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Abstract

Claim-augmented argumentation frameworks (CAFs) constitute a
generic formalism for conflict resolution of conclusion-oriented prob-
lems in argumentation. CAFs extend Dung argumentation frameworks
(AFs) by assigning a claim to each argument; so far, semantics for CAFs
have been defined by considering the semantics for AFs and interpret-
ing the extensions in terms of the claims of the arguments. However,
certain semantics of the originally considered problem which involve
maximization of the range on conclusion-level cannot be captured by
performing maximization on argument-level. In this paper, we pro-
pose therefore an alternative way of defining range-based semantics for
CAFs in order to mimic the behavior of the respective semantics of the
original problems; we investigate the relation of the newly introduced
semantics to their argument-level based counterparts.

1 Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [6] provide a general schema for analyzing
discourses by treating arguments as abstract entities while an attack relation encodes conflicts between them; the
acceptance status of arguments is evaluated with respect to different semantics. Moreover, AFs exhibit a close
connection to logic programming and other non-monotonic reasoning formalisms by allowing for an alternative
way of representing inconsistent and conflicting information. The instantiation of logic programs (LPs) into
AFs and generalizations thereof has been frequently discussed in the literature [6, 13, 5] and reveals the close
connection of both formalisms in particular by comparing the respective semantics; the correspondence of stable
model semantics for LPs with stable semantics in AFs is probably the most fundamental example [6], but also
3-valued stable model semantics or well-founded model semantics admit equivalent argumentation semantics [13].

In a nutshell, an instantiation procedure into AFs includes (1) extraction of arguments and conflicts among
them; (2) identification of jointly acceptable arguments (extensions) based on a particular argumentation seman-
tics; (3) inspection of claims of the acceptable arguments in order to draw conclusions about the original system.
Instantiation procedures for different formalisms have been established, see e.g. [11, 10, 4, 5]. A generalization
of AFs which is ideally suited for instantiation procedures in this spirit are claim-augmented argumentation
frameworks (CAFs) [8] which extend AFs by assigning a claim to each argument. In [8], semantics for CAFs
are evaluated with respect to the underlying AF, the extensions are then interpreted in terms of the claims of
the arguments (inherited semantics). We furthermore mention a particular restriction on the attack relation of
CAFs which is satisfied by many instantiation procedures: A CAF is well-formed iff arguments having the same
claim attack the same argument. In the following example, we will adapt an instantiation of logic programs to
AFs due to [5] by defining an appropriate claim-function for the generated arguments.
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r0 : a← not d
r1 : d← not a
r2 : b← not a

r3 : c← not a, not b
r4 : e← not e
r5 : e← not a, not e

Figure 1: Logic program P .
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Figure 2: Resulting CAF CF = (A,R, claim).

Example 1. Consider the logic program P from Figure 1, we will construct a CAF CF = (A,R, claim) by
instantiating the AF (A,R) following [5] and extracting the claim-function claim for the constructed arguments
as follows: Each rule ri : c ← not b1, . . . , not bm is interpreted as an argument Ai ∈ A where the head c of ri
corresponds to the claim of Ai (that is, we define claim(Ai) = c). Moreover, the negated atoms determine the
potential attackers of Ai in CF , that is, an argument Aj attacks Ai, i.e. (Aj , Ai) ∈ R, iff Aj has claim bk for
some k ≤ m. The resulting CAF is depicted in Figure 2. Evaluating CF with respect to stable semantics1 yields
no extension; also, P does not possess a stable model. Observe that the procedure yields a well-formed CAF.

Although the CAF CF in Example 1 yields the same results as the original problem with respect to most
of the semantics, certain irregularities may arise when it comes to so-called range-based semantics, which take
arguments (atoms) into account that are defeated (set to false) in the particular extension (model): Semi-stable
semantics [12, 3], which yield admissible sets2 with ⊆-maximal range, potentially leads to a different outcome
than the corresponding LP-variant, namely L-stable semantics [9], which maximize the set of all ground atoms
which are either considered true or false in a 3-valued stable model. Indeed, in Example 1, evaluation of P with
respect to L-stable semantics yields {a}, {d, b}; whereas {a} is the unique semi-stable extension of CF .

