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Abstract. Claim-augmented argumentation frameworks (CAFs) provide a formal basis to
analyze conclusion-oriented problems in argumentation by adapting a claim-focused per-
spective; they extend Dung AFs by associating a claim to each argument representing its
conclusion. This additional layer offers various possibilities to generalize abstract argu-
mentation semantics, i.e. the re-interpretation of arguments in terms of their claims can be
performed at different stages in the evaluation of the framework: One approach is to per-
form the evaluation entirely at argument-level before interpreting arguments by their claims
(inherited semantics); alternatively, one can perform certain steps in the process (e.g., max-
imization) already in terms of the arguments’ claims (claim-level semantics). The inherent
difference of these approaches not only potentially results in different outcomes but, as we
will show in this paper, is also mirrored in terms of computational complexity. To this end,
we provide a comprehensive complexity analysis of the four main reasoning problems with
respect to claim-level variants of preferred, naive, stable, semi-stable and stage semantics
and complete the complexity results of inherited semantics by providing corresponding re-
sults for semi-stable and stage semantics. Moreover, we show that deciding, whether for a
given framework the two approaches of a semantics coincide (concurrence) can be surpris-
ingly hard, ranging up to the third level of the polynomial hierarchy.
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Abstract

Claim-augmented argumentation frameworks (CAFs) pro-
vide a formal basis to analyze conclusion-oriented problems
in argumentation by adapting a claim-focused perspective;
they extend Dung AFs by associating a claim to each argu-
ment representing its conclusion. This additional layer offers
various possibilities to generalize abstract argumentation se-
mantics, i.e. the re-interpretation of arguments in terms of
their claims can be performed at different stages in the eval-
uation of the framework: One approach is to perform the
evaluation entirely at argument-level before interpreting ar-
guments by their claims (inherited semantics); alternatively,
one can perform certain steps in the process (e.g., maximiza-
tion) already in terms of the arguments’ claims (claim-level
semantics). The inherent difference of these approaches not
only potentially results in different outcomes but, as we will
show in this paper, is also mirrored in terms of computa-
tional complexity. To this end, we provide a comprehensive
complexity analysis of the four main reasoning problems
with respect to claim-level variants of preferred, naive, sta-
ble, semi-stable and stage semantics and complete the com-
plexity results of inherited semantics by providing corre-
sponding results for semi-stable and stage semantics. More-
over, we show that deciding, whether for a given framework
the two approaches of a semantics coincide (concurrence)
can be surprisingly hard, ranging up to the third level of the
polynomial hierarchy.

1 Introduction

Abstract argumentation (Dung, 1995) is nowadays acknowl-
edged as the core reasoning mechanism for argumentation
in the broad sense (Atkinson et al., 2017), in particular
in instantiation-based approaches (see e.g. (Gorogiannis &
Hunter, 2011)). This instantiation process starts from a (typ-
ically inconsistent) knowledge base, from which all possible
arguments are constructed. An argument contains a claim
and a support, the latter being a subset of the knowledge
base. The relationship between arguments is then settled, for
instance an argument α attacks argument β if the claim of α
contradicts (parts of) the support of β. The resulting network
is then interpreted as an abstract argumentation framework
(AF) and semantics for AFs are used to obtain a collection of
jointly acceptable sets of arguments, commonly referred to
as extensions. In a final step these extensions are then rein-
terpreted in terms of the claims of the accepted arguments,

thus restating the result in the domain of the initial setting.
Recent research (Baroni & Riveret, 2019; Dvořák, Rap-

berger, & Woltran, 2020) has addressed the fact that the
re-interpretation part is not as obvious as it seems at first
glance. For instance, consider preferred semantics, which is
defined at the AF level as subset-maximal admissible sets (a
set is admissible if it attacks all its attackers). When looking
for preferred extensions in terms of claims, we can either
(a) take the preferred extensions of the AF and replace each
argument by its claim, or (b) take the admissible sets of the
AF, replace each argument by its claim, and then select the
subset-maximal ones from the resulting set of extensions.

