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Zusammenfassung

Diese Diplomarbeit widmet sich der Berechnung der Wahrscheinlichkeitsdichte der

Allelfrequenzen in einer Population über die Zeit innerhalb eines bi-allelischen Mo-

dells mit Selektion und Drift. Dafür wird von einem Diffusionsmodell ausgegangen,

welches das Wright-Fisher- und das Moran-Modell approximiert. Diese Modelle wer-

den kurz vorgestellt. Die Dichte der Allelfrequenzen ist eine Lösung der Kolmogorov

Vorwärts- und Rückwärtsgleichungen, die sich aus dem Diffusionsmodell ergeben. Ei-

ne Lösung zu diesen Gleichungen wurde bereits von Kimura (1955) gefunden. Der

Lösungsweg von Kimura (1955) und ein ähnlicher von Song and Steinrücken (2012)

wird beschrieben und ein weiterer Lösungansatz vorgestellt. Der neue Lösungsansatz

basiert auf der Transformation der Kolmogorov Vorwärtsgleichung in eine Differenti-

algleichung, die durch Sphäroidfunktionen gelöst wird. Im Anwendungskapitel werden

die unterschiedlichen Dichtefunktionen anhand von Simulationen und Graphiken ver-

glichen.



Abstract

This thesis is about the derivation of a formula for the density of allele frequencies of

a biallelic model with selection and drift. The starting point is the diffusion model

approximating the Wright-Fisher and the Moran model. A short summary of the

theory of these models is given in this thesis. The allele frequency transition density

is a solution of the Kolmogorov forward and backward equation resulting from the

diffusion approximation. A solution by Kimura (1955) already exists. The method of

Kimura (1955) and a similar method of Song and Steinrücken (2012) are described

and a further approach is proposed. In the chapter on applications, the resulting

functions are compared by simulations and graphs.
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Chapter 1

Introduction

The evolution of allele-frequencies of a biallelic model with selection and drift over

time in a population is described by the transition density function of the Wright-

Fisher or Moran models. Both models can be approximated by a diffusion process. For

this bi-allelic model with selection and drift, the Kolmogorov forward and backward

equations have been derived. The only parameter is the scaled selection coefficient

γ ∝ sN . The allelic proportion given the starting distribution of φ(x|p, t, γ) can be

found for all times by solving the Kolmogorov forward equation. Kimura (1955) gave

a spectral representation of such a solution using the Gegenbauer polynomials. Se-

lection was accounted for by expanding into a Taylor series. After Kimura (1955),

the problem has not been considered for many years. Only lately the topic got more

attention; e.g. Mano (2009) used the solution of Kimura (1955). Recently Song and

Steinrücken (2012) proposed a similar, but slightly different way to find the solution

and an algorithm for the computation that was not based on a Taylor series expan-

sion, but on the solution of an infinite-dimensional system of linear equations. In

this thesis it is shown that the differential equation can be solved using the spheroidal

wave functions by transforming the forward equation into Sturm-Liouville form. Con-

nections to the approaches of Kimura (1955) and Song and Steinrücken (2012) are

pointed out. The spheroidal wave functions and their eigenvalues are implemented

in Mathematica (Weisstein, 2013c) and in a Mathematica package implemented by

Falloon (2003) and are thus easily available to population geneticists. This thesis is

organised as follows: in Chapter 2 the Wright-Fisher and Moran model are described

and in Chapter 3 the theory for diffusion processes is summarised. The main part

of this thesis is contained in Chapter 4, where the calculation of the allele frequency

density is described. In the Chapter ??, a summary of the used mathematical back-

ground is given. The different solutions are compared using graphs and simulations

and the Mathematica code is provided.
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Chapter 2

Probabilistic Models in

Population Genetics

In population genetics the Wright-Fisher and the Moran model are used to describe

the change in allele frequencies in a population over generations. We are only consid-

ering the bi-allelic selection drift models without mutation.

The main difference between these two models is that in the Wright-Fisher model, the

generations are strictly non-overlapping. The Moran model has the advantage that

some properties can be calculated exactly where in the Wright-Fisher model they can

only be approximated (Baake, 2008).

2.1 Assumptions

In both models it is assumed that the population is finite; in the Wright-Fisher model

individuals are assumed to be diploid, in the Moran model haploid. Only bi-allelic

models are considered, which means that at the relevant locus, there are only two

different possible alleles, A1 and A2. The population is assumed to be random mating

with only one mating type, so the population is monoecious (Wakeley, 2009). In a

model with selection, we assume that the allele A2 is favored, without loss of general-

ity. The number of individuals having the allele A1 is Y and the proportion is x = Y
2N ,

where N is the population size. The interest lies in the change in the frequency of

the alleles. The number of alleles of type A1 at generation t is denoted as Yt and the

relative frequency as xt (0 < xt < 1). The relative frequency of the allele A2 is then

1− xt (Charlesworth and Charlesworth, 2010; Ewens, 2000).

3



2.1.1 Hardy-Weinberg equilibrium

The Hardy-Weinberg equilibrium gives the proportion of the different diploid geno-

types in the population, if the population is random mating. When the relative fre-

quency of allele A1 is xt the frequencies of the genotypes are given in Table2.1 (Ewens,

2000). Hardy Weinberg equilibrium is reached in a single generation, when the gen-

erations are non-overlapping. When the generations are overlapping Hardy Weinberg

equilibrium is reached only asymptotically (Charlesworth and Charlesworth, 2010).

genotype A1A1 A1A2 A2A2

frequencies x2
t 2xt(1− xt) (1− xt)2

Table 2.1: Hardy Weinberg equilibrium

2.1.2 Fitness associated with Genotypes

With each genotype a different fitness score is associated. The fitness of genotype

A1A1 is w11 and of the other genotypes w12 and w22, respectively. The mean fitness

in the population is w̄. The relative fitness is calculated as the total fitness divided

by the mean fitness w̄. The fitness is dependent on the selection parameter s and the

heterozygous dominance h. Common ways to model the fitness parameters are given

in table 2.1.2 (Ewens, 2000). Fitness 4 is an adaptation of fitness 1 which is used by

Song and Steinrücken (2012) and will be used later.

w̄ = x2
tw11 + 2xt(1− xt)w12 + (1− xt)2w22

Table 2.2: Fitness parameters

genotype A1A1 A1A2 A2A2

fitness 1 1 1 + sh 1 + s

fitness 2 1− s1 1 1− s2

fitness 3 1 1 + s1 1 + s2

fitness 4 1 1 + 2sh 1 + 2s

2.2 Wright-Fisher Model

The change in allele frequency x is modelled in a random mating diploid and fi-

nite population. The genes in generation t + 1 are derived by random sampling

with replacement from generation t (Ewens, 2000). The offspring of generation t

replaces all individuals, such that the generations are completely non-overlapping.
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This is a Markov process where the number of alleles A1 is the Markovian variable

(Y (t) = 2Nxt). The transition probability from generation t with i alleles of type 1

to generation t + 1 with j alleles of type 1 is pij as given in equation 2.1 (xt = i
2N )

and is binomial. In a haploid population 2N is replaced by N

pij =

(
2N

j

)
xjt (1− x

2N−j
t ) . (2.1)

The expected value and variance then are E[Yt+1] = 2Nxt = Yt and V ar[Yt+1] =

2Nxt(1−xt) = Yt(1−xt) (Ewens, 2000). Assuming that the different genotypes have

different fitness values (w11, w12 and w22) the transition probabilities can be written

as

pij =

(
2N

j

)
ηji (1− ηi)

2N−j (2.2)

where ηi is given as (Ewens, 2000):

ηi =
w11x

2
t + w12xt(1− xt)

w̄
. (2.3)

The change in the allele frequencies from one generation to the next is δx, such that

xt+1 = xt + δx and can be calculated as follows (Ewens, 2000):

xt+1 − xt =
xt(1− xt)

w̄
(w11xt + w12(1− 2xt)− w22(1− xt)) .

The variance of δx is then Vδx = x(1−x)
2N (Charlesworth and Charlesworth, 2010).

2.3 Moran Model

In contrast to the Wright-Fisher model where the population of one generation com-

pletely replaces the preceding generation, the generations in the Moran model are

overlapping. To model drift, two haploid individuals are chosen at random with re-

placement from the population at each step. The first chosen individual reproduces

and it’s duplicate replaces the second individual (Wakeley, 2009). So every birth

event is coupled with a death event (Baake, 2008).

If the number of alleles of type 1 (A1) in a haploid population is i at time step t

(Yt = i), then there are three possible values at time step t + 1: the number of

alleles can stay the same or change by one. This results in a Markov process with

a tridiagonal transition matrix with transition probabilities pij in the case without

selection or mutation.
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pij =


x(1− x) if j = i+ 1 or j = i− 1

x2 + (1− x)2 if j = i

0 otherwise

(2.4)

The probability of the number of alleles changing by one is 2x(1 − x), half up and

half down, and the probability of staying at the same value is x2 + (1− x)2.

With this knowledge the expectation and the variance of the frequency of allele A1 can

be computed. Without selection the mean frequency and the variance are E[Yt+1] =

Yt and V ar[Yt+1] = 2xt(1− xt).

Selection is modelled with parameter s for example as in Vogl and Clemente (2012),

where selection increases the transition probability pi,i+1 by sx(1−x). The probability

of staying at i is then reduced by the same value.
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Chapter 3

Diffusion Approximation of

Probabilistic Models in

Population Genetics

The diffusion model in population genetics describes the stochastic process of allele

frequency change within one or more populations over time (Xt)t≥0 (Kimura, 1955).

Starting point is for example the Wright-Fisher model or the Moran model (see Chap-

ter 2). The probability density function φ(x|p, t) of the allele frequency implied by

the diffusion process is of interest. x is the frequency of allele A1 at time t. At time

t = 0 the allele frequency is p. This probability density function is found as a solution

to the Kolmogorov forward and backward equation of the diffusion process. The two

equations are presented in Subsection 3.7.

In this chapter the diffusion approximations for the two most used probabilistic models

in population genetics (the Wright-Fisher and the Moran model) are derived and

studied in more detail. The Wright-Fisher and the Moran model share the same

diffusion limit up to a factor 2. To make results comparable in literature often the

factor 2 is included in the selection or time parameters of the Moran Model (Baake,

2008). The theory of diffusion processes is summarized mainly from Karlin and Taylor

(1981).

The population genetic models explained in the preceding chapter are in discrete time,

however exponential waiting times can be added to the Moran model. For further

calculation a continuous time process would be easier. To transform to continuous

time the diffusion theory is used and the resulting model is then called a diffusion

process or diffusion model. To derive the diffusion approximation of the Wright-Fisher

model, the Markov chain describing the model has to be approximated in continuous
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time. The properties at the boundaries play an important role and have to be taken

into account.

A diffusion process is a strong Markov process with continuous sample paths. To

show that a standard Markov process is a diffusion it is sufficient to show that the

Dynkin condition is satisfied (Karlin and Taylor, 1981).

3.1 Definition

A diffusion process is a continuous time stochastic process, which possesses the strong

Markov property and for which the sample paths Xt are almost everywhere continuous

functions of t (Karlin and Taylor, 1981). The process is regular, which means that

when starting from any point p within the domain of definition of the process, reaching

any other point within has positive probability. Xt is the frequency of one allele in

a bi-allelic model at time t. The behaviour at the boundaries is dependent on the

mutation rate. In a model without mutation the boundaries are absorbing, with

mutation the boundaries are regular.

