
Using Visual Cues for Extraction of Tabular Data from
Arbitrary HTML Documents

Bernhard Krüpl
Vienna University of

Technology
Institute of Information

Systems
Database and Artificial

Intelligence Group

kruepl@dbai.tuwien.ac.at

Marcus Herzog
Vienna University of

Technology
Institute of Information

Systems
Database and Artificial

Intelligence Group

herzog@dbai.tuwien.ac.at

Wolfgang Gatterbauer
Vienna University of

Technology
Institute of Information

Systems
Database and Artificial

Intelligence Group

gatter@dbai.tuwien.ac.at

ABSTRACT
We describe a method to extract tabular data from web
pages. Rather than just analyzing the DOM tree, we also
exploit visual cues in the rendered version of the document
to extract data from tables which are not explicitly marked
with an HTML table element. To detect tables, we rely on
a variant of the well-known X-Y cut algorithm as used in the
OCR community. We implemented the system by directly
accessing Mozilla’s box model that contains the positional
data for all HTML elements of a given web page.

1. INTRODUCTION
Most of today’s web documents are designed for a human

audience. Although many efforts have been undertaken to
bring explicit semantics to the Web, the vast majority of
pages is designed with a certain visual appearance in mind:
authors use HTML rather as a page layout language than
for the purpose of semantic markup. However, there is a
common misunderstanding that such pages are semantically
poor. Instead, the semantics is just shifted from an explicit
level (proper HTML or XML tags) to an implicit one: the
spatial alignment of the document text on the page.

Documents have come a long way from the mere sequen-
tial order of sentences to sophisticated layouts following dif-
ferent typesetting conventions and fashions. Therefore it
seems quite natural to exploit this additional information
for information extraction applications.

Web layouts can be achieved with different methods rang-
ing from basic HTML markup to fancy CSS stylesheets
and dynamic client-side programming. Still, most web in-
formation extraction programs operate just on the DOM
tree where the spatial information cannot by directly ac-
cessed. By utilizing the screen rendering provided by the
open source browser Mozilla we are able to exploit this spa-
tial information during the extraction process.

2. WEB PUBLICATION PROCESS
The publication of a web page can be understood as a

communication process from persons to persons (see figure
1).

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

Figure 1: Layers of abstraction in the web publica-
tion process

Starting at the left-hand side, an author edits a Web page,
often by using a visual editor. The result of this step is a
certain HTML (possibly including some CSS) source code.
This initial representation of the communication content is
then gradually transformed for transmission (going down the
stack of communication layers). At the receiver’s side, the
transformations are applied the other way around, moving
the information up the stack. In the last step, a web browser
creates a visual rendering from the supplied HTML code by
applying a rendering algorithm.

It is quite obvious that the format at the transport layer is
not useful at all for information extraction. The lower infor-
mation moves down in the transformation stack, the more
noise and redundancy is added. On the opposite, informa-
tion in its purest form can be found when it is as close to
the receiver as possible, in this case, the visual rendering,
not its encoding in various formats.

See [4] for an inspiring discussion how information is trans-
mitted between two persons.



<p>Here is some important information:</p>

<table>

<tr><td>The</td><td>Quick</td></tr>

<tr><td>Brown</td><td>Fox</td></tr>

</table>

<div style="position: absolute; left:74; top:68;">

<p>Fox</p></div>

<div style="position: absolute; left:74; top:42;">

<p>Quick</p></div>

<div style="position: absolute; left:8; top:1;">

<p>Here is some important information:</p></div>

<div style="position: absolute; left:10; top:42;">

<p>The</p></div>

<div style="position: absolute; left:10; top:68;">

<p>Brown</p></div>

Figure 2: Two different chunks of HTML code lead-
ing to the same visual rendering

3. BACKGROUND
As a part of a web data extraction project, we need to

automatically augment a domain model with additional in-
formation extracted from web pages. We employ Named
Entity Recognizers (NERs) [2] to find interesting text nodes
on a given page. As the analysis of tabular data is most
promising for our augmentation task, we try to find out if
those particular nodes are part of a table. In the case of a
table defined with HTML table elements, this is trivial. In
the case of other HTML elements like div, the hierarchical
order of nodes in the document model does not necessarily
correspond to the order in the visual representation. In the
later case the problem of tabular data extraction is better
addressed on the presentational layer, i.e., on the rendering
supplied by the web browser (see Figure 2).

