On the Intertranslatability of Argumentation Semantics⁶

London Argumentation Forum

Wolfgang Dvořák

Database and Artificial Intelligence Group Institut für Informationssysteme Technische Universität Wien

March 25, 2011

(D) (A) (A)

 $^{\diamond}$ Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.

What I'm doing in my PhD

Computational Aspects of Abstract Argumentation

- Complexity Analysis: Studying worst case complexity of the common reasoning problems w.r.t. different argumentation semantics.
- Identifying Tractable Fragments of in general hard problems, i.e. classes of instances on which a reasoning tasks is tractable.
 → We also consider Fixed-Parameter Tractability.
- Intertranslatability of argumentation semantics. A translation for semantics σ, σ' modifies each AF such that the σ-extensions of the AF correspond to the σ'-extensions of the modified AF.

Motivation

- "Plethora" of Argumentation Semantics
- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet

臣

(日) (四) (日) (日) (日)

Motivation

- "Plethora" of Argumentation Semantics
- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet

Why consider translations between Argumentation Semantics ?

- To reuse sophisticated solver for other semantics.
- Categorise semantics w.r.t. Expressibility.

• • = • • = •

Motivation

- "Plethora" of Argumentation Semantics
- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet

Why consider translations between Argumentation Semantics ?

- To reuse sophisticated solver for other semantics.
- Categorise semantics w.r.t. Expressibility.
- Merge AFs modeled with different semantics.
- Interchange AFs between agents (using different semantics).
- Further Meta-Argumentation applications ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Reuse Solvers via Translations

Figure: A Solver for a semantic σ , using a translation for $\sigma \Rightarrow \sigma'$

臣

(日) (四) (日) (日) (日)

Expressibility

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$	$Skept_{\sigma}$	
ground	P-c	P-c	
stable	NP-c	co-NP-c	
adm	NP-c	trivial	
comp	NP-c	P-c	
pref	NP-c	Π_2^p -c	
semi	Σ_2^p -c	$\Pi_2^{\overline{p}}$ -c	
stage	Σ_2^p -c	П ₂ ^p -с	

Intertranslatability of Argumentation Semantics

æ

・ロ・ ・聞・ ・ヨ・ ・ヨ・

Expressibility

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$	$Skept_{\sigma}$	
ground	P-c	P-c	
stable	NP-c	co-NP-c	
adm	NP-c	trivial	
comp	NP-c	P-c	
pref	NP-c	Π_2^p -c	
semi	Σ_2^p -c	Π_2^p -c	
stage	$\Sigma_2^{\bar{p}}$ -c	Π_2^p -c	

The complexity of a decision problem is **not** a fully satisfying measure for the expressibility of a semantic.

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

Example

$$\mathsf{F}{=}(\{\mathsf{a}{,}\mathsf{b}{,}\mathsf{c}{,}\mathsf{d}{,}\mathsf{e}\},\{(\mathsf{a}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{d}){,}(\mathsf{d}{,}\mathsf{c}){,}(\mathsf{d}{,}\mathsf{e}){,}(\mathsf{e}{,}\mathsf{e})\})$$

$$a \rightarrow b \rightarrow c \rightarrow e \sim$$

臣

・ロト ・聞 ト ・ ヨト ・ ヨトー

Argumentation Frameworks (ctd.)

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Semantics

Admissible Sets

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

(日) (四) (日) (日) (日)

Semantics (ctd.)

Preferred Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

æ

イロト イポト イヨト イヨト

Semantics (ctd.)

Preferred Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

æ

イロト イポト イヨト イヨト

Semantics (ctd.)

Stable Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Definition

A Translation Tr is a function mapping (finite) AFs to (finite) AFs.

臣

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A Translation Tr is a function mapping (finite) AFs to (finite) AFs.

