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Abstract

Tables on web pages contain a huge amount of seman-
tically explicit information, which makes them a worth-
while target for automatic information extraction and
knowledge acquisition from the Web. However, the task
of table extraction from web pages is difficult, because
of HTML’s design purpose to convey visual instead of
semantic information. In this paper, we propose a ro-
bust technique for table extraction from arbitrary web
pages. This technique relies upon the positional infor-
mation of visualized DOM element nodes in a browser
and, hereby, separates the intricacies of code implemen-
tation from the actual intended visual appearance. The
novel aspect of the proposed web table extraction tech-
nique is the effective use of spatial reasoning on the
CSS2 visual box model, which shows a high level of ro-
bustness even without any form of learning (F-measure
≈ 90%). We describe the ideas behind our approach,
the tabular pattern recognition algorithm operating on a
double topographical grid structure and allowing for ef-
fective and robust extraction, and general observations
on web tables that should be borne in mind by any au-
tomatic web table extraction mechanism.

Introduction
The huge amount of information on the Web makes it an
ideal source for collecting facts (Etzioni et al. 2004) and de-
ducing semantic relationships from the extracted data (Pivk
2006) with one important application of comparison shop-
ping (Bilenko, Basu, & Sahami 2005).

This process of knowledge acquisition from the Web can
be divided conceptually into three consecutive steps (Gat-
terbauer 2006): Information Retrieval (IR) which aims to
locate documents containing data and information relevant
to a certain query; Information Extraction (IE) which aims
to extract relevant information or data like keywords that ap-
pear in certain semantic or syntactic relationships; and fi-
nally, Information Integration (II) which aims to match in-
dividual pieces of information from heterogeneous sources

∗This research has been supported in part by the Austrian
Academy of Sciences through a DOC scholarship, and by the Aus-
trian Federal Ministry for Transport, Innovation and Technology
under the FIT-IT contract FFG 809261.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and to build a consistent view in the form of a knowledge
base. One is tempted to argue that these three steps form
a processing chain that leads from data and information to
knowledge.

With the rise of the WWW to the biggest single pool
of information, focus of IE research gradually shifted from
unstructured documents to semi-structured documents like
HTML web pages. Within semi-structured documents, how-
ever, the content itself again can appear in natural language
context (such as in weblogs) or in structured context (such
as in tables and lists). Especially within tables, the notions
of syntax and semantics blend into each other because each
logical cell of a table derives its semantic meaning from its
relative positional information, which can be regarded as
syntax. Such table syntax is rather strict and less expres-
sive than that of natural language, at least when focusing on
such tables used to convey relations between data elements
(“relational databases”).

The task of table understanding can conceptually be sep-
arated into three consecutive steps (Hurst 2001): location of
a table within a document; table recognition which aims to
identify the relative spatial positions between a table’s com-
posing logical units; and table interpretation which aims to
infer the reading paths of semantic information encoding.
We refer to the first two steps as table extraction.

Web tables contain visual cues like background color and
font metadata to help the human reader distinguish individ-
ual building blocks or logical cells of the contained rela-
tional information. Our observation is that the individual
steps of table understanding become easier by taking ad-
vantage of such information in the representation that web
browsers use in their internal DOM tree to correctly display
or render the tables.

With this idea in mind, we propose an innovative ap-
proach to web table extraction (and in a future step web table
understanding) that relies upon the positional and metadata
information of element nodes within the DOM tree of a web
browser. The pure approach proves to deliver very robust re-
sults and shows high potential for significant improvements
in the future by adding heuristics and machine learning tech-
niques on the available features. In our opinion, the robust-
ness of our approach can be contributed to its chosen repre-
sentation for reasoning that very well reflects the nature of
semantic information in tables.



