
ASPARTIX-V - A Solver for Argumentation Tasks
Using ASP
Wolfgang Dvořák1, Matthias König1, Anna Rapberger1, Johannes P. Wallner2 and
Stefan Woltran1

1Institute of Logic and Computation, TU Wien, Vienna, Austria
2Institute of Software Technology, Graz University of Technology, Graz, Austria

Abstract
In this work we present the ASPARTIX-V system, an ASP-based solver for reasoning in abstract argu-
mentation. It supports all the classical reasoning tasks in abstract argumentation, e.g., credulous and
skeptical reasoning, as well as enumeration of extensions. ASPARTIX-V extends the ASPARTIX system
suite by incorporation of recent ASP language constructs (e.g. conditional literals), domain heuristics
within ASP, and multi-shot methods. In this light ASPARTIX-V deviates from the traditional focus
of ASPARTIX on monolithic approaches (i.e., one-shot solving via a single ASP encoding) to further
enhance performance towards its participation in the recent editions of the International Competition
on Computational Models of Argumentation (ICCMA).

Keywords
Abstract Argumentation, ASP, System description

1. Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [2] are a core formalism for
many problems and applications in the field of formal argumentation. In a nutshell, AFs formal-
ize statements as arguments together with a relation denoting conflicts between arguments.
Semantics of these AFs give a handle to resolve the conflicts between statements by selecting
coherent subsets of the arguments. This selection is solely based on the relation between the
arguments and considers arguments as abstract entities. Several different semantics to select
coherent subsets of arguments have already been proposed by Dung [2] but numerous other
semantics have been introduced later on which lead to a multitude of argumentation semantics
(see [3]).

A prominent line of research in the field of computational argumentation has focused on

0non-original paper: This paper is an updated version of [1].
ASPOCP 2021: Workshop on Answer Set Programming and Other Computing Paradigms 2021
" dvorak@dbai.tuwien.ac.at (W. Dvořák); mkoenig@dbai.tuwien.ac.at (M. König); arapberg@dbai.tuwien.ac.at
(A. Rapberger); wallner@ist.tugraz.at (J. P. Wallner); woltran@dbai.tuwien.ac.at (S. Woltran)
~ https://www.dbai.tuwien.ac.at/staff/dvorak/ (W. Dvořák); https://www.dbai.tuwien.ac.at/user/mkoenig/
(M. König); https://www.dbai.tuwien.ac.at/staff/arapberg/ (A. Rapberger); https://wallner.ist.tugraz.at/
(J. P. Wallner); https://www.dbai.tuwien.ac.at/staff/woltran/ (S. Woltran)
� 0000-0002-2269-8193 (W. Dvořák); 0000-0003-0205-0039 (M. König); 0000-0003-0355-3535 (A. Rapberger);
0000-0002-3051-1966 (J. P. Wallner); 0000-0003-1594-8972 (S. Woltran)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:dvorak@dbai.tuwien.ac.at
mailto:mkoenig@dbai.tuwien.ac.at
mailto:arapberg@dbai.tuwien.ac.at
mailto:wallner@ist.tugraz.at
mailto:woltran@dbai.tuwien.ac.at
https://www.dbai.tuwien.ac.at/staff/dvorak/
https://www.dbai.tuwien.ac.at/user/mkoenig/
https://www.dbai.tuwien.ac.at/staff/arapberg/
https://wallner.ist.tugraz.at/
https://www.dbai.tuwien.ac.at/staff/woltran/
https://orcid.org/0000-0002-2269-8193
https://orcid.org/0000-0003-0205-0039
https://orcid.org/0000-0003-0355-3535
https://orcid.org/0000-0002-3051-1966
https://orcid.org/0000-0003-1594-8972
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

implementations of reasoning procedures for abstract argumentation (see, e.g., [4]) and cumu-
lated in the biennial International Competition on Computational Models of Argumentation
(ICCMA)1 which has been established in 2015. There are two kinds of approaches to such
systems. First, the direct approach of implementing dedicated algorithms for argumentation
problems which are often based one some kind of labelling propagation (see, e.g., [5]). Second,
the reduction-based approach where the argumentation problem is encoded in some other for-
malism for which sophisticated solvers already exist. Prominent target formalisms for the later
are answer-set programming (ASP) [6, 7] and propositional logic with SAT-solving technology;
see [8] for an overview.

In this paper we consider the ASPARTIX2 system that exploits ASP technology to solve
argumentation reasoning problems and describe the ASPARTIX-V (Answer Set Programming
Argumentation Reasoning Tool - Vienna) version in its 2021 edition which is dedicated to
the reasoning tasks of ICCMA’21. We discuss the specifics of ASPARTIX-V and differences to
earlier versions of ASPARTIX. This includes incorporation of recent ASP language constructs
(e.g. conditional literals), domain heuristics within ASP, and multi-shot methods. In particular,
since the 2019 version of ASPARTIX-V we partially deviate from an earlier focus on monolithic
approaches (i.e., one-shot solving via a single ASP encoding) to further enhance performance.