A process x is called a stochastic process, if the probability that the change of x

within a time interval (t, t + δt) is bigger than ε, is of order smaller than δt (o(δt)),

with ε > 0 (Crow and Kimura, 1970).

P [|Xt −Xt+δt| > ε] = o(δt) (3.1)

In population genetics the interesting process is the change in relative allele frequen-

cies; therefore the diffusion process used is of course defined on the interval [0, 1].

A standard Markov process satisfying the Dynkin condition is a diffusion process. The

Dynkin condition is given in equation 3.2:

lim
h↓0

1

h
P [|Xt+h − p| > ε |Xt = p] = 0 ∀p ∈ [0, 1] and ε > 0 . (3.2)

The diffusion process can be fully defined by the boundary conditions and the in-

finitesimal parameters: the infinitesimal mean µ(x) and the infinitesimal variance

σ2(x). In our context, µ(x) is the mean change in allele frequencies and σ2(x) is the

variance of the change. In the theory of diffusion processes, µ(x) is also called the

drift part and σ2(x) the diffusion part of the process. Since the term drift may be

misleading in a population genetics context, we will refer to µ(x) as the infinitesimal

mean.

If4δtXt = Xt+δt−Xδt is the change of the process over the interval [t, t+h], then the

infinitesimal mean and the infinitesimal variance are defined as (Karlin and Taylor,
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1981)

lim
δt↓0

1

δt
E[4δtXt |Xt = x] = µ(x, t) = µ(x) (3.3)

lim
δt↓0

1

δt
E[(4δtXt)

2 |Xt = x] = σ2(x, t) = σ2(x) . (3.4)

We are only considering time homogeneous processes, such that µ(x) and σ2(x) are

independent of t.

Usually the following equation is satisfied for higher moments (r = 3, 4, 5, . . . ) (Karlin

and Taylor, 1981):

lim
δt↓0

1

δt
E[| 4δt Xt|r|Xt = x] = 0 . (3.5)

In table 3.1 the infinitesimal mean and infinitesimal variance in different population

genetics models are shown. Selection is modelled by the selection coefficient s and

the dominance parameter h. In models without dominance the coefficient h is 1
2 .

Mutation is assumed to be absent. The scaling with 2N of the infinitesimal parameters

is unfortunately not consistent in literature.

The infinitesimal parameters can be derived from different models (see 2.1.2). From

this the scale and speed function can be calculated (equations 3.9 and 3.11), which

give further information about the behaviour of the process.

Table 3.1: some examples for µ(x) and σ2(x) in different models

µ(x) σ2(x)

only drift 0 x(1− x) 1
2N

with selection and dominance sx(1− x)(x+ h(1− 2x)) x(1− x) 1
2N

with selection and no dominance (h = 1
2 ) sx(1− x) 1

2 x(1− x) 1
2N

3.2 Transition Probability

To construct the diffusion process, first the discrete time Markov chain describing the

change in allele frequencies over generations has to be defined.

Tij is the transition probability from state i to state j of the underlying Markov chain.

φ(x|p, t) ' T
(t)
px is the probability of moving from the starting point p to x within t

generations. This probability is defined recursively in equation 3.6.

φ(j|p, t+ 1) =
∑
i

φ(i|p, t)Ti,j (3.6)
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The initial distribution at time t = 0 is a function with point mass at x = p. This

can be expressed by the Dirac delta distribution.

p(x|p, t = 0) = δ(x− p) =

 1 if x = p

0 otherwise
(3.7)

Since we are interested in small changes in x during small changes in t the equation

3.6 is rewritten to

φ(x+ δx|p, t+ δt) =

∫ 1

0

φ(x|p, t)φ(x+ δx|x, δt)dx , (3.8)

where t± δt is a very small time interval.

3.3 Speed and Scale function

The scale function S(x) of the diffusion process is defined in equation 3.9 and the

speed function m(x) in equation 3.11. For more details on these functions see Ewens

(2000, Section 4.7) and Karlin and Taylor (1981, p. 194-195). In Karlin and Taylor

(1981) the integrals are defined indefinite (starting from −∞) and in Ewens (2000)

the integrals start at some arbitrary value x0 6= −∞. Which definition of the integral

boundaries is more appropriate, depends on the context.

The speed and scale function will recur in the following sections in the solutions of

different problems.

S(x) =

∫ x

x0

e
−2

∫ y
x0

µ(z)

σ2(z)
dz
dy =

∫ x

x0

s(y)dy (3.9)

s(x) = e
−

∫ x
x0

2µ(y)

σ2(y)
dy

(3.10)

m(x) = 2

∫ x

x0

σ2(y)
−1
e
∫ y
x0

2µ(z)

σ2(z)
dz
dy =

1

σ2(x)s(x)
(3.11)

3.3.1 Scale function

The scale function can be used to rescale the process (Xt)t≥0, which is defined on

the interval (l, u), to a process Yt = S(Xt) defined on the interval (S(l), S(r)). The

infinitesimal parameters of the new process (Yt)t≥0 are then given as (Karlin and

Taylor, 1981):

µy(y) =
1

2
σ2(y)S′′(y) + µ(y)S′(y) = 0 (3.12)

and
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σ2
y(y) = σ2(y)S′(y)2 . (3.13)

In the case with selection and no mutation the equation can be simplified for special

values of h. For no dominance (h = 1
2 ) the scale function becomes Sh= 1

2
(x) in 3.14 (c

is some arbitrary constant) (Ewens, 2000).

Sh= 1
2
(x) =

∫ x

x0

esydy =
1

s
[esx − esx0 ] (3.14)

3.3.2 Speed function

As the name suggests the speed function can be used to estimate the time spent in

an interval. For a diffusion process in its natural scale the derivative of the speed

function m(x) is

dm(x)

dx
=

2

σ2(x)
. (3.15)

Larger values of dm(x)
dx point to a longer mean time for leaving an interval (Ewens,

2000). The time, that the process will spend in the interval [x−ε, x+ε] when starting

in x is proportional to the speed function, with ε > 0

E[min(Tx−ε, Tx+ε)] ∝ m(x) (3.16)

3.4 Hitting Times

The process (Xt)t≥0 reaches a the first time at time Ta and Ta,b = min(Ta, Tb), is

the time at which either a or b have been reached. The probability that the process

reaches b before a is ua,b(p), when starting in p. (Karlin and Taylor, 1981).

ua,b(p) = P [Tb < Ta|X0 = p] a < p < b (3.17)

The mean time to reach either a or b when starting in p is va,b(p) (Karlin and Taylor,

1981).

va,b(p) = E[Ta,b|X0 = p] (3.18)

The functions ua,b(p) and va,b(p) can be found by solving differential equations. The

solutions are explained in the next subsections, which are a summary of the methods

explained in Karlin and Taylor (1981).

11



3.4.1 Probability to reach b before a

The probability of reaching b before a is ua,b(p) given in equation 3.17 (Karlin and

Taylor, 1981). The probability of reaching b before a when starting in a is of course

0. Therefore the boundary conditions are: ua,b(a) = 0 and ua,b(b) = 1.

The probability ua,b(p) can be expressed conditionally on the value of the process at

time t′ (Xt′), where the error term o(t′) is of smaller order than t′ (Karlin and Taylor,

1981).

ua,b(p) = E[ua,b(Xt′)|X0 = p] + o(t′) (3.19)

4X is the change in x during the time interval [0, t′] (4X = Xt′ − p). Expanding in

a Taylor series leads to:

ua,b(Xt′) = ua,b(p+4X) = ua,b(p) +4Xu′a,b(p) +
1

2
(4X)2u′′a,b(p) + . . .

Since (Xt)t≥0 is a diffusion process and the change in time t′ can be expressed by the

infinitesimal mean and its higher moments are 0 for t′ → 0.

E[4X|X0 = p] = µ(p)t′ + o(t′) and E[(4X)2|X0 = p] = σ2(p)t′ + o(t′).

Hence expanding in a Taylor series and expressing the change by the infinitesimal

mean and variance leads to the following calculation:

ua,b(p) = E[ua,b(Xt′)|X0 = p]

= E[ua,b(p) +4Xu′a,b(p) +
1

2
(4X)2u′′a,b(p)|X0 = p] + o(t′)

= ua,b(p) + µ(p)t′u′a,b(p) +
1

2
σ2(p)t′u′′a,b(p) + o(t′)

0 = µ(p)t′u′a,b(p) +
1

2
σ2(p)t′u′′a,b(p) + o(t′) .

For t′ → 0 we can conclude that ua,b(p) satisfies the differential equation (Karlin and

Taylor, 1981):

0 = µ(x)
∂u(x)

∂x
+

1

2
σ2(x)

∂2u(x)

∂x2
a < x < b (3.20)

The solution of this differential equation is explained in Karlin and Taylor (1981, 3.10)

and can be seen in equation 3.21. Note that the result does not depend on the lower

limit of the integration of the scale function S(.) (equation 3.9).

ua,b(x) =
S(x)− S(a)

S(b)− S(a)
(3.21)
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3.4.2 Mean Time to reach a or b

The mean time to reach a or b when starting at some value p with (a < p < b) is

given in equation 3.18 by va,b(p). The function va,b(p) is a special case of wa,b(x),

where g(x) = 1∀x (Karlin and Taylor, 1981).

wa,b(p) = E[

∫ Ta,b

0

g(Xr)dr |X0 = p] (3.22)

From the fact that the diffusion process (Xt)t≥0 satisfies the Markov property, it

follows that

E[

∫ ′Ta,b
t

g(Xr)dr |X ′t = z] = E[

∫ Ta,b

0

g(Xr)dr |X0 = z] = wa,b(p) (3.23)

and, since the sample paths and the function g are continuous, the expected value

can be approximated by (Karlin and Taylor, 1981)

E[

∫ t′

0

g(Xr)dr |X0 = p] = g(x)t′ + o(t′) . (3.24)

By using the Markov property as above the function w(p) can be expressed as (Karlin

and Taylor, 1981)

wa,b(p) = E[

∫ t′

0

g(Xr)dr |X0 = p] + E[wa,b(Xt′) |X0 = p] . (3.25)

Expanding wa,b(p+4X) in Taylor series leads to:

E[wa,b(Xt′) |X0 = p] = wa,b(p) + µ(x)w′a,b(x)t′ +
1

2
σ2(p)w′′a,b(p)t

′ + o(t′) (3.26)

Plugging this into 3.25 gets:

0 = g(p)t′ + µ(p)w′a,b(p)t
′ +

1

2
σ2(p)w′′a,b(p)t

′ + o(t′) (3.27)

when letting t′ → 0 it can be seen that wa,b satisfies the differential equation 3.28.

− g(x) = µ(x)
dw

dx
+

1

2
σ2(x)

d2w

dx2
a < x < b (3.28)

As stated before v(.) is a special case of w(.) where the function g(x) = 1 ∀x. Therefore

the differential equation satisfied by va,b(p) is equation 3.29.

− 1 = µ(x)
dv

dx
+

1

2
σ2(x)

d2v

dx2
a < x < b (3.29)

The solutions to the differential equations are explained in Karlin and Taylor (1981,

3.11 and 3.10) and are
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wa,b(x) = 2[ua,b(x)

∫ b

x

(S(b)− S(ξ))m(ξ)g(ξ)dξ (3.30)

+ (1 + u(x))

∫ x

a

(S(ξ)− S(a))m(ξ)g(ξ)dξ] (3.31)

S(.) is the scale function (equation 3.9) and m(.) is the speed function (equation 3.11).