We want translations to satisfy certain properties:

Basic Properties of a Translation Tr

- efficient: for every AF F, Tr(F) can be computed using logarithmic space wrt. to |F|
- embedding: for any AF F = (A, R): $A \subseteq A_{Tr(F)}$, $R = R_{Tr(F)} \cap (A \times A)$
- monotone: for any AFs F, F': $F \subseteq F'$ implies $Tr(F) \subseteq Tr(F')$

・ロト ・ 日 ・ ・ ヨ ・ ・ ・

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed collection S of sets of arguments, such that for any AF F, $\sigma(F) = \sigma'(Tr(F)) \setminus S$;

・ロト ・ 同ト ・ ヨト ・ ヨト

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed collection S of sets of arguments, such that for any AF F, $\sigma(F) = \sigma'(Tr(F)) \setminus S$;

・ロト ・部ト ・ヨト ・ヨト … ヨ

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed collection S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;

イロト イポト イヨト イヨト

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed collection S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;

イロト イポト イヨト イヨト

Contribution

Main Contributions:

- Consider 7 of the most important semantics (Dung's original + two alternative)
- Provide (efficient) translations, whenever possible
- Impossibility results, in particular wrt. efficient translations.

∃ >

Example Translation 1

Definition

For AF *F*, let $Tr_1(F) = (A^*, R^*)$ where $A^* = A_F \cup A'_F$ and $R^* = R_F \cup \{(b', a) \mid a, b \in A_F\} \cup \{(a', a'), (a, a') \mid a \in A_F\} \cup \{(a, b') \mid (a, b) \in R_F\}$.

Example Translation 2

Definition

For AF *F*,
$$Tr_2(F) = (A^*, R^*)$$
 where $A^* = A_F \cup \overline{A}_F \cup R_F$ and
 $R^* = R_F \cup \{(a, \overline{a}), (\overline{a}, a) \mid a \in A_F\} \cup \{(r, r) \mid r \in R_F\} \cup \{(\overline{a}, r) \mid r = (y, a) \in R_F\} \cup \{(a, r) \mid r = (z, y) \in R_F, (a, z) \in R_F\}.$

Result:

 Tr_2 is a faithful translation for $adm \Rightarrow stable$.

Impossibility Results

Proposition

There is no (weakly) exact translation for $adm \Rightarrow \sigma$, $\sigma \in \{stable, pref\}$.

Admissible sets may be in a \subset relation, while preferred (resp. stable) extensions are incomparable.

(4月) (4日) (4日)

Impossibility Results

Proposition

There is no (weakly) exact translation for $adm \Rightarrow \sigma$, $\sigma \in \{stable, pref\}$.

Admissible sets may be in a \subset relation, while preferred (resp. stable) extensions are incomparable.

Proposition

There is no efficient (weakly) faithful translation for pref $\Rightarrow \sigma$, $\sigma \in \{adm, stable\}$, unless $\Sigma_2^p = NP$.

Follows from known complexity results.

Impossibility Results

proof sketch.

pref $\Rightarrow \sigma$, $\sigma \in \{adm, stable\}$ unless $\Sigma_2^p = NP$:

Given an efficient weakly faithful translation Tr with remainder collection S for $pref \Rightarrow \sigma$.

The problem $\operatorname{Skept}_{\operatorname{pref}}^{S}$ is translated to the problem $\operatorname{Skept}_{\sigma}^{S}$, deciding whether an argument is in each σ -extension which is not in the set S. As $\operatorname{Ver}_{\sigma} \in \mathsf{P}$, one can show that the problem $\operatorname{Skept}_{\sigma}^{S}$ is in co-NP (by standard guess and check).

But Skept_{pref} is Π_2^p -hard, while Skept_{σ}^S is co-NP-easy, thus $\Sigma_2^p = NP$. \Box

Results (Snapshot)

	admissible	stable	preferred
admissible	id	Tr ₂ / -	$Tr_1 \circ Tr_2 / -$
stable	Tr ₁	id	Tr ₁
preferred	_	_	id

Intertranslatability of Argumentation Semantics

æ

Results (big picture)

Intertranslatability w.r.t. (weakly) faithful translations

æ

イロン イヨン イヨン イヨン

Summary

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

Future Work:

- resolve open problems
- robustness of translations wrt. graph properties
- extend to other important semantics

Summary

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

Future Work:

- resolve open problems
- robustness of translations wrt. graph properties
- extend to other important semantics

🔋 W. Dvořák and S. Woltran.

On the Intertranslatability of Argumentation Semantics. In *Proceedings of NonMon@30, 2010*