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Abstract
In computational social choice, we are concerned
with the development of methods for joint decision
making. A central problem in this field is the win-
ner determination problem, which aims at identify-
ing the most preferred alternative(s). With the rise
of modern e-business platforms, processing of huge
amounts of preference data has become an issue.
In this work, we apply the MapReduce framework
– which has been specifically designed for dealing
with big data – to various versions of the winner
determination problem. Our main result are effi-
cient and highly parallel algorithms together with a
performance analysis for this problem.

1 Introduction
Winner determination is a central problem in the field of so-
cial choice. In recent years, developing algorithms for winner
determination has become an active topic in the AI commu-
nity, in particular in computational social choice. For many
of the voting rules and scenarios important in the area, ef-
ficient algorithms have been devised [Dwork et al., 2001;
Sandholm, 2002; Betzler et al., 2010; Bachrach et al., 2010;
Lang et al., 2012; Caragiannis et al., 2014].

The classical example of a winner determination problem
is a political election, where we are given a number of candi-
dates and a number of votes. Even if the number of votes
can be big, the number of candidates is typically small in
such elections. Yet, we are facing ever increasing volumes
of preference data coming from different sources: Whether
a user watches or rates a movie at Netflix, buys or reviews a
book at Amazon or clicks a link in a listing of search results,
preferences of some alternatives over others are constantly
expressed throughout a user’s digital presence.

Unlike voting in a political election or rating a product, the
sources of these huge numbers of preferences or candidates
are not always explicit: For example, when using a typical
e-commerce site, the choice of clicking on a particular prod-
uct in a list of search results is often interpreted as a prefer-
ence for that product relative to the others the user did not
access. With the increasing use of sensors (e.g. through a
user’s “smart” phone or watch), a user may not even notice
that such preference data is generated in the background.

The source of the huge size of preference datasets may
vary, sometimes stemming from a huge number of candidates
(such as in the case of search engines) or a huge number of
votes (such as in the case of preferences generated by sen-
sors). Both sources of huge datasets pose different challenges
to the design of algorithms for winner determination. Sequen-
tial algorithms and systems for winner determination are not
designed to handle huge preference datasets of this sort.

The most successful framework to design algorithms for
handling huge amounts of data is the MapReduce frame-
work [Dean and Ghemawat, 2008], originally introduced by
Google and since then adopted by many other companies and
projects for processing “big data” in parallel – in clusters or
in the cloud. The standout characteristic of the MapReduce
framework is that it is both widely deployed in practice, as
well as well-studied in terms of its theoretical properties.

The goal of this paper is to design and analyse algorithms
for winner determination that are able to deal with huge
datasets. To this end, we shall adopt the MapReduce frame-
work as the foundation of our algorithms.

Organization and main results. In Section 2, we give an in-
troduction to the MapReduce framework. In Section 3, we in-
troduce the necessary background from computational social
choice. The main contributions of this paper, given mainly in
Sections 4 and 5, are:

• We show that the MapReduce framework can be ap-
plied to winner determination in order to cope with huge
datasets.

• We present MapReduce algorithms for four concrete
voting rules (scoring rules, Copeland, Smith and
Schwartz) and investigate the theoretical properties of
these algorithms.

• We also show limits of parallelizability, by proving that
determining whether a given candidate wins an election
subject to the single-transferable voting (STV) rule is P-
complete. Thus, it is unlikely that there exists a highly
parallelizable algorithm for this problem.

In Section 6, we shall give concluding remarks, in particular
comparing the developed MapReduce algorithms and putting
them into context with the results on the limits of paralleliz-
ability.



2 Basic Principles of MapReduce
MapReduce, originally developed at Google [Dean and Ghe-
mawat, 2008], has evolved into a popular framework for large
scale data analytics in the cloud. A MapReduce algorithm
consists of three phases: The map-phase, the shuffle phase
and the reduce phase. In the map-phase, the input is con-
verted into a collection of key-value pairs. The key deter-
mines which reduce task will receive the value. In the shuf-
fle phase, the key-value pairs are sent to the respective reduc-
ers. Each reduce task is responsible for one key and performs
a simple calculation over all values it receives.