In the remainder of the paper we first recall the necessary argumentation background and
the tracks of the ICCMA competition. We then give an overview on the ASPARTIX system and
explain the aim of our ASPARTIX-V edition. In the main part we discuss technical specifics of
the ASPARTIX-V21 edition. Note that this is an updated version of earlier submitted system
descriptions of various ASPARTIX versions [1, 9, 10, 11, 12, 13].

2. Preliminaries

In this section we briefly introduce the necessary background on abstract argumentation and
discuss the tracks of the ICCMA competition, i.e. the tasks that are supported by ASPARTIX-V.

2.1. Abstract Argumentation

Let us introduce argumentation frameworks [2] and recall the semantics relevant for this work
(for a comprehensive introduction, see [3]).

Definition 1. An argumentation framework (AF) is a pair 𝐹 = (𝐴,𝑅) where 𝐴 is a finite set of
arguments and 𝑅 ⊆ 𝐴×𝐴 is the attack relation. The pair (𝑎, 𝑏) ∈ 𝑅 means that 𝑎 attacks 𝑏, and
we say that a set 𝑆 ⊆ 𝐴 attacks (in 𝐹) an argument 𝑏 if (𝑎, 𝑏) ∈ 𝑅 for some 𝑎 ∈ 𝑆. An argument
𝑎 ∈ 𝐴 is defended (in 𝐹) by a set 𝑆 ⊆ 𝐴 if each 𝑏 with (𝑏, 𝑎) ∈ 𝑅 is attacked by 𝑆 in 𝐹 .

Semantics for argumentation frameworks are defined as functions 𝜎 which assign to each AF
𝐹 = (𝐴,𝑅) a set 𝜎(𝐹) ⊆ 2𝐴, with each set 𝑆 ∈ 𝜎(𝐹) called an extension. We consider for 𝜎
the functions cf , naive , grd , stb, adm , com , cf2 , ideal , prf , sem , stg , stg2 , and stradm which

1www.argumentationcompetition.org
2www.dbai.tuwien.ac.at/research/argumentation/aspartix/

www.argumentationcompetition.org
www.dbai.tuwien.ac.at/research/argumentation/aspartix/

stand for conflict-free, naive, grounded, stable, admissible, complete, cf2, ideal, preferred, semi-
stable, stage, stage2, and strongly admissible extensions, respectively. Towards the definition
of these semantics we introduce the following notation. For a set 𝑆 ⊆ 𝐴, we denote the
set of arguments attacked by (resp. attacking) 𝑆 in 𝐹 as 𝑆+

𝐹 = {𝑥 | 𝑆 attacks 𝑥 in 𝐹} (resp.
𝑆−
𝐹 = {𝑥 | 𝑥 attacks some 𝑠 ∈ 𝑆 in 𝐹}), and define the range of 𝑆 in 𝐹 as 𝑆⊕

𝐹 = 𝑆 ∪ 𝑆+
𝐹 .

We are now prepared to give the formal definitions of the abstract argumentation semantics
we will consider.

Definition 2. Let 𝐹 = (𝐴,𝑅) be an AF. A set 𝑆 ⊆ 𝐴 is conflict-free (in 𝐹), if there are no
𝑎, 𝑏 ∈ 𝑆, such that (𝑎, 𝑏) ∈ 𝑅. cf (𝐹) denotes the collection of conflict-free sets of 𝐹 . For a
conflict-free set 𝑆 ∈ cf (𝐹), it holds that

• 𝑆 ∈ stb(𝐹), if each 𝑎 ∈ 𝐴 ∖ 𝑆 is attacked by 𝑆 in 𝐹 ;
• 𝑆 ∈ naive(𝐹), if there is no 𝑇 ⊃ 𝑆 such that 𝑇 ∈ cf (𝐹);
• 𝑆 ∈ adm(𝐹), if each 𝑎 ∈ 𝑆 is defended by 𝑆 in 𝐹 ;
• 𝑆 ∈ com(𝐹), if 𝑆 ∈ adm(𝐹) and each 𝑎 ∈ 𝐴 defended by 𝑆 in 𝐹 is contained in 𝑆;
• 𝑆 ∈ grd(𝐹), if 𝑆 ∈ com(𝐹) and there is no 𝑇 ⊂ 𝑆 such that 𝑇 ∈ com(𝐹);
• 𝑆 ∈ prf (𝐹), if 𝑆 ∈ adm(𝐹) and there is no 𝑇 ⊃ 𝑆 such that 𝑇 ∈ adm(𝐹);
• 𝑆 ∈ ideal(𝐹), if 𝑆 is a ⊆-maximal admissible set that is contained in each preferred

extension of 𝐹 ;
• 𝑆 ∈ sem(𝐹), if 𝑆 ∈ adm(𝐹) and there is no 𝑇 ∈ adm(𝐹) with 𝑆⊕

𝑅 ⊂ 𝑇⊕
𝑅 ;

• 𝑆 ∈ stg(𝐹), if there is no 𝑇 ∈ cf (𝐹), with 𝑆⊕
𝑅 ⊂ 𝑇⊕

𝑅 ;

Notice that grd(𝐹), ideal(𝐹) respectively, always yields a unique extension, the grounded,
ideal respectively, extension of 𝐹 .

