On the Intertranslatability of Argumentation Semantics^{\log} Argumentation Christmas Meeting (Vienna)

Wolfgang Dvořák, Stefan Woltran

Database and Artificial Intelligence Group Institut für Informationssysteme Technische Universität Wien

December 7, 2010

イロト イポト イヨト イヨト

 $^{\diamond}$ Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.

Motivation (ctd.)

"Plethora" of Argumentation Semantics

- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet
- Current Situation: Similar as NonMon in the late 80ies

Motivation (ctd.)

"Plethora" of Argumentation Semantics

- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet
- Current Situation: Similar as NonMon in the late 80ies

Why consider translations between Argumentation Semantics ?

- To reuse sophisticated solver for other Semantics.
- Categorise Semantics w.r.t. Expressibility.

Motivation (ctd.)

"Plethora" of Argumentation Semantics

- Properties of different semantics are well understood, but relations (and translations) between them not "well" investigated yet
- Current Situation: Similar as NonMon in the late 80ies

Why consider translations between Argumentation Semantics ?

- To reuse sophisticated solver for other Semantics.
- Categorise Semantics w.r.t. Expressibility.
- Merge AFs modeled with different Semantics.
- Interchange AFs between agents (using different semantics).
- Other Multi-agent, Meta-Argumentation applications ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Reuse Solvers via Translations

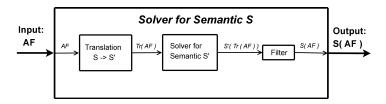


Figure: A Solver for a semantic S, using a translation for $S \Rightarrow S'$

æ

・ロト ・部ト ・ヨト ・ヨト

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$
ground	P-c
stable	NP-c
adm	NP-c
comp	NP-c
pref	NP-c
semi	Σ_2^p -c
stage	$\Sigma_2^{\overline{p}}$ -c

æ

・ロ・ ・ 日・ ・ 田・ ・ 田・ ・

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$	$Skept_{\sigma}$
ground	P-c	P-c
stable	NP-c	co-NP-c
adm	NP-c	trivial
сотр	NP-c	P-c
pref	NP-c	П ₂ ^p -с
semi	Σ_2^p -c	$\Pi_2^{\overline{p}}$ -c
stage	$\Sigma_2^{\overline{p}}$ -c	$\Pi_2^{\overline{p}}$ -c

æ

・ロ・ ・ 日・ ・ 田・ ・ 田・ ・

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$	$Skept_\sigma$	Ver_{σ}	$Exists_{\sigma}$	$Exists_{\sigma}^{\neg \emptyset}$
ground	P-c	P-c	P-c	trivial	in L
stable	NP-c	co-NP-c	in L	NP-c	NP-c
adm	NP-c	trivial	in L	trivial	NP-c
comp	NP-c	P-c	in L	trivial	NP-c
pref	NP-c	Π_2^p -c	co-NP-c	trivial	NP-c
semi	Σ_2^p -c	$\Pi_2^{\overline{p}}$ -c	co-NP-c	trivial	NP-c
stage	$\Sigma_2^{\overline{p}}$ -c	$\Pi_2^{\overline{p}}$ -c	co-NP-c	trivial	in L

æ

・ロ・ ・ 日・ ・ 田・ ・ 田・ ・

Expressibility vs. Computational Complexity

σ	$Cred_{\sigma}$	$Skept_\sigma$	Ver_{σ}	$Exists_{\sigma}$	$Exists_{\sigma}^{\neg \emptyset}$	
ground	P-c	P-c	P-c	trivial	in L	
stable	NP-c	co-NP-c	in L	NP-c	NP-c	
adm	NP-c	trivial	in L	trivial	NP-c	
comp	NP-c	P-c	in L	trivial	NP-c	
pref	NP-c	П ^{<i>p</i>} -с	co-NP-c	trivial	NP-c	
semi	Σ_2^p -c	$\Pi_2^{\overline{p}}$ -c	co-NP-c	trivial	NP-c	
stage	$\Sigma_2^{\overline{p}}$ -c	$\Pi_2^{\overline{p}}$ -c	co-NP-c	trivial	in L	

The complexity of a decision problem is not the appropriate measure for the expressibility of a semantic.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

1. Motivation

- 2. Background
- 3. Main Results
- 4. Conclusion

æ

イロン イヨン イヨン イヨン

Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

Example

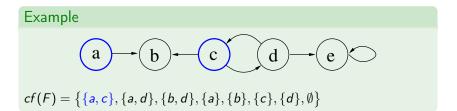
$$\mathsf{F}{=}(\{\mathsf{a}{,}\mathsf{b}{,}\mathsf{c}{,}\mathsf{d}{,}\mathsf{e}\},\{(\mathsf{a}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{d}){,}(\mathsf{d}{,}\mathsf{c}){,}(\mathsf{d}{,}\mathsf{e}){,}(\mathsf{e}{,}\mathsf{e})\})$$

$$a \rightarrow b \rightarrow c \rightarrow e \sim$$

臣

・ロト ・聞 ト ・ ヨト ・ ヨトー

Conflict-Free Sets Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

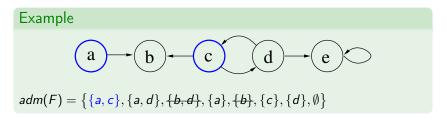


A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Admissible Sets

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

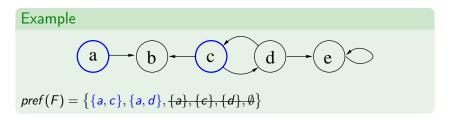
- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.