Example 1. Consider the following AF where each argu-
ment is labelled with its claim.

a1

a

b1

b

c1

c d1 d

a2 a

b2 b

The admissible sets are given by ∅,{a1},{b1},{b2},{a1, b2},
{b1, b2}, {a2, b1}, {a1, b2, c1}, and {a2, b1, b2}. Selecting
the subset-maximal admissible sets before replacing each
argument by its claim (option (a)) thus yields the preferred
claim-sets {a, b, c}, {a, b}; observe that swapping those
steps (option (b)) results in the unique claim-set {a, b, c}.

Option (a) which we shall call inherited semantics in
what follows, is often used implicitly in instantiation-based
argumentation and has been explicitly studied in (Dvořák
& Woltran, 2020). Option (b) has recently been advocated
in (Dvořák et al., 2020) as an alternative way to lift con-
cepts behind argumentation semantics to claim-based se-
mantics; we will refer to the latter as claim-level semantics
since parts of the semantic selection process takes place on
the claim- rather than on the argument-level. As discussed
in (Rapberger, 2020), there are logic programming seman-
tics that, in the standard instantiation model (Caminada, Sá,
Alcântara, & Dvořák, 2015a, 2015b), correspond to claim-
level semantics and cannot be captured with inherited se-
mantics.

To be independent from a particular instantiation schema,
Dvořák and Woltran (Dvořák & Woltran, 2020) introduced
claim-augmented frameworks (CAFs), which are AFs where
each argument is assigned a claim; hence, a CAF is given by
a triple (A,R, claim) where (A,R) constitutes an AF and
function claim maps arguments A to claims (indeed Exam-
ple 1 provides an example for a CAF). They also introduced
the important subclass of well-formed CAFs which restricts



the assignment of claims in the sense that arguments with
the same claim have to attack the same set of arguments
(thus reflecting the instantiation model for attacks outlined
above). AF semantics σ are then lifted to CAFs by setting
σc((A,R, claim)) = claim(σ(A,R)) in order to obtain in-
herited CAF semantics. Claim-level semantics follow a dif-
ferent line of definition as sketched in Example 1 for the case
of preferred semantics. We will introduce them in Section 2.

We have already seen that the two approaches differ in the
above example; Dvořák et al. (Dvořák et al., 2020) have an-
alyzed these differences in detail, also showing that there are
some semantics where the two approaches coincide on the
class of well-formed CAFs. What remains open is the ques-
tion whether this difference is mirrored in terms of compu-
tational complexity (an analysis for CAF semantics has so
far been only conducted for (most of) the inherited seman-
tics (Dvořák & Woltran, 2020); the results show an occa-
sional increase of complexity compared to the correspond-
ing AF semantics). Another question is how hard it is to
decide for a given CAF whether the two approaches of a
semantics deliver the same result.

We tackle these two questions via a thorough complexity
analysis. Our main contributions are as follows:
• We settle the computational complexity of all the claim-

level semantics, i.e. stable, naive, preferred, semi-stable,
and stage semantics, introduced in (Dvořák et al., 2020)
for the main decision problems of credulous and skeptical
acceptance, verification, and testing for non-empty exten-
sions. Among our findings is that for naive semantics, the
claim-level variant is harder than its inherited counterpart,
while for preferred semantics, it is the inherited variant
that shows higher complexity.

• We also provide complexity results for inherited semi-
stable and stage semantics which have not been investi-
gated in (Dvořák & Woltran, 2020). As it turns out, for
these two semantics the complexity of the inherited and
claim-level variants coincides.

• We determine the complexity of the concurrence prob-
lem, i.e. whether for a given CAF and a semantics, the
inherited and claim-level variant of that semantics coin-
cide. Note that showing this problem to be easy would
suggest that there are relatively natural classes of CAFs
which characterize whether or not the two variants col-
lapse. However, as we will see, concurrence can be sur-
prisingly hard, up to the third level of the polynomial hi-
erarchy.

2 Preliminaries
We introduce (abstract) argumentation frameworks (Dung,
1995) and fix U as countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A ⊆ U is a finite set of arguments and
R ⊆ A×A is the attack relation.E ⊆ A attacks b if (a, b) ∈
R for some a ∈ E; we denote by E+

F = {b ∈ A | ∃a ∈ E :
(a, b) ∈ R} the set of arguments defeated by E. We call
E⊕F = E ∪ E+

F the range of E in F . An argument a ∈ A is

defended (in F ) by E if b ∈ E+
F for each b with (b, a) ∈ R.

