The Elog Web Extraction Language*

Robert Baumgartner!, Sergio Flesca?, and Georg Gottlob!

! DBAI, TU Wien, Vienna, Austria
{baumgart,gottlob}@dbai.tuwien.ac.at
2 DEIS, Universita della Calabria, Rende (CS), Italy

flesca@si.deis.unical.it

Abstract. This paper illustrates some aspects of the visual wrapper
generation tool Lizto and describes its internal declarative logic-based
language Elog. In particular, it gives an example scenario and contains a
detailed description of predicates including their input/output behavior
and introduces several new conditions. Additionally, entity relationship
diagrams of filters and patterns are depicted and some words on the
implementation are issued. Finally, some possible ramifications are dis-
cussed.

1 Introduction and System Architecture

Almost every kind of information is available on the Web, however one cannot
query this information in a convenient way. The task of a wrapper is to identify
and isolate the relevant parts of Web documents, and to automatically extract
those relevant parts even though the documents may continually change contents
and even (to a certain extent) structure. The wrapper transforms the extracted
parts into XML (or a relational database) to make them available for querying
and further processing. The idea of Lizto is to visually and interactively assist a
developer in creating and using wrapper programs able to perform these tasks.

Lixto [3,4] is a visual and interactive wrapper generation and data extrac-
tion tool which can be used to create XML companions of HTML pages. It can
extract relevant information of an HTML page and pages which are linked to
it. Information about related approaches on wrapper generation can be found
in [1,6-11]. In this paper we give an overview of the internal language used by
Lizto, the logic-based declarative Elog web extraction language, in particular of
its extraction predicates. The architecture of Lizto is as follows. The Extraction
Pattern Builder guides a wrapper designer through the process of generating
a wrapper. The extracted data of the sample page she works on is stored in
an internal format called the Pattern Instance Base. As output, an Eztraction
Program is generated which can be applied onto structurally similar pages. The
Eztractor module is the interpreter of the internal language Flog (which is in-
visible to the wrapper designer), and can be used as stand-alone module on an

* All methods and algorithms of the Lizto system are covered by a pending patent.
For papers on Lizto and further developments see www.lixto.com.

[Lixto Wrapper Generator - Tiee of extraction program [_T=]x]
Program Document

Ex(ra:tinnpmgram:‘ Jlebaviebfullxml | nctiveexampleducument:| http:flistings ebay.comiawplistingstistiallicateaory371 4findex html?ssPageMame=CompLaptaMB4 ‘ |

€ rootDocument [D)

SIS A two filters defining rootDocument. The initial
& fiiter (parent: none) filter and the one referring to next as parent

& filter (parent: next)

2] eBay Listings - Gateway - Microsoft Internet Explarer

€ record [T] (Default parent rootDocument || Dotei Besrbeiten Ansicht Favorten Esfras 2

& filter iparent. rootDocument) - - =» - @ @

Zurlick s Abbrechen Aktualisieren Startseite

Q4 @ B B 3

Suchen Favoriten Werlauf E-tail Diucken Be

@ BeforeElementitam | fdtesse [88] it/ lstings. ebap.com/ ameplitings/list/allcategory37] 4findes. himi?ssPageName=CompLaptphlB4

@ AfterElementAtom [& eI Iooie Fenmue T S0 WV -7 FIOres S oL
% date [T] (Default parent record) d < GATEWAY 0300 3010 S00MHZ 138ME DVD 10gig hd
% itemdes [T] (Default parent record) o < GATEWAY 5100 CHASSIS W/ MOTHERBOARD =8uyihow
$ price [T] (Default parent record) d < Gateway Solo 2100 2200 Pentium 166Mbe CPUs & ZAykhow
€ bids [T] (Default parent record) Gateway Solo 2100 2300 Pentivm 166Mbs CPUs (8 =8y thow
& fiter (parent record) < 64ME of PC100 SODIMM Laptop Memary ~Su/FA0K
€ next [T] (Default parent rootDocument) -~ Bola Lapbop PILA i 15 display WinhdR inst: f
o 2% BOLD 2100/2300 DRIVE CADDY “84Mow an instance o
& filter (parent: rootDocurment) ey record
3 =Byl Now
% rootDocument [D] (Defat parsn non PCANYWHERE 10 IHOST & REMOTE NENY FREE.S/H (sl “84
o Gatwway SOLO 2150 HEATSIEN “BuyfAow
s next page
’— o 2% Gateway Solo Aubo AirCar Laptop & dapter (s =gt Now link
Pack Nel
Q 2 GATEWAY SOLO 2150 CHASSIS W/141" LCD *NO REY
Delete o 2% GATEWAY SYSTEM RESTORATION CD vea ~BuiAon
il For more items in this category, click these page
% 50102150 PI11500,160MB SIREALAR I DI 101 ELE