Introduction by example. We illustrate the main ideas of
MapReduce by applying it to the winner determination prob-
lem of the Borda scoring rule (see Figure 1). Every voter
provides a ranking of the candidates; for this example we as-
sume that the candidates are {a, b, c} (e.g., a vote could be
a > b > c). The candidate ranked first receives 2 points,
the second 1 point and the last 0 points. The candidate is
used as the key and the points are the corresponding values so
that we obtain key-value pairs of the form (candidate, points).
Each reducer sums up the points for one candidate. In a final,
non-parallel step all candidates with the highest score are de-
termined.

a > b > c
b > a > c
c > a > b

Map

(a, 2)
(b, 1)
(b, 2)
(a, 1)
(c, 2)
(a, 1)

Shuffle

(a, 2)
(a, 1)
(a, 1)

(b, 1)
(b, 2)

(c, 2)

Reduce

(a, 4)

(b, 3)

(c, 2)

Figure 1: Calculation of scores for the Borda scoring rule.

Analysis of MapReduce algorithms. Various parameters
are used to analyze the performance of MapReduce algo-
rithms [Afrati et al., 2013; Leskovec et al., 2014]. By the
MapReduce philosophy of splitting the overall computation
into small and simple tasks (to be performed in parallel by
the reducers), the most important cost factor is the total com-
munication cost (denoted tcc), which is the total number of
input/output actions performed by the map and reduce tasks
(recognizable as EMIT statements in our algorithms). We al-
low input/output actions only of constant size. It is common
practice to ignore the input to the map tasks (i.e., the problem
instance) and the output of the overall result, since they do not
depend on the chosen algorithm. Moreover, if a data item is
sent by one task and received by another task, we only count
this as one input/output action.

A parameter closely related to tcc is the replication rate
(denoted rr), which is defined as the ratio between the amount
of data sent to all reducers and the original size of the in-
put. This corresponds to the mean number of reduce tasks
a value is sent to. Another parameter of interest is the num-
ber of MapReduce rounds (referred to as #rounds), which
tells us how many map-reduce iterations are performed. This
parameter is an essential indicator of how well the problem

is parallelizable. We also consider the number of keys (re-
ferred to as #keys); for multi-round MapReduce algorithms,
we use the maximum number of keys in any round. Note
that #keys is a measure for the maximal possible paralleliza-
tion, which would correspond to every key being assigned to
a single (physical) machine. Finally, we will also study the
wall clock time (wct), which aims at measuring the total time
needed to complete a MapReduce computation. This corre-
sponds to the maximum time consumed by a single computa-
tion path in the parallel execution of the algorithm (assuming
that all keys are processed in parallel). Since the predomi-
nant cost factor is the input/output, we shall identify the wall
clock time with the maximum number of input/output actions
(EMIT) in any of the computation paths. For the input data
we refer to the number of candidates as m and to the number
of votes as n. Analysing the simple MapReduce algorithm
described above (which immediately generalizes to arbitrary
scoring rules) yields the following characteristics:

Proposition 1. The set of winners for scoring rules can be
computed in MapReduce with the following characteristics:
rr = 1, #rounds = 1, #keys = m, wct ≤ n, and tcc ≤ mn.

3 Elections and Winner Determination
The goal of this paper is to establish MapReduce algorithms
for the winner determination problem: given a set of candi-
dates C and a list of votes, compute the set of all winners
according to a given voting rule. There are two relevant di-
mensions that can make a problem instance “huge”: the num-
ber of candidates (m) and the number of votes (n).