While it has been shown that inherited semantics for CAFs are adequate for standard Dung semantics, the
example above reveals that for range-based semantics, results may deviate from the expected outcome of the
original problem. A crucial observation is that semantics for LPs operate on conclusion (claim) level while exten-
sions in AFs as well as in CAFs are evaluated on argument level. We are thus interested in developing adequate
variants of range-based semantics for CAFs which mimic the behavior of semantics performing maximization on
conclusion-level of the original problem (e.g. L-stable model semantics for LPs).

The discrepancy concerning range-based semantics has been already observed by Caminada et al. [5, 4];
they showed that the realization of L-stable semantics on argument level is in fact impossible under standard
instantiation methods. We will therefore propose a variant of range-based semantics for CAFs which performs
maximization on claim-level (cl-semantics). That is, instead of evaluating the underlying AF with respect to
semi-stable semantics, we will consider admissible claim-sets and identify the set of claims they defeat. Hereby,
we require that each occurrence of a claim is attacked. In Example 1, the claim-set {b, d} defeats the claims
{a, c} while {a} defeats {b, c, d}; observe that the argument A0 does not attack the argument A4, thus e is not
defeated by A0. As a consequence we have that the set {b, d} is a semi-stable extension since it possesses the
same range as {a}, thus the evaluation matches the outcome of P with respect to L-stable model semantics.

We introduce semantics based on maximization on claim-level and investigate their relation to inherited
semantics in the spirit of [8] which perform maximization on argument-level. The main results of our paper are:

• We introduce alternative definitions for semi-stable and stage semantics for CAFs by shifting maximization
of extensions from argument-level to claim-level. A crucial notion therefore is the defeat of claims, where
one requires that a claim c is defeated iff every occurrence of c is attacked.

• We propose two variants of stable semantics, based on conflict-free, respectively, admissible sets. We show
that for well-formed CAFs, both variants of stable semantics as well as inherited stable semantics coincide.

• We compare inherited semantics with cl-semantics. We show that they exhibit similar behaviour concerning
incomparability: For general CAFs, incomparability of claim-sets is not guaranteed, whereas for well-formed
CAFs, every semantics under consideration yields incomparable claim-sets; moreover, we show that even for
well-formed CAFs, both variants of semi-stable and stage semantics potentially yield different claim-sets.

2 Preliminaries

We introduce argumentation frameworks [6] (for a comprehensive introduction, see [2, 1]). We fix U as countable
infinite domain of arguments.

1A set S is stable iff it is conflict-free and attacks every argument in A \ S.
2A set S is admissible in an AF F iff it is conflict-free and attacks all attackers of S.



Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U is a finite set of arguments
and R ⊆ A× A is the attack relation. We say that S ⊆ A attacks b if (a, b) ∈ R for some a ∈ S. Moreover, an
argument a ∈ A is defended (in F ) by S ⊆ A if each b with (b, a) ∈ R is attacked by S in F .

Furthermore we denote by S+
F = {b ∈ A | (a, b) ∈ R} the set of attacked arguments of S. If no ambiguity

arises, we drop the subscript F . We call S ∪ S+
F the range of S in F .

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R) a set σ(F ) ⊆ 2A of
extensions. We consider for σ the functions cf , adm, stb, sem and stg which stand for conflict-free, admissible,
stable, semi-stable and stage extensions, respectively.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no a, b ∈ S, such that
(a, b) ∈ R. cf (F ) denotes the collection of sets being conflict-free in F . For a conflict-free set S ∈ cf (F ), we
say S ∈ adm(F ), if each a ∈ S is defended by S in F ; S ∈ stb(F ), if each a ∈ A \ S is attacked by S in F ;
S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ∪ S+

F ⊂ T ∪ T+
F ; S ∈ stg(F ), if there is no

T ∈ cf (F ), with S ∪ S+
F ⊂ T ∪ T

+
F .

