
Argumentation with Bounded Tree-Width�

Seminar aus Theoretischer Informatik

Wolfgang Dvořák, Reinhard Pichler, Stefan Woltran

Database and Artificial Intelligence Group
Institut für Informationssysteme
Technische Universität Wien

January 26, 2010

�This work was supported by the Vienna Science and Technology Fund (WWTF) under grant

ICT08-028

Argumentation with Bounded Tree-Width Slide 1

Outline

1. Decision Problems

2. Theoretic Tractability

3. Some Definitions

4. Dynamic Programming Algorithm

Argumentation with Bounded Tree-Width Slide 2

1. Decision Problems

Decision Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

x is in at least one preferred extension ⇔ x is in at least one admissible
extension.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

The credulous acceptance problem is NP-complete
([Dimopoulos and Torres(1996)]).
The skeptical acceptance problem is Σp

2-complete
([Dunne and Bench-Capon(2002)]).

Argumentation with Bounded Tree-Width Slide 3

1. Decision Problems

Decision Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

x is in at least one preferred extension ⇔ x is in at least one admissible
extension.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

The credulous acceptance problem is NP-complete
([Dimopoulos and Torres(1996)]).
The skeptical acceptance problem is Σp

2-complete
([Dunne and Bench-Capon(2002)]).

Argumentation with Bounded Tree-Width Slide 3

1. Decision Problems

Decision Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

x is in at least one preferred extension ⇔ x is in at least one admissible
extension.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

The credulous acceptance problem is NP-complete
([Dimopoulos and Torres(1996)]).
The skeptical acceptance problem is Σp

2-complete
([Dunne and Bench-Capon(2002)]).

Argumentation with Bounded Tree-Width Slide 3

2. Theoretic Tractability

Theoretic Tractability

We can express the properties of admissible and preferred extensions in
MSOL ([Dunne(2007)]):

cfR(U) = ∀x , y
(
〈x , y〉 ∈ R → (¬x ∈ U ∨ ¬y ∈ U)

)
admR(U) = cfR(U) ∧ ∀x , y

(
(〈x , y〉 ∈ R ∧ y ∈ U)→

∃z(z ∈ U ∧ 〈z , x〉 ∈ R)
)

pref(A,R)(U) = admR(U) ∧ ¬∃V ⊆ A : admR(V) ∧ U ⊂ V

The required checks for the considered decision problems can easily be
added to these formulas.

Thus by Courcelles theorem we can decide our problems in linear time on
argumentation frameworks of bounded tree-width.

Argumentation with Bounded Tree-Width Slide 4

2. Theoretic Tractability

Theoretic Tractability

We can express the properties of admissible and preferred extensions in
MSOL ([Dunne(2007)]):

cfR(U) = ∀x , y
(
〈x , y〉 ∈ R → (¬x ∈ U ∨ ¬y ∈ U)

)
admR(U) = cfR(U) ∧ ∀x , y

(
(〈x , y〉 ∈ R ∧ y ∈ U)→

∃z(z ∈ U ∧ 〈z , x〉 ∈ R)
)

pref(A,R)(U) = admR(U) ∧ ¬∃V ⊆ A : admR(V) ∧ U ⊂ V

The required checks for the considered decision problems can easily be
added to these formulas.

Thus by Courcelles theorem we can decide our problems in linear time on
argumentation frameworks of bounded tree-width.

Argumentation with Bounded Tree-Width Slide 4

3. Some Definitions

Tree-Decomposition

Definition

Let G = (V ,E) be an undirected graph.
A tree decomposition of G is a pair (T ,X) where T = (VT ,ET) is a tree
and X = (Xt)t∈VT is a set of so-called bags, which has to satisfy the
following conditions:

1
⋃

t∈VT Xt = V , i.e. X is a cover of V ;
2 For each v ∈ V , T |{t|v∈Xt} is connected;
3 For each {vi , vj} ∈ E , {vi , vj} ⊆ Xt for some t ∈ VT .

The width of such a tree decomposition is given by
max{|Xt | | t ∈ VT } − 1. The tree-width of a graph G is the minimum
width over all tree decompositions of G .