We assume that votes are partial orders, i.e., reflexive, an-
tisymmetric and transitive binary relations. As an input data
model we consider sets of total orders on subsets of candi-
dates (e.g., {a > c > d > b, a > e}), which we refer to
as preflists. They allow one to succinctly encode total orders
(i.e., a full ranking) or top orders (a partial ranking with all
remaining candidates ranked below); in both cases, preflists
require O(m) space. For arbitrary partial orders they require
O(m2) space. This is in contrast to, e.g., (0, 1)-matrices,
which require O(m2) space independent of the given vote.

We say that a candidate a strictly dominates b, written
a � b, if there are more votes preferring a over b than the
other way around. Similarly, a candidate a weakly domi-
nates b, written a � b, if the number of votes preferring a
to b is greater or equal than the other way around. Given a
list of votes, it is generally not clear what candidates should
be selected as choice sets, i.e., should be chosen as winners.
Probably the most natural approach is to consider pairwise
comparisons and to declare a candidate to be the winner if it
strictly dominates all other candidates. Such a candidate is a
Condorcet winner – but a Condorcet winner might not exist.
Hence a large number of extensions of this concept have been
proposed, three of which we study in this paper: the Copeland
set, the Smith set and the Schwartz set. All these sets contain
only the Condorcet winner if it exists and are guaranteed to
select at least one winner. We have selected these three choice
sets since the complexity of computing them was shown in
[Brandt et al., 2009] to lie in the complexity classes TC0,
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AC0 and NL, respectively, and problems in these classes are
considered as highly parallelizable [Johnson, 1990].

The Copeland set is based on Copeland scores. The Cope-
land score of candidate a is defined as |{b ∈ C : a � b}| −
|{b ∈ C : b � a}|. The Copeland set is the set of candidates
that have the maximum Copeland score. The Smith set is the
(unique) smallest set of candidates that dominate all outside
candidates. The Schwartz set is the union of minimal sets that
are not dominated by outside candidates. The Smith set is
always a subset of the Schwartz set [Brandt et al., 2009]. We
refer the reader to [Brandt et al., 2014] and to the handbook
chapter of Brandt et al. [2016] for an overview on these and
other choice sets.

In addition to the aforementioned voting rules we also con-
sider the Single Transferable Vote (STV) rule, which is not
based on the dominance relation. We introduce it in Section 5.

4 MapReduce Algorithms
In this section, we propose MapReduce algorithms for “huge”
elections. In particular, we present algorithms for determin-
ing the Copeland, Smith, and Schwartz sets. Central to these
three voting rules is the concept of dominance graph. We thus
first present a MapReduce algorithm for computing the (strict
or weak) dominance graph.

4.1 Computation of the Dominance Graph
The (strict or weak) dominance graph contains the candi-
dates as vertices and has an edge between vertices a and b
if a (strictly or weakly) dominates b. We use D� to denote
the strict dominance graph and D� for the weak dominance
graph, or simply D if the variant of the dominance graph is
clear from the context or not important to the specific case.

The natural first step shared by all MapReduce algorithms
presented in this section is an algorithm for computing the
(strict or weak) dominance graph. We consider the repre-
sentation of the dominance graph by an adjacency matrix.
Alternative representations of this graph (e.g., by a table of
edges) would lead to analogous algorithms. In Algorithm 1,
we present a MapReduce algorithm for computing the strict
dominance graph. For computing the weak dominance graph,
the algorithm is easily adapted by replacing the condition
“result > 0” by “result ≥ 0” in the if-statement.
As described earlier, we consider the votes given in the input
as preflists. The algorithm utilizes a single round of MapRe-
duce, specified by the map-phase given by MAP and the re-
duce phase given by REDUCE SUM, followed by a post-
processing step given by COMBINE. In the map-phase, we
attribute the value 1 to a key i, j if the voter under considera-
tion prefers candidate i to j; we attribute −1 if j is preferred
to i. In the reduce phase, a sum is computed over the val-
ues assigned to each reducer – a positive sum indicating that
i dominates j and a negative sum indicating that j dominates
i. The input values of the reduce phase are fully defined by
the EMIT statements of the map phase, so we do not explic-
itly state the input parameters of each reduce function in our
algorithms. Every reduce statement has the same interface,
that is REDUCE(key k, list values). In the post-processing step
COMBINE, the adjacency matrix D is filled in accordingly.

