
Declarative Information Extraction, Web
Crawling, and Recursive Wrapping with Lixto?

Robert Baumgartner1, Sergio Flesca2, and Georg Gottlob1

1 DBAI, TU Wien, Vienna, Austria
{baumgart,gottlob}@dbai.tuwien.ac.at

2 DEIS, Università della Calabria, Rende (CS), Italy
flesca@si.deis.unical.it

Abstract. Lixto is a system and method for the visual and interactive
generation of wrappers for Web pages under the supervision of a human
developer, for automatically extracting information from Web pages us-
ing such wrappers, and for translating the extracted content into XML.
This paper describes some advanced features of Lixto, such as disjunctive
pattern definitions, specialization rules, and Lixto’s capability of collect-
ing and aggregating information from several linked Web pages.

1 Introduction and Motivation

Extracting relevant information automatically from HTML Web pages of chang-
ing content, and converting the extracted information to a structured representa-
tion is an important problem, to which a lot of research has been dedicated [3, 7,
8, 10, 11, 13, 14]. XML was designed to enrich the semantics of Web information
[1, 6]. Even if in some respects XML may not yet fulfill this goal perfectly, XML
appears to be the right representation format for the information extracted from
HTML. Programs that perform such extraction and translation tasks are referred
to as wrappers. Wrappers can be hand-coded, e.g. in specialized languages such
as Jedi [9] or Florid [12], or they can be produced via wrapper generators. Wrap-
per generators are software tools that generate wrappers via induction (such as
e.g. [2, 10, 13]) or that semi-automatically support the generation of wrappers
via an interactive process supervised by a human designer ([11, 14]). Wrapper
generators support the task of reverse engineering, as the goal of a wrapper is to
reverse the processing of dynamic Web sites that generate HTML starting from
an internal structured representation (such as a relational database).

In a recent paper [5] we introduced Lixto, a new method and system for
visually generating HTML/XML wrappers under the supervision of a human
designer. Lixto allows a wrapper designer to interactively and visually define
information extraction patterns on the base of visualized sample Web pages.
These extraction patterns are collected into a hierarchical knowledge base that
? All new methods and algorithms of the Lixto system are covered by a pending patent.

Future developments of Lixto will be reported at www.lixto.com.

constitutes a declarative wrapper program. The extraction knowledge is inter-
nally represented in a datalog like special-purpose logic programming language,
called Elog. However, a user of Lixto is not concerned with the syntax of Elog
and does not need to learn this language as she constructs an Elog wrapper
program by purely visual and interactive primitives without ever seeing the re-
sulting Elog program. Wrapper programs in Elog can be directly executed over
input Web sites by an extractor module that interprets the Elog rules taking
care of the evaluation of special built-in predicates. Lixto also allows a designer
to define XML translation rules that specify how extracted content should be
translated into XML, a so-called XML translation scheme. An XML translation
scheme together with extraction pattern definitions (the Elog program) in addi-
tion enables the system to construct a Document Type Definition (DTD) which
describes the characteristics of the output XML documents.

The advantages of the Lixto wrapper generator over competing approaches
are mainly the following. (1) Very high expressive power, i.e., an unprecedented
capability of defining sophisticated extraction patterns. (2) Excellent visual sup-
port: The wrapper designer’s sole view of an example HTML document is the
browser-displayed standard image of the document (no annotations, overlays,
HTML-sources or DOM trees) and the wrapper designer uses directly this dis-
play for marking extraction patterns. (3) Good learnability, because no extraction
language needs to be learned and neither HTML nor XML knowledge is neces-
sary. (4) Sample parsimony, which means that very few sample pages (in most
cases a single one) are needed in order to define robust wrappers for large classes
of Web pages. A (5) simple and smooth XML translation mechanism that gives
a designer several options for formatting or modifying the XML output.

Basic features of Lixto are described in [4, 5], where also a comparison to
related research is given. The main goal of the present paper is to introduce and
illustrate some of the more advanced features of the Elog language. All the pre-
sented advanced features can be visually created by using Lixto without knowing
Elog. Details of the visual interface and the way of creating patterns can be found
in [4] and [5], where a precise description of the pattern generation algorithm
is given. There, these details are discussed for a restricted environment w.r.t.
some advanced concepts discussed in this paper, but a quite similar approach
can be used for these advanced features. The present paper is self-contained at
the level of general description, but not at the level of details. For the latter, we
refer to [5].

Among the advanced features we discuss here are disjunctive wrapping, i.e.,
defining one pattern through several alternative definitions; pattern specializa-
tion, i.e., defining a new pattern by restricting another pattern; interactively
defining new document patterns, which are patterns corresponding to entire doc-
uments that are identified via extracted URLs; Web crawling, which, in this con-
text, means that a pattern hierarchy is built that aggregates information from
various Web pages by starting at a given input page and automatically following
URLs to other pages; and recursive wrapping which means that recursive pat-
tern structures (akin to recursive data types) can be constructed that allow the

system to crawl to an indefinite number of Web pages and extract information
from all these pages. We will also discuss some interesting nonmonotonic issues
such as pattern minimization principles and the semantics of range restrictions.
Moreover, this paper introduces pattern graphs for describing the structure of the
pattern hierarchy interactively defined by a designer (see Figures 3,4,6, and 7).
Note that pattern graphs for simple extraction tasks are trees, which means that
there is a strict pattern hierarchy. When disjunctive pattern definitions are used,
then the corresponding pattern graphs are dags, while with recursive wrapping
they are cyclic graphs.

The paper is structured as follows. In the next two sections we give an
overview of Lixto and a description of the basic features of the Elog language.
Section 4 gives a closer look on some features. In Section 5 we illustrate the
power of disjunctive pattern descriptions, whereas in Section 6 some light is
shed on Elog ’s aspects concerning link crawling and recursion. These sections
introduce advanced features of the internal language of Lixto both with an ab-
stract description and examples from the commercial domain. Section 7 discusses
various nonmonotonic aspects of Lixto such as minimization, range conditions,
and further recursive aspects introduced by pattern references.