3.5 Probability of Absorption

P (Xt = 0, X0 = p) is the probability of reaching 0 after t generations, when the start-

ing frequency was p. P (Xt = 1|X0 = p) is the probability of reaching 1 after t gener-

ations. For these probabilities the following differential equation is satisfied (Karlin

and Taylor, 1981).

∂

∂t
P (Xt = 0|X0 = p) = µ(p)

∂

∂p
P (Xt = 0, X0 = p) +

1

2
σ2(p)

∂2

∂p2
P (Xt = 0|X0 = x)

(3.32)

For t→∞ P (Xt = 0|X0 = p)→ P0(p) and the equation becomes (Karlin and Taylor,

1981)

0 = µ(p)
∂

∂p
P0(p) +

1

2
σ2(p)

∂2

∂p2
P0(x) (3.33)

∂2

∂p2
P0(p) = −2

µ(p)

σ2(p)

∂P0(p)

∂p
. (3.34)

It is obvious that P0(0) = 1 and P0(1) = 0 since 0 and 1 are absorbing states, with

ξ ∈ [0, 1].

δ

δp
P0(x) = C. exp(−1

∫ p

ξ

)
a(y)

b(y)
dy (3.35)

P0(p) =

∫ 1

p
exp(−2

∫
ξ
z µ(y)
σ2(y)dy)dz∫ 1

0
exp(−2

∫
ξ
z µ(y)
σ2(y)dy)dz

(3.36)

The same calculation can be done for P1(p). So the probability of absorption can be

expressed as a function of the scale function S(.) (given in equation 3.9).

P0(p) =
S(1)− S(p)

S(1)− S(0)
(3.37)

P1(p) =
S(p)− S(0)

S(1)− S(0)
(3.38)

Similarly the probability of hitting b before a can be calculated (0 < a < p < b). Ta

is a hitting time of a (so XTa = a).
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P [Tb < Ta|Xo = p] =
S(p)− S(a)

S(b)− S(a)
(3.39)

If the scale function S(x) is a linear function, the diffusion is said to be in its natural or

canonical scale. In this case the probability P [Ta < Tb|X0 = p] = b−p
b−a is proportional

to the distances (Karlin and Taylor, 1981).

3.6 Boundaries

The functions ua,b(z) and va,b(z) are used to gain more information about the be-

haviour of the process at the boundary point z. ua,b(z) is the probability of reaching

b before a for 0 < a < x < b < 1 and va,b(x) is the estimated time to reach either

a or b (see section 3.4 for more information). In our population genetics context the

boundaries are 0 and 1. For further information on these function see Ewens (2000,

Section 4.7) and Karlin and Taylor (1981, p. 192-202).

To learn more about the boundaries let a decrease to 0 and b increase to 1 separately

in those functions.

The probability of reaching b before reaching the boundary 0 can be calculated asymp-

totically by lima→0 ua,b(x), where 0 < a < x < b < 1. Remember that ua,b(x) =

S(x)−S(a)
S(b)−S(a) . Therefore the boundary is called attracting if lima→0 S(x) − S(a) < ∞

with 0 < a < x < 1, since this would mean that the boundary will be reached with

positive probability before reaching any other point b (0 < a < x < b < 1) (Karlin

and Taylor, 1981).

The boundary is called attainable when it can be reached in finite time. An at-

tainable boundary is also attracting, but an attracting boundary is not necessarily

attainable (Karlin and Taylor, 1981).

lim
a→0

va,b(x) = E[Ta,b|X0 = x], 0 < a < x < b < 1, b fixed (3.40)

= lim
a→0

2(ua,b(x)

∫ b

x

(S(b)− S(ξ))m(ξ)dξ (3.41)

+ (1 + ua,b(x))

∫ x

a

(S(ξ)− S(a))m(ξ)dξ) (3.42)

Since 0 is an attracting boundary lima→0 ua,b(x) < ∞, which leaves the condition

that Σ(0) = lima→0

∫ x
a

(S(ξ)− S(a))m(ξ)dξ has to be finite. If and only if Σ(0) <∞

the boundary 0 is attainable (Karlin and Taylor, 1981).
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3.7 Kolmogorov forward and backward equation

The probability density function of the allele frequencies x over time is dependent on

the initial allele frequency p at time t = 0. The allele frequency at time t has the

density φ(x|p, t). This function can be found as a solution of the Kolmogorov forward

equation of the diffusion process. In physics the Kolmogorov forward equation is more

commonly known as the Fokker-Planck equation. The forward equation is

∂φ(x|p, t)
∂t

=
1

2

∂2

∂x2
(σ2(x)φ(x|p, t))− ∂

∂x
(µ(x)φ(x|p, t)), 0 < x < 1 (3.43)

and the backward equation is

∂φ(x|p, t)
∂t

=
1

2
σ2(p)

∂2

∂p2
φ(x|p, t) + µ(p)

∂

∂p
φ(x|p, t), 0 < x < 1 (3.44)

(Crow and Kimura, 1970, p. 373). The time parameter is often rescaled to τ ∝ Nt.

The solutions of the forward and backward equation are connected to each other,

such that if En(x) is an eigenfunction of the generator of the backward equation then

En(x)
σ2(x) is an eigenfunction of the generator of the forward equation. LB is the backward

generator and the forward generator is LF .

LF f(x) =
1

2

∂2

∂x2
(σ2(x)f(x))− ∂

∂x
(µ(x)f(x))

LBf(x) =
1

2
σ2(x)

∂2

∂x2
f(x) + µ(x)

∂

∂x
f(x)

By defining σ2(x) and µ(x) as σ2(x) = x(1−x)
2N and µ(x) = sx(1− x) or as any other

possible function in table 3.1 the relationship of the eigenfunctions can be obtained:

σ2(x)LF
f(x)

σ2(x)
=

1

2
σ2(x)

∂2

∂x2
f(x) + µ(x)

∂

∂x
f(x)

= LBf(x) .

If En(x) is an eigenfunction of LB with associated eigenvalues λn, then LBEn(x) =

−λnEn(x). From the above equation it follows that LF En(x)
σ2(x) = −λn En(x)

σ2(x) and thus

it is shown that En(x)
σ2(x) is an eigenfunction of LF with associated eigenvalues λn.

3.7.1 Derivation of the Kolmogorov forward equation

The probability density of the frequency of A1 at time t, given that the frequency is p

at time t = 0 is φ(x|p, t). That the function satisfies the Kolmogorov forward equation

is shown in Crow and Kimura (1970, p. 373-382) and is summarised here. The allele

frequency at time t is in the interval x ± 1
2h. After some small time change δt the
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frequency will change to x+ h with probability m(x, t)δt by systematic pressure and

h is a real number greater than 0. v(x, t)δt is the probability that it moves outside

the interval [x± 1
2h] by random fluctuation.

From this the probability that the gene frequency does not leave the interval [x± 1
2h]

can be calculated in equation 3.45. The probability includes the probability of being

in this interval (φ(x, t)h), the probability of moving from an upper or lower frequency

by random fluctuation to [x± 1
2h] and the probability of moving there by systematic

pressure (m(x, t)δt). The probability of moving away from this interval by random

fluctuation or systematic pressure is subtracted (v(x, t) +m(x, t)δtφ(x, t)h)(Karlin

and Taylor, 1981).

φ(x, t+ δt)h = φ(x, t)h− v(x, t) +m(x, t)δtφ(x, t)h

+
1

2
v(x− h, t)δtφ(x− h, t)h+

1

2
v(x+ h, t)δtφ(x+ h, t)h

+m(x− h, t)δtφ(x− h, t)h (3.45)

The change in φ(x, t+δt)h due to random change in δt is therefore (Karlin and Taylor,

1981)

1

2
v(x− h, t)δtφ(x− h, t)h+

1

2
v(x+ h, t)δtφ(x+ h, t)h . (3.46)

So the variance in the change in x per δt due to random change is (Karlin and Taylor,

1981)

σ2(x) = V (x, t)δt = h2 1

2
v(x, t)δt+ (−h)2 1

2
v(x, t)δt (3.47)

= h2v(x, t) (3.48)

and the mean change is(Karlin and Taylor, 1981)

µ(x) = M(x, t)δt = hm(x, t)δt . (3.49)

Substituting µ(x) and σ2(x) into equation 3.45 and letting h → 0 and δt → 0 leads

to the Kolmogorov forward equation (Karlin and Taylor, 1981).

δφ(x|p, t)
δt

=
1

2

δ2

δx2
(σ2(x)φ(x|p, t))− δ

δx
(µ(x)φ(x|p, t)) (3.50)

Plugging the mean and the variance of a process with selection and without mutation

into the forward equation in equation 4.4 leads to equation 3.51 (Karlin and Taylor,

1981; Crow and Kimura, 1970).
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δφ

δt
=

1

4N

δ2

δx2
{x(1− x)φ} − s δ

δx
{x(1− x)φ} (3.51)

In a model without selection and without mutation the forward equation is (Crow

and Kimura, 1970, p.383).

δφ

δt
=

1

4N

δ2

δx2
{x(1− x)φ} . (3.52)

3.7.2 Kolmogorov Backward Equation

For the backward equation the process is considered into the opposite direction. Opin-

ions differ on whether in this setting the starting allele frequency p is a random variable

or not (Crow and Kimura, 1970; Ewens, 2000).

The Kolmogorov backward equation for the process as before is shown in equa-

tion3.53 (Crow and Kimura, 1970, p. 373).

δφ(p, x; t)

δt
=

1

2
σ2(p)

δ2

δp2
φ(p, x; t) + µ(p)

δ

δp
φ(p, x; t) (3.53)

The backward equation is harder to interpret but solutions to the backward equa-

tion can be transformed to solutions of the forward equation and vice versa. Song

and Steinrücken (2012) proposed a solution to finding the density φ(x|p, t) with the

backward equation as the starting point. This solution is summarised in Section 4.2.

3.7.3 Behaviour at the boundaries

The boundaries are x = 0 and x = 1, which act as absorbing barriers (Crow and

Kimura, 1970). Denote f(x, t) = φ(x|p, t)δx. When substituting δx = 1
2N , f(x, t)

gives an approximation of the probability that the gene frequency is x at time t (this

approach is presented in Crow and Kimura (1970)).

It is useful to look at P (x, t) = − 1
2
δ
δx (σ2(x)φ(x|p, t))− δ

δxµ(x)φ(x|p, t), where− δ
δxP (x, t)

can be interpreted as the rate of probability mass flow across the point x per genera-

tion.

So in the case of absorbing barriers we have that

df(0, t)

dt
= −P (0, t)

df(1, t)

dt
= P (1, t) . (3.54)

3.8 Spectral Representation

To find a representation of the allele frequency density by solving the Kolmogorov

forward or backward equation the spectral representation is useful. The backward
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generator LB is self-adjoint and there exist solutions to LBE(x) = −λE(x), with a

unique sequence of λn with λn →∞ as n→∞ (Song and Steinrücken, 2012). These

eigenvalues −λn with 0 ≤ n <∞ are called the spectrum of LB (Karlin and Taylor,

1981) and their associated eigenfunctions En(x) form a basis in L2([0, 1],m(x)) (Song

and Steinrücken, 2012). The speed function and the scale function can give insight

into the characteristics of a diffusion process (see section 3.3) m(x) = 1
σ2(x)s(x) is the

speed function of the process with s(x) = e
−

∫ x
x0

2µ(y)

σ2(y)
dy

(Karlin and Taylor, 1981).