Algorithm 1 Strict Dominance Graph
function MR DOMINANCE GRAPH(list preflists)

MAP(preflists)
REDUCE SUM
COMBINE

function MAP(list preflists)
for all preflist in preflists do

for all totalorder in preflist do
for i=1 to length(totalorder)-1; j=i to length(totalorder) do

EMIT(key=[totalorder[i], totalorder[j]], value=1)
EMIT(key=[totalorder[j], totalorder[i]], value=-1)

function REDUCE SUM(key k, list values)
return (k, sum(values))

function COMBINE(LIST RESULTS)
for all ([k1, k2], result) in results do

if result > 0 then D[k1, k2] = 1 else D[k1, k2] = 0

Proposition 2. Algorithm 1 as well as its variant of comput-
ing the weak dominance graph has the following character-
istics: rr ≤ m, #rounds = 1, #keys = m2, wct ≤ n, and
tcc ≤ nm2.

While the original input has a size of O(nm2), after apply-
ing Algorithm 1 we obtain a dominance graph of size O(m2).
If m2 is rather small, it might no longer be necessary to use
MapReduce algorithms; a conventional sequential algorithm
might be able to compute choice sets based on this graph. In
contrast, if m2 is still huge, we have to further rely on par-
allelization. Our MapReduce algorithms in the subsections
below refer to this case.

4.2 Computation of the Copeland Set
Algorithm 2 specifies a MapReduce algorithm that receives
the adjacency matrix of the strict dominance graph computed
by Algorithm 1 as input and computes the Copeland set. The
notation for D given as an adjacency matrix used in this and
further algorithms is as follows: By writing “matrix[,] D”, we
specify that D is a two-dimensional matrix. The notation
D[i, ] refers to the i-th row of D, while D[, i] refers to the i-th
column of D. Although we restrict EMIT statements to han-
dle data of constant size, we use EMIT(key=i, value=D[i, ])
to transfer a full row. However, this corresponds to m EMIT
statements that transfer the row cell by cell.

Algorithm 2 Copeland Set
function MR COPELAND SET(matrix[,] D)

MAP ROWS(D)
MAP COLS(D)
REDUCE SUM
FIND MAX

function MAP ROWS(matrix[, ] D)
for i=1 to nrows(D) do

EMIT(key=i, value=D[i, ]) # this corresponds to m emits (an entire row)

function MAP COLS(matrix[, ] D)
for i=1 to ncols(D) do

EMIT(key=i, value=(−1) · D[, i]) # this corresponds to m emits

The main idea of this algorithm is that there is one reducer
responsible for computing the Copeland score of one candi-
date. In the map-phase, we send the row and column relevant

3



to a candidate to the corresponding reducer. Note that the en-
tries in the column sent to the reducer are multiplied by -1
as they correspond to the candidates that dominate the candi-
date under consideration. Each reducer then simply sums up
the values of the corresponding row and the (negative) values
of the corresponding column. This task is performed by the
function REDUCE SUM specified in Algorithm 1. The sum
obtained by each reducer is the Copeland score of the corre-
sponding candidate. Finally, in a simple post-processing step,
the maximum value of the Copeland scores is computed and
the candidates with maximum Copeland score are returned as
the Copeland set. This algorithm has the following computa-
tional properties:

Proposition 3. Algorithm 2 for computing the Copeland set
has the following characteristics: rr = 2, #rounds = 1,
#keys = m, wct ≤ 2m, and tcc ≤ 2m2.

Note that this and the following MapReduce algorithms are
particularly useful in a situation where m2 is “large” (e.g.,
the full dominance graph would be too large to be handled by
a single machine – hence non-parallel algorithms would have
problems processing it), but m is still manageable (i.e., the set
of candidates can still be processed by one of the machines in
our cluster or cloud). This is a reasonable assumption to make
for most huge datasets, as the set of candidates is rarely larger
than in the range of billions.