Overall, the main contributions of this paper can be sum-
marized as follows: (1) We propose the visualized element
nodes as basis for robust table extraction. (2) We introduce
our visual table extraction model by which we define such
structures that contain semantically relevant information in
tabular form. (3) We introduce a bottom-up circulating ex-
pansion algorithm that reasons on the visualized element
nodes and report the experimental results of our prototype
implementation.

Related work

The tasks of table extraction and interpretation originate
from the document understanding community. Approaches
can basically be divided into two categories: top-down like
(Nagy & Seth 1984) and bottom-up like (Kieninger 1998),
depending on where the algorithms start. Hurst (2000) in-
troduced an abstract table model for table understanding and
separated the task into 5 steps. Web table recognition sys-
tems conventionally consider only the source code of HTML
for extracting tabular data. Wang & Hu (2002) defined 16
features deduced from the source code and applied ML al-
gorithms to distinguish “genuine” (Penn et al. 2001) from
“non-genuine” tables. Both publications assume that inter-
esting tables can only be found in leaf table elements, which
are <TABLE> nodes that do not contain any other nested
<TABLE> nodes.

To our best knowledge, the idea of actually rendering
or “executing” HTML code in order to use the results for
detecting relational information in web tables is first men-
tioned in (Cohen, Hurst, & Jensen 2002) within the con-
text of Wrapper Learning. The described approach, how-
ever, does not actually render documents in a browser, but
rather infers relative positional information of table nodes
in an abstract table model with relative positional informa-
tion deduced from the source code. In contrast, (Krüpl, Her-
zog, & Gatterbauer 2005) described a top-down table ex-
traction mechanism working exclusively on rendered infor-
mation obtained from the Open Source Mozilla Browser. In
a forthcoming publication, Krüpl & Herzog (2006) report
an approximate success rate of 70% with a bottom-up clus-
tering algorithm of visualized word bounding boxes. The
approach of our paper, in contrast, reasons on visualized ele-
ment nodes with text projected into end results, which avoids
problems with multiline cell detection inherent to both top-
down and bottom-up table recognition approaches based on
word bounding boxes (Handley 2000).

In a related research area, Cai et al. (2003) for the first
time described an approach of page segmentation by obtain-
ing DOM structure and visual information from the Inter-
net Explorer web browser. Later, (Zhao et al. 2005) and
(Zhai & Liu 2005) proposed to augment HTML code based
approaches to record boundary detection with visual cues.
Recently, Simon & Lausen (2005) described an approach
that exclusively considers visual rendering of a web page for
record boundary detection with the help of global multiple
sequence alignment techniques.

The Visual Table Model
When HTML documents are laid out on the screen, CSS
(Cascading Style Sheets) represents the elements of the doc-
ument by rectangular boxes that are laid out one after the
other or nested inside each other in an ordering that is called
a flow. Each box has a content area and optional surround-
ing padding, border and margin areas according to the CSS2
visual formatting model (Wium Lie et al. 1998). We re-
fer to such rendered or visualized element nodes as element
boxes, use their border edges as our defining edges, and re-
trieve their positional information from the Mozilla browser
as described in (Krüpl, Herzog, & Gatterbauer 2005).

Given all element boxes, we superimpose a minimal grid
which covers each of their borders. In contrast to a 2-
dimensional grid, as explained in (Hurst 2000) or used to ref-
erence fields of a chess board and cells of a spreadsheet, we
use a double topographical grid structure with 4 dimensions
(x1, y1, x2, y2) for each of the 4 cardinal directions of the
visual plane: right, down, left, up (Figure 1). Despite not be-
ing more expressive in saving structures, we found this data
structure built upon 4 lists of lists to be very time-effective
in the process of detecting structures on a non-perfect grid
with partly overlapping or empty blocks.
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Figure 1: Minimal double topographical grid, superimposed
on element boxes, allowing for efficient spatial reasoning.