Argumentation with Bounded Tree-Width Slide 5

3. Some Definitions

Tree-Decomposition

Definition

Let G = (V ,E) be an undirected graph.
A tree decomposition of G is a pair (T ,X) where T = (VT ,ET) is a tree
and X = (Xt)t∈VT is a set of so-called bags, which has to satisfy the
following conditions:

1
⋃

t∈VT Xt = V , i.e. X is a cover of V ;
2 For each v ∈ V , T |{t|v∈Xt} is connected;
3 For each {vi , vj} ∈ E , {vi , vj} ⊆ Xt for some t ∈ VT .

The width of such a tree decomposition is given by
max{|Xt | | t ∈ VT } − 1. The tree-width of a graph G is the minimum
width over all tree decompositions of G .

Argumentation with Bounded Tree-Width Slide 5

3. Some Definitions

Nice Tree-Decomposition

Definition ([Kloks(1994)])
A tree decomposition (T ,X) is called nice if T is a rooted tree and if
each node t ∈ T is of one of the following types:

1 LEAF: t is a leaf of T
2 FORGET: t has only one child t ′ and Xt = Xt′∪̇{v}
3 INSERT: t has only one child t ′ and Xt∪̇{v} = Xt′

4 JOIN: t has two children t ′, t ′′ and Xt = Xt′ = Xt′′

Additional we will assume that XR = ∅ for the root node R.

Lemma ([Kloks(1994)])
A tree decomposition ((T), (X)) of a graph G with n nodes can be
transformed in time O(n) into a nice tree decomposition ((T)′, (X)′) of G
which has the same width as ((T), (X)) and where (T)′ has O(n) nodes.

Argumentation with Bounded Tree-Width Slide 6

3. Some Definitions

Nice Tree-Decomposition

Definition ([Kloks(1994)])
A tree decomposition (T ,X) is called nice if T is a rooted tree and if
each node t ∈ T is of one of the following types:

1 LEAF: t is a leaf of T
2 FORGET: t has only one child t ′ and Xt = Xt′∪̇{v}
3 INSERT: t has only one child t ′ and Xt∪̇{v} = Xt′

4 JOIN: t has two children t ′, t ′′ and Xt = Xt′ = Xt′′

Additional we will assume that XR = ∅ for the root node R.

Lemma ([Kloks(1994)])
A tree decomposition ((T), (X)) of a graph G with n nodes can be
transformed in time O(n) into a nice tree decomposition ((T)′, (X)′) of G
which has the same width as ((T), (X)) and where (T)′ has O(n) nodes.

Argumentation with Bounded Tree-Width Slide 6

3. Some Definitions

Example:

Tree-decomposition:

Argumentation with Bounded Tree-Width Slide 7

3. Some Definitions

Example:

Tree-decomposition: nice tree-decomposition:

Argumentation with Bounded Tree-Width Slide 7

3. Some Definitions

More Definitions

Definition
Let F = (A,R) be an AF and B ⊆ A.
A set E ⊆ A is a B-restricted admissible set, iff E is conflict-free in F
and E defends itself against all a ∈ B.

E admissible ⇔ E is A-restricted admissible.
E conflict-free ⇔ E is ∅-restricted admissible.

Some Notation
Let (T ,X) be a tree-decomposition and t ∈ T then :

X≥t =
⋃

t′≥t Xt′ (union over the subtree rooted in t),
X>t = X≥t \ Xt

Argumentation with Bounded Tree-Width Slide 8

3. Some Definitions

More Definitions

Definition
Let F = (A,R) be an AF and B ⊆ A.
A set E ⊆ A is a B-restricted admissible set, iff E is conflict-free in F
and E defends itself against all a ∈ B.

E admissible ⇔ E is A-restricted admissible.
E conflict-free ⇔ E is ∅-restricted admissible.

Some Notation
Let (T ,X) be a tree-decomposition and t ∈ T then :

X≥t =
⋃

t′≥t Xt′ (union over the subtree rooted in t),
X>t = X≥t \ Xt

Argumentation with Bounded Tree-Width Slide 8

3. Some Definitions

More Definitions

Definition
Let F = (A,R) be an AF and B ⊆ A.
A set E ⊆ A is a B-restricted admissible set, iff E is conflict-free in F
and E defends itself against all a ∈ B.

E admissible ⇔ E is A-restricted admissible.
E conflict-free ⇔ E is ∅-restricted admissible.