2 Pattern Generation with Lixto

Architecture. The Lixto prototype consists of two main blocks: The Wrapper
Generator and the Program Evaluator. One module of the wrapper generator,
the Interactive Pattern Builder, allows a wrapper designer to create and to store
a wrapper in form of an extraction program (a program in the language Elog).
Moreover, the wrapper generator contains the XML Translation Builder that al-
lows a designer to specify how extracted data should be translated into XML for-
mat and to store such a specification in form of an XML translation scheme. The
program evaluator automatically executes an extraction program (performed by
the Extractor module) and a corresponding XML translation scheme (performed
by the XML translator module) over Web pages by extracting data from them
and translating the extracted data into XML format. (For details see [5].)

Extraction Patterns. A wrapper is constructed by formalizing, collecting,
and storing the knowledge about desired extraction patterns. Extraction pat-
terns describe single data items or chunks of coherent data to be extracted from
Web pages by their locations and by their characteristic internal or contextual
properties. Extraction patterns are generated and refined interactively and semi-
automatically with help of a human wrapper designer. They are constructed in
a hierarchical fashion on sample pages by marking relevant items or regions via
mouse clicks or similar actions, by menu selections, and/or by simple textual
inputs to the user interface. A wrapper, in our approach, is thus a knowledge
base consisting of a set of extraction patterns.

While patterns are descriptions of data to be extracted, pattern instances
are concrete data elements on Web pages that match such descriptions, and
hence are extracted. Lixto distinguishes different types of patterns: Tree, string,

and document patterns. Tree patterns serve to extract parts of documents cor-
responding to tree regions, i.e., to subtrees of their parse tree. String patterns
serve to extract textual strings from visible and invisible parts of a document (an
invisible part could be, e.g., an attribute value such as the name of an image).
Document patterns are used for navigating to further Web pages.

Logical Organization of Patterns. The logical organization of an extraction
pattern is as follows: each extraction pattern has a name and contains one or
more so-called filters. Each filter provides an alternative definition of data to be
extracted and to be associated with the pattern. The set of filters of a pattern is
interpreted disjunctively (i.e., connected by logical ORs). Each filter is associated
to a parent pattern from which it extracts the desired information. Tree (string)
patterns are specified via tree (string) filters.

A tree filter contains a representation of a generalized parse tree path that
matches a set of items on a Web page, and contains a set of conditions that these
items must satisfy. All the conditions of a filter are interpreted conjunctively, i.e.,
an element of a Web page satisfies a filter if and only if it matches its generalized
tree path and satisfies all the conditions of the filter. Similarly, a string filter
specifies the characteristics of the text to be extracted (using a formal language),
and possibly further conditions.

Lixto offers a wrapper designer the possibility to express various types of
conditions restricting the intended pattern instances of a filter. The main types
of conditions are inherent (internal) conditions, contextual (external) conditions,
and range conditions. In addition to these three basic types of conditions, Lixto
allows a designer to express auxiliary conditions like pattern reference conditions,
concept conditions and comparison conditions. They are discussed as atoms of
the Elog language in more detail in Section 3.

Visual Pattern Generation. Extraction patterns are defined by the designer in
a hierarchical manner. A pattern that describes an entire document is referred to
as a document pattern. In particular, the document pattern corresponding to the
starting Web page, the so-called “home document pattern”, is available as a pre-
existing pattern. Other patterns are defined interactively. Filters or patterns are
usually defined in the context of other patterns (so-called parent patterns). For
example, a pattern <name> may be defined first, and then patterns <firstname>
and <familyname>, etc., may be defined in the context of the source pattern
<name>. For the majority of common extraction tasks, defining flat patterns
or a strict hierarchy of patterns will in practice be sufficient. However, Lixto
does not limit the pattern definition to be strictly hierarchical (i.e. tree-like).
Moreover, pattern definitions are allowed to be recursive (similar to recursive
type definitions in programming languages). While patterns are not required
to form a strict hierarchy, pattern instances do always form one and can be
arranged as a tree (or forest, in case they stem from different documents, which
can be the case in recursive programs as explained in Section 6).

The visual and interactive pattern definition method allows a wrapper de-
signer to define an extraction program and an associated XML translation scheme
without any programming efforts. The Lixto Interactive Pattern Builder allows

a wrapper designer to define filters and patterns with the help of one or more
characteristic example pages, and to modify and store patterns. At various in-
termediate steps, the designer may test a partially or fully constructed filter or
pattern, both on the example pages used to construct the pattern as well as on
any other Web page. The result of such a test is a set of pattern instances, which
is displayed by a browser as a set of highlighted items.

The filter description procedure for tree-filters can be described as follows:
The designer marks an initial element on an example Web page (for example,
a table). The system associates with this element a generalized tree path of the
parse tree that (possibly) corresponds to several similar items (for example, sev-
eral tables). The designer then tests the filter for the first time. If more than just
the intended data items are extracted (and thus highlighted) as a result of the
test, then the designer adds restrictive conditions to the filter and tests the filter
again. This process is repeated as long as undesired data items are extracted. At
the end of the process, the filter extracts only desired items. A similar procedure
is used for designing string filters. However, for creating a string rule usually no
example is selected, but some characterizations are visually composed, e.g. by
relying on concept conditions. A pattern is designed by initially asserting one
filter for the pattern, and, in case this is not sufficient (because testing shows
that not all intended extraction items on the test pages are covered), by asserting
successively more filters for the pattern under construction, until each intended
extraction item is covered by at least one filter associated to that pattern.

Observe that the methods of filter construction and pattern construction
correspond to methods of definition-narrowing and definition-broadening that
match the conjunctive and disjunctive nature of filters and patterns, respectively.
It is the responsibility of the wrapper designer to perform sufficient testing, and
– if required by the particular application-test filters and patterns also on Web
pages different from the initially chosen example pages. Moreover, it is up to the
wrapper designer to choose suitable conditions that will work not only on the
test pages, but also on all other target Web pages.