We use two notions to characterize the spatial relations
between any two boxes on the grid both vertically and hor-
izontally: alignment and adjacency. Alignment compares
horizontal and vertical projections of boxes. Aiello (2002)
introduced rectangle relations based on the 13 temporal in-
terval relations from Allen (1983) together with a notion of
thick boundary for the purpose of reading order detection
from document images. For our purpose, clustering into 5
distinct types of neighbor relations proved useful, as they
express the 5 possible spatial relations between table cells
for a given direction (Figure 2).

Adjacency is a term closely related to distance. Theo-
retically, two cells in the grid are adjacent if they are flush
with each other. In reality, however, the actual distance be-
tween adjacent boxes is not always 0 and a long list of pa-
rameters would have to be recorded and calculated in or-
der to correctly “reverse engineer” whether any two boxes
are meant to be adjacent according to the CSS2 visual box
model (Wium Lie et al. 1998). To avoid the resulting time
performance reductions, we currently consider two boxes
with a distance between 0 and 3 pixels to be adjacent.
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Figure 2: Five relevant lower neighbor relations, downward looking from box A, and corresponding semantic relations.

Within the pool of positional box information, we look
for certain patterns we refer to as hyperBoxes which are a
objects composed of rectangular areas on the double topo-
graphical grid together with a list of boxes that show the fol-
lowing distinguishing characteristics: the boxes together tile
these encompassing rectangles in such a way that the whole
area is covered and no box overlaps another box (MECE =
Mutually Exclusive, Collectively Exhaustive). We call ta-
bles of interest (TOI) the subset of hyperBoxes that contain
relevant tabular semantic information. Such regions show
the following necessary, but not sufficient characteristics:

1. HyperBox. Like any hyperBox, a TOI has one bounding
box as circumference.

2. MECE. Like any hyperBox, the boxes composing a TOI
completely tile the encompassing hyperBox without any
overlaps.

3. Keyword. A TOI contains a semantically relevant key-
word (see next chapter for details).

4. No step neighbors. A TOI does not contain any step
neighbors. This alignment relationship applies to any two
cells within the TOI, not only adjacent boxes. The reason
is that step neighbors do not have a well-defined categor-
ical relation to each other.

5. 2 dimensions. A TOI has at least 2 columns and 2 rows to
ensure two-dimensional relationships.

6. Cleanness. The table contains no empty cells that could
be merged into a subset of their neighbors without chang-
ing the semantic relationship between cells.

Despite or perhaps because of its simplicity, this visual
table extraction model for TOIs works very well in practice.
As HTML is not as expressive for visual tables as paper,
we do not have to consider some peculiarities like diagonal
subheadings that could be found on printed tables. HTML
documents also usually do not align and place units of infor-
mation adjacent to each other if there is no relevant semantic
relation between them, as such a visual relation would also
mislead the human reader. In total, this set of assumptions
serve well for automatic extraction of TOIs from web pages.

Spatial Reasoning Algorithm
The table extraction stage is one module of an intended web
information gathering system. Starting with seed knowledge
(keywords), an IR module retrieves web pages containing
relevant data. Information can be derived from the relation-
ships between individual pieces of data. The syntax that
is necessary to supplement this semantics is derived from
positional information. Additional information can be ex-
tracted for data that appears in a similar syntactic relation-
ship, analogous to the Dual Iterative Pattern Relation Expan-
sion method of Brin (1998).

Such defined keywords are one input to our tabular pattern
recognition and extraction module to which we refer to as
VENTrec for Visualized Element Node Table recognition.
3 types of boxes on the grid are relevant: element boxes;
hyperBoxes; and word bounding boxes.
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Figure 3: Working of the expansion algorithm.

We refer to our tabular pattern recognition and extraction
algorithm as the expansion algorithm, a recursive and cir-
culating algorithm that tries to expand from any given hy-
perBox on the grid. Expansion into one direction is possible
only if an adjacent hyperBox forms a twin neighbor and does
not contain any element boxes introducing step neighbors.



The algorithm is circulating clockwise around the 4 cardinal
directions of the visual plane and stops when no expansion
is possible any more (Figure 3). Algorithm 1 shows the idea
for one of the 4 directions.