The recursive definitions of cf2 (𝐹), stg2 (𝐹), and stradm(𝐹) require additional concepts
like strongly connected components (SCCs) and related notions. For the formal definitions,
refer to [14], [15], and [16], respectively.

Example 1. Consider the AF 𝐹 = (𝐴,𝑅), with arguments 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and attacks
𝑅 = {(𝑎, 𝑏), (𝑐, 𝑏), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑒), (𝑒, 𝑒)}. The graph representation of 𝐹 is as follows.

𝑎 𝑏 𝑐 𝑑 𝑒

Considering the extensions of 𝐹 , we have stb(𝐹) = stg(𝐹) = sem(𝐹) = {{𝑎, 𝑑}}. The admis-
sible sets of 𝐹 are ∅, {𝑎}, {𝑐}, {𝑑}, {𝑎, 𝑐} and {𝑎, 𝑑} and thus the set of preferred extensions is
prf (𝐹) = {{𝑎, 𝑐}, {𝑎, 𝑑}} and the complete extensions are {𝑎}, {𝑎, 𝑐} and {𝑎, 𝑑}. The naive
extensions are {𝑎, 𝑑}, {𝑎, 𝑐}, and {𝑏, 𝑑}. Finally, the grounded extension is {𝑎} and coincides with
the ideal extension. ◇

2.2. Tracks of ICCMA (Tasks Supported by ASPARTIX-V)

The International Competition on Computational Models of Argumentation (ICCMA) provides
a unified setting to compare the performance of state-of-the-art argumentation solvers. As
ASPARTIX-V is fine-tuned for the ICCMA, the supported reasoning tasks correspond to the
ICCMA tracks.

Its fourth edition, the ICCMA’21 had four types of tracks, the classical (static) tracks, the
dynamic tracks, the structured argumentation tracks, and a track dedicated to approximate
algorithms.3 In the classical tracks the solver is given an argumentation framework and has
to solve a specific reasoning task while in the dynamic tracks the solver is given an initial
argumentation frameworks and a list of updates to that framework and the reasoning task has
to be evaluated after each update to the framework. The structured tracks feature Assumption-
based Argumentation [17]. As the ASPARTIX-V system supports only the classical tracks we
will focus on these tracks here.

We next describe the reasoning tasks that are considered in the classical tracks of ICCMA.
They correspond to the standard reasoning problems studied in the literature (see, e.g., [18]).

• DC-𝜎: Decide Credulous acceptance of an argument w.r.t. a semantics 𝜎: Given 𝐹 =
(𝐴,𝑅), 𝑎 ∈ 𝐴 decide whether 𝑎 ∈ 𝐸 for some extension 𝐸 ∈ 𝜎(𝐹).

• DS-𝜎: Decide Skeptical acceptance of an argument w.r.t. a semantics 𝜎: Given 𝐹 = (𝐴,𝑅),
𝑎 ∈ 𝐴 decide whether 𝑎 ∈ 𝐸 for all extensions 𝐸 ∈ 𝜎(𝐹).

• SE-𝜎: compute Some 𝜎-Extension: Given 𝐹 = (𝐴,𝑅) return some 𝐸 ∈ 𝜎(𝐹).
• CE-𝜎: Count all 𝜎-Extensions: Given 𝐹 = (𝐴,𝑅) give the number of 𝐸∈𝜎(𝐹).
• EE-𝜎: Enumerate all 𝜎-Extensions: Given 𝐹 = (𝐴,𝑅) return all 𝐸∈𝜎(𝐹).

Notice that that EE-𝜎 was part of ICCMA in previous editions but was replaced by CE-𝜎
in ICCMA’21. For 𝜎, seven semantics were considered, namely complete, preferred, stable,
semi-stable, stage, grounded and ideal.

3. The ASPARTIX System and its ASPARTIX-V Edition

The ASPARTIX system was one of the first systems that supported efficient reasoning for
a broad collection of abstract argumentation semantics starting with the work of Gaggl et
al. (see, e.g., [9]) and has been continuously expanded and improved since then (see, e.g.,
[10, 11, 12, 13, 19]). Apart from classical abstract argumentation frameworks, ASPARTIX also
supports a broad range of enhancements of AFs by, e.g., preferences [20] or recursive attacks [21].
Newest developments of the ASPARTIX system include implementations to compute extensions
and to perform reasoning tasks in SETAFs, i.e., argumentation frameworks with collective
attacks [22]. It has been furthermore extended to perform claim-based reasoning by a recent
implementation of claim-augmented argumentation frameworks (CAFs) [23] which generalize
AFs by an additional function which assigns a claim to each argument (which is considered as
the argument’s conclusion). Due to the broad coverage of both argumentation semantics as

3http://argumentationcompetition.org/2021/index.html

http://argumentationcompetition.org/2021/index.html

ASP-solver
arg(a).
arg(b).
att(a,b).

input

ASP-Encoding
of semantics

ASP-Encoding of
reasoning task

[[a]]

resultASPARTIX

Figure 1: Basic workflow of ASPARTIX

well as generalizations of AFs, the ASPARTIX system is frequently used as reference system in
the literature.