The visual and interactive support for pattern building offered by Lixto also
includes specific support for the hierarchical organization of patterns and filters.
A wrapper definition process according to Lixto (and consequently, a Lixto wrap-
per) is not limited to a single sample Web document, and not even to sample Web
pages of the same type or structure. During wrapper definition, a designer may
move to other sample Web pages (i.e., load them into the browser), continuing
the wrapper definition there.

XML Translation. The XML Translation Builder which constitutes another
interactive module of the wrapper generator, is responsible for supporting a
wrapper designer during the generation of the XML translation scheme. By de-
fault, pattern names are used as output XML tags and the hierarchy of extracted
pattern instances determines the structure of the output XML document. Thus,
in case no specific action is taken by the designer, the pattern instances are
translated into XML in a standard way without any need of further interac-
tion. However, Lixto also offers the wrapper designer the option to modify the

standard XML translation in the various ways: Renaming patterns, suppressing
auxiliary patterns, writing some HTML attributes, and deciding whether in-
stances of document patterns are all treated at the same level, or hierarchically
ordered as defined by the extraction process. Moreover, to define a DTD based
on an output, a wrapper designer can assign a multiplicity to each pattern, i.e. if
one or several instances are required/allowed to occur within a parent pattern.

These desired modalities of the XML translation are determined during the
wrapper design process by a very simple and user-friendly graphical interface and
are stored in the form of an XML translation scheme that encodes the mapping
between extraction patterns and the XML output in a suitable form.

3 An Overview of the Elog Extraction Language

As mentioned in the previous sections, patterns are internally represented us-
ing the declarative extraction language Elog. The Elog language is specifically
designed for hierarchical and modular data extraction and it is ideally suited
for representing and successively incrementing the knowledge about extraction
patterns. It uses a datalog-like syntax and semantics, enriched with several pre-
defined predicates related to information extraction. An Elog program is a col-
lection of rules containing special extraction atoms in their bodies.

We illustrate the main characteristics of Elog using an example program
which can be applied to eBay pages, e.g. to the sample page in Figure 1. Figure
2 shows an Elog program applied to a category search result page of eBay. In
the following examples, we additionally use a pattern graph to represent a Lixto
wrapper. A pattern graph is a directed graph whose nodes represent patterns
and an arc from a pattern p2 to a pattern p1 specifies that there is a filter defining
p2 that extracts information from instances of p1. Moreover, document, tree, and
string patterns are represented using different shapes. Finally, it is possible to
represent also information about the XML translation scheme using this graph.
In particular, we specify that a pattern is translated to an XML element by
writing a text “pattern name/elementname” into the pattern node. If the element
name is missing, then the pattern name is used as default translation. The set
of included attributes are embedded in a list, e.g. “[url, font]”, and patterns
that are not translated are drawn with dashed lines. It is possible to specify a
minimum and maximum multiplicity on the arcs (“[min,max]”, to specify the
information used in the construction of the DTD (see the end of this section).
When no multiplicity of a pattern is explicitly indicated in the pattern graph,
then a minimum and maximum multiplicity of 1 for that pattern are assumed.
The pattern graph of the program in Figure 2 is shown in Figure 3. In this case,
as all filters of one pattern point to the same parent, it forms a tree.

An extraction program consists of a set of patterns. In Elog, a pattern p is
represented by a set of rules having all the same head atom of the form p(S,X).
Elog rules define elements to be extracted from Web pages. Each rule corresponds
to one filter. The head of an Elog rule r is always of the form p(S,X) where p
is a pattern name, S is a variable which is bound in the body of the rule to the

Next page
link

one instance of
record...

in
st

an
ce

 o
f t

ab
le

se
q

an instance
of price

an instance
of currency

Fig. 1. Sample eBay page

parent-pattern instances of the filter corresponding to r, and X is the target
variable which, at extraction time, is bound to some target pattern instance to
be extracted (either a tree region or a textual string). The body of an Elog rule
contains atoms that jointly restrict the intended pattern instances. For example,
an Elog rule corresponding to a tree filter contains in its body an atom expressing
that the desired pattern instances should match a certain tree path and another
atom that binds the variable S to a parent-pattern instance.

In the example program, the pattern <tableseq> is used to extract a se-
quence of tables which represent records. Observe that in each search result
page of eBay, a record is a whole table consisting of a single table row. This
sequence of tables is required to be preceded by a table which contains the word
“Current”, and to be followed by an image representing a horizontal line.

ebaydocument(S, X) ← getDocument(S = $1, X)
tableseq(S, X) ← ebaydocument(, S),

subsq(S, (?.body. ? .center, []), (.table, []), (.table, []), X),
before(S, X, (?.tr, [(elementtext, Current, substr)]), 0, 0, ,),
after(S, X, (?.img, [(src, spacer.gif, substr)]), 0, 0, ,)

record(S, X) ← tableseq(, S), subelem(S, .table, X)
itemdes(S, X) ← record(, S), subelem(S, (?.td. ? .content, [(href, , substr)], X)
price(S, X) ← record(, S),

subelem(S, (?.td, [(elementtext, \var[Y].∗, regvar)]), X),
isCurrency(Y)

bids(S, X) ← record(, S), subelem(S, ?.td, X), before(S, X, .td, 0, 30, Y,)
price(, Y)

date(S, X) ← record(, S), subelem(S, ?.td, X), notafter(S, X, .td, 100)
currency(S, X) ← price(, S), subtext(S, \var[Y], X), isCurrency(Y)
pricewc(S, X) ← price(, S), subtext(S, [0− 9]+\.[0− 9]+, X)

Fig. 2. Elog Extraction Program for a a single eBay page

The rule with head predicate record(S,X) in Figure 2 identifies all tables
within a specific area, which is the instance of tableseq(, S). For each ground
atom tableseq(p, s) (where p and s are tree regions), this rule derives atoms
of the form record(s, x) for each table x contained in s. Thus the variable S
identifies the context of the extraction, in this case, these are the instantiations
of tableseq. Optionally, the body of an Elog rule may contain further atoms
expressing conditions that the pattern instances should additionally satisfy. In
particular, for each type of condition, there exists a built-in predicate (see below).

