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1. Motivation

Motivation

We adress the problem of:

Determining the acceptance status of an argument in abstract
argumentation (Given a semantics for computing the extensions).

Traditional: Skeptical and/or Credulous Acceptance.

Wu and Caminada recently proposed a new approach:
The Justification Status of an Argument.

Their original approach is stated in terms of complete semantics.
↪→ We generalize it to arbitrary semantics

Computational issues where neglected.
↪→ We provide an comprehensive complexity analysis.
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2. Background

Dung’s Abstract Argumentation Frameworks

Definition
An argumentation framework (AF) is a pair (A,R) where

A is a set of arguments
R ⊆ A× A is a relation representing the conflicts (“attacks”)

Example
F=( {a,b,c,d,e} , {(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)} )

b c d ea
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2. Background

Basic Properties

Conflict-Free Sets
Given an AF F = (A,R).
A set S ⊆ A is conflict-free in F , if, for each a, b ∈ S , (a, b) /∈ R.

Example

b c d ea

cf (F ) =
{
{a, c},
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2. Background

Basic Properties (ctd.)

Admissible Sets [Dung, 1995]
Given an AF F = (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
each a ∈ S is defended by S in F

a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

b c d ea

adm(F ) =
{
{a, c},
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2. Background

Semantics (ctd.)

Grounded Extension [Dung, 1995]
Given an AF (A,R). The unique grounded extension is defined as the
smallest set S such that:

each argument a ∈ A which is not attacked in F belongs to S
each a ∈ A defended by S in F is contained in S

Example

b c d ea

ground(F ) =
{
{a}}
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2. Background

Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A,R). A set S ⊆ A is complete in F , if

S is admissible in F
each a ∈ A defended by S in F is contained in S

a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.
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2. Background

Semantics (ctd.)

Preferred Extensions [Dung, 1995]
Given an AF F = (A,R). A set S ⊆ A is a preferred extension of F , if

S is admissible in F
for each T ⊆ A admissible in F , S 6⊂ T

Example

b c d ea

pref (F ) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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2. Background

Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A,R). A set S ⊆ A is a stable extension of F , if

S is conflict-free in F
for each a ∈ A \ S , there exists a b ∈ S , such that (b, a) ∈ R

Example

b c d ea

stable(F ) =
{
{a, c}
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3. Justification Status of an Argument

Argumentation Labelings

Let F = (A,R) be an AF.

Definition
A labeling for F is a function L : A→ {in, out, undec}. We denote
labelings by triples (Lin,Lout ,Lundec), with Ll ={a ∈ A | L(a) = l}.

The range of a set S ⊆ A is defined as S+
R =S ∪{b | ∃a ∈ S : (a, b) ∈ R}.

We define the induced labeling Ext2LabF (E ) of an extension E ⊆ A:

Ext2LabF (E ) = (E ,E+
R \ E ,A \ E+

R )

Definition
Let σ be an extension-based semantics. The corresponding labeling-based
semantics σL is defined as σL(F )={Ext2Lab(E ) | E ∈ σ(F )}.
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3. Justification Status of an Argument

Argumentation Labelings - Example

Example

b c d ea

comp(F ) = {{a}, {a, c}, {a, d}}

The complete labelings are:

({a}, {b}, {c , d , e}),
({a, c}, {b, d}, {e}),
({a, d}, {b, c , e}, {})
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3. Justification Status of an Argument

Justification Status of an Argument

Definition

Let F = (A,R) be an AF and σ a semantic. The justification status of
an a ∈ A wrt σ is defined as JSσ(F , a) = {L(a) | L ∈ σL(F )}.