ASPARTIX is based on answer-set programming (ASP) and the idea of characterizing ar-
gumentation semantics via ASP encodings. With such an encoding of a semantics one can
easily apply state-of-art systems for ASP to solve diverse reasoning tasks or to enumerate
all extensions of a given AF. Given an AF as input, in the apx format of ICCMA, ASPARTIX
delegates the main reasoning to an answer set programming solver (e.g., [24]), with answer
set programs encoding the argumentation semantics and reasoning tasks. The basic workflow
is shown in Figure 1, i.e., the AF is given in apx format (facts in the ASP language), and the
AF semantics and reasoning tasks are encoded via ASP rules, possibly utilizing further ASP
language constructs. For more information on the ASPARTIX system and its derivatives in
general the interested reader is referred to the systems web-page:

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

In this work we shall focus on ASPARTIX-V in its 2019 and 2021 versions which are derivatives
of ASPARTIX tuned towards the tracks of ICCMA’19 and ICCMA’21 respectively. That is,
ASPARTIX-V is restricted to AFs and supports all the standard tasks of both ICCMA’19 and
ICCMA’21, i.e. credulous/skeptical acceptance, computing all/some extension(s), and counting
extensions for complete, preferred, stable, semi-stable, stage, grounded, and ideal semantics (as
well as the other semantics mentioned in the previous section that are not part of the ICCMA).
In the following we highlight specifics of the current version and in particular differences to
prior versions.

Since the 2019 version of the ASPARTIX system we deviate from classical ASPARTIX design
virtues. First, while traditional ASPARTIX encodings are modular in the sense that fixed
encodings for semantics can be combined with the generic encodings of reasoning tasks, we use
semantics encodings specific to a reasoning task. Second, when appropriate, we apply multi-
shot methods for reasoning, which is in contrast to the earlier focus on so-called monolithic
encodings, where one uses a single ASP-encoding and runs the solver only once (as illustrated in
Figure 1). Third we make use of advanced features of the ASP-language, and utilize clingo4 [24]
v5.3.0 and v4.4.0.

4https://potassco.org/

www.dbai.tuwien.ac.at/research/argumentation/aspartix/
https://potassco.org/

In its 2021 edition, the shell scripts implementing the ICCMA interface have been rewritten to
avoid issues with concurrent calls to the systems. Moreover, ASPARTIX-V21 is the first version
implementing the counting extensions tasks, as required by ICCMA’21.

Next, we list and overview some of the ASP-techniques used in the ASPARTIX system since
its 2019 version. First, we exploit the concept of conditional literals [25, Section 3.1.11], which
has first been applied for ASP-encodings of argumentation semantics in [12]. For example, we
simplified the encoding of grounded semantics (cf. Listing 1). Moreover, conditional literals
enable us to give ASPARTIX style encodings of the translations from AF semantics to ASP
semantics provided in [26]. Second, we exploit clingo domain heuristics [27] (see also [25,
Chapter 10]), in order to compute subset-maximal extensions while only specifying constraints
for the base semantics [28].

4. Implementation Details

When not stated otherwise, for a supported semantics we provide an ASP-encoding such that
when combined with an AF in the apx format the answer-sets of the program are in a one-to-one
correspondence with the extensions of the AF. Given an answer-set of such an encoding the
corresponding extension is given by the in(·) predicate, i.e., an argument a is in the extensions
iff in(a) is in the answer-set. With such an encoding we can exploit a standard ASP-solver to
compute some extension (SE) by computing an answer-set; enumerate all extensions (EE) by
enumerating all answer-sets (likewise, counting extensions (CE) by giving the number of answer
sets); decide credulous acceptance (DC) of an argument 𝑎 by adding the constraint← not in(a)
to the program and testing whether the program is satisfiable, i.e., 𝑎 is credulously accepted
if there is at least one answer set; and decide skeptical acceptance (DS) of an argument 𝑎 by
adding the constraint← in(a) to the program and testing whether the program is unsatisfiable,
i.e., 𝑎 is skeptically accepted if there is no answer set.

4.1. Conditional Literals

We make use of the conditional literal [25]. In the head of a disjunctive rule literals may have
conditions, e.g. consider the head of rule “p(𝑋) : q(𝑋)←”. Intuitively, this represents a head
of disjunctions of atoms p(𝑎) where also q(𝑎) is true. Rules might as well have conditions in
their body, e.g. consider the body of rule “← p(𝑋) : q(𝑋)”, which intuitively represents a
conjunction of atoms p(𝑎) where also q(𝑎) is true.