These items are notverified by eBay, caveat erptor.
The systern may be unavailable during regularly scheduled maintenance - Fridays, 1 a.m. to 3 a.m. Pacific Time

o «_CGateway Solo Aute,Car Air[f
Best Selling Laptops at eBay's Half.com Top Questions From This F
gfP+x | Dell Latitude CPI In Stock Now! p e .
Sony PCG-F 190 Vain Notehook... Tn Steck Now + llisted an item hut can't find it under i
System ready. N wihy?
IBM ThinkPad 600 In Stock Now! 4 U e T oank ra ik i Ham Sooboes

Fig. 1. Pattern hierarchy of a recursive eBay program and a sample eBay page

extraction program and an HTML page to generate an XML companion. To
this end, the internal data format of the pattern instance base can be selectively
mapped to XML by using the visual XML Translation Builder to generate an
XML Translation Scheme which can be accessed by the FExtractor.

This paper is organized as follows. In Section 2, the visual wrapper generation
of Lizto is explained in an example-based way, whereas Section 3 is devoted to
a description of the syntax and semantics of Flog, in particular its predicates,
and a description of filters and patterns and their relationships. Section 8 gives
an outline of the actual Lizto implementation. The final section describes some
current and future work. For a general overview of Lixto, empirical results, and
some comparison with competing tools we refer to [4]. For the details of one
example, we refer to [3]. For further discussion of some advanced features of
Lixto such as recursive aspects, we refer to [2].

2 User View

We briefly describe how to work with the Extraction Pattern Builder. In particu-
lar, the following screenshots (Figs. 1, 2, 9) are taken from the new release of the
current Lizto beta version. With Lixto, a wrapper designer can create a wrapper

24 Lixto Wrapper Generator - Attribute Specification

Program Document

Extraction program: | unnamed® Active example document:| hiplistings.ebay.co 371 findex htrol ompLapteMBs |
Custom -You have full control over attribute selection.
select? name value
“ slementiet [e
[=
O columns i exactly like =
matches regexp ize=-1 face=Arial, Helvetica it
| font don't use
is syntactical concept -
2 - 1 =
O sta contains syntactical concept ﬂ
is semantical concept %
contains semantical concept frial, Helvetica 1=
O face ; —
=] font.siza ‘Eﬂﬂlﬂi"s v‘ 1 =
ory3714/page2 himl =l
0 a | contains -| =
Next Cancel
. - GATFWAY SYSTEM RESTORATION CD wa 3 ~B4tibw =)
-] jlo0 - Oct-01 17.03
For more iterns in this categary, click these
=1= 2345678910111212141516171
These items are notverified by eBay; caveat emplor. _SEIeCted
The systarn may be Unavailable during regularly scheduled maintenance - Fridays, 1 a.m. to 3 a.m. Pacific Time instance
Amazina baraains available now at Half.ce | | g

\Specified attribute creation mode for ‘

Fig. 2. Adding a filter extracting the tree region containing “next page”

program in a fully visual and interactive way by teaching the system what to
extract based on one (or more) example pages. Each such program consists of a
number of patterns. Each pattern characterizes one kind of information, e.g. all
prices.

After creating a new program and opening a sample document, the designer
can start to define patterns. She selects a pattern type (tree, string or document
pattern) and a pattern name. Patterns carry user-defined names which are also
used as default XML tags. To each pattern one or more filters can be added.
A pattern extracts the instances matched by all its filters. In our implemen-
tation, when defining a filter, the designer selects an example instance and an
attribute selection mechanism, and in the background the system generates a
basic Elog rule representing this filter by choosing a suited element path and
some attributes. Then the designer can test which instances are matched by the
current filter.