The description of each item (occurring in the second column of each record)
is determined by the extraction rule whose head is itemdes(S,X). The first
atom in the rule body specifies that the context S of the extraction is a table
and ensures that the variable S is instantiated with a table. The second atom in
the rule body looks for subelements of the table that qualify as table columns
with some specific properties, in particular requiring that they contain a link
(href). The rule has as many matches as there are items on the given page.
If the Web page is updated and two new records are inserted into the table,
then the same rule will produce two more matches. Each match gives rise to a
corresponding instantiation of the variable X.

Thus, the head predicates defined by an Elog program represent the extrac-
tion patterns defined by the wrapper program. For instance, the program in
Figure 2 defines patterns such as <record>, <itemdes>. Elog rule bodies con-
tain the following important ingredients. For a more detailed discussion about
Elog predicates see Section 4.4 of [5].

Incompletely specified tree paths. These refer to the position(s) of the desired
element(s) in the HTML tree. More details on the used document model are
specified in [5]. There are various ways to specify a tree path pointing to e.g.

ebaydocument

tableseq

record/ebayitem

itemdes
[href]

bidsprice date

pricewccurrency

Document Pattern

Tree Pattern

String Pattern

[1,*]

Fig. 3. Pattern Structure of Example of Figure 2

a table row in an eBay page. The fully specified tree path to this node is:
body.table.tr (the elements satisfying these paths are referred to as matched
pattern instances). Two incompletely specified tree paths to the same node are
. ? .body. ? .tr and . ? .body. ? .table. ? .tr, where the star signs are wildcards
(the dots just act as concatenation sign). An incompletely specified tree path
.?.name is an abbreviation of the skip-to sequence (Σ−name)∗name where Σ is
the alphabet of element types. The first discovered elements of the type “name”
are considered in all possible paths. Observe that, interpreting the star in this
way, a tree path . ? .table identifies only the outermost tables in a document, and
hence acts as some kind of minimization.

Attribute Conditions. An incompletely specified tree path may be too general
for describing an intended extraction target. In that case, additional atoms in
the rule body may express further restricting conditions. Among these are so-
called attribute conditions. Attribute conditions impose restrictions on matched
elements. For example, leaf nodes of the HTML tree representing text strings may
have a font-style attribute which takes the value italics if the represented text
is in italics. Moreover, we treat the contents of an element as special attribute
elementtext. Consider the rule for tableseq in Figure 2: One of its predicates
uses an attribute condition expressing that the elementtext needs to contain the
word “Current” (“contain” due to the substr keyword) This attribute condition
restricts the tree path . ? .table, which identifies tables by limiting the matches
to those text fields that contain the word “Current”. Attribute Conditions may
require exact matches or partial matches, or satisfaction of a particular regular
expression possibly extended by the use of variables.

Element Characterizations. A set of elements of a subtree of an HTML tree
are identified with a tree path (starting from the subtree root), where addition-
ally a set of attribute conditions is satisfied. Such a characterization is called
an element path definition. Equivalently, XPath expressions can be used instead
(with some extensions, such as the possibility to express that an attribute value
is a concept like “isCity”). To simplify presentation, however, we stick to our

introduced notation. A set of substrings can be identified by using a string path
definition, which can either be a regular expression, or refer to a concept, or
even combine both. Consider the example of Figure 2, in which the rule defining
<currency> refers to a variable whose instances are currencies.

Tree Extraction Definition Predicates. These predicates specify that a vari-
able should be instantiated with a node in the HTML tree which matches an
element path definition. See, for example, the subelem atom of the fourth rule in
Figure 2, where the variable X is instantiated to all those text fields that occur
within <record> and contain a link. The variable S in this atom denotes the
super entity or, as we call it, the parent pattern, from which the current target
should be extracted via subelem. This parent pattern instance is constrained to
be an instance of <record> by the first atom of the rule. Note that the tree
path specified in a tree extraction definition predicate is always relative to the
parent pattern, i.e., its starting point is a node corresponding to the parent pat-
tern (in our example rule, an instance of <record>). Moreover, with subregion,
a sequence of elements can be extracted (e.g. used in tableseq in Figure 2).

String Extraction Definition Predicates. In the HTML parse tree, strings
are represented by the text of leaves of type content. However, we associate a
string Cn to every node n of the parse tree by simply concatenating (in left-
to-right order) all strings corresponding to leaves of the subtree rooted in n.
The string Cn associated to node n is available in the Lixto system as the
value of an additional attribute elementtext of any given node n. Several special
conditions that express restrictions on such elementtexts can be expressed in
Elog. Elog predicates expressing such special string conditions are referred to
as string extraction definition predicates. As an example, consider the final two
rules of the program of Figure 2. The last rule uses a regular expression as string
path definition, the other one a variable reference to a concept atom (explained
below). Moreover, Attribute Extraction Predicates such as subatt (see examples
in Section 6) allow to extract the contents of attribute values.

Contextual Conditions. Contextual conditions specify that some other ele-
ments must or must not appear either before or after some instance. These con-
textual elements are not limited to text elements. For example, on a page with
several tables, the final table could be identified by an external condition stating
that no table appears after the desired table. The rule defining a <tableseq>
uses both an after and a before condition to express that one is interested in
exactly the region between some specified elements. The definition of <date>
uses a notafter condition to express that the column which contains the date is
not followed by another column.

Internal Conditions. Such conditions require that some characteristic feature
must or must not appear within an instance. Imagine, one wants to extract all
tables containing a word typeset in italics. This could be obtained by adding
an internal condition called contains to the body of the rule that defines the
pattern <record>. This condition expresses that in the subtree rooted at the
node representing the desired table row, a node must exist whose font-style
attribute is defined and has the value italics.