Preferred Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

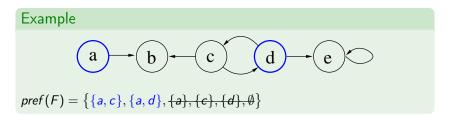
- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$



Preferred Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

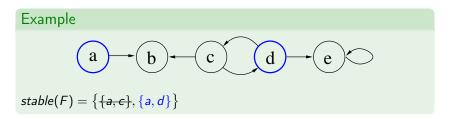


Semantics (ctd.)

Stable Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$



Semantics (ctd.)

Semi-Stable Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a semi-stable extension of F, if

- S is admissible in F
- the set $S^+ = S \cup \{a \in A \mid \exists b \in S : (b, a) \in R\}$ is \subseteq -maximal

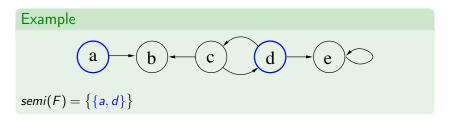


Image: Image:

Definition

A Translation Tr is a function mapping (finite) AFs to (finite) AFs.

Intertranslatability of Argumentation Semantics

臣

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A Translation Tr is a function mapping (finite) AFs to (finite) AFs.

We want translations to satisfy certain properties:

Basic Properties of a Translation Tr

- efficient: for every AF F, Tr(F) can be computed using logarithmic space wrt. to |F|
- embedding: for any AF F = (A, R): $A \subseteq A_{Tr(F)}$, $R = R_{Tr(F)} \cap (A \times A)$
- monotone: for any AFs F, F': $F \subseteq F'$ implies $Tr(F) \subseteq Tr(F')$

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

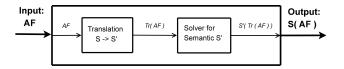
- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;

イロト イポト イヨト イヨト

Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;

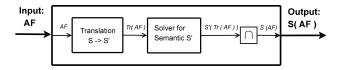


Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

• exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$

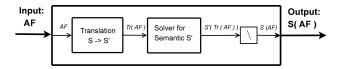
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;



Next we connect translations with semantics.

"Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.
- weakly exact: there is a fixed S of sets of arguments, such that for any AF F, σ(F) = σ'(Tr(F)) \ S;



Contribution

Main Contributions:

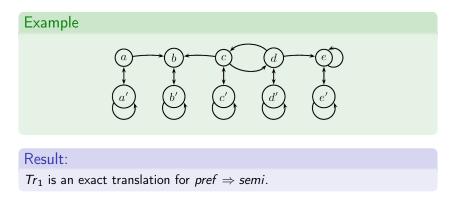
- Consider 7 of the most important semantics (Dung's original + two alternative)
- Provide (efficient) translations, whenever possible
- Impossibility results, in particular wrt. efficient translations.

< ∃ >

Example Translation 1

Definition

For AF *F*, let
$$Tr_1(F) = (A^*, R^*)$$
 where $A^* = A_F \cup A'_F$ and $R^* = R_F \cup \{(a, a'), (a', a), (a', a') \mid a \in A_F\}$, with $A'_F = \{a' \mid a \in A_F\}$.



æ

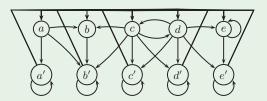
・ロト ・部ト ・ヨト ・ヨト

Example Translation 2

Definition

For AF F, let
$$Tr_2(F) = (A^*, R^*)$$
 where $A^* = A_F \cup A'_F$ and $R^* = R_F \cup \{(b', a) \mid a, b \in A_F\} \cup \{(a', a'), (a, a') \mid a \in A_F\} \cup \{(a, b') \mid (a, b) \in R_F\}$.

Example



Result:

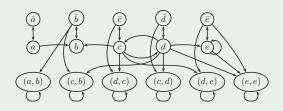
 Tr_2 is a weakly exact translation for $stable \Rightarrow \sigma$ with $\sigma \in \{adm, pref, semi\}$.