If undesired targets are matched, she has the choice to refine the filter by
adding conditions to it. Filters are added as long as some desired pattern in-
stances are not yet matched. Alternately imposing conditions and adding new
filters the desired information can be perfectly characterized.

Assume an example scenario in which a developer wishes to create a wrapper
program for eBay. First, the wrapper designer chooses a relevant example page,
e.g. a page on notebooks of a particular brand (Fig. 1). Next, the designer adds

a pattern which identifies records by simply choosing one example record, and
adding additional conditions such as “somewhere before an instance a headline
must occur”, and “somewhere after an instance a horizontal rule image must
occur”. After having constructed a record pattern, she chooses to add child pat-
terns of record which characterize item descriptions, prices, dates and numbers
of bids. In the case of dates she e.g. uses the fact that it is the last table data
entry of a record. In the case of an item description, the wrapper relies on the
occurrence of hyperlinks, and in case of prices, a term of the predefined concept
isCurrency is required to be part of the contents. The generated Elog rules which
are usually hidden from the wrapper designer are given in Figure 6.

As the relevant information is not presented on a single eBay page only, but
split over several, in this case 18 pages, the designer is interested in mapping
the data of subsequent pages in the same fashion to the same XML document.
Lixto allows the user to re-use the pattern structure defined for a single page
due to support of recursive features. In this case, the designer uses the value of
the “next” link (see Fig. 2), whose attribute value href is used for extracting
further eBay documents.

First, the wrapper designer clicks selects the “(next page)” element through
two consecutive mouse-clicks directly in the browser display. Fig. 2 shows the
manual attribute selection user interface. In this case, a unique match on each
page is required. Therefore the wrapper designer imposes strict criteria such as
that the content of the selected element has to contain the text “next page”.
Alternatively, the wrapper designer could choose to enter a regular expression or
predefined concepts. In this case, the filter matches exactly the desired instance,
so there is no need to impose additional conditions. As next step, the wrapper
designer adds a filter to ebaydocument which points to the parent nezt. In this
way, the pattern structure is altered from a plain tree to a cyclic pattern graph,
and extracted instances of next are used as input instances to extract further
instances of ebaydocument. The resulting pattern graph is visualized in Lizto as
partially expanded infinite tree (see Fig. 1).

With the XML Translation Builder, a wrapper designer can define which
patterns shall be mapped to XML and in which way. One can for instance define
that all eBay records are treated on the same level, and that the next pattern
is not written to XML. A part of the resulting XML companion is depicted in
Figure 3. It can be used for further information processing. If the page structure
does not change significantly, the Extractor will continue to work correctly on
new pages, especially if rather stable conditions had been chosen by the wrap-
per designer. Even designers neither familiar with HTML nor capable of script
programming can create complex Lizto wrappers.

”

3 Elog Language Definition

3.1 Document Model and Extraction Mechanisms

As explained in [2,4], Elog operates on a tree representation of an HTML doc-
ument. The nodes of the HTML tree are referred to as elements. Each element

is associated with an attribute graph which stores pairs of attribute-designators
and corresponding attribute-values, a node number, and a start and end charac-
ter offset. The extraction objects over which variables range are tree regions and
string sources of a given HTML document. A tree region characterizes lists of
elements (e.g. a list of three table rows) or single elements (e.g. a paragraph). A
filter is internally represented as a “datalog like” rule. Conditions are reflected
by additional body atoms.