A bottleneck of previous encodings for grounded semantics was the grounding step of the
solver, i.e., the instantiation of variables with constants typically produces large programs. By
utilizing conditional literals we were able to provide a compact encoding (cf. Listing 1) with
significant smaller grounded programs.

Listing 1: Encoding for grounded semantics (using conditional literals)
in(X)← arg(X), defeated(Y) : att(Y,X).
defeated(X)← arg(X), in(Y), att(Y,X).

Moreover, conditional literals allow for an ASPARTIX style implementation of the translations
from argumentation framework to grounded logic programs provided in [26]. For example

consider our one line encoding of stable semantics in Listing 2 and the encoding of preferred
semantics in Listing 3.

Listing 2: Encoding for stable semantics (using conditional literals)
in(Y)← arg(Y), not in(X) : att(X,Y).

Listing 3: Encoding for preferred semantics (using conditional literals)
defended(X) | defeated(X)← arg(X).
defended(X)← arg(X), defeated(Y) : att(Y,X).
defeated(X)← defended(Y), att(Y,X).
← defended(X), not defeated(Y), att(Y,X).
← defeated(X), not defended(Y) : att(Y,X).
in(X)← defended(X), not defeated(X).

4.2. Domain Heuristics

Clingo provides an option to specify user-specific domain heuristics in the ASP-program which
guides the ASP-solver. In particular one can define heuristics in order to select the answer-sets
that are subset-maximal/minimal w.r.t. a specified predicate. Inspired by [28] we use such
heuristics to compute preferred extensions by utilizing an encoding for complete semantics and
identifying the subset-maximal answer-sets w.r.t. the in(·) predicate (cf. Listing 4). Moreover,
we use domain heuristics and three-valued labelling-based characterizations of complete seman-
tics via the predicates in(·), out(·), and undec(·) in order to compute the subset-maximal
ranges of complete and conflict-free sets, i.e. we compute the subset-minimal answer-sets
w.r.t. the undec(·) predicate. This can be exploited for computing some semi-stable or stage
extensions. However, the domain heuristics only return one witnessing answer-set for each
minima and thus this technique is not directly applicable to the corresponding enumerations
tasks (we would miss some extensions if several extensions have the same range). In the next
section we present a multi-shot method addressing this problem.

Listing 4: Encoding for preferred semantics (using domain heuristics)
%% Complete labellings
in(X) | out(X) | undec(X)← arg(X).
in(X)← arg(X), out(Y) : att(Y,X).
out(X)← in(Y), att(Y,X).
← in(X), not out(Y), att(Y,X).
← out(X), not in (Y): att(Y,X).
← in(X), out(X).
← undec(X), out(X).
← undec(X), in(X).
%% We now apply heuristics to get the complete labeling with subset−maximal in(.) set
#heuristic in(X) : arg(X). [1,true]

4.3. Multi-shot Methods

We utilize multi-shot strategies and pre-processing of the AF for several semantics and reasoning
tasks. In the current section, we briefly describe these methods.

For credulous and skeptical reasoning with complete, preferred, grounded, and ideal semantics
we do not need to consider the whole framework but only those arguments that have a directed
path to the query argument (notice that this does not hold true for stable, semi-stable and stage
semantics). We perform pre-processing on the given AF that removes arguments without a
directed path to the queried argument before starting the reasoning with an ASP-solver.

For computing the ideal extension we follow a two-shot strategy that is inspired by algorithms
proposed earlier for ideal semantics [29, 30]. That is, we first use an encoding for complete
semantics and the brave reasoning mode of clingo to compute all arguments that are credulously
accepted/attacked w.r.t. preferred semantics. Second, we use the outcome of the first call
together with an encoding that computes a fixed-point corresponding to the ideal extension.
For reasoning with ideal semantics we use an encoding for ideal sets and perform credulous
reasoning on ideal sets in the standard way.

Semi-stable extensions correspond to those complete labellings for which the set of undecided
arguments is subset-minimal. In our approach, we utilize an encoding for complete semantics
extended by an undec(·) predicate and process the answer-sets. We check whether models
without an undec(·) predicate have been computed; in that case, semi-stable extensions
coincide with stable extensions. In the other case, we compute all subset-minimal sets among
all undecided sets using the set class in python and return the corresponding models.

For enumerating and counting stage extensions we use a multi-shot strategy. First we use
the domain heuristics to compute the maximal ranges w.r.t. naive semantics (as each range
maximal conflict-free set is also subset-maximal it is sufficient to only consider naive sets, i.e.
subset-maximal conflict free sets). Second, for each of the maximal ranges we start another
ASP-encoding which computes conflict-free sets with exactly that range (this is equivalent to
computing stable extension of a restricted framework). Each of these extensions corresponds to
a different stage extension of the AF.