We recall that for each AF F , stb(F ) ⊆ stg(F ) ⊆ cf (F ) and stb(F ) ⊆ sem(F ) ⊆ adm(F ); also stb(F ) =
sem(F ) = stg(F ) in case stb(F ) 6= ∅. Moreover, semantics σ ∈ {stg , stb, sem} deliver incomparable sets, i.e. for
all S, T ∈ σ(F ), S ⊆ T implies S = T ; the property is also referred to as I-maximal.

Next we define claim-augmented argumentation frameworks according to [8].

Definition 3. A claim-augmented argumentation framework (CAF) is a triple (A,R, claim) where (A,R) is an
AF and claim : A→ C is a function which assigns a claim to each argument in A; C is a set of possible claims.
The claim-function is extended to sets in the following way: For a set E ⊆ A, claim(E) = {claim(a) | a ∈ E}.

A CAF (A,R, claim) is called well-formed if {a}+(A,R) = {b}+(A,R) for all a, b ∈ A such that claim(a) = claim(b).

In [8], semantics of CAFs are defined based on the standard semantics of the underlying AF. The extensions
are interpreted in terms of the claims of the arguments. We call this variant inherited semantics (i-semantics).

Definition 4. For a CAF CF = (A,R, claim), for a semantics σ, we define i-semantics σc(CF ) = {claim(E) |
E ∈ σ((A,R))}. We call a set E ∈ σ((A,R)) with claim(E) = S a σ-realization of S in CF .

Basic relations between different semantics carry over from standard AFs, i.e. for any CAF CF , stbc(CF ) ⊆
semc(CF ) ⊆ admc(CF ) and stbc(CF ) ⊆ stgc(CF ) ⊆ cfc(CF ); moreover, if stb(CF ) 6= ∅ then stbc(CF ) =
semc(CF ) = stgc(CF ). However, the next example shows that we lose fundamental properties of semantics like
I-maximality of stable, semi-stable and stage semantics.

Example 2. Let CF = (A,R, claim) with (A,R) = ({x1, x2, y}, {(x1, x2), (x2, x1), (x2, y)}) and claim(xi) = x,
i ≤ 2, claim(y) = y. Then stbc(CF ) = semc(CF ) = stgc(CF ) = {{x}, {x, y}}. Note that CF is not well-formed.

3 Range-based Semantics in CAFs

For standard argumentation frameworks, the range of a set E of arguments is defined as the union of E together
with all arguments it attacks; hence a claim-centered variant of range-based semantics requires explicit concepts
for the defeat of claims. In the current section, we will discuss defeat on claim-level and the range of a claim-set
which both exhibit certain differences to its argument-based counter-parts. In Sections 3.1, 3.2 and 3.3, we will
discuss claim-centered variants of stable, semi-stable and stage semantics, respectively.

We will introduce the range of a claim-set S ⊆ claim(A) in a CAF CF = (A,R, claim), that is, we will define,
for any claim-set S, the set of all claims it defeats. Since each claim-set depends on a particular realization in
the underlying AF (A,R), we will first introduce claim-defeat on argument-level.

Definition 5. Let CF = (A,R, claim), E ⊆ A and c ∈ claim(A). We say that E defeats c iff E attacks every
a ∈ A with claim(a) = c. We define disCF (E) = {c ∈ claim(A) | ∀x ∈ A, claim(x) = c ∃y ∈ E s.t. (y, x) ∈ R}.
If no ambiguity arises, we drop the subscript CF .

Observe that disCF : A→ claim(A) is monotone, i.e. if E ⊆ E′ then disCF (E) ⊆ disCF (E′) for any E,E′ ⊆ A.
Next we will consider claim-defeat with respect to a claim-set S independently of a particular realization.

The general idea is to consider, for each realization E of S, the set of defeated claims disCF (E) as potential
candidate to identify the range of S. Observe that, in contrast to the range of a set of arguments, the range of a
set of claims S is in general not unique since S can possess multiple realizations; moreover, we restrict ourselves
to σ-realizations of S for some semantics σ in order to exclude for example conflicting realizations.
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Figure 3: Example of a CAF CF = (A,R, claim) with claim(a1) = claim(a2) = a, claim(b) = b.