4.3 Reachability in the Dominance Graph
The first algorithm for computing the Smith set requires
reachability queries in the weak dominance graph, i.e., we
have to be able to answer whether b is reachable from a. This
can be done by repeatedly squaring the adjacency graph of
D�. Recall that for an adjacency matrix D (assuming that it
contains ones in the diagonal), the k-th power of D, Dk, con-
tains a 1 in cell (i, j) if and only if vertex/candidate j can be
reached from i in at most k steps. Hence, we can compute the
transitive closure of the weak dominance graph by squaring
D �log2 m� times. Similarly, we can compute the transitive
closure of the strict dominance graph – we only have to insert
ones in the diagonal before we square it1.

We use a standard MapReduce algorithm for squaring a
matrix, which we refer to as MR SQUARE M. Matrix multi-
plication is a well-studied procedure in the MapReduce litera-
ture [Afrati et al., 2013; Leskovec et al., 2014]. The following
proposition is implicit in [Afrati et al., 2013]:

Proposition 4. The MapReduce algorithm MR SQUARE M
for squaring an adjacency matrix has the following charac-
teristics: rr ≤ 2m, #rounds = 1, #keys = m2, wct ≤ 2m,
and tcc ≤ 2m3.

4.4 Computation of the Smith Set
We use the following equivalent characterization of the Smith
set by Brandt et al. [2009]: candidate a is in the Smith set if
and only if for every candidate b there is a path from a to

1Note that if we did not add ones in the diagonal, cell (i, j) in
Dk would contain the information whether j is reachable from i in
exactly k steps.

b in the weak dominance graph. A naive MapReduce algo-
rithm for computing the Smith set would first compute the
transitive closure of the weak dominance graph, i.e., com-
pute all distances between candidates. However, it suffices to
consider only D2

� and D4
� by applying the following lemma:

Brandt et al. [2009] show that in the weak dominance graph
a vertex t is not reachable from a vertex s if and only if there
exists a vertex v such that D2

�(v) = D3
�(v), s ∈ D2

�(v),
and t /∈ D2

�(v). Since D2
�(v) = D3

�(v) implies that
D3

�(v) = D4
�(v), we compute only D2

� and D4
�.

We refer to Algorithm 3 for a high-level description of a
MapReduce algorithm. This MapReduce algorithm consists
of four rounds, which we label (MR1) to (MR4).

Algorithm 3 Smith Set
function MR SMITH SET(matrix[,] D)

(MR1:) D2=MR SQUARE M(D)
(MR2:) D4=MR SQUARE M(D2)
(MR3:) MAP ROWS(D2)

MAP ROWS(D4)
M = REDUCE COMPARE

(MR4:) MAP COLS(M)
REDUCE SMITH SET

function REDUCE SMITH SET(key k, list col)
for i=1 to length(col) do

if col[i] �= 0 then
return (k, false) # candidate k is not contained in the Smith set

return (k, true) # candidate k is contained in the Smith set

In the first round, we compute D2, i.e., reachability in at most
two steps. We then compute D4, i.e., reachability in at most
four steps. Key to the algorithm is the third round, which
is implemented by REDUCE COMPARE: Reducer i (corre-
sponding to the i-th candidate) receives the i-th row of both
D2 and D4. It then verifies whether (1) the two rows are equal
and (2) there is at least one cell with a 0. If both conditions
are met, REDUCE COMPARE returns the given row; other-
wise it does not return anything. We exclude rows consisting
solely of ones because then D2

�(ci) contains all candidates
and hence there are no undominated candidates. All rows re-
turned by REDUCE COMPARE are stored in the matrix M .
In the fourth and final MapReduce round we gather all such
rows and output a candidate cj if the j-th column of M con-
sists only of zeros. Note that if D2(b) = D4(b) and the size
of D2(b) is smaller than the total number of candidates, then
there exist some candidates that are not dominated by the can-
didates in D2(b).