<hids>-</bids> B
<date=Jul-13 15:55</date>
<price=%$300.00</price:>
«temdes>MNEC Yersa Laptop Pent. 150MHZ with MMX Tech.</itemdess=
<frecord>
- <record:
«hids=2+</hids=
«date=Jul-11 15:54</date=
«price=%8.00</prices
<iterndes>~NEC VERSA SERIES 8MB MEMORY UPGRADE NEW <= fitemdes=
<frecard:> K|
- <record:
<hids>-</hids>
«datex=Jul-15 15:25</date
<price=%159.00</prices
<itemdes>NEC YERSA 4080H P120/24MB/1GB/10.5/$159
DUTCH</itemdesz
< frecord:s
- <records
<hids»12</hids >
«datexJul-15 14:35=</date
=price=$51.00</price=
<iterndes>=NEC YVERSA 5080X LAPTOP FOR PARTS..P233/13.3"</itemdes>
< frecord:s
- <record:s
i s PR Hride El

Fig. 3. XML output of eBay example

W.r.t. tree extraction, as defined in [4], an element path definition character-
izes a path with some additional attribute requirements and is hence very similar
to an XPath query. As an example, consider (.« .hr, [(size,3), (width, .x)]). This
element path definition identifies horizontal rules (the star acts as a wildcard) of
size 3 with some specified width attribute (regardless of the attribute value due
to “*”). Observe that for a simpler language definition we recently introduced
the hasProperty predicate to express the required attributes independently, in
this example e.g. with hasProperty(X,size,3) where X ranges over instances of
. % .hr. Additionally, an attribute condition might refer to a variable (see Fig. 6
in price) on which additional constraints are posed by some predicate.

The second extraction method, string extraction is usually applied to the
decompose the content value of a leaf element. A string definition is character-
ized as regular expression in which additionally some variable references to e.g.
predefined concepts might occur. As an example consider the string definitions
occurring as second parameter of the subtezrt predicate in the rules defining cur-
rency and amount in Figure 6. Additionally, attribute values can be extracted
using an attribute definition, which is simply a particular attribute designator.

The built-in predicates of the Elog language implement basic extraction tasks.
Elog predicates are atoms of the form P(ty,...,t,) where P is a predicate name
and ¢ .. .t, are either variables or constants whose values range over tree regions,
string sources, constant path definition objects, and numerical arguments (such
as distance parameters). The union of these classes is referred to as the Herbrand
universe on which an FElog program operates.

3.2 Extraction Definition Predicates

Extraction definition predicates contain a variable which is instantiated with
instances of a parent-pattern of the rule in which they occur, and based on
the element path definition return instances of the new pattern. They form the
basic body predicate of an extraction rule. Each FElog rule exactly contains one
extraction definition predicate. These predicates form three different groups,
depending if they extract a tree region, a string source, or a new document.

— subelem(S, epd, X), subsq(S,epd, X): A ground instance subelem(s,epd, x)
evaluates to true iff s is a tree region, epd an element path definition, z is a
subtree in s and root(x) matches epd. subsq operates similarly, but extracts
tree regions (a list of elements as one extraction instance).

— subatt(S,ad,X), subtext(S,sd,X): The first predicate extracts from a tree
region S attribute values of a given attribute definition ad as instances of X,
whereas the second one extracts substrings which fulfill a string definition
sd. Parent instances are tree regions in case of subatt, and may be both string
or tree regions in case of subtext.

— getDocument (S, X), getDocumentOfHref (S, X) extract from a given URL as
instance of S (a string source in the first case, and in the second case, an
instance of a tree region whose href attribute is considered) a new document
as a tree region.

3.3 Elog Rules and Patterns

Filters are represented using Elog extraction rules. Rules contain condition atoms
which are explained in the next section.

A standard rule defines a component pattern X of a pattern S (thus, aggre-
gation hierarchies can be defined). Standard rules are of the form: New(S, X) «+
Par(_,S), Ez(S,X), Cd(S, X,...)[a,b],...,[c,d], where New and Par are pattern
predicates referring to the pattern defined by this rule and its parent pattern. S
is the parent variable to be instantiated with a parent-pattern instance, X is the
target variable to be instantiated with an extracted pattern instance, Ez(S, X)
is a tree (string) extraction definition atom, and the optional Cd(S,X,...) is
a number of further imposed conditions on the target pattern. The extracted
instances of a rule can be restricted to several intervals where [a,b] expresses
that the instance number a up to instance number b is considered. Additionally,
a rule extracts minimal instances only.