Example

b c d ea

comp(F ) = {{a}, {a, c}, {a, d}}

J Scomp(F , a) = {in}, JScomp(F , b) = {out},
JScomp(F , c) = JScomp(F , d) = {in, out, undec}
J Scomp(F , e) = {out, undec}
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3. Justification Status of an Argument

Possible Justification Statuses

Each element of 2{in,out,undec} is a justification status:

{in}

{in, undec}

{in, out} {undec} {} {in, out, undec}

{out, undec}

{out}

accept

weak accept

borderline

weak reject

reject
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3. Justification Status of an Argument

Possible Justification Statuses

Not all justification statuses are possible under each semantics:

Theorem

Let F = (A,R) be an AF and a ∈ A. Then we have that:

JSground(F , a) ∈ {{in}, {out}, {undec}}
J Sadm(F , a) ∈ {{undec}, {in, undec}, {out, undec},

{in, out, undec}}
J Scomp(F , a) ∈ 2{in,out,undec} \ {∅, {in, out}}
J Sstable(F , a) ∈ {{in}, {out}, {in, out}, {}}
J Spref (F , a) ∈ 2{in,out,undec} \ {∅}
J Ssemi (F , a) ∈ 2{in,out,undec} \ {∅}
J Sstage(F , a) ∈ 2{in,out,undec} \ {∅}
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4. The Complexity of Computing the Justification Status

Computational Complexity - Problems of interest

We are interested in the following two problems:

The justification status decision problem JSσ
Given: AF F = (A,R), L ⊆ {in, out, undec} and argument a ∈ A.
Question: Does JSσ(F , a) = L hold?

The generalized justification status decision problem GJSσ
Given: AF F = (A,R), L,M ⊆ {in, out, undec} and argument a ∈ A.
Question: Does L ⊆ JSσ(F , a) and JSσ(F , a) ∩M = ∅ hold?.

Clearly the first problem can be encoded as instance of the second one.

To obtain completness for both problems we show
membership for GJSσ and
hardness for JSσ
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4. The Complexity of Computing the Justification Status

Computational Complexity - Membership

Theorem

If the problem of verifying a σ-extension is in the complexity class C then
the problem GJSσ is in the complexity class NPC ∧ co-NPC .

Proof Ideas.
We provide a NPC algorithm to decide L ⊆ JSσ(F , a)

For each l ∈ L guess a labeling Ll with Ll (a) = l

Test whether Ll ∈ σ(F ) or not, using the C-oracle.

Accept if for each l ∈ L, Ll ∈ σ(F )

and a co-NPC algorithm to decide JSσ(F , a) ∩M = ∅,
For each l ∈ M guess a labeling Ll with Ll (a) = l

Test whether Ll ∈ σ(F ) or not

Accept if there exists an l ∈ M such that Ll ∈ σ(F )
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4. The Complexity of Computing the Justification Status

Computational Complexity - Hardness

Theorem
The problems JScomp, GJScomp,JSadm, GJSadm are DP-hard, i.e.
NP ∧ co-NP-hard.

Proof Idea.
We prove hardness by reducing the (DP-hard) SAT-UNSAT problem to
JScomp (resp. JSadm).

The reduction builds on slightly modified standard translations of both
formulas and adds a mutual attack between them.
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4. The Complexity of Computing the Justification Status

Computational Complexity

σ ground adm comp stable pref semi stage

Credσ P-c NP-c NP-c NP-c NP-c Σp
2-c Σp

2-c

Skeptσ P-c trivial P-c co-NP/DP-c Πp
2-c Πp

2-c Πp
2-c

JSσ P-c DP-c DP-c DP-c PΣp
2 [1]-c DP2-c DP2-c

GJSσ P-c DP-c DP-c DP-c PΣp
2 [1]-c DP2-c DP2-c

Table: Complexity Results (C-c denotes completeness for class C)

Relations between the above complexity classes:

P ⊆ NP
co-NP ⊆ DP ⊆ Σp

2
Πp

2
⊆ PΣp

2 [1] ⊆ DP2
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5. Conclusion

Conclusion

We generalised the concept of the justification status of an
argument to arbitrary semantics.

Using the Justification Status in general increases the complexity.

Two sources of complexity:
We have to determine that

some labels are in the justification status
some labels are not in the justification status

There are several problem classes where these decision problems are
easier, e.g. Credulous and Skeptical Acceptance.
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