Concept Conditions. These predicates define concepts of some built-in top-
level ontology. For example, one may enrich the system with predicates isEmail(X),
isCountry(X), or isCurrency(X) (see Figure 2), stating that a string X repre-
sents an email address, a country, or a currency, respectively. These values of the
variable X are created as output of concept attribute conditions or string path
definitions (using \var[X]). They are not required to be unary, e.g. isDate(X,Y)
is a binary predicate with output Y in standard date format.

Comparison Conditions. These are predefined relations for predefined onto-
logical classes of elements. Using these conditions, one can e.g. compare two dates
(binary predicate), or require that an email address exists (unary predicate).

Pattern References. Each standard filter contains a reference to its parent
pattern which defines the context of a rule. For example, see the rule defining
<itemdes> in Figure 2. It refers to <record> as parent. The substitution for
S is the actual tree region which acts as parent instance. Moreover, additional
pattern references can be used, for instance to express that an instance of some
pattern always occurs after an instance of another pattern. Such additional pat-
tern references open the way for reference recursion (see Section 7 for details).

Range Conditions. A range condition further restricts the set of pattern in-
stances extracted by a filter by selecting only a subset of the pattern instances
which satisfy the conditions in the body of the filter. Indeed the pattern in-
stances extracted from a certain parent pattern instance are ordered according
to their position in the document, and a range condition selects only those pat-
tern instances that belong to the required range of solutions. To any rule a range
condition such as “[3,7]” can be added, indicating that the solution only includes
the third up to the seventh matched target. Counting can occur starting with
the first or with the last instance.

Using the above predicates, a standard extraction rule looks as follows:

New(S, X)← Par(, S), Ex(S, X), Co(S, X, . . .)[a, b]

where S is the parent instance variable, X is the pattern instance variable,
Ex (S,X) is an extraction definition predicate, and the optional Co(S,X, . . .) are
further imposed conditions. A tree (string) extraction rule uses a tree (string)
extraction definition atom and possibly some tree (string) conditions and general
conditions. The numbers a and b are optional and serve as range parameters. New
and Par are pattern predicates referring to the parent pattern and defining the
new pattern, respectively. This standard rule reflects the principle of aggregation.

The semantics of a rule is given as the set of matched targets x: A substitution
s, x for S and X evaluates New(s, x) to true iff all atoms of the body are true
for this substitution. Only those targets are extracted for which the head of
the rule resolves to true. Moreover, if the extraction definition predicate is a
subsequence predicate, only minimal instances are matched (i.e. instances that
do not contain any other instances). This is a nonmonotonic concept discussed
in Section 7. Observe that range criteria are applied after non-minimal targets
have been sorted out. Note that range conditions are well-defined only in the
case of no reference recursion (cf. to Section 7).

A pattern definition (for short, pattern) is a set of extraction rules defining the
same head. We distinguish document, tree and string patterns. To tree patterns,
only tree extraction rules can be asserted, and to string patterns only string
extraction rules. The third kind of patterns, document patterns, are discussed
in the next section. A pattern acts like a disjunction of rule bodies: To be an
extracted instance of a pattern, a target needs to be in the solution set of at
least one rule. The set of matched target instances of a pattern additionally obeys
a minimality criterion (see Section 7). In patterns, even in those consisting of
a single rule, overlapping targets may occur. Observe that we do not pose the
requirement that each rule belonging to a given pattern refers to the same parent
pattern. This, together with the capability of document navigation, allows for
recursion over patterns as explained in more detail in Section 6.

An extraction program P is a set of patterns. Elog program evaluation differs
from Datalog evaluation in the following three aspects: The use of built-in pred-
icates, various kinds of minimization, and the use of range conditions. Moreover,
atoms are not evaluated over an extensional database of facts representing a
Web page, but directly over the parse tree of the Web page.

The application of a program to an HTML page creates a set of hierarchically
ordered tree regions and string sources (called a pattern instance base) by ap-
plying all patterns of the program to a given and possible further HTML pages
(see the notion of document filters in Section 4). Each pattern produces a set
of instances. Each pattern instance contains a reference to its parent instance.
Observe that the pattern instance base always forms a forest, regardless of the
structure of the pattern graph. We consider the instances of document filters as
root node of each tree of this forest. The pattern instance base can be translated
into XML as already described in Section 2.

4 A Closer Look at some Lixto Features

In this section, we discuss some more advanced features of Lixto, in particular
two further kinds of rules. A standard rule reflects the principle of aggregation,
however, designers of wrappers sometimes wish to express specialization. For
instance, if one rule extracts a set of tables, it might be desirable to create a
rule which restricts the extracted tables to those which contain some particular
feature. A specialization rule looks as follows:

New(S, X)← Old(S, X), Co(S, X, . . .)[a, b]

In such a rule a pattern is specialized, i.e. some of the parent-pattern in-
stances are returned as pattern instances of the new pattern definition. It does
not contain a parent-pattern reference and an extraction definition atom; in-
stead it only contains a pattern reference. Observe that equally to specialization
rules, generalization rules can be used by simply creating multiple specialization
rules for one pattern which refer to different patterns and do not contain any
conditions. Another kind of rule is the document rule, using a getDocument(S,X)

atom, where S is a string source representing an URL, and X the Web page the
URL points to. With such rules, one can crawl to further documents.