Tree Standard
Filter

initial
getDocument

Tree Spec.
Filter Document
Pattern

Text Filter subtext,
subatt

Document
Filter
/X
Tree Tree [
A

by
sting K String

by
JAY

Fig. 4. Pattern Extended Entity Relationship Diagram

Document
Pattern getDocumentOf

Href

Tree
Pattern

subelem
subsq

Source
Pattern
subelem
getDocument subsq

String
Pattern

Attribute

Filter subatt,

subtext

defines

subtext

Filter

A specialization rule specializes a pattern Old to a pattern New: New(S, X) «
Old(S,X), Cd(S, X,...)[a,b],...,[c,d]. A document rule extracts new documents
from given URLs. It can use below mentioned document conditions DocCd as re-
strictions: New(S, X) < Par(.,S), getDocument(S, X), DocCd(S, X, ...). Doc-
ument filters can also refer to relative URLs by accessing the information stored
in the previous URL.

An Elog pattern (definition) p is a set of Elog rules with the same head
predicate symbol. An Elog pattern is called homogeneous, if all its filters refer
to the same parent pattern, otherwise heterogeneous. In case of a homogeneous
pattern, the notion of “parent pattern” can be associated with a pattern rather
than with its filters. It is forbidden to combine tree, string or document filters
with each other within one pattern. The head predicate is an IDB predicate; it
is visually defined with Lizto and named by the wrapper designer. This name
is also used as default XML tag in the XML mapping [4]. Also the extracted
instances of a pattern are minimized. In our current implementation, we chose
to consider only those instances not contained in any other instance of the same
parent-pattern instance.

Patterns (and their filters) are restricted in their use of parent patterns and
pattern references as depicted on the right-hand part of Figure 4. An arc from
pattern a to b indicates that the filters of a pattern of kind a can refer to patterns
of kind b as parents with using the mentioned extraction definition predicate. An
EER diagram illustrating relationships between patterns and filters is given in
Figure 4 on the left side, and Figure 5 shows an EER diagram which illustrates
filter and condition relationships in detail.

The semantics of extraction rules is very similar to the semantics of standard
datalog rules. There are two possibilities to assign a semantics to an Elog pro-
gram. The first is to define an own semantics (which exploits many similarities
to Datalog), the second is to rewrite an Elog program (see [2]) as Datalog pro-
gram and apply the standard Datalog semantics. An Elog program differs from
Datalog in the following aspects:

— Built-In Predicates. In Elog several built-in predicates (e.g. subelem) are used
which are restricted to a fixed input/output behavior. Moreover, constants
for navigating tree regions and string sources are used.

defines ;| Document > Extraction
| Extr.Def. Definition

contains %\ restricts

defined by
+

defines
context

Document
Filter

contains

Parent
Reference

contains
defines
context

defined in
\<> [TextFilter

defined in

String Spec.
Filter B O

defines =0~ contains

context

contains

String Filter

restricts

Tree

defines Tree Extr.

Definition

specializes

) defines
defined
by
T .
} . defines
Attribute Filter defined
by

specializes

restricts

|| Pattern
T | Reference
\

Internal Tree
Condition
ContextTree
Condition

|
Tl Condition

restricts

| .
String
! c d'g | Condition
restricts || Condition |
T
String Extr. Context Strg
Definition Condition
Attr. Extr. Internal Strg
Definition Condition
\
restricts ——_ |
contains —<>——
|| Range
'l Condition
;| Auxiliary

Tl Condition

Fig. 5. Filter Extended Entity Relationship Diagram

— Range conditions. A rewriting of range conditions introduces new rules con-
taining negation and generates a stratified Datalog program. In Elog, range
conditions are applied after evaluating the rule and by removing all instances
not within the range intervals. In case an Elog program uses ranges and arbi-
trary pattern references, this intuitive meaning gets lost, and in the Datalog
rewriting, the program is no longer stratified.

— Minimizations. By default, in Elog both the instances extracted by a single
rule, and by a pattern are minimized, i.e. just the minimal tree regions or
strings are considered. Representing this in Datalog requires additional rules
and further built-in predicates such as containedIn.

In the current implementation of Lixzto, full Elog is not yet supported, as
some syntactic restrictions are made. For example, use of pattern references is

limited.