Proposition 5. Algorithm 3 for computing the Smith Set has
the following characteristics: rr ≤ 2m, #rounds = 4,
#keys = m2, wct ≤ 7m, and tcc ≤ 4m3 + 3m2.

Proof idea. The first two rounds carry out the squaring of the
weak dominance graph via Algorithm 3. By Proposition 4,
rr = 2m, wct ≤ 2m, and tcc ≤ 2m3 holds for each of these
two rounds. In round MR3, there are m reducers (one for
each candidate). Each reducer receives one row from D2 and
one from D4 and outputs one vector of m values. Hence, we
have rr = 2 (with respect to the original input, which was a
single matrix, and here we are dealing with two matrices of
that size), wct ≤ 2m, and tcc ≤ 2m2. Round MR4 yields
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rr = 1, wct ≤ m, and tcc ≤ m2. In total, we get the upper
bounds wct ≤ 7m and tcc ≤ 4m3 + 3m2.

4.5 Computation of the Schwartz Set
For the Schwartz set we use the following alternative charac-
terization based on the strict dominance graph: candidate a is
in the Schwartz set if and only if for every candidate b, there
is a path (in the strict dominance graph) from a to b whenever
there is a path from b to a [Brandt et al., 2009, Lemma 4.5]. In
Algorithm 4, we give a MapReduce algorithm for computing
the Schwartz set given the strict dominance graph. Unlike the
computation of the Smith set, we first have to compute the full
transitive closure of the strict dominance graph – making the
algorithm require significantly more (namely �log2m� + 1)
MapReduce rounds.

Algorithm 4 Schwartz Set
function MR SCHWARTZ SET(matrix[,] D)

D∗ = D
for �log2m� times do # can be stopped earlier if fixpoint reached

D∗=MR SQUARE M(D∗)
MAP ROWS(D∗)
MAP COLS(D∗)
REDUCE SCHWARTZ SET

function REDUCE SCHWARTZ SET(key k, (list row, list col))
for i=1 to m do

if col[i] �= 0 ∧ row[i] = 0 then
return (k, false) # there is a path from i to k but not vice versa

return (k, true)

In more detail, the algorithm first computes the transitive clo-
sure D∗ of D in �log2m� rounds. The required number of
rounds might be reduced by stopping as soon as a fixpoint is
reached (i.e., D∗ does not change anymore). Finally, for ev-
ery candidate a, the outgoing and incoming paths have to be
compared in order to check if a belongs to the Schwartz set or
not. To this end, the reduce task REDUCE SCHWARTZ SET
checks for every candidate b if there is a path from a to b,
whenever there is a path from b to a.
Proposition 6. Algorithm 4 for computing the Schwartz Set
has these characteristics: rr ≤ 2m, #rounds = �log2m�+1,
#keys = m2, wct ≤ 2m(�log2 m� + 1), and tcc ≤
2m3(�log2 m�+ 1).

4.6 Computation of the Smith and Schwartz Set
from Strongly Connected Components (SCCs)

Our algorithms presented above for computing the Smith and
Schwartz set are based on matrix multiplication for comput-
ing reachability in the dominance graph. Another approach
would be via the strongly connected components (SCCs) of
the dominance graph. Recall from Section 2 that the Smith
set is the (unique) smallest set of candidates that dominate
all outside candidates (or equivalently, the unique minimal
undominated SCCs of the weak dominance graph). The
Schwartz set is the union of minimal sets that are not dom-
inated by outside candidates (or equivalently, the union of all
minimal undominated SCCs of the strict dominance graph).

There are frameworks specifically designed for mas-
sively parallel computations on huge graphs, such as Pregel
[Malewicz et al., 2010]. Indeed, also for computing strongly

connected components in a graph, several Pregel algorithms
have been presented [Barnat et al., 2011; Salihoglu and
Widom, 2014; Yan et al., 2014]. In this section, we thus
assume that we are given the SCCs of the (weak or strict)
dominance graph as an input. In Algorithm 5, we give such
an algorithm for computing the Smith set based on the SCCs
c of the weak dominance graph, as well as the graph D it-
self. The Schwartz set can be computed by the analogous
algorithm applied to the strict dominance graph.