Example Translation 3

Definition

For AF *F*,
$$Tr_3(F) = (A^*, R^*)$$
 where $A^* = A_F \cup \overline{A}_F \cup R_F$ and
 $R^* = R_F \cup \{(a, \overline{a}), (\overline{a}, a) \mid a \in A_F\} \cup \{(r, r) \mid r \in R_F\} \cup \{(\overline{a}, r) \mid r = (y, a) \in R_F\} \cup \{(a, r) \mid r = (z, y) \in R_F, (a, z) \in R_F\}.$

Example



Result:

 Tr_3 is a faithful translation for $adm \Rightarrow \sigma$ with $\sigma \in \{stable, semi\}$.

Proposition

There is no (weakly) exact translation for $adm \Rightarrow \sigma$, $\sigma \in \{stable, pref, semi\}$.

Admissible sets may be in a \subset relation, while preferred, stable and semi-stable extensions are incomparable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

There is no (weakly) exact translation for $adm \Rightarrow \sigma$, $\sigma \in \{stable, pref, semi\}$.

Admissible sets may be in a \subset relation, while preferred, stable and semi-stable extensions are incomparable.

Proposition

There is no efficient (weakly) faithful translation for

• pref
$$\Rightarrow \sigma$$
, $\sigma \in \{ adm, stable \}$,

2 semi
$$\Rightarrow \sigma$$
, $\sigma \in \{adm, stable, pref\},$

unless $\Sigma_2^p = NP$.

Follows from known complexity results (details on the next slide).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

proof sketch.

1 pref $\not\Rightarrow \sigma$, $\sigma \in \{adm, stable\}$ unless $\Sigma_2^p = NP$:

Given an efficient weakly faithful translation Tr with remainder set S for $pref \Rightarrow \sigma$. Skept_{pref} is translated to the problem Skept^S_{σ}, deciding whether an argument is in each σ -extension which is not in the set S. One can show that the problem Skept^S_{σ} is in co-NP (by standard guess and check). But Skept_{pref} is Π_2^p -hard, while Skept^S_{σ} is co-NP-easy f.

proof sketch.

1 pref $\not\Rightarrow \sigma$, $\sigma \in \{adm, stable\}$ unless $\Sigma_2^p = NP$:

Given an efficient weakly faithful translation Tr with remainder set S for $pref \Rightarrow \sigma$. Skept_{pref} is translated to the problem Skept^S_{σ}, deciding whether an argument is in each σ -extension which is not in the set S. One can show that the problem Skept^S_{σ} is in co-NP (by standard guess and check). But Skept_{pref} is Π_2^p -hard, while Skept^S_{σ} is co-NP-easy f.

a semi
$$\not\Rightarrow \sigma$$
, $\sigma \in \{ adm, stable, pref \}$ unless $\Sigma_2^p = \mathsf{NP}$:

Let Tr be an efficient (weakly) faithful translation for $semi \Rightarrow \sigma$. By definition Tr is L-computable and reduces $Cred_{semi}$ to $Cred_{\sigma}$. But $Cred_{semi}$ is Σ_{2}^{p} -hard, while $Cred_{\sigma}$ is NP-easy ℓ .

Results (Snapshot)

	admissible	stable	preferred	semi-stable
admissible	id	Tr ₃ / -	$Tr_2 \circ Tr_3 / -$	Tr ₃ / -
stable	Tr ₂	id	Tr ₂	Tr ₂
preferred	—	-	id	Tr ₁
semi-stable	—	—	_	id

æ

< □ > < □ > < □ > < □ > < □ > .

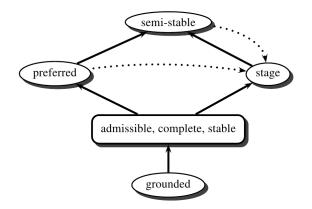
Results (in the paper)

	ground	adm	stable	сотр	pref	semi	stage
ground	id	√/-	√/-	√/-	√/?	√/?	√/?
adm	-	id	Tr ₃ / -	Tr ₁	$Tr_2 \circ Tr_3 / -$	Tr ₃ / -	Tr ₃ / -
stable	-	Tr ₂	id	Tr ₂	Tr ₂	Tr ₂	\checkmark
comp	-	√ / -	√ / -	id	√ / -	√ / -	√ / -
pref	_	_	_	-	id	Tr ₁	?
semi	-	-	-	-	—	id	?
stage	_	-	_	-	_	\checkmark	id

æ

< □ > < □ > < □ > < □ > < □ > .

Results (in the paper) ctd.



Intertranslatability w.r.t. (weak) faithful translations

æ

イロン イヨン イヨン イヨン

Conclusion

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

Conclusion

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

Future Work:

- resolve open problems
- robustness of translations wrt. graph properties
- extend to other important semantics

Conclusion

Investigation of intertranslations between different semantics for abstract argumentation:

- complements results about comparing semantics
- provides new insight into "meta-argumentation" (express semantical concepts within argumentation frameworks)

Future Work:

- resolve open problems
- robustness of translations wrt. graph properties
- extend to other important semantics

🔋 W. Dvořák and S. Woltran.

On the Intertranslatability of Argumentation Semantics. In *Proceedings of NonMon@30, 2010*