3.4 Extraction Program and Pattern Instance Base

An Flog extraction program P is a collection of Elog patterns. A program can be
represented via its pattern graph [2]. A directed arc is drawn from one pattern to
another one, if there is at least one filter referring to the first pattern as parent.
The pattern graph is a tree in case of homogeneous programs. We denote by
P(H) the pattern instance base created by evaluating all patterns of P over an
HTML document H and storing them in their hierarchical order. The vertices
of P(H) are all pattern instances extracted from P with start document H.

ebaydocument(S, X) < getDocument(S = $1, X)
ebaydocument (S, X) < next(_,S), getDocumentOfHref (S, X)
next(S, X) « ebaydocument(_, S), subelem(S, (x.content, [(href, .¥),
(elementtext, (next page))]), X)
record(S, X) < ebaydocument(_, S), subelem(S, .table, X)
before(S, X, (x.tr, [(elementtext, . * Current.*)]), 0,100, _,)
after(S, X, (x.img, [(src, . * spacer.gif)]), 0,100, _,)
itemdes(S, X) < record(-,S), subelem(S, (x.td. x .content, [(href, .x)], X)
price(S, X) < record(.,S), subelem(S, (x.td, [(elementtext, \var[Y].x)]), X),
isCurrency(Y)
bids(8,X) < record(-,S), subelem(S, x.td, X), before(S, X, .td, 0,30, Y,),
price(,,Y)
date(S, X) « record(_,S), subelem(S, *.td, X), notafter(S, X, .td, 100)
currency(S, X) < price(., S), subtext(S, \var[Y], X), isCurrency(Y)
amount (S, X) < price(., S), subtext(S, [0 — 9]T\.[0 — 9]T,X)

Fig. 6. Elog Extraction Program for linked eBay pages

There is an arc from vertex a to vertex b in P(H) if and only if b is the parent-
pattern instance of a. Each pattern instance is associated with a pattern name.
The pattern instance base is a forest of hierarchically ordered pattern instances.
Each tree corresponds to the extracted values from one particular HTML doc-
ument. The pattern instance base is an intermediate data representation used
by the XML translation builder to create an XML translation scheme and a
corresponding XML companion.

As an example program, consider the eBay program in Figure 6. The pattern
ebaydocument is a document pattern consisting of two filters with different par-
ents. The first one refers to the starting document, which is in this case, fixed,
whereas the second on follows the “next” link on each page. “$1” is interpreted
as a constant whose value is the URL of the start document of a Lizto session.
The used condition predicates are explained below.

3.5 Context and Internal Condition Predicates

Context condition predicates further restrain the instances matching an extrac-
tion definition atom based on surroundings. In Figure 7, we illustrate based on
an example tree region, which nodes can be referred by context and internal con-
ditions. By default, context conditions operate only within the current parent-
pattern instance. Context conditions express that something must or must not
occur before or after an instance. They can operate on tree regions or string
sources, hence they use a string definition or an element path definition.

In our actual implementation, the before and after conditions are further
qualified by an interval (start,end) of relative distance parameters expressing
how far the external element may occur from the desired pattern instance to be

parent-pattern instance root

target
instance
T00]

after condition

internal condition

Fig. 7. Conditions

extracted. For an example of condition predicates, see the rule defining record in
Figure 6. There, an after and a before condition are used. The first two parame-
ters are parent-instance and target-instance variable followed by an element path
definition; the next arguments indicate a minimum and a maximum distance,
and the two final parameters are output variables. These are instantiated with
the actual instance and the actual distance, and could be referred by further
predicates.

Further supported contextual condition predicates are above and below, which
make use of an additionally defined attribute designator colno which expresses
column numbers. A ground instance below(s, z, epd,y) evaluates to true iff s and
x are tree regions, epd is an element path definition and y is a subtree of s such
that root(y) is matched by epd, and y occurs before z and has the same value for
the attribute colno. If a designer wants to extract the third column of a table, but
only starting with the fifth line, then she first defines to use colno=3, and then
imposes the condition that it occurs under the contents as given in the fifth entry
(or some attribute information of the fifth entry). below is similar to after where
epd contains “colpos=[value]” with the difference that the value depends on the
colno value of the target instance and vice versa. Moreover, we offer the possibil-
ity of contextual conditions which refer to elements outside the parent-pattern
instance, e.g. within the “grandparent”, i.e. etc. Such an extended concept is
very useful together with below/above predicates in hierarchical extraction.