Algorithm 5 Smith and Schwartz Set from SCCs
function MR SCC(matrix[,] D, SCCs c)

MAP CELLS(D)
REDUCE DEDUPLICATE
COMBINE SCC

function MAP CELLS(matrix[,] D, SCCs c)
for i=1 to m; j=1 to m do

if c(i) != c(j) then # where c(i) returns the SCC of vertex i
EMIT(key=j, value=false)

In more detail, the main goal of the algorithm is to deter-
mine whether a given SCC is not undominated. In the map
step MAP CELLS, we first determine whether a candidate j
is dominated (by a candidate outside of the candidate’s SCC),
and thus not in an undominated SCC. Consequently, if this is
the case, this candidate is emitted. In the reduce step RE-
DUCE DEDUPLICATE we deduplicate these key-value pairs
(as for one candidate j, there could be multiple such (j, false)
key-value pairs). Finally, in the post-processing step COM-
BINE SCC, since we now know whether a candidate j is
dominated, it remains to propagate this information to all
other candidates i with c(i) = c(j). All such dominated can-
didates are not in the Smith (or Schwartz) set, the remaining
candidates are in it.

Proposition 7. Algorithm 5 for computing the Smith or
Schwartz set given SCCs has these characteristics: rr = 1,
#rounds = 1, #keys = m, wct ≤ m, and tcc ≤ m2.

5 Limits of Parallelizability
In this section we study the Single Transferable Vote (STV)
rule as an example of a voting rule that allows for only lim-
ited parallelization. STV is defined as follows: Every voter
provides a total order of all m candidates. In each round the
candidate that is ranked first in the least number of votes is re-
moved from each vote. The remaining candidate after m− 1
rounds is the winner. In case of ties we assume that a tie-
breaking order is given. In the following we will show that
STV is in general difficult to parallelize effectively. Indeed,
the decision problem STV-WINNER, asking whether a given
candidate is the winner, is P-complete and therefore consid-
ered as inherently sequential [Johnson, 1990].

Theorem 8. STV-WINNER is P-complete.

Idea. Since this proof requires an intricate construction, we
can only provide the main idea. P-hardness is shown by re-
duction from the BOOLEAN CIRCUIT EVALUATION prob-
lem [Greenlaw et al., 1995]. Given a Boolean circuit with
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Problem Input Input Size #keys rr #rounds wct ≤ tcc ≤
Scoring rules total orders O(mn) m 1 1 n mn
Dominance graph partial orders O(nm2) m2 ≤ m 1 n nm2

Copeland set dom. graph O(m2) m 2 1 2m 2m2

Smith set dom. graph O(m2) m2 ≤ 2m 4 7m 4m3 + 3m2

Schwartz set dom. graph O(m2) m2 ≤ 2m ≤ �log2 m� + 1 2m(�log2 m� + 1) 2m3(�log2 m� + 1)

Smith / Schwartz dom. graph, SCCs O(m2) m 1 1 m m2

STV total orders O(mn) m 1 m− 1 n(m− 1) nm(m− 1)

Table 1: Summary of performance characteristics.

m gates g1, . . . , gm, where gm is the output gate, we con-
struct an instance of STV-WINNER with 2m candidates C =
{c1, c̄1, c2, c̄2, . . . , cm, c̄m}. The set of votes is defined in
such a way that, in the first m rounds, exactly one of ci and c̄i
is eliminated for every i ∈ {1, . . . ,m}, namely: ci is retained
if and only if gate gi evaluates to true. In the next m − 1
rounds, the remaining candidates are eliminated in ascending
order of their indices. Hence, cm is the STV-winner if and
only if gate gm (and hence the circuit) evaluates to true.