New(S, X)← Par(, S), getDocument(S, X)

Each Elog program has an initial rule using the getDocument atom with
user-specified input. The initial document rule is the only rule without a parent-
pattern reference. Instead, it uses a variable “$1” (or a fixed URL) which is
instantiated to a string source representing an URL during run time (the start
document). Document filters can be applied to document patterns only. Parents
of tree patterns are either tree or document patterns, parent of string patterns
are tree or string patterns, and parents of document patterns are string patterns.

document

ebayrecord/record
[source = ebay]

yahoorecord/record
[source = yahoo]

itemdes price bids date

specialization

disjunctive pattern
description where rules
refer to different
parents

ebaydocument yahoodocument

URL

[1,*] [1,*]

ebaytableseq yahootableseq

specialization

Fig. 4. Wrapper for eBay/Yahoo using Specialization and Disjunctive Patterns

Figure 4 illustrates the use of document rules together with specialization
rules. This example moreover illustrates the use of disjunctive pattern defini-
tions pointing to two different parents which actually evolved in this case from
two different kind of documents. Consider the root pattern <document> and
its child patterns <ebaydocument> and <yahoodocument>. Both are specializa-
tions requiring that the document is an eBay page (a category search result on
www.ebay.com such as http://listings.ebay.com/aw/plistings/list/all/
category3707/index.html), or a yahoo auctions page (i.e., a search result of
auctions.yahoo.com), respectively. Observe that the patterns <ebaydocument>
and <yahoodocument> are not document patterns, but tree patterns, since they
refer to instances of tree regions. The predicate contains is an internal condition,
expressing that there is an element in X which satisfies the given element path
definition.

document(S, X) ← getDocument(S = $1, X)
ebaydocument(S, X) ← document(S, X),

contains(X, (?.body, [(elementtext, eBay, substr)]),)
yahoodocument(S, X) ← document(S, X),

contains(X, (?.body, [(elementtext, Yahoo, substr)]),)

5 Disjunctive Pattern Construction

There are several cases, where it is necessary to define more than one filter for
the same pattern to express how to extract desired pieces of information from a
Web page. In this section we show some real world examples where it is useful to
define a pattern using a disjunction of filters. Moreover, we show that is generally
possible that different filters of the same pattern can extract information from
different parent patterns. Let us first consider an example where a wrapper
designer wants to define a pattern consisting of filters that describe extraction
targets for different page types. Assume a wrapper extracts prices from two kind
of Web pages displaying books and their prices, where pages of the first kind
are US pages and pages of the second kind are UK pages. The characteristic
features of prices are a dollar sign on US Web pages and a pound sterling sign
on UK pages. Assume, furthermore, the current sample page is a US page. A
pattern named <price> should thus be defined via two filters: the first taking
care of US pages and the second of UK pages. After having visually created an
appropriate filter for prices in USD on an already loaded US sample page, the
designer switches to a UK sample page and visually defines the second filter for
the <price> pattern on that page. The wrapper then works on both types of
pages.

In Lixto it is not only possible to create a pattern consisting of several filters,
but also that filters of a particular pattern definition refer to a different parent
pattern. Again, consider the example in Figure 4. For both the <ebaydocument>
and the <yahoodocument> pattern we now have to extract the list of available
items (records). Since records are structured differently in eBay and yahoo auc-
tions, it is necessary to create for each kind of page a record pattern of its own,
i.e. <ebayrecord> and <yahoorecord>. Once we have defined the patterns for
the records, the patterns <itemdes>, <price>, <bids> and <date> can be easily
defined with one filter for each kind of record. Although this wrapper works fine
for both yahoo and eBay auctions, it still only returns results from one summary
page as it does not follow the “next” link, and also is not capable of extracting
detail information. Moreover, using the pattern <itemdes> as parent, a string
pattern URL is defined using an attribute filter. This attribute filter extracts the
value of the link to detailed information of the particular item. This attribute
filter works for both sites, since both store the URL pointing to the detail page
in the corresponding href attribute.

URL(S, X) ← itemdes(, S), subatt(S, href, X)

An attribute filter uses the extraction definition predicate subatt to extract
an attribute value of instances of S and instantiates a string source X with it.
The following additional features are currently implemented and can be added
via Lixto’s XML Tool:

1. The pattern <ebayrecord> and <yahoorecord> can be both mapped to the
XML element <record>, and an attribute source of <record> can be defined,
which takes the constant value eBay or yahoo, respectively.

2. In case the string source of <URL> is a relative URL, a prefix variable (BASE)
can be added to it, which has the value of the base URL of the document
from which the information is extracted. This variable can also be used for
following relative links when crawling to further pages (see next section).

3. Auxiliary patterns such as <ebaydocument> and <yahoodocument> can be
decided to not being mapped to XML, and a DTD can be created by addi-
tionally assigning a multiplicity to each data type (Figure 4).

instance of
sellername

instance of
shippinginfo

Fig. 5. Ebay item description page

6 Web Crawling and Recursive Wrapping

6.1 Following Links

For each item, eBay pages contain a reference to a page containing detailed
information about the item itself. In the previous section, we have shown how to

extract the URL pointing to detail pages, but we did not further use it. In this
section we extend the wrapper program to extract also the detailed description
of each item. This is an instance of a general class of applications, where a
wrapper needs to collect and group together elements from several pages. The
wrapper designer thus needs to “teach” the system on the base of sample pages
how to follow URLs and collect the elements from the different pages. On eBay,
each item is described by a line stating summary information for each given
auction item. Each such line contains a link to a Web page with more detailed
information on the respective item, such as the seller name and the shipping
information (Figure 5).

The designer adds a child document pattern <detaildocument> to the string
pattern <URL> which resulted from extracting the value of the href attribute
of <itemdes>. For this, the designer proceeds by following one example detail
document, loading the corresponding page, and defining the remaining relevant
patterns (such as “sellername” and “shippinginfo”) as child patterns of this new
document pattern. Figure 6 illustrates an expanded Elog program of Figure 3,
which defines an attribute filter extracting an URL (as in Figure 4), and a further
document pattern consisting of one filter to extract detailed information for each
item. The auxiliary patterns <URL> and <detaildocument> are not mapped to
XML via the XML translation scheme. The navigation to a detail document
looks as follows:

URL(S, X) ← itemdes(, S), subatt(S, href, X)
detaildocument(S, X) ← URL(, S), getDocument(S, X)

ebaydocument

tableseq

record

date itemdes price bids

pricewccurrencydetaildocument

sellername shippinginfo

URL

[1,*]

Fig. 6. Following Links

6.2 Recursive Wrapping

As we have already pointed out, each filter of a given pattern may refer to
a different parent pattern. Here, we show how to apply this feature to reuse
patterns. This paves the way for creating recursive programs. We call this kind
of recursion pattern recursion. Another kind of recursion, reference recursion,
based on pattern references is discussed in Section 7.