Algorithm 1 EXPANDRIGHT(hBox): tries to expand a given
hyperBox to the right by one additional hyperBox
Input: hBox:hyperBox
Output: 〈expandResult:hyperBox, expandSuccess:boolean〉

1: candidateList ← list of upper aligned and right adjacent
boxes of hBox

2: for all candidate ∈ candidateList do
3: if candidate = TwinNeighbor(hBox) then
4: return 〈Union(hBox, candidate), true〉
5: else if candidate = SmallerNeighbor(hBox) then
6: tempHBox← candidate
7: repeat
8: 〈tempHBox,tE〉 ← EXPANDDOWN(tempHBox)
9: if tempHBox = TwinNeighbor(hBox) then

10: return 〈Union(hBox, tempHBox), true〉
11: end if
12: until tempHBox = BiggerNeighbor(hBox) ∨ tE =

false
13: end if
14: end for
15: return 〈hBox, false〉

In the beginning, the keywords are projected into possi-
bly containing element boxes which serve as starting hyper-
Boxes. At the end, the system projects all word boxes into
the composing element boxes of the final hyperBox, cleans
the hyperBox by replacing semantically non relevant empty
element boxes, verifies that the result consists of at least 2
columns and 2 rows, and finally saves the results in XML.

Evaluation
We tested our algorithms with three different test sets in or-
der to provide maximum transparency of its performance.

First, we gathered a number of different web pages with
interesting information for our information gathering task in
tabular form at the beginning of our project. We were espe-
cially interested in obtaining a maximum number of pecu-
liarities in web tables in order to create a simple web table
phenomenology. We added web pages that showed interest-
ing characteristics and were challenging to our approach in
theory. These web pages contain some very unusual web ta-
bles, sometimes even difficult to read for the human viewer.
We do not provide quantitative analysis on this set of docu-
ments as the content was gathered – by logic of its selection
process – to be challenging and the performance on this set
is not representative for our approach. However, we describe
the kind of problems and possible improvements of our ap-
proach deduced from this set at the end of this section.

Second, we defined a couple of search engine keywords
from the electronic goods domain which are likely to re-
turn web tables. We retrieved the first 100 search results
for the keywords “Canon Ixus IIs resolution” from the pub-
lic search engine Google1 with emptied cache and deleted

1http://www.google.com

cookies on February 19th, 2006. Out of these 100 results,
only 96 were HTML pages we could retrieve and 42 con-
tained tables of interest. If we did not find relevant web
tables on the page, we additionally followed links to web
pages from the same website likely to contain relevant web
tables (e.g. “specifications”). As a result, we found addi-
tional 14 web TOIs. We followed this procedure as it emu-
lates the way our knowledge acquisition system crawls for
semantically relevant information. We applied our algo-
rithm to these 110 web pages together with the keywords
(we chose “resolution”) and manually checked whether the
resulting grid structure actually represents a TOI.

Third, we used the public web table ground truth used
in (Wang & Hu 2002) and available on the web page of
Yalin Wang2. This set contains 1,393 web pages with in total
11,477 leaf tables, manually sorted into 1,740 genuine and
9,373 non-genuine tables, where the term “genuine” resem-
bles but does not match our notion of a TOI. This database
was compiled more than 4 years ago and does not necessar-
ily still represent current methods to build web tables. As an
example, the affiliated publication still assumed that relevant
semantic information can only be found in leaf <table>
nodes. This assumption neither reflects our original hypoth-
esis nor our findings (see discussion), but the database still
provides us with an transparent and reproducible procedure
to test our mechanism. We randomly ordered the list of an-
notated 1,393 web pages and chose the first 50 from the list
that contained leaf table nodes. Whenever the specific web
page contained at least one genuine table, we chose a key-
word from the the first one to test our algorithm. Other-
wise, we chose a keyword contained in a non-genuine, text-
containing table.