Internal condition predicates include contains, which is used for restricting
extracted pattern instances based on properties contained in the instances them-
selves, i.e. in the tree regions that constitute those instances. The firstsubtree
condition states that the first child of a tree region must contain a particular
element — this is very useful for defining lists of elements, as it gives the possi-
bility to express that the first and last child must contain some elements with
specific properties.

3.6 Auxiliary Conditions and Conditions on Document Filters

Concept predicates are unary or binary relations. They refer to semantic concepts
such as isCity(X), expressing that the string is a city name, or syntactic ones
like isDate(X,Y). Predicates like isDate(X,Y’) can create an output variable

— e.g. for an input date x, the system returns a date in normal form y. Some
predicates are built-in, however more concepts can be added to the system using
the convenient Lizto concept editor. Moreover, for several concepts, comparison
predicates allow to compare values (e.g. dates) such as < (X,Y).

Pattern predicates of the head are the IDB predicates defined by the wrap-
per designer. Those of the body refer to previously created patterns. Each
matched pattern instance is element of one designated pattern; for example,
price may be a pattern name and the matched targets are its instances. Each
aggregation filter contains a reference to its parent pattern. Additionally, as
discussed above, further pattern references are possible. For instance, a price
pattern can be constructed by imposing the constraint that immediately be-
fore a target of pattern itemn needs to occur, which is expressed in FElog as
before(S, X, . x .content,0,1,Y,), item(_,Y).

Range conditions do not correspond to predicates in the usual sense. They
allow a designer to express conditions on the cardinality of the set of targets
extracted with a filter based on their order of appearance in the parent-pattern
instance. Such restriction intervals need not to be contiguous, as a set of intervals
can be used. Negative numbers reflect counting from the opposite side.

On document filters the following conditions can be imposed: smaller (X, v)
requires that the size of a Web page as instance of X is smaller than some
given value v in KB. samedomain(X,Y’) evaluates to true iff instances of X and
Y (where Y is usually a constant) are URLs of the same domain. Moreover,
one can specify a number v for each document pattern: If the pattern has been
evaluated already for v times, then no further evaluation occurs.

3.7 Input-Output Behavior of Elog predicates

As already mentioned, one additional feature of Elog is that built-in predicates
have an input-output behavior (adornments) that prevents them from being
freely used in Elog rules. An extraction definition predicate for instance uses a
parent-pattern variable as input, and a pattern variable as output which is used
as input variable in condition predicates. An atom can be evaluated only after all
its input variables are bound to effective values. The following list specifies for
each argument position of each built-in predicate the type, input (i) or output
(o) of variables that occur within these position. An underscore indicates that
the type (input/output) is irrelevant.

subelem(i, 1, 0) subsq(i,4,0) subtext(i,i,0) subatt(i, 1, 0)
getDocument(i, 0)|before(i,i,1,1,1,0,0)|notbefore(i,i,i,1)| below(i,i,1,0)

contains(i,i,0) | notcontains(i,i) | firstsubtree(i,i) |parentpattern(_,o)

isPattern(i, i) isConcept (i) isConcept (i, 0) compare(i,i)

As an example of a unary concept, consider isCity(i), and of a binary concept,
consider isDate(i,0). An example of a pattern reference is price(i,i), and an
example of a comparison condition is < (4, 7).

/ / / /

extraction session i client

— /v e)
concepts. concept common web
xml

Fig. 8. Sketch of Lixto’s package structure

s

The element path definition (string definition) is usually a constant input,
but can additionally contain variables. These variables are treated as output
variables. They occur in case of a reference to some concept atom (e.g. see the
above example rule defining price). The instances of each variable that occurs
in an element path definition are as usual all possible matches.