Definition 6. Let CF = (A,R, claim), S ⊆ claim(A) and consider a semantics σ. Then Dσ,CF (S) =
{disCF (E) | E ∈ σ((A,R)), claim(E) = S}; moreover, Rσ,CF (S) = {S ∪ S′ | S′ ∈ Dσ,CF (S)} represents
every possible range of S with respect to σ. If no ambiguity arises, we drop the subscript CF .

Observe that for every claim-set S and two semantics σ, σ′ with σ((A,R)) ⊆ σ′((A,R)) it holds that
Dσ,CF (S) ⊆ Dσ′,CF (S). Indeed, if disCF (E) ∈ Dσ,CF (S) for some E ⊆ A, then E ∈ σ((A,R)) ⊆ σ′((A,R)), and
thus disCF (E) ∈ Dσ′,CF (S). Moreover notice that, in general, |RCF (S)| ≥ 1, that is, the range of a claim-set
potentially consists of multiple alternatives. However, for well-formed CAFs CF , it holds that for every two sets
E,E′ ⊆ A with claim(E) = claim(E′), E+ = E′+, thus disCF (E) = disCF (E′). It follows that the range of
a claim-set S is unique if the CAF is well-formed. This also implies that, for well-formed CAFs, the range is
independent of the particular realization with respect to a semantics σ.

Lemma 1. Let CF = (A,R, claim) be well-formed and let S ⊆ claim(A). Then |Rσ,CF (S)| = 1.

3.1 Stable Semantics

We will introduce two variants of stable semantics based on maximization on claim-level. The first variant requires
the underlying realization of a claim-set S to be conflict-free, while the second variant requires admissibility. We
clarify the relation between both variants as well as the relation to i-stable semantics and compare them also
with regard to I-maximality of their extensions.

Definition 7. Let CF = (A,R, claim) and S ⊆ claim(A). S is a cf -cl-stable claim-set, in symbols S ∈
cl -stbcf (CF ), iff there exists S′ ∈ Dcf ,CF (S) such that S ∪ S′ = claim(A).

The proposed variant of claim-based stable semantics relaxes the definition of inherited stable semantics
in the way that it is no longer required that a stb-realization of a cf -cl-stable claim-set exists. Consider the
CAF CF = (A,R, claim) from Figure 3 with claim(a1) = claim(a2) = a, claim(b) = b. Here, stbc(CF ) = ∅
but cl -stbcf (CF ) = {{a}}: The cf -realization E = {a1} satisfies disCF (E) = {b} and therefore, claim(E) ∪
disCF (E) = claim(A). Observe that CF is not well-formed. Furthermore notice that the cf -cl-stable claim-
set {a} is in fact not adm-realizable in (A,R). Thus in contrast to standard AF semantics where each stable
extension satisfies admissibility, a cl -stbcf -realization in the underlying AF is not necessarily admissible. Thus
we consider also a stronger notion of stable semantics which requires adm-realizability in the underlying AF.

Definition 8. Let CF = (A,R, claim) and S ⊆ claim(A). S is an adm-cl-stable set, in symbols S ∈
cl -stbadm(CF ), if there exists S′ ∈ Dadm,CF (S) such that S ∪ S′ = claim(A).

Proposition 1. For any CF = (A,R, claim), stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF ).

Proof. Let S ∈ stbc(CF ) and consider a stb-realization E ⊆ A. Observe that E ∈ adm((A,R)). Let c ∈
claim(A) \ S, then for all x ∈ A with claim(x) = c, x ∈ A \ E. Since E is stable in (A,R) we have that E
attacks each argument x ∈ A \ E, therefore c ∈ disCF (E). Thus disCF (E) = claim(A) \ S and therefore we
have found a set T = disCF (E) ∈ Dadm,CF (S) with S ∪ T = claim(A), i.e. S ∈ cl -stbadm(CF ). Moreover,
cl -stbadm(CF ) ⊆ cl -stbcf (CF ) follows from the fact that each admissible set is also conflict-free.