The Kolmogorov backward equation can be expressed by the backward generator LB
as

∂φ(x|p, t)
∂t

= LBφ(x|p, t) . (3.55)

Then it is obvious that the function fn(p, t) = e−λntEn(p) satisfies the backward

equation. Since LB is a linear operator, also a linear combination of e−λntEn(p) is a

solution. The spectral representation of the transition density is thus given by

φ(x|p, t) =

∞∑
n=0

cn(x)e−λntEn(p) ; (3.56)

and the coefficients cn(x) are set to satisfy the initial condition. For the initial con-

dition φ(x|p, 0) = δ(p− x) the spectral representation is

φ(x|p, t) =

∞∑
n=0

e−λntm(x)
En(p)En(x)

〈En, En〉m
(3.57)

(Song and Steinrücken, 2012; Karlin and Taylor, 1981).
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Chapter 4

Calculation of the probability

density function of allele

frequencies

In this chapter different solutions to the Kolmogorov forward and backward equation

are presented. The theory of models in population genetics is given in Chapter 2 and

the derivation and theory of diffusion processes can be found in Chapter 3. The first

solution for the allele frequency density presented is the solution found by Kimura

(1955) in form of a spectral representation using the Gegenbauer polynomials. A

second solution by Song and Steinrücken (2012) is presented and in the last section of

this chapter a third solution is proposed. The latter solution is based on transforming

the Kolmogorov forward equation into the differential equation solved by the angular

oblate spheroidal wave functions. For all three solutions, computation is discussed.
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Table 4.1: Notation Kimura

selection s

time t

infinitesimal variance σ2(x) = 1
2N x(1− x)

infinitesimal mean µ(x) = sx(1− x)

4.1 Solution by Kimura

Kimura (1955) proposed a solution to the Kolmogorov forward equation of the dif-

fusion process in order to find a representation of the transition density of the allele

frequencies. The solution is also presented in Kimura (1964) and Crow and Kimura

(1970); the main steps are summarized here. Notation differs among literature. For

this section the notation given in table 4.1 is used.

4.1.1 Only Drift

First we consider the case without selection and without mutation; i.e. the model

where the only force is drift. In this model the infinitesimal mean is µ(x) = 0 and

the infinitesimal variance is σ2(x) = x(1−x)
2N , where σ2(x) is the binomial variance

corresponding to 2N alleles (Kimura, 1964).

The Kolmogorov forward equation is then given as

∂φ(x | p, t)
∂

=
1

4N

∂2

∂x2
(x(1− x)φ(x | p, t)) , (4.1)

with p corresponding to the starting frequency (φ(x | p, 0) = δ(x− p)), i.e., the initial

condition.

Kimura (1964) assumes that the solution is of the form φ = TX where T is a function

depending only on t and X is a function depending only on x. Inserting this into the

Kolmogorov forward equation leads to the equation

1

T

∂T

∂t
=

1

4NX

∂2

∂x2
(x(1− x)X) .

Since the left side depends on t only and the right side depends on x only, both sides

have to be equal to a constant (−λ) and the equation can be separated into two

ordinary differential equations (Kimura, 1964). The first differential equation is

dT

dt
= −λT ,

from which it follows that T ∝ e−λt. The second equation is

x(1− x)
d2X

dx2
+ 2(1− 2x)

dX

dx
− (2− 4Nλ)X = 0 ,
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which is the hypergeometric equation (Abramowitz, 1972, 15.5.1)

x(1− x)X ′′ + [γ − (α+ β + 1)x]X ′ − αβX = 0

with α = 3+
√

1+16Nλ
2 and β = 3−

√
1+16Nλ

2 . It is necessary to find a solution that

is finite at the end points x = 0 and x = 1 (Kimura, 1964). Therefore the possible

values for λ are λi = i(i+1)
4N and then Xi ∝ F (2+ i, 1− i, 2, x). Thus Xi can be written

in terms of the Gegenbauer polynomials as

Xi =
i(i+ 1)

2
F (i+ 2, 1− i, 2, 1− z

2
) = C1.5

i (z), z = 1− 2x .

The solution can then be expressed as a linear combination of all possible values for

λi and Xi:

φ(x|p, t) =

∞∑
i=1

ciC
1.5
i (z) e−

i(i+1)t
4N . (4.2)

The coefficients ci are found such that the initial condition is satisfied (φ(x|p, t) =

δ(x− p)). The coefficients then are

ci = 4p(1− p) 2i+ 1

i(i+ 1)
C1.5
i (1− 2p)

and the full solution is

φ(x|p, t) =

∞∑
i=1

4p(1− p) 2i+ 1

i(i+ 1)
C1.5
i (1− 2p)C1.5

i (1− 2x) e−
i(i+1)t

4N (4.3)

(Kimura, 1964).

4.1.2 With Selection

In a bi-allelic model with selection the infinitesimal mean is µ(x) = sx(1−x) and the

variance is σ2(x) = x(1−x)
2N . Then the Kolmogorov forward equation is

∂φ(x|p, t)
∂t

=
1

4N

∂2

∂x2
(x(1− x)φ(x|p, t))− s ∂

∂x
(x(1− x)φ(x|p, t)) . (4.4)

The solution of the allele frequency density is assumed to be of the form

φ ∝ e2γxW (x)e−λt , (4.5)

where W (x) is a function of x only and γ = Ns (Kimura, 1955).
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∂φ

∂t
= −λe2γxWe−λt

∂φ

∂x
= e2γxe−λt(2γW +W ′)

∂

∂x
{x(1− x)φ} = e2γxe−λt((1− 2x)W + 2γx(1− x)W + x(1− x)W ′)

∂2

∂x2
{x(1− x)φ} = e2γxe−λt(W (4γ2x(1− x)− 2 + 4γ − 8γx) +W ′(4γx(1− x) + 2(1− 2x))

+W ′′x(1− x))

Insertion of these results into the forward equation (4.4) leads to

0 = [−4γ2x(1− x)− 2 + 4λN ]W + 2(1− 2x)W ′ + x(1− x)W ′′ . (4.6)

Substituting x = 1−z
2 in the above equation results in equation 4.7. From 0 < x < 1

it follows that −1 < z < 1, such that

(1− z2)W ′′ − 4zW ′ + ((4Nλ− 2− γ2) + γ2z2)W = 0 . (4.7)

Solutions to equations of this type have been studied by J. A. Stratton (1954) with the

parameters a = 1 and b = 4Nλ−2−γ2. For the case where γ = 0 the equation reduces

to the differential equation known for the Gegenbauer polynomials. For equations such

as equation 4.7 with γ2 > 0, J. A. Stratton (1954) proposes a solution of the form

Wi(z) =

′∑
n=0,1

f inC
1.5
n+1(z) , (4.8)

where i = 0, 1, 2, . . . and f in are constants.
∑′
n is a primed sum, which means that the

summation is over even/odd values of n if k is even/odd (Crow and Kimura, 1970).

The solution is obtained by expanding into a power series around the selection coeffi-

cient γ. For higher values of γ, results are not very accurate (Song and Steinrücken,

2012).

The solution of the forward equation with selection is φ(x|p, t) =
∑∞
i=0 cie

−λit+2cxWi(z)

(Crow and Kimura, 1970). This solution is in the spectral representation, where λi are

eigenvalues and Wi(z) are the corresponding eigenfunctions. The coefficients ci are

calculated such that the initial condition (φ(x|p, 0) = δ(x − p)) is satisfied (Kimura,

1964). The orthogonality relation of the eigenfunctions is

∫ 1

−1

(1− z2)Wi(z)Wj(z)dz = δij

′∑
n=0,1

(f in)2 (n+ 2)!

n!(2n+ 3)
.

Then the coefficients are
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ci =
(1− r2)e−γ(1−r)Wi(r)∑′
n=0,1

(n+1)(n+2)
2n+3 (f in)2

, (4.9)

where r = 1 − 2p (Crow and Kimura, 1970). The primed summation is defined as

above. The values for the coefficients f in and the eigenvalues λi can be found in

J. A. Stratton (1954).

Since the work of Kimura (1955) and J. A. Stratton (1954) many developments have

been made in the field of spheroidal wave functions. Meixner and Schäfke (1954)

and Flammer (1957) were most influential and used a different notation. There the

definition of spheroidal wave functions is based on a linear combination of Legendre

polynomials and not Gegenbauer polynomials.
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4.2 Solution by Song and Steinrücken (2012)

Unlike Kimura’s approach, the solution of Song and Steinrücken (2012) is not based

on perturbation around the selection coefficient. Therefore the method is applicable

also in cases with strong selection. Song and Steinrücken (2012) first refer to the

Wright-Fisher model with the dominance parameter h = 1
2 and later also to versions

with a different dominance parameter h 6= 1
2 . In this chapter only the case with

dominance parameter h = 1
2 is considered.

Table 4.2: Notation Yun Song

selection s

scaled selection γ = 2Ns

time t

time in generations τ = 2Nt

infinitesimal variance σ2(p) = p(1− p)

4.2.1 Methods

The backward generator LB of a one-dimensional diffusion process on [0, 1] is:

LBf(p) =
1

2
σ2(p)

∂2

∂p2
f(p) + µ(p)

∂

∂p
f(p) (4.10)

where f is a twice continuously differentiable bounded function over [0, 1] (Song and

Steinrücken, 2012). Using the backward generator LB on the allele frequency density

function φ(x | p, τ) leads to the Kolmogorov backward equation. With time rescaled

to τ = 2Nt the infinitesimal variance is σ2(p) = p(1 − p) and the mean is µ(p) =

2γp(1 − p)[p + h(1 − 2p)]. In the case with no dominance, i.e. h = 1
2 , this reduces

to µ(p) = γp(1 − p). Ewens (2000) uses the same notation as Song and Steinrücken

(2012). This definition is also equivalent to the definition used by Crow and Kimura

(1970) only with the different scaled time parameter τ = 2Nt, as is shown by the

following calculation.

∂φ(x | p, t)
∂t

=
1

4N
p(1− p) ∂

2

∂p2
φ(x | p, t) + sp(1− p) ∂

∂p
φ(x | p, t)

2N
∂φ(x | p, t)

∂t
=

1

2
p(1− p) ∂

2

∂p2
φ(x | p, t) + 2Nsp(1− p) ∂

∂p
φ(x | p, t)

⇓ τ = 2Nt

∂φ(x | p, τ)

∂τ
=

1

2
p(1− p) ∂

2

∂p2
φ(x | p, τ) + 2Nsp(1− p) ∂

∂p
φ(x | p, τ)

The generator of the backward equation is self-adjoint with respect to the speed

function
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m(p) =
1

σ2(p)S(p)
(4.11)

with the scale function S(p)

S(p) = e
−

∫ p
p0

2µ(z)

σ2(z)
dz
. (4.12)

Self adjointness means that 〈Lf, g〉m = 〈f,Lg〉m for f, g ∈ L2([0, 1], ρ), where

L2([0, 1], ρ) is the space of real-valued functions on [0, 1] (Song and Steinrücken, 2012).

Xτ is a stochastic process on [0, 1] with the density function φ(x | p, τ). Where τ ≥ 0

is the continuous time variable, p the starting allele frequency at time τ = 0 and x

the allele frequency at time τ and the random variable of the process.

The Kolmogorov backward equation, which is generated by LB , is satisfied by the

density function φ(x | p, τ).