Let us first consider the example program below.

document(S, X) ← getDocument($1, X)
table(S, X) ← document(, S), subelem(S, . ? .table, X)
table(S, X) ← table(, S), subelem(S, . ? .table, X)

It extracts all nested tables within one page, starting with the outermost, and
stores them in this hierarchical order in the pattern instance base. The second
rule of <table> is iteratively called, until no further table can be extracted.

Another possible use of recursively defined wrappers is the following real-
world application. Usually a wrapper designer does not want to extract data
from a single eBay page on notebooks, but from all pages which are connected
to each other via a “next page” link. We illustrate how the eBay program of
Figure 6 can be extended to follow the next link and can reuse the already
created pattern structure. Thus, the pattern <ebaydocument> is a document
pattern consisting of two filters with different parents. The first one refers to
the specified start document, whereas the second one follows the “next” link on
each page. This part of the program looks as follows:

next(S, X) ← ebaydocument(, S),
subelem(S, (?.content, [(href, , substr),
(elementtext, (next page), exact)]), X)

nexturl(S, X) ← next(, S), subatt(S, href, X)
ebaydocument(S, X) ← getDocument(S = $1, X)
ebaydocument(S, X) ← nexturl(, S), getDocument(S, X)

Recall that ”$1” is interpreted as a constant whose value is the URL of
the start document of a Lixto session. This initial filter was already present in
the previous example, and is the starting point of evaluation. The second filter
refers to a different parent pattern, which is <nexturl>. Instances of the pattern
<nexturl> are string sources which represent an URL. The pattern <nexturl>
is created via an attribute filter which extracts via subatt the value of “href”
present in the element which contains the text “next page”.

In the second rule defining the pattern <ebaydocument>, the variable S is
instantiated with string sources which represent URLs. For each “next” link,
a new instance of <ebaydocument> is created, pointing to the next page. This
new page serves as parent pattern for <tableseq> and <next>. The pattern
structure is hence re-used for this new page. In this example, two different doc-
ument patterns are used, on the one hand <ebaydocument>, on the other hand
<detaildocument>. Instances of the pattern <ebaydocument> are the summary
pages, whereas instances of <detaildocument> are the detail information pages

for each item. In an XML translation scheme, the wrapper designer moreover
wants to state how the documents are arranged inside the XML document. Al-
though further instances of <ebaydocument> are hierarchically embedded in the
previous one, the wrapper designer may maintain all <record> instances on the
same level.

In the visual interface of Lixto, a document pattern can be generated without
the need to manually define auxiliary patterns. Instead visual guidance is offered
for creating a single rule which uses a sequence of extraction definition predicates.
For this example program, this single rule can be represented as follows:

ebaydocument(S, X) ← ebaydocument(, S), subatt(Y, href, Z), getDocument(Z, X)
subelem(S, (?.content, [(href, , substr),
(elementtext, (next page), exact)]), Y),

ebaydocument

tableseq

record

date itemdes price bids

pricewccurrency

next

nexturl

initial document filter
(no parent reference)

document filter using
nexturl as parent

 reference

detaildocument

sellername shippinginfo

URL

[1,*]

Fig. 7. Recursive Extraction

7 Nonmonotonic Issues

Minimization of pattern instances. The set of matched targets of an Elog pattern
are minimized in the way that pattern instances which contain other instances of
the same pattern w.r.t. the same parent-pattern instance, are ignored. Pattern
minimization applies both to tree and string rules. If a pattern consists of a
single filter, the minimized set of its matched targets equals the initial set except
if the extraction definition predicate of the filter is subregion (which extracts a
sequence of elements).

Consider the following simple example. Assume the major headlines of a
particular newspaper Web page are a table consisting of various table data (the
wrapper designer is interested in all the contents), and the minor headlines of the
same newspaper which appear at the same page, are table columns of another
table. The minor headlines are moreover characterized by a red font, and the
major headlines contain a link (href) somewhere. However, the table containing
the data of all minor headlines also contains links (i.e. the href attribute is
a characteristic attribute occurring in these two tables only). A program for
extracting all headlines can be written in the following way, where par is the
parent pattern identifying the relevant area of the newspaper page.

headline(S, X) ← par(, S), subelem(S, . ? .table, X)
contains(S, (.content, [(href, , substr)]), X)

headline(S, X) ← par(, S), subelem(S, . ? .td, X)
contains(S, (.content, [(font− color, red, exact)]), X)

Hence, the first rule also matches the table which contains all minor headlines.
However, since in this table, other pattern instances are matched, too, only the
minimal instances are returned, which are in this case the table columns. For
the major headlines, however, the table is extracted. Another example is the
minimization of the set of instances generated by a single rule:

tableseq(S, X) ← par(, S), subregion(S, . ? .body. ? .center, .table, .table, X)

Such a rule (with additional conditions) is used in the eBay program of
Figure 2. However, with no additional condition, the semantics is to extract
all possible sequences of tables and to minimize the result; since the minimal
sequences of tables are sequences of a single table, this rule returns such instances
only. To enforce a particular longer sequence of tables, such as the sequence of
tables containing the relevant data of sold items, some before and after conditions
need to be added. In the case of eBay, immediately before and after the target
instance a particular text or image shall occur, respectively. This returns a single
pattern instance, the sequence of desired record tables.

Pattern minimization can be expressed in Elog extended with stratified nega-
tion and a suitable built-in predicate contained in(X,Y) expressing offset-wise
containment of X in Y . In particular, a set of filters of p(S,X) defining the pat-
tern p is rewritten in the following way. Consider the initial pattern definition:

p(S, X) ← par1(, S), Ex1(S, X), Co1(S, X, . . .)
p(S, X) ← · · ·
p(S, X) ← parn(, S), Exn(S, X), Con(S, X, . . .)