The next theorem shows that only the number of candidates
(m) is the source of P-completeness; the number of voters (n)
is not an obstacle to parallelization.

Theorem 9. STV-WINNER can be solved in O(m+log(n))
space.

From the perspective of classical complexity theory, we have
shown that STV-WINNER is contained in L (i.e., it can be
solved with logarithmic space), if we fix m to a constant.
Membership in L can be seen as evidence that a problem is
parallelizable as it can be computed in log2 time with a poly-
nomial number of parallel processors. Theorem 9 can also
be seen from the perspective of parameterized space com-
plexity [Elberfeld et al., 2014]. Our result translates to a
para-L membership proof for STV-WINNER with param-
eter m, which requires that the problem can be solved in
O(f(m) + log(n)) space for some computable function f .
Note that para-L containment is a stronger result than L mem-
bership for fixed m since the latter would also hold for a space
complexity of O(m · log(n)).

To support Theorem 9, we briefly sketch and analyze a
MapReduce algorithm for STV winner. The basic idea is
to use m − 1 rounds and exclude one candidate per round.
Each reducer is responsible for one candidate. During the
map-phase, the highest-ranking not-yet-excluded candidate
of each vote is sent to the corresponding reducer. Each re-
ducer counts the number of received messages. The next
round starts with the exclusion list extended by the lowest
scoring candidate (subject to tie-breaking). Clearly, this al-
gorithm is impractical for big m as it requires m− 1 rounds.
However, for small m, this algorithm can be considered fea-
sible – which matches exactly the claims of Theorems 8 and
9. Finally, we state its performance characteristics:

Proposition 10. For computing STV we obtain the following
characteristics: rr = 1, #rounds = m − 1, #keys = m,
wct ≤ n(m− 1), and tcc ≤ nm(m− 1).

6 Conclusion

This paper presents parallel algorithms for winner determina-
tion problems using the popular MapReduce framework. We
have analyzed these algorithms with respect to several char-
acteristics. A summary is given in Table 1. Note that some
algorithms are based on different inputs than others and thus
these characteristics have to be compared with care. The al-
gorithms for computing the Copeland, Smith, and Schwartz
sets (Algorithms 2, 3 and 4) are directly comparable and so
are the algorithms for scoring rules and STV. For STV, our
analysis has shown that the problem is hard to parallelize in
general, but allows for efficient parallel computation for elec-
tions with few candidates.

To the best of our knowledge, this paper is the first to apply
MapReduce or related techniques to problems from compu-
tational social choice. As a consequence, many directions for
future research are left to be explored. First, there are many
more voting rules to be investigated for their parallelizability.
For some of them, such as the Kemeny rule, winner determi-
nation is known to be NP-hard [Bartholdi III et al., 1989;
Hemaspaandra et al., 2005] and thus is unlikely to allow
for practical parallel computation. However, heuristic al-
gorithms [Dwork et al., 2001; Davenport and Kalagnanam,
2004] might be parallelizable and could potentially enable us
to deal with huge elections.

Winner determination is a central but not the only algo-
rithmic problem considered in Computational Social Choice.
Further possible topics include committee selection, judge-
ment aggregation and problems of fair division. Many com-
putational problems in these domains are known to be com-
putationally hard and thus, as mentioned before, heuristical
methods might be necessary to achieve parallelizability.

For other MapReduce algorithms the relationship between
the maximum load of reduce tasks and the replication rate has
been studied, e.g. [Afrati et al., 2013]. To perform a similar
analysis it is necessary to extend our algorithms, such that
the maximum load is an input parameter and the algorithms
fully exploit the capacity of the reduce tasks. In other words,
the algorithms are designed in such a way that the level of
parallelization can be tuned using a parameter - the maximum
load. Describing such algorithms is subject to future work.

MapReduce is only one of many frameworks proposed for
parallel computation. A fourth research direction is to explore
the applicability of these different frameworks, in particular
Pregel, as well as the flexibility offered by Hadoop 2.
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