Testing Recall Precision F(β = 1) #Web #TOIs #False #False
approach pages positives negatives
(2a) 100 Google results 97.6% 82.0% 89.8% 96 42 9 1

(2b) 14 linked Web tables 92.9% 100% 96.4% 14 14 0 1

(3) (Wang & Hu 2002) 84.2% 94.1% 89.2% 50 19 1 3

Total without heuristics 93.0% 87.4% 90.2% 160 75 10 5

Total with heuristics 89.0% 96.7% 92.8% 160 75 2 8

Table 1: Results of our experiments.

Table 1 contains the quantitative evaluation of our system
with regard to objectively chosen test sets. The list of web
pages used, details of the quantitative evaluation, and an on-
line VENTrec test facility can be found on the web page
accompanying this publication 3.

In the following, we qualitatively explain the challenges
to our approach with regard to all web pages tested.

1. ASCII tables. Tables that are formatted with spacing
and line breaks in order to encode horizontal and vertical
alignments cannot be detected by our approach. In our
opinion, the occurrence of this kind of tables on the Web
is nowadays very limited (1 occurrence in the quantitative
test set) and will decrease even further.

2http://www.math.ucla.edu/ ˜ ylwang/
3http://www.dbai.tuwien.ac.at/staff/gatter/ventrec



2. Determinism. In a number of cases, the algorithm cur-
rently expands into the wrong direction for seemingly
aligned cells and then stops, because no further expansion
is possible. We estimate this occurrence to be small (2 oc-
currences in the quantitative test set), but still relevant as
it shows the current limits of our visual table model. This
problem can, in theory, be solved with heuristics which
are in their current conception still too time expensive.

3. Semi-alignment. A portion of false negative (though no
occurrence in the quantitative test set) comes from boxes
that are not completely aligned. This happens either be-
cause of semantic tables created by <li> element nodes,
or because of nested tables whose content is not even
aligned on the screen. We estimate this occurrence to be
small but to be of increasing relevance with more tables
implemented as two-dimensional lists.

4. Distance between boxes. Some negative positives (1 oc-
currence in the quantitative test set) result from spacing
between the individual cells of a TOI to be bigger than our
arbitrarily value of 3 pixel. After choosing the value of 5
pixel, this table could also be detected. However, as the
second value can be interpreted as consequence of learn-
ing, we report the test results with the first value. As men-
tioned before, this issue could be solved by using more of
the available DOM tree data. However, the time perfor-
mance of the system would suffer significantly.

5. Semantically non relevant tables. The biggest portion of
false positives (11 occurrences in the quantitative test set)
occurs because of detected tabular structures that do not
fulfill our requirements of having semantic relations be-
tween composing elements using spatial relations. Most
of these extracted patterns are actually web tables with
NLP text in them, e.g. multi-column blog entries, or
descriptions of vendor and price within one single cell.
These tables actually contain relevant information, but are
not useful for our larger information integration system
without detailed parsing of the content of each individ-
ual cell. The smaller part are two-dimensional structures
that fulfill the purpose of lists. We have tested the simple
heuristic of not considering tabular structures, when the
number of words within one cell exceeds 20. By adding
this heuristic, we could quickly increase the total perfor-
mance of our system (F-measure ≈ 93%).

The time for analyzing one single web page composes
three parts: time for downloading a web page, time for re-
trieving the necessary positional data from Mozilla, and rea-
soning on the data. Downloading and positional data gath-
ering scales in the order of O(n) and our reasoning algo-
rithm has time complexity O(kn0.5) where n is the number
of element nodes and k the number of appearances of a key-
word on a web page. In total, the time needed for the last
two steps is on average below one second, but has reached
a maximum of 32 seconds for a complicated web page with
several tables on a Pentium M computer with 1.6 GHz. In
this case, our current implementation returns all individual
tables separately.