In the CAF CF = (A,R, claim) from Figure 3 we have cl -stbadm(CF ) 6= cl -stbcf (CF ) since cl -stbadm(CF ) = ∅
but cl -stbcf (CF ) = {{a}}. A small modification of the CAF CF also shows that cl -stbadm(CF ) 6= stbc(CF ):
Let CF 1 = (A,R \ {(a2, a1)}, claim), then cl -stbadm(CF 1) = {{a}} (witnessed by the adm-realization {a1} in
(A,R)) but stbc(CF 1) = ∅. Observe that both CF and CF 1 are not well-formed. We will show next that for
well-formed CAFs, all considered variants of stable semantics are in fact equal.

Proposition 2. For any well-formed CAF CF = (A,R, claim), cl -stbadm(CF ) = cl -stbcf (CF ) = stbc(CF ).

Proof. We will show that cl -stbcf (CF ) ⊆ stbc(CF ), the other direction is due to Proposition 1.
Let S ∈ cl -stbcf (CF ), then there is some set S′ ∈ Dcf ,CF (S) such that S ∪ S′ = claim(A) (recall that

|Dcf ,CF (S)| = 1 by Lemma 1). We consider a maximal cf -realization E ⊆ A of S, that is, E ∈ cf ((A,R)) with
E = claim(S) and for every set E′ ∈ cf ((A,R)) with E′ = claim(S), E′ ⊆ E. We show that E+

R = A \ E. Let
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Figure 4: CAF CF = (A,R, claim) with claim(b1) = claim(b2) = b and claim(x) = x for x ∈ A \ {b1, b2}.

x ∈ A \ E and let claim(x) = c. If c /∈ S, then c ∈ S′ by definition of cf -cl-stable semantics, thus E attacks x.
Consider now the case c ∈ S, i.e. there is an argument y ∈ E such that claim(y) = c and observe that E ∪{x} is
not conflict-free by maximality of E; thus either (a) (x, x) ∈ R or there is z ∈ E such that either (b) (z, x) ∈ R
or (c) (x, z) ∈ R. In case (a) then also (y, x) ∈ R by well-formedness; in case (b) we are done; in case (c) we
have (y, z) ∈ R by well-formedness and therefore E is not conflict-free, contradiction.

Recall that i-stable claim-sets are not necessarily I-maximal (c.f. Example 2). As a consequence of Proposi-
tion 1 we deduce that cf -cl-stable claim-sets are not I-maximal for arbitrary CAFs. In [7] it has been shown
that i-stable semantics yield I-maximal claim-sets for well-formed CAFs. By Proposition 2, we conclude that
cl-stable claim-sets satisfy I-maximality if well-formedness is guaranteed.

Proposition 3. For any well-formed CAF CF , both cl -stbcf (CF ) and cl -stbadm(CF ) are I-maximal.

3.2 Semi-stable Semantics

We consider the following claim-based variant of semi-stable semantics which relaxes adm-cl-stable semantics by
dropping the requirement that the range of a claim-set must consist of all claims in the framework. Instead, we
consider claim-sets with maximal range.

Definition 9. Let CF = (A,R, claim), S ⊆ claim(A) is a cl-semi-stable claim-set, in symbols S ∈ cl -sem(CF ),
iff there exists S′ ∈ Dadm,CF (S) such that there is no T ⊆ claim(A), T ′ ∈ Dadm,CF (T ) with S ∪ S′ ⊂ T ∪ T ′.

As an example, consider the CAF CF = (A,R, claim) from Figure 4 with claim(b1) = claim(b2) = b and
claim(x) = x for x ∈ A \ {b1, b2}. First notice that stbc(CF ) = cl -stbcf (CF ) = cl -stbadm(CF ) = ∅ since b1 and
c are mutually attacking, thus either a or d are not attacked. Admissible claim-sets are S1 = {b}, S2 = {c}
and S3 = {b, c}; then Dadm(S1) = {{∅, {a, c}} and Dadm(S2) = Dadm(S3) = {{d}}. Observe that S2 is not
cl-semi-stable, since S2 ∪ {d} ⊆ S3 ∪ {d}; moreover, S1 is cl-semi-stable, since S1 ∪ {a, c} = {a, b, c} * S3 ∪ {d}
S3 is cl-semi-stable, since S3 ∪ {d} = {b, c, d} * S1 ∪ {a, c}. It follows that cl-semi-stable claim-sets are not
necessarily I-maximal. Notice that CF is not well-formed.