For reasoning with semi-stable and stage semantics we use a multi-shot strategy similar to that
for enumerating the stage extensions. First we use domain heuristics to compute the maximal
ranges w.r.t. complete or naive semantics. In the second step we iterate over these ranges and
perform skeptical (credulous) reasoning over complete extensions (conflict-free sets) with the
given range. For skeptical acceptance, we answer negatively as soon as a counterexample to a
positive answer is found when iterating the extensions; otherwise, after processing all maximal
ranges we answer with YES. Analogously, for credulous acceptance, we check in each iteration
whether we can report a positive answer; otherwise, after processing all maximal ranges, we
return NO.

5. Discussion

The results of the ICCMA’21 competition were just announced very recently (see http://
argumentationcompetition.org/2021/results.html) and thus we cannot yet provide a detailed

http://argumentationcompetition.org/2021/results.html
http://argumentationcompetition.org/2021/results.html

analysis. Notable ASPARTIX-V21 won the subtrack on stage semantics, was scored second in
the subtrack for ideal semantics, and scored third in the subtrack for semi-stable semantics.

We next briefly discuss the performance of the previous 2019 version at ICCMA’19 (de-
tailed results of the competition are published at https://www.iccma2019.dmi.unipg.it/results/
results-main.html). The competition was dominated by the 𝜇-toksia system by Niskanen and
Järvisalo [31], an optimized system based on modern SAT-solving technology which won all
the tracks of the competition and only failed to solve two of the benchmark instances in the
given time-limit of 600 seconds.

The ASPARTIX-V19 system scored third in the overall evaluation of the competition, scored
second in 8 of the 24 tracks and scored second in the aggregated evaluation of complete and
stable semantics. Moreover, for 16 tracks ASPARTIX-V19 solved all instances of the competition
within the given time-limit. Noteworthy, ASPARTIX-V19 was to only system to solve the
enumeration task under stage semantics for the n256p3q08n.apx instance.

The ICCMA’19 results also reported different kinds of errors in the results of the ASPARTIX-
system, which we investigated and shall discuss in the following. This errors include wrong
results, malformed output, crashed computations and for enumeration tasks incomplete list of
extensions which are not due to a timeout. The affected tasks are skeptical acceptance under
preferred and semi-stable semantics, credulous acceptance under semi-stable semantics, stage
and ideal semantics and enumeration of semi-stable and stage semantics.

The main reason for these errors seems to be side-effects of concurrent calls to the solver.
Towards understanding the erroneous results, we performed additional experiments. For these
experiments we considered all skeptical and credulous acceptance instances of the competition
where ASPARTIX-V19 returned an erroneous result or crashed and reran the ASPARTIX-V19
docker on these instances in an isolated setting. For all but one instance we got the correct
results. In this isolated setting ASPARTIX-V19 only reported one wrong result for skeptical
reasoning with semi-stable semantics on the Small-result-b86.apx instance. This seems
to be due to a bug in the used ASP solver, which can be resolved by using an earlier version of
the solver (we got correct results with clingo 4.4.0). For the enumeration tasks we investigated
selected instances with erroneous / incomplete results and again got correct results when
running them in an isolated setting and on the other hand could generate erroneous results by
concurrent calls to the solver. The errors related to concurrent calls and a bug in the used ASP
solver have been addressed in the current ASPARTIX-V21 version.

From our development work and the results achieved in the international competition, we
conclude that (i) a performance increase was achieved by utilizing advanced language features
of ASP, across multiple reasoning tasks covering several levels of complexity of the polynomial
hierarchy (e.g., argumentative reasoning tasks considered in the ICCMA range from polynomial-
time decidable to being complete for a class on the second level of the polynomial hierarchy),
(ii) said language features, furthermore, provide means for compact and accessible modeling
of problem shortcuts in the ASP language, however care needs to be taken when designing
systems that interface ASP solvers, and (iii) while our prototype was outperformed by the SAT
based approach of 𝜇-toksia, performance of ASPARTIX-V19 does not lag behind for several
cases. Indeed, as witnessed by the uniquely solved instance only by ASPARTIX-V19, certain
shortcuts included in ASPARTIX-V19 can lead to complementary performance for families of
instances.

https://www.iccma2019.dmi.unipg.it/results/results-main.html
https://www.iccma2019.dmi.unipg.it/results/results-main.html

Acknowledgments

This research has been supported by the Vienna Science and Technology Fund (WWTF) through
project ICT19-065, and by the Austrian Science Fund (FWF) through projects P30168, P32830,
and Y698.

References

[1] W. Dvořák, A. Rapberger, J. P. Wallner, S. Woltran, ASPARTIX-V19 - an answer-set
programming based system for abstract argumentation, in: A. Herzig, J. Kontinen (Eds.),
Foundations of Information and Knowledge Systems - 11th International Symposium,
FoIKS 2020, Dortmund, Germany, February 17-21, 2020, Proceedings, volume 12012 of
Lecture Notes in Computer Science, Springer, 2020, pp. 79–89. URL: https://doi.org/10.1007/
978-3-030-39951-1_5. doi:10.1007/978-3-030-39951-1_5.

