On the Complexity of Computing the Justification Status of an Argument^{\lambda}

dbai Research Seminar, Vienna

Wolfgang Dvořák

Institute of Information Systems, Vienna University of Technology

Oct 13, 2011

 $^{\diamond}$ Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028

Motivation

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

Motivation

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

- Traditional: Skeptical and/or Credulous Acceptance.
- Wu and Caminada recently proposed a new approach: The Justification Status of an Argument.

Motivation

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

- Traditional: Skeptical and/or Credulous Acceptance.
- Wu and Caminada recently proposed a new approach: The Justification Status of an Argument.
- Their original approach is stated in terms of complete semantics.
 → We generalize it to arbitrary semantics
- Computational issues where neglected.
 → We provide an comprehensive complexity analysis.

Outline

- 1. Motivation
- 2. Background
- 3. Justification Status of an Argument
- 4. The Complexity of Computing the Justification Status
- 5. Conclusion

< ∃⇒

Dung's Abstract Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing the conflicts ("attacks")

Example

$$\mathsf{F}{=}(\{\mathsf{a}{,}\mathsf{b}{,}\mathsf{c}{,}\mathsf{d}{,}\mathsf{e}\},\{(\mathsf{a}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{d}){,}(\mathsf{d}{,}\mathsf{c}){,}(\mathsf{d}{,}\mathsf{e}){,}(\mathsf{e}{,}\mathsf{e})\})$$

$$a \rightarrow b \rightarrow c \rightarrow e \sim$$

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Image: Image:

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

 $cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b,$

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example $a \longrightarrow b \longleftarrow c \longrightarrow d \longrightarrow e \longleftarrow$ $cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \rightarrow c d \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\},\$

イロト イポト イヨト イヨト

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\}, \{a, d\}, \}$

イロト イポト イヨト イヨト

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{a, d\}, \{b, d\}, \{a, d\}, \{a$

《口》 《聞》 《臣》 《臣》

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \leftarrow c \qquad d \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$

Grounded Extension [Dung, 1995]

Given an AF (A, R). The unique grounded extension is defined as the smallest set S such that:

- each argument $a \in A$ which is not attacked in F belongs to S
- each $a \in A$ defended by S in F is contained in S

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \rightarrow c d \rightarrow e \bigcirc$$

 $comp(F) = \{\{a, c\},$

イロト イポト イヨト イヨト

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \leftarrow c \rightarrow e \bigcirc$$

 $comp(F) = \{\{a, c\}, \{a, d\}, \}$

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \leftarrow c \quad d \rightarrow e \bigcirc$$

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

Example

$$a \rightarrow b \leftarrow c \qquad d \rightarrow e \bigcirc$$

 $comp(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}$

Preferred Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$ $stable(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{c, d\},$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Slide 10

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for *F* is a function $\mathcal{L} : A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_{I} = \{a \in A \mid \mathcal{L}(a) = I\}$.

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for F is a function $\mathcal{L} : A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_I = \{a \in A \mid \mathcal{L}(a) = I\}$.

The range of a set $S \subseteq A$ is defined as $S_R^+ = S \cup \{b \mid \exists a \in S : (a, b) \in R\}$. We define the induced labeling Ext2Lab_F(E) of an extension $E \subseteq A$:

 $\mathsf{Ext2Lab}_F(E) = (E, E_R^+ \setminus E, A \setminus E_R^+)$

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for F is a function $\mathcal{L} : A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_{I} = \{a \in A \mid \mathcal{L}(a) = I\}$.

The range of a set $S \subseteq A$ is defined as $S_R^+ = S \cup \{b \mid \exists a \in S : (a, b) \in R\}$. We define the induced labeling Ext2Lab_F(E) of an extension $E \subseteq A$:

$$\mathsf{Ext2Lab}_F(E) = (E, E_R^+ \setminus E, A \setminus E_R^+)$$

Definition

Let σ be an extension-based semantics. The corresponding labeling-based semantics $\sigma_{\mathcal{L}}$ is defined as $\sigma_{\mathcal{L}}(F) = \{ \text{Ext2Lab}(E) \mid E \in \sigma(F) \}.$

Argumentation Labelings - Example

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $comp(F) = \{\{a\}, \{a, c\}, \{a, d\}\}$

The complete labelings are:

- $(\{a\}, \{b\}, \{c, d, e\}),$
- $(\{a,c\},\{b,d\},\{e\}),$
- $(\{a,d\},\{b,c,e\},\{\})$

Definition

Definition

Definition

Definition

Definition

Possible Justification Statuses

Each element of $2^{\{in,out,undec\}}$ is a justification status:

Possible Justification Statuses

Not all justification statuses are possible under each semantics:

Possible Justification Statuses

Not all justification statuses are possible under each semantics:

Theorem

Let F = (A, R) be an AF and $a \in A$. Then we have that:

- $\mathcal{JS}_{ground}(F, a) \in \{\{in\}, \{out\}, \{undec\}\}$
- $\mathcal{JS}_{adm}(F, a) \in \{\{undec\}, \{in, undec\}, \{out, undec\}, \{in, out, undec\}\}$
- $\mathcal{JS}_{comp}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset, \{in, out\}\}$
- $\mathcal{JS}_{stable}(F, a) \in \{\{in\}, \{out\}, \{in, out\}, \{\}\}$
- $\mathcal{JS}_{pref}(F,a) \in 2^{\{in,out,undec\}} \setminus \{\emptyset\}$

•
$$\mathcal{JS}_{semi}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset\}$$

•
$$\mathcal{JS}_{stage}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset\}$$

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF $F = (A, R), L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF $F = (A, R), L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF F = (A, R), $L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF $F = (A, R), L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Clearly the first problem can be encoded as instance of the second one.

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF F = (A, R), $L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF $F = (A, R), L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Clearly the first problem can be encoded as instance of the second one.

To obtain completness for both problems we show

- membership for GJS_{σ} and
- hardness for JS_{σ}

• • = • • = •

Computational Complexity - Membership

Theorem

If the problem of verifying a σ -extension is in the complexity class C then the problem GJS_{σ} is in the complexity class $NP^{C} \wedge co-NP^{C}$.

Slide 17

Computational Complexity - Membership

Theorem

If the problem of verifying a σ -extension is in the complexity class C then the problem GJS_{σ} is in the complexity class $NP^{C} \wedge co-NP^{C}$.

Proof Ideas.

We provide a NP^C algorithm to decide $L \subseteq \mathcal{JS}_{\sigma}(F, a)$

- For each $l \in L$ guess a labeling \mathcal{L}_l with $\mathcal{L}_l(a) = l$
- Test whether $\mathcal{L}_I \in \sigma(F)$ or not, using the C-oracle.
- Accept if for each $I \in L$, $\mathcal{L}_I \in \sigma(F)$

and a co-NP^C algorithm to decide $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$,

- For each $I \in M$ guess a labeling \mathcal{L}_I with $\mathcal{L}_I(a) = I$
- Test whether $\mathcal{L}_I \in \sigma(F)$ or not
- Accept if there exists an $I \in M$ such that $\mathcal{L}_I \in \sigma(F)$

(日) (四) (日) (日) (日)

Computational Complexity - Hardness

Theorem

The problems JS_{comp} , GJS_{comp} , JS_{adm} , GJS_{adm} are DP-hard, i.e. NP \land co-NP-hard.

Computational Complexity - Hardness

Theorem

The problems JS_{comp} , GJS_{comp} , JS_{adm} , GJS_{adm} are DP-hard, i.e. NP \land co-NP-hard.

Proof Idea.

We prove hardness by reducing the (DP-hard) SAT-UNSAT problem to JS_{comp} (resp. JS_{adm}).

The reduction builds on slightly modified standard translations of both formulas and adds a mutual attack between them.

A B > A B >

Computational Complexity

σ	ground	adm	сотр	stable	pref	semi	stage
$Cred_\sigma$	P-c	NP-c	NP-c	NP-c	NP-c	Σ_2^p -c	Σ_2^p -c
$Skept_\sigma$	P-c	trivial	P-c	co-NP/DP-c	Π_2^p -c	Π_2^p -c	П ^{<i>p</i>} ₂ -с
JS_{σ}	P-c	DP-c	DP-c	DP-c	$P^{\Sigma^{\pmb{p}}_2[1]}\text{-}c$	DP ₂ -c	DP ₂ -c
GJS_{σ}	P-c	DP-c	DP-c	DP-c	$P^{\Sigma^{\pmb{p}}_2[1]}\text{-}c$	$DP_2\text{-}c$	$DP_{2}\text{-}c$

Table: Complexity Results (C-c denotes completeness for class C)

Relations between the above complexity classes:

$$\mathsf{P} \subseteq \begin{array}{c} \mathsf{NP} \\ \mathsf{co-NP} \end{array} \subseteq \mathsf{DP} \subseteq \begin{array}{c} \Sigma_2^{\mathsf{P}} \\ \mathsf{\Pi}_2^{\mathsf{P}} \end{array} \subseteq \mathsf{P}^{\Sigma_2^{\mathsf{P}}[1]} \subseteq \mathsf{DP}_2 \end{array}$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

Conclusion

- We generalised the concept of the justification status of an argument to arbitrary semantics.
- Using the Justification Status in general increases the complexity.
- Two sources of complexity:

We have to determine that

- some labels are in the justification status
- some labels are not in the justification status
- There are several problem classes where these decision problems are easier, e.g. Credulous and Skeptical Acceptance.