The spectral representation of φ(x | p, τ) is a linear combination of the eigenfunctions

and eigenvectors of LB . Assume Bn(p) is an eigenfunction of LB and −λn the ac-

cording eigenvalue, then the function e−λnτBn(p) satisfies the Kolmogorov backward

equation generated by LB . Since LB is a linear operator, also a linear combination

of e−λnτBn(p) is a solution. The coefficients for the linear combination cn(x) in the

spectral representation in equation 4.13 are chosen such that the initial condition is

satisfied (φ(x | p, 0) = δ(x− p)).

φ(x | p, τ) =

∞∑
n=0

cn(x)e−λnτBn(p) (4.13)

Since λn → ∞ as n → ∞, it is enough to sum until some reasonable high n, this is

discussed in chapter 5 in more detail. The initial condition states that x = p at time

t = 0, which means that φ(0, p, x) = δ(x− p). The coefficients satisfying this starting

condition are:

cn(x) =
m(x)Bn(x)

〈Bn, Bn〉m
. (4.14)

To find the solution to the eigenvalue function, orthogonal polynomials are used. For

this purpose Song and Steinrücken (2012) define modified Gegenbauer polynomials,

which are denoted by Gn(x) and are defined over 0 < x < 1. The classical Gegenbauer

polynomials Cαn (z) are defined over −1 < z < 1.

Gn(x) = −x(1− x)P 1,1
n (2x− 1) = −x(1− x)R(2,2)

n (x) . (4.15)

Here P
(a,b)
n (x) are the classical Jacobi polynomials and R

(a,b)
n (x) are modified Jacobi

polynomials (Song and Steinrücken, 2012). In Abramowitz (1972, 22.5.20) a rela-

tionship between the Jacobi polynomials and the Gegenbauer polynomials (Cαn (x)) is

given. For α = 1.5 the equation becomes

P (1,1)
n (x) =

2

n+ 2
C1.5
n (x) (4.16)
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and the relationship between the modified and classical Gegenbauer polynomials can

easily be obtained (see equation 4.17).

Gn(x) = −x(1− x)
2

n+ 2
C1.5
n (2x− 1) . (4.17)

From the differential equation satisfied by the Gegenbauer polynomials a differen-

tial equation satisfied by the modified Gegenbauer polynomials can be obtained (see

equation 4.18).

x(1− x)
d2Gn(x)

dx2
+ (n+ 2)(n+ 1)Gn(x) = 0 . (4.18)

4.2.2 Diffusions with Genic Selection and No Mutation

Only the solution in the case without mutation, with selection, but without dominance

is studied in more detail here. Without dominance h = 1
2 and without selection the

backward equation has the generator L0. The modified Gegenbauer polynomials

Gn(p) are eigenfunctions of this generator

L0f(p) =
1

2
p(1− p)∂

2f(p)

∂p2
. (4.19)

and they satisfy the differential equation in equation 4.18. Using the backward gen-

erator on Gn(p) leads to the following equation

L0Gn(p) =
1

2
p(1− p) ∂

2

∂p2
Gn(p) = −1

2
(n+ 2)(n+ 1)Gn(p) . (4.20)

and the corresponding eigenvalues are λn = 1
2 (n+ 2)(n+ 1).

With genic selection (γ = 2Ns) the backward generator with σ2(p) = p(1 − p) and

µ(p) = γp(1− p) is LB .

LBf(p) =
1

2
p(1− p) ∂

2

∂p2
f(p) + γp(1− p) ∂

∂p
f(p) . (4.21)

Substituting the infinitesimal mean and variance into the equations for the scale

function S(p) and the speed function m(p) leads to

m(p) =
e2γp

p(1− p)
. (4.22)

This leads to a solution for the eigenfunctions and associated eigenvalues of the dif-

fusion part of the backward generator L0. As shown before the backward generator

LB is self-adjoint with respect to m(.). The eigenfunctions of LB are Bn(p) and the

associated eigenvalues are λn. They satisfy the following equations:

LBBn(p) = −λnBn(p) (4.23)

and ∫ 1

0

Bn(p)Bm(p)m(p)dp ∝ δn,m . (4.24)
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Song and Steinrücken (2012) next consider the functions Hn(p), which are orthogonal

with respect to the same weight function m(.):

Hn(p) = e−γpGn(p) . (4.25)

Hn(p) are not eigenfunctions of LB , but Bn(p) can be expressed as a linear combina-

tion of Hn(p):

Bn(p) =

∞∑
m=0

un,mHm(p) . (4.26)

The backward generator used on Hn(p) leads to the equation:

LBHn(p) = −e−γp[λnGn(p) +
1

2
γ2p(1− p)Gn(p)] (4.27)

and

LBBn(p) =

∞∑
m=0

un,mLHm(p) (4.28)

= −
∞∑
m=0

un,me
−γp[λn +

1

2
γ2p(1− p)]Gn(p) (4.29)

=

∞∑
m=0

un,m[λn +
1

2
γ2p(1− p)]Gn(p) . (4.30)

The eigenfunctions Bn(p) are also called the oblate spheroidal wave functions, in the

case of selection and no recurrent mutation.

Because the Bn(p) are eigenfunctions of LB and λn are the associated eigenvalues,

we have:
∞∑
m=0

vn,m[λn +
1

2
γ2p(1− p)]Gn(p) = λn

∞∑
m=0

un,mGm(p) . (4.31)

Then it can be shown that

1

2
γ2p(1− p)Gm(p) = a(−2)

m Gm−2(p) + a(0)
m Gm(p) + a(+2)

m Gm+2(p) (4.32)

with

a(−2)
m = γ2 1

8

m(m+ 1)

(2m+ 1)(2m+ 3)
where m ≥ 2 (4.33)

a(0)
m = γ2 1

4

(m+ 1)(m+ 2)

(2m+ 1)(2m+ 5)
(4.34)

a(+2)
m = −γ2 1

8

(m+ 1)(m+ 4)

2m+ 3)(2m+ 5)
(4.35)

(4.36)

and

λkun,k + a
(−2)
k+2 un,k+2 + a

(+2)
k−2 un,k−2 = Λnun,k . (4.37)
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Algorithm

Song and Steinrücken (2012) propose an algorithm for the calculation of the eigen-

values and eigenfunction of LB . First the equation 4.37 can be rewritten in matrix

form:

λ0 + a
(0)
0 0 a

(−2)
2 0 0 · · ·

0 λ1 + a
(0)
1 0 a

(−2)
3 0 · · ·

a
(+2)
0 0 λ2 + a

(0)
2 0 a

(−2)
4 · · ·

0 a
(+2)
1 0 λ3 + a

(0)
3 0 · · ·

0 0 a
(+2)
2 0 λ4 + a

(0)
4 0 · · ·

· · · · · · · · · · · · · · · · · ·
. . .





un,0

un,1

un,2

un,3

un,4
...


= Λn



un,0

un,1

un,2

un,3

un,4
...


(4.38)

such that:

Mun = Λnun . (4.39)

Let M [D] be the upper left part of the matrix M with D rows and D columns. Song

and Steinrücken (2012) show empirically that the eigenvalues and eigenfunctions of

M [D] converge quickly. The equation M [D]u
[D]
n = Λ

[D]
n u

[D]
n can be separated into two

systems, one only consisting of the odd rows and columns and one system containing

only the even rows and columns. This follows directly from the structure of the matrix

M .

The form of the matrix above corresponds to the primed sums in the solution by Crow

and Kimura (1970) and J. A. Stratton (1954).
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4.3 New Solution Method with Spheroidal Wave

Functions

In this section a solution to the Kolmogorov forward equation is presented using the

spheroidal wave functions. This is achieved by transforming the Kolmogorov forward

equation into a Sturm-Liouville form.

Table 4.3: Notation

selection s

scaled selection γ = Ns

time t

time τ = 4Nt

The Kolmogorov forward equation is

δφ(x|p, t)
δt

=
1

4N

δ2

δx2
{x(1− x)φ(x|p, t)} − s δ

δx
{x(1− x)φ(x|p, t)} . (4.40)

With rescaling of time to τ such that τ = 4Nt the rescaled equation in equation 4.41

is obtained.

δφ(x|p, τ)

δτ
=

δ2

δx2
(x(1− x)φ(x|p, τ))− 4γ

δ

δx
(x(1− x)φ(x|p, τ)) . (4.41)

For this purpose we used τ = 4Nt and not 2Nt like Song and Steinrücken (2012) did,

also the scaled selection γ differs by a factor of two. The density is assumed to be

of the form φ(x|p, τ) ∝ e2γxv(x)e−λτ . Inserting this into the scaled forward equation

(4.41) leads to:

x(1− x)
d2v(x)

dx2
+ 2(1− 2x)

dv(x)

dx
−
(
2 + 4γ2x(1− x)− λ

)
v(x) = 0 . (4.42)

By substituting x = 1−z
2 we obtain:

(1− z2)
d2v( 1−z

2 )

dz2
− 4z

dv( 1−z
2 ))

dz
+
(
λ− 2− γ2(1− z2)

)
v(

1− z
2

) = 0 . (4.43)

This equation can be transformed to a Sturm-Liouville form. This can be achieved

by setting g(z)(1 − z2)−
1
2 = v( 1−z

2 ) and substituting this in equation 4.43 leads to

the following calculation;
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0 = (1− z2)
d2(1− z2)−1/2g(z)

dz2
− 4z

d(1− z2)−1/2g(z)

dz

+
(
λ− 2− γ2(1− z2)

)
(1− z2)−1/2g(z)

0 = (1− z2)
d2g(z)

dz2
+ 2z

dg(z)

d
z + (1 + 3z2(1− z2)−1)g(z)

− 4z
dg(z)

dz
− 4z2(1− z2)−1g(z) +

(
λ− 2− γ2(1− z2)

)
g(z)

0 =
d

dz

(
(1− z2)

dg(z)

dz

)
+

(
λ− γ2(1− z2)− 1

1− z2

)
g(z) . (4.44)

4.3.1 In the Model with Selection

With selection, i.e. γ2 > 0, the differential equation 4.43 is in a form that can

be transformed to the differential equation solved by angular oblate speroidal wave

functions (Abramowitz, 1972, 21.6.4). Note that the index m of the spheroidal wave

equations can be omitted since m = 1 always.

d

dz
[(1− z2)

d

dz
Sn(c, z)] + (λSn + c2z2 − 1

1− z2
)Sn(c, z) = 0 (4.45)

LZ is the generator of the differential equation in equation 4.44 and LS the generator

of the differential equation solved by the angular oblate spheroidal wave functions

in equation 4.45. The eigenfunctions of LS are the angular oblate spheroidal wave

functions Sn(z) with the associated eigenvalues λSn .

LZf(z) =
d

dz

(
(1− z2)

df(z)

dz

)
+

(
−γ2 + γ2z2 − 1

1− z2

)
f(z) (4.46)

LSf(z) =
d

dz

(
(1− z2)

df(z)

dz

)
+

(
γ2z2 − 1

1− z2

)
f(z) , (4.47)

The eigenvalues and eigenvectors for LZ and LS then are

LSSn = λSnSn

LZSn = (λSn + γ2)Sn .
(4.48)

From this, it follows that the eigenfunctions are identical and the eigenvalues differ

by γ2. The solution can therefore be expressed in the spectral respresentation by the

eigenfunctions Sn(z) and the associated eigenvalues λn = λSn + γ2.