[2] P. M. Dung, On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games, Artif. Intell. 77 (1995) 321–358.

[3] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their
semantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of
Formal Argumentation, College Publications, 2018.

[4] F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallner, Foundations of implementations for formal
argumentation, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook
of Formal Argumentation, College Publications, 2018. Also available as an article in the
IfCoLog Journal of Logics and their Applications 4(8):2623–2706.

[5] S. Nofal, K. Atkinson, P. E. Dunne, Algorithms for decision problems in argument systems
under preferred semantics, Artif. Intell. 207 (2014) 23–51. URL: https://doi.org/10.1016/j.
artint.2013.11.001. doi:10.1016/j.artint.2013.11.001.

[6] V. W. Marek, M. Truszczyński, Stable models and an alternative logic programming
paradigm, in: The Logic Programming Paradigm – A 25-Year Perspective, Springer, 1999,
pp. 375–398.

[7] I. Niemelä, Logic programming with stable model semantics as a constraint programming
paradigm, Ann. Math. Artif. Intell. 25 (1999) 241–273.

[8] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, S. Woltran, Methods for solving reasoning
problems in abstract argumentation - A survey, Artif. Intell. 220 (2015) 28–63. URL:
http://dx.doi.org/10.1016/j.artint.2014.11.008. doi:10.1016/j.artint.2014.11.008.

[9] U. Egly, S. A. Gaggl, S. Woltran, Answer-set programming encodings for argumentation
frameworks, Argument & Computation 1 (2010) 147–177.

[10] W. Dvořák, S. A. Gaggl, J. P. Wallner, S. Woltran, Making use of advances in answer-set
programming for abstract argumentation systems, in: H. Tompits, S. Abreu, J. Oetsch,
J. Pührer, D. Seipel, M. Umeda, A. Wolf (Eds.), Proc. INAP, Revised Selected Papers, volume
7773 of Lecture Notes in Artificial Intelligence, Springer, 2013, pp. 114–133.

[11] W. Dvořák, S. A. Gaggl, T. Linsbichler, J. P. Wallner, Reduction-based approaches to imple-
ment Modgil’s extended argumentation frameworks, in: T. Eiter, H. Strass, M. Truszczynski,
S. Woltran (Eds.), Advances in Knowledge Representation, Logic Programming, and Ab-

https://doi.org/10.1007/978-3-030-39951-1_5
https://doi.org/10.1007/978-3-030-39951-1_5
http://dx.doi.org/10.1007/978-3-030-39951-1_5
https://doi.org/10.1016/j.artint.2013.11.001
https://doi.org/10.1016/j.artint.2013.11.001
http://dx.doi.org/10.1016/j.artint.2013.11.001
http://dx.doi.org/10.1016/j.artint.2014.11.008
http://dx.doi.org/10.1016/j.artint.2014.11.008

stract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th
Birthday, volume 9060 of Lecture Notes in Computer Science, Springer, 2015, pp. 249–264.

[12] S. A. Gaggl, N. Manthey, A. Ronca, J. P. Wallner, S. Woltran, Improved answer-set program-
ming encodings for abstract argumentation, Theory and Practice of Logic Programming
15 (2015) 434–448.

[13] A. Ronca, J. P. Wallner, S. Woltran, ASPARTIX-V: utilizing improved ASP encod-
ings, http://argumentationcompetition.org/2015/pdf/paper_11.pdf, 2015. URL: http://
argumentationcompetition.org/2015/pdf/paper_11.pdf.

[14] P. Baroni, M. Giacomin, G. Guida, Scc-recursiveness: a general schema for argumentation
semantics, Artif. Intell. 168 (2005) 162–210. URL: https://doi.org/10.1016/j.artint.2005.05.006.
doi:10.1016/j.artint.2005.05.006.

[15] W. Dvořák, S. A. Gaggl, Incorporating stage semantics in the scc-recursive schema for
argumentation semantics., in: Proceedings of the 14th International Workshop on Non-
Monotonic Reasoning, 2012.

[16] P. Baroni, M. Giacomin, On principle-based evaluation of extension-based argumentation
semantics, Artif. Intell. 171 (2007) 675–700.

[17] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-theoretic
approach to default reasoning, Artif. Intell. 93 (1997) 63–101. URL: https://doi.org/10.1016/
S0004-3702(97)00015-5. doi:10.1016/S0004-3702(97)00015-5.

[18] W. Dvořák, P. E. Dunne, Computational problems in formal argumentation and their
complexity, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook
of Formal Argumentation, College Publications, 2018. Also available as an article in the
IfCoLog Journal of Logics and their Applications 4(8):2557–2622.

[19] W. Dvořák, A. Greßler, S. Woltran, Evaluating SETAFs via answer-set programming,
in: M. Thimm, F. Cerutti, M. Vallati (Eds.), Proc. SAFA co-located with COMMA 2018,
volume 2171 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 10–21. URL: http:
//ceur-ws.org/Vol-2171/paper_2.pdf.