When we look at the two HTML source code examples in
Figure 2, it is not obvious at all that the visual rendering
provided by a web browser is the same, as it is actually the
case. In the div sample, proximity in the DOM tree does
not correspond to proximity in the visual rendering. From a
user’s point of view it is quite clear that both examples have
to be interpreted the same way – users do not care about
internal page representations.

4. IMPLEMENTATION

4.1 Positional data
Writing a modern web browser adhering to all standards

out there is a very complicated task. As it is not feasible
for our extraction system to re-implement all the rendering
abilities of such a system, we chose to rely on the Gecko ren-
dering engine that is built-in into Mozilla. Mozilla internally
uses the so-called box model, where the bounding boxes of
all rendered nodes are stored. We access this positional in-
formation from within our program by using XPCOM bind-
ings.

4.2 Detection algorithm
In the OCR communtiy, the well-known X-Y cut algo-

rithm [3] is used for page segmentation. The algorithm
works by projecting the document bitmap (i.e., summing up

all the pixels in a line) to the sides of document page. By
this method, a white space density graph is produced, with
peaks for vertical or horizontal lines surrounded by whites-
paces. These peaks define the cuts of the document and
are used to segment the document into smaller pieces. In a
variant [1], the algorithm does not operate on the document
bitmap itself but rather on the bounding boxes of connected
components (typically characters). While this variant was
developed for speed optimization reasons, we came to the
conclusion that it is a valuable method to process the posi-
tional information we gain from the Mozilla browser, which
is also encoded using bounding boxes. (With the notable
distinction that the Mozilla bounding boxes are defined for
DOM nodes, not for single characters.) In the X-Y cut al-
gorithms, the cuts are recursively applied to the document,
and the found segments are stored hierarchically in a X-Y
tree – the X-Y tree shows the hierarchical subdivision of a
page by recursive (X-horizontal and Y-vertical) cuts. (The
root node is the bounding box of the full page.)

4.3 Table detection
Since we apply the algorithm on the bounding boxes of

HTML nodes, we are especially interested in ancestor nodes
of leaf nodes (which correspond to the HTML nodes) of the
X-Y tree. If we can find an ancestor node that contains a
certain number of leaf nodes which in turn contain named
entities (as found by our NERs), we assume that the X-
Y node found represents a table. (Note that the NERs of
course operate on the DOM tree.) Part of the named en-
tity recognition process is a simple heuristics that is applied
to make sure that a node does not contain too much other
content besides the recognized entity. This helps us to iden-
tify the data-centric tables we are actually looking for – the
assumption is that with growing table cell content, the se-
mantic relations between table cells get weaker.

5. FUTURE WORK
We plan to further investigate our combined visual and

DOM tree approach to the extraction problem by applying
it to the real world scenario of extracting product attributes
from web tabular data in the digital camera domain. Also,
we currently investigate how spatial distance measures can
help us to address the problem of the table structure recog-
nition [5] of nested tables.

6. REFERENCES
[1] Ha Jaekyu, R.M. Haralick, and I.T. Phillips. Recursive

x-y cut using bounding boxes of connected components.
In Proc. of the 3rd Int. Conf. on Document Analysis
and Recognition, pages 952–955, 1995.

[2] A. Mikheev, M. Moens, and C. Grover. Named entity
recognition without gazetteers. In Proc. of the 9th
Conf. of the European Chapter of the Assoc. for
Computational Linguistics, 1999.

[3] G. Nagy and S. Seth. Hierarchical representation of
optically scanned documents. In Proc. of the 7th Int.
Conf. on Pattern Recognition, pages 347–349, 1984.

[4] Tor Norretranders. The User Illusion. Penguin Books,
1998.

[5] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of
table recognition: Models, observations,
transformations, and inferences, 2003.