The angular oblate Spheroidal wave functions are normalised by the Meixner-Schäfke

scheme as (Abramowitz, 1972; Meixner and Schäfke, 1954)

∫ 1

−1

[Sn(c, z)]2dz =
2n(n+ 1)

2n+ 1
. (4.49)
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Now only the transformation from g(z) to φ(x|p, t) is needed. This is obtained by using

the relations φ(x) = e2γxg(z)(1− z2)−
1
2 e−λτ , x = 1−z

2 and g(z)(1− z2)−
1
2 = v( 1−z

2 )

φ(x|p, τ) ∝ g(z)
1

2
(x(1− x))−

1
2 e2γxe−λτ . (4.50)

Then the solution to the allele frequency density is

φ(x|p, τ) =

∞∑
n=0

Sn(1− 2p)Sn(1− 2x)
1

2
(x(1− x))−

1
2

e2γxe−λnτ
2n+ 1

2n(n+ 1)
(4.51)

4.3.2 Model without Selection

When there is no selection γ2 = 0 and equation (4.44) reduces to the differential

equation solved by the Legendre polynomials.

0 =
d

dz

(
(1− z2)

dg(z)

dz

)
+

(
l(l + 1)− m2

1− z2

)
g(z) . (4.52)

The Legendre polynomials are orthogonal polynomials that satisfy
∫ 1

−1
Pn(z)2dz =

2
2n+1 . The transformation from g(z) back to φ(x|p, t) has to be taken into account as

before

φ(x|p, τ) ∝ g(z)
1

2
(x(1− x))−

1
2 e−λτ , (4.53)

and the solution can be written as

φ(x|p, τ) =

∞∑
i=0

2i+ 1

2
Pi(1− 2p)Pi(1− 2x)

(x(1− x))
1
2

2
e−i(i+1)τ . (4.54)

4.4 Calculation

The spheroidal wave functions defined by Meixner and Schäfke (1954) and Flammer

(1957) and their eigenvalues are implemented in many software packages, e.g. in

Mathematica (Weisstein, 2013c) and in the Mathematica package spheroidal by Fal-

loon (2003) and are thus easily available. In the appendix the functions implemented

in Mathematica are used for simulation. The oblate spheroidal wave functions are

implemented in Mathematica as the function SpheroidalPS with parameter −iγ, with

i =
√
−1. Calculation of the functions and their eigenvalues is still an issue (see Kirby

(2006)), although the difficulties arise mainly in the calculation of radial functions and

for high values of γ. Here only angular functions are used, but for higher values of

γ difficulties may still arise. Eigenvalues can be calculated to high precision using a
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series expansion around γ = 0; the formulas derived in this way are very accurate

for small values of γ; better than parts per million (Sullivan and Thompson, 1999).

The eigenvalues can be calculated exactly by using a continued fraction, which is

computationally expensive (Sullivan and Thompson, 1999).

33



Chapter 5

Applications

In this chapter the solution of Kimura (1955) is compared to the solution in section

4.3 using graphs. The time parameter is always scaled to τ = 4Nt in all results in

this chapter. The analysis is made using the software Wolfram Mathematica 9. The

code used for creating the figures is presented in Appendix B.

5.1 Allele Frequency Density without Selection

5.1.1 Gegenbauer Polynomials

The solution of the allele frequency density is an infinite sum. Truncating the sum

causes the density to be very inaccurate close to τ = 0. For τ > 0, the coefficient

e−i(i+1)τ gets very small very fast, so for the computation of the function a minimum

value for e−i(i+1)τ is set, such that the computation stops as soon as this value is

exceeded. Therefore the polynomials of a higher degree are only used for very small

values of τ . In figure 5.1 the number of polynomials is shown for different minimum

values for d = e−i(i+1)τ .

The Gegenbauer Polynomials for some different values of n can be seen in figures 5.2

and 5.3.

The Gegenbauer polynomials are multiplied by the term C1.5
n (1−2p), which is constant

since p is the starting allele frequency. In figure 5.4 it can be seen that the sign of

this term changes depending on n. The value also increases, but this does not have

too much influence since e−i(i+1)/2 decreases much faster.

The resulting allele frequency density without selection by Kimura (1955) is shown in

figure 5.5. Since there is no mutation the boundaries 0 and 1 are absorbing. The area

under the allele frequency density curve in the interval ]0, 1[ can be interpreted as the

probability of both alleles being present in the population at time t. The probability
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Figure 5.1: This graph shows the number of summands needed to achieve a given

accuracy. As measure for accuracy the expression e−λnτ is used. As soon as e−λnτ

is smaller than some value (i.e. 0.01, 0.001 and 0.0001) the sum is truncated. For

example when τ = 0.05 summation until n = 10 is needed to achieve that e−λn0.05 <

0.01, n = 12 for e−λn0.05 < 0.001 and n = 14 for e−λn0.05 < 0.0001. At τ = 0.001

the difference is much bigger; n = 68 is needed for e−λn0.001 < 0.01, n = 83 for

e−λn0.001 < 0.001 and n = 96 for e−λn0.001 < 0.0001.

mass at the boundaries is increasing by − ∂
∂t

∫ 1

0
φ(x|p, t)dx.

In Kimura (1955) it is shown that the increase in the probability mass absorbed at

the boundaries is proportional to the amount present there:

− ∂

∂t

∫ 1

0

φ(x|p, t)dx =
φ(1|p, t) + φ(0|p, t)

4N
. (5.1)

The coefficients in the solution are chosen such that there is at time 0 a point mass

at p. To reach this point mass exactly it would be necessary to sum up all values of

the infinite sum. Here only the first linear combinations of Gegenbauer polynomials

are used until e−i(i+1)τ is smaller then 0.0001 . Figure 5.6 is calculated using the

Mathematica function Integrate on the allele frequency density. Since at time 0 a

point mass is approximated the result of the integration is far from 1.

The change over time in this area under the curve is shown in figure 5.6 and the

differences are shown in figure 5.7. As calculated by Kimura it can be seen, that the

area is decaying faster with time.
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Figure 5.2: Gegenbauer Polynomials C1.5
n (1− 2x) for different values of n

5.1.2 Legendre Polynomials

In the solution in section 4.3, the allele frequency density is expressed by the Legendre

polynomials. The resulting allele frequency density can be seen in figure 5.8. The

Legendre Polynomials Pn(1−2x) are shown in figures 5.9 and 5.10 for different values

of n. For choosing when to truncate the infinite sum, the same strategy as with the

Gegenbauer Polynomials is used.

5.2 Allele Frequency Density with Selection

The density of allele frequencies in the model with selection is expressed as a lin-

ear combination of spheroidal wave functions. In Mathematica the angular oblate

spheroidal wave functions are implemented in SpheroidalPS and SpheroidalQS with

the parameter −iγ (i =
√
−1). The spheroidal wave functions in SpheroidalPS are

linear combinations of the Legendre polynomials of the first kind; in SpheroidalQS

the Legendre polynomials of the second kind are used (Weisstein, 2013c). Since the

Legendre polynomials of the second kind are singular at the boundaries −1 and 1, the

spheroidal wave functions of the first kind are needed. The spheroidal wave functions

can be seen in figures 5.11 and 5.12 for different values of n.

The allele frequency density for a selection coefficient γ = 0.1 can be see in figure

5.13. The density when the selection coefficient is stronger with γ = 3 is shown in

figure 5.14 and for weak selection γ = 1 in figure 5.15.
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Figure 5.3: Gegenbauer Polynomials C1.5
n (1− 2x) for different values of n

Figure 5.4: Gegenbauer Polynomials C1.5
n (1− 2p) with p = 0.4 with n on the x-axis.

The characteristic jumping of the function from positive to negative values can be

observed.
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Figure 5.5: Visualisation of the allele frequency density solution by Kimura in three

dimensions; the time τ , the density and the allele frequency x. The starting allele

frequency at time τ = 0 is p = 0.4. Where τ = 0 a delta distribution at 0.4 is

approximated and decays quickly with time. This is the density without selection

γ = 0.

Figure 5.6: The allele frequency density decays quickly with time, as it can be seen in

figure 5.5. The area under the curve at each time can be interpreted as the probability

of the two alleles existing at the same time. The integral is shown in this figure.
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Figure 5.7: The area under the allele frequency density function at each time can

be interpreted as the probability of the two alleles existing at the same time. The

integral is shown in figure 5.6. In this figure the change in the area is shown. As

already shown by Kimura (1955) the loss of probability mass increases with time.

Figure 5.8: The allele frequency density by the solution in section 4.3 using the

Legendre polynomials, without selection (γ = 0).
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Figure 5.9: Legendre Polynomials Pn(1− 2x) for different values of n

Figure 5.10: Legendre Polynomials Pn(1− 2x) for different values of n
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Figure 5.11: angular oblate spheroidal wave functions with different values of n

Figure 5.12: angular oblate spheroidal wave functions with different values of n
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Figure 5.13: Allele frequency density with selection coefficient γ = 0.1 at different

time points τ .

Figure 5.14: Allele frequency density with selection coefficient γ = 3 at different time

points τ .
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Figure 5.15: Allele frequency density with selection coefficient γ = 1 at different time

points τ .
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Chapter 6

Summary and Discussion

In this thesis the methods of Kimura (1955), Song and Steinrücken (2012) and a fur-

ther approach for obtaining the allele frequency density are presented. Kimura (1955)

was the first to present a solution to this problem. His solution in the case with selec-

tion is based on the oblate spheroidal wave functions defined by J. A. Stratton (1941)

and J. A. Stratton (1954). The eigenvalues and eigenfunctions are found by Kimura

(1955) by expanding into a Taylor series around the selection coefficient γ. Hence, the

solution by Kimura is inaccurate for high values of γ (Song and Steinrücken, 2012).

The solution by Song and Steinrücken (2012) also uses the definition for spheroidal

wave functions by J. A. Stratton (1954), but the eigenvalues are found by solving

a finite dimensional matrix problem. The computational possibilities have of course

increased significantly since Kimura (1955) and so Song and Steinrücken (2012) were

able to present an algorithm for the eigenvalue problem, implemented in the pro-

gramming language C. At the time as J. A. Stratton (1954) published updated tables

for the spheroidal wave functions, the spheroidal wave functions got more attention,

because of their applications in physics and quantum mechanics. As a result there

are many different notations for spheroidal wave functions. In Abramowitz (1972)

an overview of different notations is given. The notations by Meixner and Schäfke

(1954) and Flammer (1957) are most common by now. The spheroidal wave functions

defined by Meixner and Schäfke (1954) and Flammer (1957) and their eigenvalues are

implemented in many software packages (e.g. in Mathematica (Weisstein, 2013c) and

in the Mathematica package spheroidal by Falloon (2003)) and are used in the chap-

ter on applications. The spheroidal wave functions used by Kimura (1955), Song and

Steinrücken (2012) and J. A. Stratton (1954) are given as a linear combination of

Gegenbauer polynomials, but the oblate angular spheroidal wave functions are more

commonly expressed as linear combinations of Legendre Polynomials.

In section 4.3 it is shown that the foward equation can be transformed such that the
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spheroidal wave functions defined by Meixner and Schäfke (1954) and Flammer (1957)

can be used. Since those functions are implemented in many software packages, these

methods are now easily available to population geneticists.
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Appendix A

Mathematical Background

An overview and short summary of the needed mathematical background for this

thesis is given here.

A.1 Markov Process

A markov process is a stochastic process that satisfies the markov property. The

markov property states, that the future path is only dependend on the current state

of the process and not on the preceding path. In other words, the markov process is

memory-less (Norris, 1997). (Ω,F , P ) is the probability space with filtration (Ft, t >

0). Then the Markov property can be formulated as

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) (A.1)

with s < t and A a subset of the measurable space of (Xt)t≥0 (Norris, 1997). The

strong markov property states that the process (Xs)s>τ is independent of Fτ and that

(Xτ+t −Xτ )t≥0 is equal in distribution to (Xt)t≥0.

