describes the redundancy distribution of infor-
mation on the Web [2]. What is the generalization of the
20/80 rule [8] that holds for the Web?
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