Consider the following example: price(S, X) « record(_,S), subelem(S, (. x
.td, [(elementtext, \var[Y].x)]), X), isCurrency(Y). The predicate record is eval-
uated and all instances s of S are generated; they are used to evaluate the ex-
traction definition predicate. subelem computes possible instances = and y of X
and Y based on the given tree path. All possible substitution instances (s,z,y)
are stored. After y is bound, isCurrency(Y), is evaluated.

4 TImplementation and Package Structure

Lixto is implemented entirely in Java. We chose to implement our own FElog
interpreter instead of using an existing Datalog interpreter and rewriting rules
into Datalog. Figure 4 gives an overview of Lizto’s package structure: extrac-
tion is the FElog interpreter. It is accessed by session, where the actual rule and
condition creation is carried out. generation handles the pattern generation al-
gorithm, which decides which action is followed by which step in the interactive
creation process. Currently, two frontends are supported: A local client and a
servlet frontend (web). The latter offers the wrapper designer the possibility to
mark relevant data areas in her favorite browser, e.g. Netscape or Internet Ez-
plorer. common contains shared objects and message files, whereas in concept
the syntactic and semantic concept editors (for a sample screenshot see Fig. 9)
are located.

5 Ramifications, Current and Future Work

Various extensions of Elog are obvious such as using various forms of negation.
Current theoretical research investigates the expressive power of Elog wrappers
over unranked labeled trees. Further ramifications of Elog include universally
quantified conditions and complement extraction, e.g. to remove advertisments
of Web pages. Additionally, the framework of document navigation is being
extended to also give the possibility to issue post requests. Moreover, current
work is devoted to implementing consistency check alerts that can be defined in

= ontologies
% [ontology : Geography
[Contest: continent Ontology Geography
D3 Conlest: country Adil New Ontology_| Get Ontologiyiies) | Delete Ontology |
[contest: city
[Contest: athers Context lwordnet
[Contest : island
Ad New Context_| Get Contextis_| Delete Context | Get All Terms |
[context: utban
[Contest: polity-state Sisiaw =
[contest: Uk-dependency Grete
[Cantest: eity-subsubdivision Crimea
[Contest: borough Croatia
[Context: vordnet Cuba =
Term cuba
Addd New TermiConcept Get Term Delete Term Relationsships|
What means this term? |
[tre 1argestistand in the west Indies]

Fig. 9. Lixto’s semantic concepts editor

the XML translation builder: The user is given the choice to impose a required
multiplicity of an element. Based on this, an XML document type definition
can be created, and moreover, warnings are given if a criterion is not satisfied
on some input Web page. A Pattern Description Language is being developed
which translates Elog rules into colloquial expressions. A conversion tool that
transforms a subset of Elog programs into XSLT will be developed, hence, for a
limited class of programs, simply a stylesheet and an HTML page can be used to
produce an XML companion. Finally, some AI methods will be added to support
the user, and Lizto will be embedded into the InfoPipes framework [5].

References

1. P. Atzeni and G. Mecca. Cut and paste. In Proc. of PODS, 1997.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Declarative information extraction,
web crawling and recursive wrapping with Lixto. In Proc. of LPNMR, 2001.

3. R. Baumgartner, S. Flesca, and G. Gottlob. Supervised wrapper generation with
Lixto. In Proc. of VLDB (Demonstration Session), 2001.

4. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Proc. of VLDB, 2001.

5. M. Herzog and G. Gottlob. InfoPipes: A flexible framework for M-commerce ap-
plications. In Proc. of TES, 2001.

6. C-N. Hsu and M.T. Dung. Generating finite-state transducers for semistructured
data extraction from the web. Information Systems, 23/8, 1998.

7. N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information
extraction. In Proc. of IJCAIL 1997.

8. L. Liu, C. Pu, and W. Han. XWrap: An extensible wrapper construction system
for internet information. In Proc. of ICDE, 2000.

9. I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper in-
duction. In Proc. of 8rd Intern. Conf. on Autonomous Agents, 1999.

10. B. Ribeiro-Neto, A. H. F. Laender, and A. S. da Silva. Extracting semi-structured
data through examples. In Proc. of CIKM, 1999.

11. A. Sahuguet and F. Azavant. Building light-weight wrappers for legacy web data-
sources using W4F. In Proc. of VLDB, 1999.