Some Notation
Let (T ,X) be a tree-decomposition and t ∈ T then :

X≥t =
⋃

t′≥t Xt′ (union over the subtree rooted in t),
X>t = X≥t \ Xt

Argumentation with Bounded Tree-Width Slide 8

3. Some Definitions

Dynamic Programming

Argumentation Framework
& nice tree-decomposition

⇒

Nice tree-decomposition with
induced sub-frameworks

Argumentation with Bounded Tree-Width Slide 9

4. Dynamic Programming Algorithm

Dynamic Programming

Basic Ideas:
Compute the X>t-restricted admissible sets for each bag with a
bottom-up algorithm on the tree-decomposition

For a bag t we only store information about nodes in Xt

The information about the nodes in X>t is implicitly encoded

The results for the entire problem can be read of the root.

Bag - Colorings
A coloring for a bag is a function Ct : Xt → {in, out, att, def }. A coloring
corresponds to an X>t-restricted admissible set S in the following way:

x ∈ Xt : C (x) =

in iff x ∈ S
out iff x 6∈ S ∧ x 6� S ∧ S 6� x
att iff x 6∈ S ∧ x � S ∧ S 6� x
def iff x 6∈ S ∧ S � x

Argumentation with Bounded Tree-Width Slide 10

4. Dynamic Programming Algorithm

Dynamic Programming

Basic Ideas:
Compute the X>t-restricted admissible sets for each bag with a
bottom-up algorithm on the tree-decomposition

For a bag t we only store information about nodes in Xt

The information about the nodes in X>t is implicitly encoded

The results for the entire problem can be read of the root.

Bag - Colorings
A coloring for a bag is a function Ct : Xt → {in, out, att, def }. A coloring
corresponds to an X>t-restricted admissible set S in the following way:

x ∈ Xt : C (x) =

in iff x ∈ S
out iff x 6∈ S ∧ x 6� S ∧ S 6� x
att iff x 6∈ S ∧ x � S ∧ S 6� x
def iff x 6∈ S ∧ S � x

Argumentation with Bounded Tree-Width Slide 10

4. Dynamic Programming Algorithm

DP - Leaf-Node

Leaf Nodes
We compute all conflict-free sets over Xt .
As X>t = ∅ the conflict-free sets coincide
with the X>t-restricted admissible sets.

Tree Decomposition
n7 : {a, b}

Colorings for n7

There are three conflict-free
sets ∅, {a}, {b}

a b #
in def 1
att in 1
out out 1

Argumentation with Bounded Tree-Width Slide 11

4. Dynamic Programming Algorithm

DP - Leaf-Node

Leaf Nodes
We compute all conflict-free sets over Xt .
As X>t = ∅ the conflict-free sets coincide
with the X>t-restricted admissible sets.

Tree Decomposition
n7 : {a, b}

Colorings for n7

There are three conflict-free
sets ∅, {a}, {b}

a b #
in def 1
att in 1
out out 1

Argumentation with Bounded Tree-Width Slide 11

4. Dynamic Programming Algorithm

DP - Forget-Node

Forget-Node for argument x
Eliminate all colorings C with C (x) = att.
Remove the variable x from the remaining
colorings.

Tree Decomposition
n7 : {a, b} → n6 : {b}

Colorings for n7

a b #
in def 1
att in 1
out out 1

Colorings for n6

b #
def 1
out 1

Argumentation with Bounded Tree-Width Slide 12

4. Dynamic Programming Algorithm

DP - Forget-Node

Forget-Node for argument x
Eliminate all colorings C with C (x) = att.
Remove the variable x from the remaining
colorings.

Tree Decomposition
n7 : {a, b} → n6 : {b}

Colorings for n7

a b #
in def 1
att in 1
out out 1

Colorings for n6

b #
def 1
out 1

Argumentation with Bounded Tree-Width Slide 12

4. Dynamic Programming Algorithm

DP - Insert-Node

Insert-Node for argument x
For each coloring C of the child-node there
may be two colorings.
1) C extended by C (x) ∈ {out, att, def }
2) C extended by C (x) = in (if
{y ∈ Xt : C (y) = in} ∪ {x} is conflict free)

Tree Decomposition
n6 : {b} → n5 : {b, c}

Colorings for n6

b #
def 1
out 1

Colorings for n5

b c #
def in 2
def out 1
out out 1

Argumentation with Bounded Tree-Width Slide 13

4. Dynamic Programming Algorithm

DP - Insert-Node

Insert-Node for argument x
For each coloring C of the child-node there
may be two colorings.
1) C extended by C (x) ∈ {out, att, def }
2) C extended by C (x) = in (if
{y ∈ Xt : C (y) = in} ∪ {x} is conflict free)

Tree Decomposition
n6 : {b} → n5 : {b, c}

Colorings for n6

b #
def 1
out 1

Colorings for n5

b c #
def in 2
def out 1
out out 1

Argumentation with Bounded Tree-Width Slide 13

4. Dynamic Programming Algorithm

DP - Join-Node

Join-Node
Combine the colorings of the child-nodes
that map the same arguments to in.