Discussion and Future Work
We started our work under the hypothesis that tabular in-
formation on the Web would be encoded in an increasing
number with <div> instead of <table> tags as a result of
spread of CSS usage for web page implementation. To our
surprise, however, only a small number of encountered web
tables (e.g. 1 occurrence in the quantitative test set) use one
of, three possible alternatives to <table> tables.

1. ASCII tables. Our approach fails by its design with this
kind of tables, because their logical units are not bound
to an element node. The only approaches we know of
that could deal in principle with this kind of tabular in-
formation are the top-down and bottom-up versions of a
word bounding box approach mentioned in (Krüpl, Her-
zog, & Gatterbauer 2005) and (Krüpl & Herzog 2006).
After our analysis of several hundred web tables, we es-
timate the importance of ASCII tables to be minimal and
to decrease even further in the future (e.g. 1 occurrence in
the quantitative test set).

2. LIST tables. An alternative, which is still used very sel-
dom, consists of vertically arranged horizontal lists. At
the moment, our system cannot detect these tables be-
cause adjacent list elements are not necessarily aligned
on the y2 dimension. Adding heuristics to our approach
can remedy this shortcoming in the future.

3. DIV tables. To our surprise, we did not find any single
web page that used absolutely or relatively placed <div>
tags to encode relevant semantic tabular information. As
a consequence and in order to test our system, we created
our own <div> test web TOI listing the international ath-
letes competing in the 2006 Winter Olympics. Our system
extracts the tabular information without any problem.

Visual appearanceSource code

Visual Table

<table> table

<div> table

AA

BB

Rendering

Non-injective
mapping

Figure 4: Non injection of HTML rendering “renders” reli-
able table pattern recognition within source code difficult.

We also created a <table> version of the previously
mentioned <div> table that exactly maps to the same visual
appearance when rendered in the web browser Firefox (Fig-
ure 4). This example proves rendering of HTML code to be a
non-injective mapping. As a consequence, tabular structure
pattern recognition approaches that operate merely on the
source code are inherently more difficult than visual based
approaches. Another argument for rendering web pages for
web table extraction and interpretation is the point that the
relative positions of HTML tags on the screen can not be re-
liably calculated from the source code without actually ren-



dering a web page as a whole, a bit analogous to the thought
that functioning of individual pieces of code within a com-
plex system can not be reliably understood without simulat-
ing or “executing” the code as a whole.

Another important observation is that a major part of rel-
evant tabular information (16% in the quantitative testset
from Google; 9 out of 56 <table> tables) is contained
in either non-leaf tables or several vertically arranged ta-
bles that only together build the relevant visual table. In
both cases, standard approaches that only analyze leaf ta-
ble nodes actually miss significant parts of relevant tabular
information available on the Web.

Our current research goals focus on improving our table
extraction performance with heuristics and machine learn-
ing techniques, and subsequent table understanding on the
extracted tables. In addition to the currently used features
for table extraction, we can use the actual size of element
nodes as rendered on the screen in addition to specific meta-
data information like background color. Such background
information together with the relative spatial relations play
an important role in determining the actual semantic rela-
tions between the logical components of tables and the cru-
cial step to extracting not only raw data, but actual infor-
mation (Figure 2). Please refer to the previously referenced
VENTrec web page for information on ongoing work.

Conclusions
Tables on web pages contain a lot of semantically explicit
information, which makes them a predestined target for au-
tomatic information extraction and knowledge acquisition
from the Web. In this paper, we present an innovative and
robust approach for finding and extracting tabular data from
arbitrary web pages. We propose spatial reasoning on the
Visualized Element nodes for table extraction and show that
the raw approach produces good results even without any
form of training (F-measure ≈ 90%). We estimate that ap-
plying heuristics and machine learning will bring significant
performance improvements and will lay the foundations for
robust table understanding in the future.
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and Marcus Herzog for (at times passionate) discussions of
our distinct approaches, Bernhard Krüpl and Tobias Dönz
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