Semantics for AFs are defined as functions σ which as-
sign to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions.
We consider for σ the functions cf , adm , naive , prf , stb,
sem and stg which stand for conflict-free, admissible, naive,
preferred, stable, semi-stable and stage, respectively.

Definition 2. Let F = (A,R) be an AF. A set E ⊆ A
is conflict-free (in F ), if there are no a, b ∈ E, such that
(a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets
in F . For E ∈ cf (F ) we have E ∈ adm(F ) if each a ∈ E
is defended by E in F . For E ∈ cf (F ), we define
• E ∈ naive(F ), if there is no D ∈ cf (F ) with E ⊂ D;
• E ∈ prf (F ), ifE∈adm(F ) and @D ∈ adm(F ):E⊂D;
• E ∈ stb(F ), if E⊕F = A;
• E ∈ sem(F ), if E ∈ adm(F ) and @D ∈ adm(F ):
E⊕F ⊂ D⊕F ;

• E ∈ stg(F ), if there is no D ∈ cf (F ) with E⊕F ⊂ D⊕F .

Next we introduce CAFs (Dvořák & Woltran, 2020).

Definition 3. A claim-augmented argumentation framework
(CAF) is a triple (A,R, claim) where (A,R) is an AF and
claim : A → C assigns a claim to each argument in A;
C is a set of possible claims. The claim-function is extended
to sets in the natural way, i.e. claim(E) = {claim(a) |
a ∈ E}. A CAF (A,R, claim) is well-formed if {a}+(A,R) =

{b}+(A,R) for all a, b ∈ A with claim(a) = claim(b).

Well-formed CAFs naturally appear as result of instan-
tiation procedures where the construction of the attack re-
lation depends on the claim of the attacking argument.
However, formalisms which handle argument strengths or
allow for preference relations over arguments (assump-
tions/defeasible rules) typically violate the property of well-
formedness.

Semantics for CAFs. Here we give a short recap of inher-
ited semantics and claim-level semantics for CAFs. We will
first introduce inherited semantics (i-semantics).

Definition 4. For a CAF CF = (A,R, claim) and an
AF semantics σ, we define i-σ semantics as σc(CF ) =
{claim(E) | E ∈ σ((A,R))}. We call E ∈ σ((A,R)) with
claim(E) = S a σc-realization of S in CF .

Next we discuss claim-level semantics (cl-semantics) for
CAFs. Central for cl-variants of stable, semi-stable and stage
semantics is the following notion of claim-defeat.

Definition 5. Let CF = (A,R, claim), E ⊆ A and c ∈
claim(A). E defeats c (in CF ) if E attacks every a ∈ A
with claim(a) = c. We define νCF (E) = {c ∈ claim(A) |
E defeats c in CF}.

We will next introduce the notion of range for a claim-
set S. As different realizations of S might yield different sets
of defeated claims, the range of S is in general not unique
and depends on the particular realization E of S. Observe
that in well-formed CAFs, each claim-set possesses a unique
range as each realization attacks the same arguments.



Definition 6. For a CAF CF = (A,R, claim), S ⊆
claim(A) and a semantics σ, let NCF

σ (S) = {νCF (E) |
E ∈ σ((A,R)), claim(E) = S}. For each S′ ∈ NCF

σ (S),
we call S ∪ S′ a range of S in CF .

We are now ready to introduce cl-semantics for CAFs.

Definition 7. For a CAF CF = (A,R, claim) and S ⊆
claim(A), we define
• S ∈ cl -prf (CF ) if S ∈ admc(CF ) and there is no T ∈
admc(CF ) with S ⊂ T ;

• S ∈ cl -naive(CF ) if S ∈ cfc(CF ) and there is no T ∈
cfc(CF ) with S ⊂ T ;

• S ∈ cl -stbτ (CF ), τ ∈ {cf , adm}, if there is S′ ∈
NCF
τ (S) with S ∪ S′ = claim(A);

• S ∈ cl -sem(CF ) if there is S′ ∈ NCF
adm(S) s.t. there is no

T ∈ admc(CF ), T ′ ∈ NCF
adm(T ) with S ∪ S′ ⊂ T ∪ T ′;

• S ∈ cl -stg(CF ) if there is S′ ∈ NCF
cf (S) s.t. there is no

T ∈ cfc(CF ), T ′ ∈ NCF
cf (T ) with S ∪ S′ ⊂ T ∪ T ′.