Since for well-formed CAFs, the range is unique and moreover, the function disCF is monotone, we conclude
that cl-semi-stable semantics yields I-maximal claim-sets if well-formedness is satisfied.

Proposition 4. For any well-formed CAF CF , cl -sem(CF ) is I-maximal.

This observation accords with the analysis of i-semi-stable claim-sets: I-maximality of i-semi-stable claim-sets
is not guaranteed in the general case but for well-formed CAFs, as we show next.

Proposition 5. For any well-formed CAF CF , semc(CF ) is I-maximal.

Proof. Towards a contradiction, assume that there are two semi-stable claim-sets S, S′ ∈ semc(CF ) such that
S ⊆ S′. We consider sem-realizations E, E′ for S, S′ respectively and recall that semi-stable extensions are
I-maximal on argument level, i.e. there is E∆E′ 6= ∅. Observe that E+ ⊆ E′+ holds by well-formedness: Let
x ∈ E+, then there is y ∈ E such that (y, x) ∈ R. By assumption S ⊆ S′, there exists z ∈ E′ such that
claim(y) = claim(z), thus (z, x) ∈ R by well-formedness. It follows that every argument x ∈ E \ E′ is defended
by E′ and thus E′ ∪ {x} ∪ (E′ ∪ {x})+ ⊃ E′ ∪ E′+, contradiction to E′ being semi-stable.

However, a closer comparison of cl-semi-stable and i-semi-stable semantics reveals the inherent difference
between maximization on claim- vs. argument-level. As already discussed in the introduction, the well-formed
CAF CF from Example 1 yields semc(CF ) = {{a}} while cl -sem(CF ) = {{a}, {d, b}}, thus cl -sem(CF ) *
semc(CF ). The following example extends Example 1 in order to show semc(CF ) * cl -sem(CF ).

Example 3. We extend the CAF CF = (A,R, claim) from Example 1: Let CF = (A ∪ {b, f}, R′, claim ′) with
R′ = R ∪ {(f, f), (f, b), (A3, f), (A3, b), (b, A3)} and claim(x) = x for x ∈ {b, f}. Then {a} is the only i-semi-
stable claim-set. For cl-semi-stable claim-sets, consider admc(CF ) = {{d}, {b, d}, {a}}; inspecting the range
yields {d, a}, {b, d, a, c} and {a, c, d} and thus cl -sem(CF ) = {{b, d}}. Observe that CF is indeed well-formed.
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Figure 5: Examples of CAFs CF 1, CF2 with cl -stg(CF 1) * stgc(CF 1) and stgc(CF 2) * cl -stg(CF 2).

3.3 Stage Semantics

We define cl-stage semantics in the spirit of cl-semi-stable semantics.

Definition 10. Let CF = (A,R, claim), then S ⊆ claim(A) is a cl-stage claim-set, in symbols S ∈ cl -stg(CF ),
there exists S′ ∈ Dcf ,CF (S) such that there is no T ⊆ claim(A), T ′ ∈ Dcf ,CF (T ) with S ∪ S′ ⊂ T ∪ T ′.

Recall that i-stage semantics do not satisfy I-maximality in general. Figure 4 shows that also for cf-stage
semantics, I-maximality for arbitrary CAFs does not hold (note that cl -sem(CF ) = cl -stg(CF ) in this example).
However, for well-formed CAFs, I-maximality is guaranteed for cl-stage semantics. The following proposition is
an immediate consequence of from Lemma 1.

Proposition 6. For any well-formed CAF CF , cl -stg(CF ) is I-maximal.