Tree Decomposition
n3 : {a, b} ; n8 : {a, b} → n2 : {a, b}

Colorings for n3, n8

n3:

c d #
in def 2
def in 2
out out 2

n8:

c d #
in def 1
def in 2
out out 1

Colorings for n2

c d #
in def 2
def in 4
out out 2

Argumentation with Bounded Tree-Width Slide 14

4. Dynamic Programming Algorithm

DP - Join-Node

Join-Node
Combine the colorings of the child-nodes
that map the same arguments to in.

Tree Decomposition
n3 : {a, b} ; n8 : {a, b} → n2 : {a, b}

Colorings for n3, n8

n3:

c d #
in def 2
def in 2
out out 2

n8:

c d #
in def 1
def in 2
out out 1

Colorings for n2

c d #
in def 2
def in 4
out out 2

Argumentation with Bounded Tree-Width Slide 14

4. Dynamic Programming Algorithm

DP - Root-Node

Root-Node
As X>t equals A we have that the X>t-restricted admissible sets of X≥t
are the admissible sets of F .

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then the argument x is credulously accepted iff #root > 0.

Argumentation with Bounded Tree-Width Slide 15

4. Dynamic Programming Algorithm

DP - Root-Node

Root-Node
As X>t equals A we have that the X>t-restricted admissible sets of X≥t
are the admissible sets of F .

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then the argument x is credulously accepted iff #root > 0.

Argumentation with Bounded Tree-Width Slide 15

4. Dynamic Programming Algorithm

DP - Root-Node

Root-Node
As X>t equals A we have that the X>t-restricted admissible sets of X≥t
are the admissible sets of F .

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then the argument x is credulously accepted iff #root > 0.

Argumentation with Bounded Tree-Width Slide 15

4. Dynamic Programming Algorithm

Complexity

Complexity
Given an AF of tree-width w and an argument x , our algorithm decides if
x is sceptical accepted in time O(f (w) · |AF |)

Proof Ideas.
The size of a coloring is bounded by O(w).
The number of colorings for every bag is bounded by 4w .
Thus the computation of all colorings for an bag can be done in
time f (w).

Argumentation with Bounded Tree-Width Slide 16

4. Dynamic Programming Algorithm

Complexity

Complexity
Given an AF of tree-width w and an argument x , our algorithm decides if
x is sceptical accepted in time O(f (w) · |AF |)

Proof Ideas.
The size of a coloring is bounded by O(w).
The number of colorings for every bag is bounded by 4w .
Thus the computation of all colorings for an bag can be done in
time f (w).

Argumentation with Bounded Tree-Width Slide 16

4. Dynamic Programming Algorithm

Future Work

Future and Ongoing Work:

Implementation of these algorithms

Systematic Comparison with existing Frameworks.

Adapting this algorithm to other semantics for AFs.

Identifying larger tractable fragments (e.g. directed graph measures
like clique width)

↪→ Developing / Implementing fixed-parameter tractable algorithms

Argumentation with Bounded Tree-Width Slide 17

4. Dynamic Programming Algorithm

Argumentation with Bounded Tree-Width Slide 18

5. References

Yannis Dimopoulos and Alberto Torres.
Graph theoretical structures in logic programs and default theories.
Theor. Comput. Sci., 170(1-2):209–244, 1996.

Paul E. Dunne.
Computational properties of argument systems satisfying
graph-theoretic constraints.
Artif. Intell., 171(10-15):701–729, 2007.
ISSN 0004-3702.
doi: http://dx.doi.org/10.1016/j.artint.2007.03.006.

Paul E. Dunne and Trevor J. M. Bench-Capon.
Coherence in finite argument systems.
Artif. Intell., 141(1/2):187–203, 2002.

Ton Kloks.
Treewidth, Computations and Approximations, volume 842 of
Lecture Notes in Computer Science.
Springer, 1994.

Argumentation with Bounded Tree-Width Slide 19

	Decision Problems
	Theoretic Tractability
	Some Definitions
	Dynamic Programming Algorithm
	References