A standard Markov process is a strong Markov process with the following proper-

ties (Norris, 1997):

• (Xt) is right continuous

limt↓sXt = Xs, ∀s ≥ 0

• the left limits of (Xt) exist

limt↑sXt exist ∀s > 0

• (Xt) is quasi-left continuous

limn→∞XTn = XT for T1 ≤ T2 ≤ · · · ≤ T <∞
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Tn are Markov times (Norris, 1997).

A.2 Orthogonal Polynomials

A system of polynomials Fn(x) is called orthogonal on the interval a ≤ 0 < b if

< Fn, Fm >w=

∫ b

a

w(x)Fn(x)Fm(x)dx = 0n 6= m;n,m = 0, 1, 2, . . .

w(x) is the weight function and n is the degree of the polynomial (Abramowitz, 1972).

Fn(x) = knx
n + k′nx

n−1 + · · ·∫ b

a

w(x)F 2
n(x)dx = hn

Fn is orthogonal with respect to w(.).

A.2.1 Differential Equations

Orthogonal polynomials satisfy differential equations of the form:

g2(x)F ′′n + g1(x)F ′nanFn = 0

with g2(x) and g1(x) independent of n and an is a constant depending only on n.

A.2.2 Recurrence relation

The polynomials satisfy a recurrence relation of the form:

Fn+1 = (an + xbn)Fn − cnFn−1

where bn = kn+1

kn
, an = bn(

k′n+1

kn+1
− k′n

kn
) and cn = kn+1kn−1hn

k2nhn−1
.

For more details on orthogonal polynomials see Abramowitz (1972).

A.2.3 Gegenbauer Polynomials

The Gegenbauer polynomials Cαn are also called ultraspherical polynomials. They

are orthogonal polynomials defined with z in the interval [−1, 1] and with the weight

function w(z) = (1 − z2)α−
1
2 (Abramowitz, 1972, p.774). Some special values of the

Gegenbauer polynomials are (Abramowitz, 1972):

Cαn (1) =

(
n+ 2α− 1

n

)
α 6= 0

C0
n(1) =

2

n

C0
0 (1) = 1 .
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hn =


π21−2αΓ(n+2α)
n1(n+α)[Γ(α)]2 α 6= 0

2π
n2 α = 0

(A.2)

The general form of the Gegenbauer Polynomials is given in equation A.3. Where

F(a,b,c;x) is the hypergeometric function, often referred to as 2F1(a, b, c;x) given in

equation A.4. (a)n is the Pochhammer function, which is defined as (a)n = Γ(a+n)
Γ(a) =

a(a+ 1)(a+ 2) . . . (a+ n− 1) with (−a)n = (−1)n(a)n.

Cαn (z) =
(2α)n
n!

F (−n, 2α+ n, α+
1

2
;

1− z
2

) (A.3)

F (a, b, c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk
1

k!
(A.4)

The differential equation solved by the Gegenbauer Polynomials is (Abramowitz,

1972):

(1− z2)
d2Cαn (z)

dz2
− (2a+ 1)z

dCαn (z)

dz
+ n(n+ 2 ∗ a)Cαn (z) = 0 (A.5)

For the calculation of the derivatives, the differential relation in equation A.6 can be

used (Abramowitz, 1972, p.783).

(1− x2)
d

dx
Cαn (x) = −nxCαn (x) + (n+ 2a− 1)Cαn−1(x) (A.6)

The recurrence relation of the Gegenbauer Polynomials is (Abramowitz, 1972, p.782):

(n+ 1)Cαn+1 = 2(n+ α)zCαn (z)− (n+ 2α− 1)Cαn−1(z) (A.7)

Different Definitions of the Gegenbauer Polynomials

In the literature, the Gegenbauer polynomials are defined in different ways and mod-

ified versions are introduced. The different definitions are in fact only special cases of

the general Gegenbauer Polynomials defined in Abramowitz (1972). The important

difference is that the modified polyonmials are rescaled to [0, 1].

A.2.4 Legendre Polynomial

Pn(x) is the Legendre or spherical polynomial defined for −1 < x < 1 as

Pn(x) =

(
2n

n

)
(
x− 1

2
)nF (−n, n+ 1; 1,

1− x
2

) (A.8)

in terms of the hypergeometric function F (., .; ., .) (Abramowitz, 1972, 22.5.49). Pn(x)

is the solution to the differential equation
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(1− x2)
d2Pn(x)

dx2
− 2x

dPn(x)

dx
+ n(n+ 1)Pn(x) . (A.9)

For the Gegenbauer polynomials and the Legendre polynomials the following relation

holds

Pn(x) = C1/2
n (x) (A.10)

(Abramowitz, 1972, 22.5.36).

A.3 Legendre Functions

The Legendre functions satisfy the differential equation in equation A.11 (Abramowitz,

1972, 8.1.1).

(1− z2)
d2w

dz2
− 2z

dw

dz
+ [v(v + 1)− µ2

1− z2
]w = 0 (A.11)

The variable v is the degree and µ is the order of the Legendre function.The Legendre

functions can be expressed in terms of the hypergeometric function (Abramowitz,

1972, 8.1.2).

Pµv (z) =
1

Γ(1− µ)

[
z + 1

z − 1

] 1
2µ

F (−v, v + 1; 1− µ;
1− z

2
), |1− z| < 2 (A.12)

There are Legendre functions of the first and of the second kind. The Legendre

functions of the second kind are singular at the origin. The Legendre functions of the

first kind can be simplified to the Legendre polynomials (Weisstein, 2013b,a).

A.4 Spheroidal Wave Functions

The spheroidal wave functions can be expressed as a linear combination of Legen-

dre functions of first or second kind (Flammer, 1957; Meixner and Schäfke, 1954;

Abramowitz, 1972; Weisstein, 2013c). The prolate spheroidal wave functions satisfy

the differential equations (Abramowitz, 1972, 21.6)

d

dη
[(1− η2)

d

dη
Smn(c, η)] + (λmn − c2η2 − m2

1− η2
)Smn(c, η) = 0 (A.13)

and

d

dξ
[(ξ2 − 1)

d

dξ
Rmn(c, ξ)]− (λmn − c2ξ2 +

m2

ξ2 − 1
)Rmn(c, ξ) = 0 . (A.14)

Rmn(z) is the radial and Smn(z) the angular spheroidal wave function. Their dif-

ferential equations are equal but are defined over different ranges of z. The angular

spheroidal wave functions are defined over the interval z ∈ [−1, 1] (Weisstein, 2013c).
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The differential equations satisfied by the oblate spheroidal wave functions can be

derived from the prolate differential equations by the transformation ξ → ±iξ and

c→ ±ic (Abramowitz, 1972).

If c = 0 the spheroidal wave functions are equal to the Legendre Polynomials (Weis-

stein, 2013c).
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Appendix B

Mathematica Code

In this chapter the mathematica code used for the graphics in chapter 5 is given and

explained. For the legends the mathematica package Plot Legends1 is used. This

chapter is organized like chapter 5 such that the code corresponding to the respective

figures can be found easily.

B.1 Allele Frequency Density without Selection

B.1.1 Gegenbauer Polynomials

Polynomials

The Gegenbauer polynomials are plotted for different values of n in Figures 5.2 and

5.3.

Plot [ {GegenbauerC [ 0 , 1 . 5 , 1 − 2∗x ] ,

GegenbauerC [ 1 , 1 . 5 , 1 − 2∗x ] ,

GegenbauerC [ 2 , 1 . 5 , 1 − 2∗x ]} , {x , 0 , 1} ,

PlotLegend −> { Sty l e [ ” n=0”, 1 8 ] , S ty l e [ ” n=1”, 1 8 ] ,

S ty l e [ ” n=2”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”C nˆ1.5(1−2x )”} ,

LegendPos it ion −> {−0.9 , −0.65} ,

LegendSize −> 0 . 35 ,

BaseSty le −> {FontSize −> 18} ]

Plot [ {GegenbauerC [ 5 , 1 . 5 , 1 − 2∗x ] ,

1http://reference.wolfram.com/mathematica/PlotLegends/tutorial/PlotLegends.html
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GegenbauerC [ 6 , 1 . 5 , 1 − 2∗x ]} ,

{x , 0 , 1} ,

PlotLegend −> { Sty l e [ ” n=5”, 1 8 ] ,

S ty l e [ ” n=6”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”C nˆ1.5(1−2x )”} ,

LegendPos it ion −> {−0.9 , −0.63} ,

LegendSize −> 0 . 35 ,

BaseSty le −> {FontSize −> 18} ]

Figure 5.4 was created for different values of n with the following code:

L i s tL ineP lo t [

Table [ GegenbauerC [ n , 1 . 5 , 1 − 2 ∗ 0 . 9 ] ,

{n , 0 , 40 , 1} ] ,

P l o tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”n” , ”C nˆ1.5(1−2p )”} ,

BaseSty le −> {FontSize −> 18} ]

Allele frequency density

The transition density given by the solution of Crow and Kimura (1970) is calculated.

phi [ x , p , t , l im ] := Module [{m} , {

m = C e i l i n g [(− t + Sqrt [ t ]

Sqrt [ t − 4 Log [ l im ] ] ) / ( 2 t ) ] ;

Paral le lSum [ ( 2 i + 1)∗p∗(1 − p )/( i ∗( i + 1))∗

GegenbauerC [ i − 1 , 1 . 5 , 1 − 2∗p ]∗

GegenbauerC [ i − 1 , 1 . 5 , 1 − 2∗x ]∗

Exp[− i ∗( i + 1)∗ t ] , { i , 1 , m} ] } ]

Since it is given as an infinte sum it is necessary to introduce a stopping condition.

For this stopping condition m is used. The sum is continued until e−λmτ is smaller

than lim. The plot in Figure 5.1 is created by the following code.

findm[t , lim ]:=Ceiling[

√
t
√
t− 4 log(lim)− t

2t
]
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Plot[{findm[t, 0.01],findm[t, 0.001],findm[t, 0.0001]}, {t, 0, 0.2},

PlotLegend→ {e−λnτ<0.01, e−λnτ<0.001, e−λnτ<0.0001},

LegendShadow→ None,

PlotStyle→ AbsoluteThickness[2],

PlotRange→ {0, 80},

AxesLabel→ {τ,n},

LegendPosition→ {0.2, 0},

LegendSize→ 0.5,

BaseStyle→ {FontSize→ 18}]

The three dimensional plot of the transition density in Figure 5.5 is created with:

Plot3D [ phi [ x , 0 . 4 , t , 0 . 0 0 0 1 ] , {x , 0 . 001 , 0 .999} ,

{ t , 0 .0001 , 0 . 1} ,

AxesLabel −> {” a l l e l e f requency ” , ” tau ” , ” dens i ty ”} ,

PlotRange −> Ful l ]

Change in the Probability Mass

For Figures 5.6 and 5.7 the integral was calculated at some points and then the

difference was taken.

intTable =

Table [ I n t e g r a t e [ phi [ x , 0 . 4 , t , 0 . 0 0 1 ] ,

{x , 0 . 001 , 0 . 9 9 9 } ] [ [ 1 ] ] ,

{ t , 0 . 01 , 0 . 2 , 0 . 0 0 5} ]

L i s t P l o t [

intTable ,

AxesLabel −> {” tau ” , ” area ”} ,

DataRange −> {0 , 0 . 2} ,

P l o tS ty l e −> AbsoluteThickness [ 2 ] ,

BaseSty le −> {FontSize −> 18} ]

L i s t P l o t [−D i f f e r e n c e s [ intTable ] ,

AxesLabel −> {” tau ” , ” area ’ ”} ,

DataRange −> {0 .01 , 0 . 1} ,

PlotRange −> {0 , 0 .0015} ,
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Plo tS ty l e −> AbsoluteThickness [ 2 ] ,

BaseSty le −> {FontSize −> 18} ]

B.1.2 Legendre Polynomials

Those are the plots for the solution presented in section 4.3.