[20] L. Amgoud, C. Cayrol, A reasoning model based on the production of acceptable arguments,
Ann. Math. Artif. Intell. 34 (2002) 197–215. URL: https://doi.org/10.1023/A:1014490210693.
doi:10.1023/A:1014490210693.

[21] P. Baroni, F. Cerutti, M. Giacomin, G. Guida, AFRA: argumentation framework with
recursive attacks, Int. J. Approx. Reason. 52 (2011) 19–37. URL: https://doi.org/10.1016/j.
ijar.2010.05.004. doi:10.1016/j.ijar.2010.05.004.

[22] S. H. Nielsen, S. Parsons, A generalization of dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments, in: N. Maudet, S. Parsons, I. Rahwan (Eds.),
Argumentation in Multi-Agent Systems, Third International Workshop, ArgMAS 2006,
Hakodate, Japan, May 8, 2006, Revised Selected and Invited Papers, volume 4766 of
Lecture Notes in Computer Science, Springer, 2006, pp. 54–73. URL: https://doi.org/10.
1007/978-3-540-75526-5_4. doi:10.1007/978-3-540-75526-5_4.

[23] W. Dvořák, S. Woltran, Complexity of abstract argumentation under a claim-centric
view, Artif. Intell. 285 (2020) 103290. URL: https://doi.org/10.1016/j.artint.2020.103290.
doi:10.1016/j.artint.2020.103290.

[24] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo = ASP + control: Preliminary re-
port, CoRR abs/1405.3694 (2014). URL: http://arxiv.org/abs/1405.3694. arXiv:1405.3694.

http://argumentationcompetition.org/2015/pdf/paper_11.pdf
http://argumentationcompetition.org/2015/pdf/paper_11.pdf
http://argumentationcompetition.org/2015/pdf/paper_11.pdf
https://doi.org/10.1016/j.artint.2005.05.006
http://dx.doi.org/10.1016/j.artint.2005.05.006
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1016/S0004-3702(97)00015-5
http://dx.doi.org/10.1016/S0004-3702(97)00015-5
http://ceur-ws.org/Vol-2171/paper_2.pdf
http://ceur-ws.org/Vol-2171/paper_2.pdf
https://doi.org/10.1023/A:1014490210693
http://dx.doi.org/10.1023/A:1014490210693
https://doi.org/10.1016/j.ijar.2010.05.004
https://doi.org/10.1016/j.ijar.2010.05.004
http://dx.doi.org/10.1016/j.ijar.2010.05.004
https://doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.1007/978-3-540-75526-5_4
http://dx.doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.1016/j.artint.2020.103290
http://dx.doi.org/10.1016/j.artint.2020.103290
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694

[25] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub,
P. W. Sven Thiele, Potassco guide version 2.2.0, https://github.com/potassco/guide/releases/
tag/v2.2.0, 2019. URL: https://github.com/potassco/guide/releases/tag/v2.2.0.

[26] C. Sakama, T. Rienstra, Representing argumentation frameworks in answer set program-
ming, Fundam. Inform. 155 (2017) 261–292.

[27] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, P. Wanko, Domain-specific
heuristics in answer set programming, in: M. desJardins, M. L. Littman (Eds.), Proc. AAAI,
AAAI Press, 2013, pp. 350–356. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6278.

[28] W. Faber, M. Vallati, F. Cerutti, M. Giacomin, Enumerating preferred extensions using
ASP domain heuristics: The ASPrMin solver, in: S. Modgil, K. Budzynska, J. Lawrence
(Eds.), Proc. COMMA, volume 305 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2018, pp. 459–460. URL: https://doi.org/10.3233/978-1-61499-906-5-459. doi:10.
3233/978-1-61499-906-5-459.

[29] P. E. Dunne, The computational complexity of ideal semantics, Artif. Intell. 173 (2009)
1559–1591.

[30] P. E. Dunne, W. Dvořák, S. Woltran, Parametric properties of ideal semantics, Artif. Intell.
202 (2013) 1–28.

[31] A. Niskanen, M. Järvisalo, 𝜇-toksia participating in ICCMA 2019, https://www.iccma2019.
dmi.unipg.it/papers/ICCMA19_paper_11.pdf, 2019. URL: https://www.iccma2019.dmi.
unipg.it/papers/ICCMA19_paper_11.pdf.

https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
https://doi.org/10.3233/978-1-61499-906-5-459
http://dx.doi.org/10.3233/978-1-61499-906-5-459
http://dx.doi.org/10.3233/978-1-61499-906-5-459
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf

	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Tracks of ICCMA (Tasks Supported by ASPARTIX-V)

	3 The ASPARTIX System and its ASPARTIX-V Edition
	4 Implementation Details
	4.1 Conditional Literals
	4.2 Domain Heuristics
	4.3 Multi-shot Methods

	5 Discussion