We will show that also for i-stage semantics, I-maximality is satisfied if the CAF is well-formed.

Proposition 7. For any well-formed CAF CF , stgc(CF ) is I-maximal.

Proof. Towards a contradiction, assume that there are S1, S2 ∈ stgc(CF ) such that S1 ⊂ S2. Consider stg-
realizations E1, E2 of S1 and S2. So E1 ∪ E+

1 , E2 ∪ E+
2 are incomparable and both subset-maximal. By

well-formedness, E+
1 ⊆ E+

2 . Indeed, let x ∈ A be attacked by E1, i.e. there is a ∈ E1 such that (a, x) ∈ R.
Since claim(E1) ⊂ claim(E2), there is b ∈ E2 such that claim(b) = claim(a). By definition of well-formedness,
(b, x) ∈ R. Since E+

1 ⊆ E2 ∪ E+
2 , it must be the case that E1 6⊂ E2 ∪ E+

2 , i.e. there exists a ∈ E1 such that
a /∈ E2 and a /∈ E+

2 . Let E = E2∪{a}, then (i) E is conflict-free since a /∈ E+
2 and a does not attack E2 (assume

otherwise, then there is some b ∈ E2 such that b ∈ E+
1 , but then also b ∈ E+

2 since E+
1 ⊆ E+

2 , contradiction)
and, furthermore, (a, a) /∈ R since a ∈ E1; and (ii) E+

2 ⊆ E+ by definition of E (actually, E+ = E+
2 since

claim(a) ∈ claim(E2)). Therefore there is a conflict-free set E ⊆ A such that E ∪E+ ⊃ E2 ∪E+
2 , contradiction

to the subset-maximality of E2 ∪ E+
2 .

The following examples show that even for well-formed CAFs, i-stage and cl-stage semantics potentially yield
different claim-sets.

Example 4. Let CF 1 = (A,R, claim) with (A,R) given in Figure 5a, claim(c1) = claim(c2) = c, claim(a) = a
and claim(b) = b. Then {b} is the only i-stage claim-set. Observe that CF 1 is indeed well-formed. Consider now
the cl-stage claim-sets. The conflict-free sets are {a} and {b}. Inspecting the range yields {a, b} in both cases
and therefore cl -stg(CF 1) = {{a}, {b}}, i.e. cl -stg(CF 1) 6⊆ stgc(CF 1).

Example 5. Let CF 2 = (A,R, claim) with (A,R) as in Figure 5b, claim(di) = d, claim(ci) = c, claim(a) = a,
claim(b) = b. Then stgc(CF 2) = {{a, d}, {b}} but cl -stg(CF 1) = {{a, d}}, that is, stgc(CF 2) 6⊆ cl -stg(CF 2).

3.4 Relations between Semantics

We start with a general observation which clarifies the relation between inherited and claim-level semantics for
CAFs where every argument posses a unique claim. In that case, both variants coincide with the standard AF
semantics interpreted in terms of the claims since the claims in the CAF can be identified with the arguments
in the underlying AF. It follows that negative results concerning the relations between the semantics carry over
from standard AFs, i.e. counter-examples showing that two AF semantics σ, τ are not in a subset-relation can
be adapted to CAFs.

Proposition 8. For two semantics σ, τ , if there exists an AF F such that σ(F ) * τ(F ) then there exists a
(well-formed) CAF CF such that α(CF ) * β(CF ) for α ∈ {cl -σ, σc}, β ∈ {cl -τ , τc}.
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Figure 6: Relations between semantics. An arrow from σ to τ indicates that σ(CF ) ⊆ τ(CF ) for each CAF CF .

Proposition 9. The relations between the semantics depicted in Figure 6 hold.