Allele frequency density

The allele frequency density (Figure 5.8) is calculated using the following code. As

before m is used to set a stopping condition for the otherwise infinte sum.

phi [ x , p , t , l im ] := Module [{m} ,

{m = C e i l i n g [(− t + Sqrt [ t ]

Sqrt [ t − 4 Log [ l im ] ] ) / ( 2 t ) ] ;

Paral le lSum [ ( 2∗ i + 1)/2∗LegendreP [ i , 1 − 2∗p ]∗

LegendreP [ i , 1 − 2∗x ] ∗ ( x∗(1 − x ) )ˆ (1/2 )/2

∗Exp[− i ∗( i + 1)∗ t ] , { i , 0 , m} ] } ]

Plot3D [

phi [ x , 0 . 4 , t , 0 . 0 0 0 1 ] ,

{x , 0 . 001 , 0 .999} ,

{ t , 0 .0001 , 0 . 1} ,

AxesLabel −> {” a l l e l e f requency ” , ” tau ” , ” dens i ty ”} ,

PlotRange −> Ful l ]

Polynomials

The Gegenbauer polynomials are plotted for different values of n in Figures 5.9 and

5.10.

Plot [ {LegendreP [ 0 , 1 . 5 , 1 − 2∗x ] ,

LegendreP [ 1 , 1 . 5 , 1 − 2∗x ] ,

LegendreP [ 2 , 1 . 5 , 1 − 2∗x ]} ,

{x , 0 , 1} ,

PlotLegend −> { Sty l e [ ” n=0”, 1 8 ] ,

S ty l e [ ” n=1”, 1 8 ] , S ty l e [ ” n=2”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”P n(1−2x )”} ,

LegendPos it ion −> {−0.9 , 0 . 23} ,
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LegendSize −> 0 . 3 ,

BaseSty le −> {FontSize −> 18} ]

Plot [ {LegendreP [ 5 , 1 . 5 , 1 − 2∗x ] ,

LegendreP [ 6 , 1 . 5 , 1 − 2∗x ]} ,

{x , 0 , 1} ,

PlotLegend −> { Sty l e [ ” n=5”, 1 8 ] ,

S ty l e [ ” n=6”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”P n(1−2x )”} ,

LegendPos it ion −> {−0.9 , 0 . 48} ,

LegendSize −> 0 . 3 ,

BaseSty le −> {FontSize −> 18} ]

B.2 Allele Frequency Density with Selection

B.2.1 Spheroidal Wave Functions

In Figures 5.11 and 5.12 the oblate spheroidal wave functions are shown for different

values of n.

Plot [ {SpheroidalPS [ 1 , 1 , −I ∗1 , 1 − 2∗x ] ,

SpheroidalPS [ 2 , 1 , −I ∗1 , 1 − 2∗x ] ,

SpheroidalPS [ 3 , 1 , −I ∗1 , 1 − 2∗x ]} ,

{x , 0 , 1} ,

PlotLegend −> { Sty l e [ ” n=0”, 1 8 ] ,

S ty l e [ ” n=1”, 1 8 ] , S ty l e [ ” n=2”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”S n (1 ,1−2x )”} ,

LegendPos it ion −> {−0.9 , 0 . 23} ,

LegendSize −> 0 . 3 ,

BaseSty le −> {FontSize −> 18} ]

Plot [ {SpheroidalPS [ 5 , 1 , −I ∗1 , 1 − 2∗x ] ,

SpheroidalPS [ 6 , 1 , −I ∗1 , 1 − 2∗x ] ,

SpheroidalPS [ 7 , 1 , −I ∗1 , 1 − 2∗x ]} ,

{x , 0 , 1} ,
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PlotLegend −> { Sty l e [ ” n=5”, 1 8 ] ,

S ty l e [ ” n=6”, 1 8 ] , S ty l e [ ” n=7”, 18 ]} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ”S n (1 ,1−2x )”} ,

LegendPos it ion −> {−0.9 , 0 . 25} ,

LegendSize −> 0 . 3 ,

BaseSty le −> {FontSize −> 18} ]

B.2.2 Allele Frequency Density

The allele frequency density is calculated with the following function:

dens i ty [ x , c , t ] :=

1/2∗( x∗(1 − x ) )ˆ (1/2 )∗Exp [2∗ c∗x ]∗

Paral le lSum [

(Re [ SpheroidalPS [ n , 1 , −I ∗c , 1 − 2 ∗ 0 . 4 ] ] ∗

Re [ SpheroidalPS [ n , 1 , −I ∗c , 1 − 2∗x ] ] )

∗Exp[−Re [ Sphero ida lE igenva lue [ n , 1 , c ]

+ c ˆ2 ]∗ t ]

(2∗n + 1)/(2∗n∗(n + 1 ) ) ,

{n , 1 , 40} ]

B.2.3 Allele Frequency Density with γ = 0.1

The result can be seen in Figure 5.13.

l i s t = Table [ dens i ty [ x , 0 . 1 , t ] ,

{ t , 0 . 02 , 0 . 1 , 0 . 02} ,

{x , 0 . 1 , 0 . 9 , 0 . 0 2} ]

L i s tL ineP lo t [ l i s t ,

PlotLegend −> { Sty l e [ ” tau =0.02” , 1 8 ] ,

S ty l e [ ” tau =0.04” , 1 8 ] ,

S ty l e [ ” tau =0.06” , 1 8 ] ,

S ty l e [ ” tau =0.08” , 1 8 ] ,

S ty l e [ ” tau =0.1” , 18 ]} ,

LegendSize −> 0 . 6 ,

PlotRange −> Automatic ,

DataRange −> {0 , 1} ,

56



LegendPos it ion −> {0 . 5 , −0.1} ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ” dens i ty ”} ,

BaseSty le −> {FontSize −> 18} ]

B.2.4 Allele Frequency Density with γ = 1

The result can be seen in Figure 5.15.

l i s t 2 = Table [ dens i ty [ x , 1 , t ] ,

{ t , 0 . 02 , 0 . 1 , 0 . 02} ,

{x , 0 . 1 , 0 . 9 , 0 . 0 2} ]

L i s tL ineP lo t [

l i s t 2 ,

PlotLegend −> { Sty l e [ ” tau =0.02” , 1 8 ] ,

S ty l e [ ” tau =0.04” , 1 8 ] ,

S ty l e [ ” tau =0.06” , 1 8 ] ,

S ty l e [ ” tau =0.08” , 1 8 ] ,

S ty l e [ ” tau =0.1” , 18 ]} ,

PlotRange −> Automatic ,

DataRange −> {0 , 1} ,

LegendPos it ion −> {−0.90 , −0.04} ,

LegendSize −> 0 . 6 ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ” dens i ty ”} ,

BaseSty le −> {FontSize −> 18} ,

LegendSize −> 0 . 8 ]

B.2.5 Allele Frequency Density with γ = 3

The result can be seen in Figure 5.14.

l i s t 3 = Table [ dens i ty [ x , 3 , t ] ,

{ t , 0 . 02 , 0 . 1 , 0 . 02} ,

{x , 0 . 1 , 0 . 9 , 0 . 0 2} ]

L i s tL ineP lo t [
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l i s t 3 ,

PlotLegend −> { Sty l e [ ” tau =0.02” , 1 8 ] ,

S ty l e [ ” tau =0.04” , 1 8 ] ,

S ty l e [ ” tau =0.06” , 1 8 ] ,

S ty l e [ ” tau =0.08” , 1 8 ] ,

S ty l e [ ” tau =0.1” , 18 ]} ,

PlotRange −> Automatic ,

DataRange −> {0 , 1} ,

LegendPos it ion −> {−0.85 , −0.05} ,

LegendSize −> 0 . 6 ,

LegendShadow −> None ,

P lo tS ty l e −> AbsoluteThickness [ 2 ] ,

AxesLabel −> {”x ” , ” dens i ty ”} ,

BaseSty le −> {FontSize −> 18} ]
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Appendix C

Zusammenfassung

In dieser Magisterarbeit wurden die Methoden zur Berechnung der Wahrscheinlich-

keitsdichte der Allelfrequenzen von Kimura (1955) und Song and Steinrücken (2012)

erklärt, und eine eigene Methode vorgestellt. Der älteste Lösungsweg stammt von

Kimura (1955). Dieser basiert, im Fall mit Selektion, auf der Verwendung von

Oblate Sphäroidfunktionen, wie sie von J. A. Stratton (1941) und J. A. Stratton

(1954) vorgestellt wurden. Die Eigenwerte und Eigenfunktionen wurden von Kimura

(1955) mittels Taylorentwicklung um den Selektionskoeffizenten γ berechnet, als Folge

davon ist die Lösung von Kimura für höhere Werte von γ nicht sehr genau (Song

and Steinrücken, 2012). Die Lösung von Song and Steinrücken (2012) basiert eben-

falls auf der Definition der Sphäroidfunktionen von J. A. Stratton (1954), aber die

Eigenwerte werden durch die Lösung eines endlich-dimensionalen Gleichungssystems

gefunden. Die Möglichkeiten der Computer gestützten Berechnung haben sich seit

Kimura (1955) weiterentwickelt und so war es Song and Steinrücken (2012) möglich

einen Algorithmus für die Berechnung der Eigenwerte in der Programmiersprache C

zu implementieren.

Zur selben Zeit als Stratton die Tabellen zur Berechnung der Sphäroidfunktionen

publizierte, bekamen die Sphäroidfunktionen, wegen ihrer Anwendungsmöglichkeiten

in der Physik und Quantenmechanik, sehr viel Aufmerksamkeit. Daraus resultierte,

dass innerhalb kurzer Zeit viele Publikationen mit unterschiedlichen Notationen der

Sphäroidfunktionen erschienen. In Abramowitz (1972) gibt es eine Übersicht der un-

terschiedlichen Notationen. Die Notationen von Meixner and Schäfke (1954) und

Flammer (1957) sind heute die üblichen Varianten. Die Sphäroidfunktionen von

Meixner and Schäfke (1954) und Flammer (1957) und deren Eigenwerte sind in eini-

gen Softwarepaketen implementiert (z.B. in Mathematica (Weisstein, 2013c) und im

Mathematica Paket Falloon (2003)). Diese Funktionen wurden im Kapitel zu den

Anwendungen in dieser Arbeit verwendet. Die Sphäroidfunktionen, die von Kimura
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(1955), Song and Steinrücken (2012) und J. A. Stratton (1954) verwendet wurden,

sind definiert als eine Linearkombination von Gegenbauer Polynomen. Die Sphäroid-

funktionen werden aber allgemein als Linearkombination von Legendre Polynomen

dargestellt. In Abschnitt 4.3 wird gezeigt, dass die Vorwärtsgleichung in die Dif-

ferentialgleichung der Sphäroidfunktionen, definiert in Meixner and Schäfke (1954)

und Flammer (1957), transformiert werden kann. Da diese Funktionen in vielen Soft-

warepaketen implementiert wurden, sind diese Methoden nun einfach für Populations-

genetikerInnen zugänglich.
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