The pattern name is renamed to p′ and additional rules are added:

p′(S, X) ← par1(, S), Ex1(S, X), Co1(S, X, . . .)
p′(S, X) ← · · ·
p′(S, X) ← parn(, S), Exn(S, X), Con(S, X, . . .)
p′′(S, X) ← p′(S, X), p′(S, X1), contained in(X1, X)
p(S, X) ← p′(S, X), not p′′(S, X)

The final rule requires that instances of X and X1 are both from the same
parent pattern instance (otherwise, if they stem from different parent-pattern
instances, minimization is usually undesired). In the rewriting, p′ is the pattern
predicate initially being built by different filters. Each instance p(s, x), which is
non-minimal, i.e. for which there exists a smaller valid p′′(s, x), is not derived.
Only minimal instances are derived.

Ranges. The semantics of range criteria [a, b] of a filter rule NewPat(S,X)←
filterbody[a, b] can also be expressed by a suitable rewriting of the rule. A range
condition assumes that an order relation is defined among pattern instances ex-
tracted by the same parent pattern instance, thus in the rewriting we assume
the presence of a predicate greater(S,X, Y) which evaluates to true if X and Y
are instances derived from S and X precedes Y (using character offsets for com-
parison). The first step of rewriting consists of adding a new predicate NewPat′

that is defined by a unique filter NewPat′(S,X)← filterbody. Then, two pred-
icates FirstSol and succ are defined. FirstSol selects from the instances in
NewPat′ the first instance, and succ defines a successor relation among in-
stances in NewPat′ (due to the lack of space we omit the formal definition).
The complete rewriting is as follows:

NewPat(S, X) ← NewPat′(S, X), Solposition(S, X, P), a ≤ P ≤ b

Solposition(S, X, 1) ← NewPat′(S, X), FirstSol(S, X)
Solposition(S, X, P) ← Solposition(S, X′, P′), NewPat′(S, X), succ(S, X′, X), P = P′ + 1.

In both predicates FirstSol and succ, the predicateNewPat′ appears negated,
hence, the predicate NewPat depends on negation of all the predicates appear-
ing in filterbody.

Pattern Reference Recursion and Ranges. Using ranges together with pattern
references might introduce unstratified negation. Using pattern references can in-
troduce reference recursion. Still, without ranges, a unique model is returned.
However, additionally allowing range conditions to occur in such recursive rules
requires to use a semantics akin to the stable model semantics (returning mul-
tiple models) or well-founded semantics (returning a minimal model) as this
introduces unstratified negation into the program (considering the above rewrit-
ing). For the following example (possibly containing additional filters for p and
q), a nonmonotonic semantics is required.

p(S, X) ← par(, S), subelem(S, epd, X), before(S, X, . . . , Y), q(S, Y)[a, b]
q(S, X) ← par(, S), subelem(S, epd, X), before(S, X, . . . , Y), p(S, Y)[c, d]

Observe that a program which uses range and pattern recursion, but no
reference recursion, is always locally stratified, i.e. its ground instantiation is
stratified. For implementation issues, we limit pattern references in the way
that the program remains locally stratified. This is a subset of programs whose
rewriting contains only stratified negation.

8 Current/Future Work

Further work includes to consider various extensions of Elog such as using strati-
fied negation instead of special negative predicates like notbefore, to extend han-
dling of pattern references together with recursion as discussed above, to study
further possibilities of conditions such as universially quantified ones (that re-
quire all elements to have a particular feature), and complement extraction (e.g.
to remove advertisments from Web pages). An editor of Elog rules will be offered
for more experienced wrapper designers who nevertheless lack programming fa-
cilities. This editor describes Elog patterns using a colloquial pattern description
language. A concept editor for adding syntactic and semantic concepts to the
list of built-in predicates is currently under construction. Moreover, the Lixto
prototype is currently being re-designed as servlet version allowing pattern gen-
eration in the user’s favorite browser. Finally, an Elog2XSLT conversion tool is
going to be developed which will transform a subset of possible Elog programs
into XSLT.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web - From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

2. B. Adelberg. NoDoSE - a tool for semi-automatically extracting semi-structured
data from text documents. In Proc. of SIGMOD, 1998.

3. P. Atzeni and G. Mecca. Cut and paste. In Proc. of PODS, 1997.
4. R. Baumgartner, S. Flesca, and G. Gottlob. Supervised wrapper generation with

Lixto. To appear in Proc. of VLDB (Demonstration Session), 2001.
5. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction

with lixto. To appear in Proc. of VLDB, 2001.
6. S. Chawathe. Describing and manipulating XML data. Bulletin of the IEEE

Technical Committee on Data Engineering, 22(3):3-9, 1999. Invited paper.
7. H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Computat. aspects of

resilient data extract. from semistr. sources. In Proc. of PODS, 2000.
8. C-N. Hsu and M.T. Dung. Generating finite-state transducers for semistructured

data extraction from the web. Information Systems, 23/8, 1998.
9. G. Huck, P. Fankhauser, K. Aberer, and E.J. Neuhold. JEDI: Extracting and

synthesizing information from the web. In Proc. of COOPIS, 1998.
10. N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information

extraction. In Proc. of IJCAI, 1997.
11. L. Liu, C. Pu, and W. Han. XWrap: An extensible wrapper construction system

for internet information. In Proc. of ICDE, 2000.
12. W. May, R. Himmeröder, G. Lausen, and B. Ludäscher. A unified framework for

wrapping, mediating and restructuring information from the web. In WWWCM.
Sprg. LNCS 1727, 1999.

13. I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper in-
duction. In Proc. of 3rd Intern. Conf. on Autonomous Agents, 1999.

14. A. Sahuguet and F. Azavant. Building light-weight wrappers for legacy web data-
sources using W4F. In Proc. of VLDB, 1999.