Proof. The relations between inherited semantics have been already discussed in Section 2; moreover, stbc(CF ) ⊆
cl -stbadm(CF ) ⊆ cl -stbcf (CF ) for arbitrary CAFs by Proposition 1 and stbc(CF ) = cl -stbadm(CF ) =
cl -stbcf (CF ) for each well-formed CAF CF by Proposition 2. Moreover, for any CAF CF , for every S ∈
cl -stbadm(CF ) exists S′ ∈ Dadm,CF (S) such that S ∪ S′ = A and thus S ∈ cl -sem(CF ); furthermore, since each
S ∈ cl -sem(CF ) is i-admissible by definition, it follows that cl -stbadm(CF ) ⊆ cl -sem(CF ) ⊆ admc(CF ). A sim-
ilar reasoning applies for the cf -based counter-parts, i.e. for every S ∈ cl -stbcf (CF ) exists S′ ∈ Dcf ,CF (S)
such that S ∪ S′ = A and thus S ∈ cl -stg(CF ); moreover, every S ∈ cl -stg(CF ) is conflict-free, thus
cl -stbcf (CF ) ⊆ cl -stg(CF ) ⊆ cfc(CF ).

We present counter-examples for the remaining cases: By Corollary 8, there is a well-formed CAF CF
such that α(CF ) * β(CF ) for (a) α = cfc, β ∈ {admc, cl -sem, semc, cl -stg , stgc, cl -stbcf , cl -stbadm , stbc};
(b) α = admc, β ∈ {cl -sem, semc, cl -stg , stgc, cl -stbcf , cl -stbadm , stbc}; (c) α ∈ {cl -sem, semc}, β ∈
{cl -stg , stgc, cl -stbcf , cl -stbadm , stbc} and (d) α ∈ {cl -stg , stgc}, β ∈ {admc, cl -sem, semc, cl -stbcf , cl -stbadm , stbc}.
Example 3 shows that cl -sem(CF ) 6= semc(CF ) where CF is well-formed; moreover, cl -stg(CF ) 6= stgc(CF ) using
(well-formed) CAFs from Example 4 and Example 5. Counter-examples for general CAFs and stable semantics
have been discussed in Section 3.1.

Recall that for inherited semantics, stbc(CF ) = semc(CF ) = stgc(CF ) in case stbc(CF ) 6= ∅. One can show
that this does not extend to cl-stable semantics. However, we can obtain the following weaker version.

Lemma 2. For any CAF CF = (A,R, claim), (a) cl -stbcf (CF ) 6= ∅ implies cl -stbcf (CF ) = cl -stg(CF ) and (b)
cl -stbadm(CF ) 6= ∅ implies cl -stbadm(CF ) = cl -sem(CF ).

4 Discussion

In this work, we investigated range-based semantics for claim-augmented argumentation frameworks. We intro-
duced inherited semi-stable and stage semantics in the spirit of [8] which perform maximization on argument-level
and developed claim-based alternatives which perform maximization on claim-level. In doing so, we were able
to provide a variant of semi-stable semantics which mimics the behavior of L-stable model semantics of LPs;
observe that cl-semi-stable semantics in fact corresponds to L-stable model semantics. We furthermore stud-
ied two variants of claim-level stable semantics based on conflict-free respectively admissible semantics. Our
findings underline the inherent difference of argument-based vs. claim-based maximization of the range: While
cf -cl-stable semantics correspond to stable semantics on argument-level for well-formed CAFs, this is not the
case for semi-stable and stage semantics; we have shown that both i-semi-stable and cl-semi-stable semantics as
well as i-stage and cl-stage semantics are incomparable, even for well-formed CAFs.

For future work, we plan to extend our investigations to other semantics involving maximization, in particular
to preferred and naive semantics. Moreover, we want to connect our findings with studies in [7] where it has been
shown that well-formed CAFs can be faithfully translated (with respect to standard argumentation semantics)
to SETAFs, i.e. AFs which allow for collective attacks of arguments; of particular interest is the behavior of the
variants of range-based semantics we have considered in this work. Another direction of future research is to
extend our studies to further classes of CAFs, e.g. attacker-unitary CAFs as introduced in [7].
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programming semantics and argumentation semantics’, Int. J. Approx. Reasoning, 58, 87–111, (2015).

[6] Phan Minh Dung, ‘On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games’, Artif. Intell., 77(2), 321–358, (1995).
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