We say that a set E ⊆ A realizes a cl -σ claim-set S in CF
if claim(E) = S, E ∈ cf ((A,R)) (E ∈ adm((A,R)) re-
spectively) and S ∪ νCF (E) satisfies the respective require-
ments, e.g., S∪νCF (E) = claim(A) for τ -cl-stable seman-
tics. We call E also a cl -σ-realization of S in CF .

3 Computational Problems
We consider the following decision problems with respect
to a CAF-semantics σ:
• Credulous Acceptance (CredCAF

σ ): Given a CAF CF =
(A,R, claim) and claim c ∈ claim(A), is c contained in
some S ∈ σ(CF )?

• Skeptical Acceptance (SkeptCAF
σ ): Given a CAF CF =

(A,R, claim) and claim c ∈ claim(A), is c contained in
each S ∈ σ(CF )?

• Verification (VerCAF
σ ): Given a CAF CF =

(A,R, claim) and a set S ⊆ claim(A), is S ∈ σ(CF )?
• Non-emptiness (NECAF

σ ): Given a CAF CF =
(A,R, claim), is there a non-empty set S ⊆ claim(A)
such that S ∈ σ(CF )?

We furthermore consider these reasoning problems re-
stricted to well-formed CAFs and denote them by Credwf

σ ,
Skeptwf

σ , Verwf
σ , and NEwf

σ . Moreover, we denote the corre-
sponding decision problems for AFs (which can be obtained
by defining claim as the identity function) by CredAF

σ ,
SkeptAF

σ , VerAF
σ , and NEAF

σ . Finally, we introduce a new
decision problem which asks whether the two variants of a
semantics coincide on a given CAF.
• Concurrence (ConCAF

σ ): Given a CAF CF , does it hold
that σc(CF ) = cl -σ(CF )?

For stable semantics, we write ConCAF
stbτ to specify the con-

sidered cl-stable variant (τ ∈ {adm, cf }). The concurrence
problem restricted to well-formed CAFs is denoted Conwf

σ .

Tables 1 & 2 depict known complexity results for AF
semantics (Dimopoulos & Torres, 1996; Dunne & Bench-
Capon, 2002; Dvořák & Woltran, 2010; Dvořák & Dunne,
2018); and for inherited CAF semantics (Dvořák & Woltran,

Table 1: Complexity of AFs.

σ CredAF
σ SkeptAF

σ VerAF
σ NEAF

σ

cf in P trivial in P in P

adm NP-c trivial in P NP-c
stb NP-c coNP-c in P NP-c
prf NP-c ΠP

2 -c coNP-c NP-c
naive in P in P in P in P

sem ΣP
2 -c ΠP

2 -c coNP-c NP-c
stg ΣP

2 -c ΠP
2 -c coNP-c in P

Table 2: Complexity for ∆ ∈ {CAF ,wf } of inherited se-
mantics. Results that deviate from the corresponding results
for AFs are bold-face.

σ Cred∆
σ Skept∆σ VerCAF

σ /Verwf
σ NE∆

σ

cfc in P trivial NP-c / in P in P

admc NP-c trivial NP-c / in P NP-c
stbc NP-c coNP-c NP-c / in P NP-c
prfc NP-c ΠP

2 -c ΣP
2 -c / coNP-c NP-c

naivec in P coNP-c NP-c / in P in P

2020). Note that Table 2 lacks results for semi-stable and
stage semantics which have not been studied yet in terms of
complexity. We close this gap and complement these results
by an analysis of the claim-level variants.

4 Complexity of Reasoning Problems
The forthcoming analysis yields the following high level
picture: Credulous and skeptical reasoning as well as decid-
ing existence of a non-empty extension is of the same com-
plexity as in AFs except for the notable difference that skep-
tical reasoning with respect to cl-naive semantics goes up
two levels in the polynomial hierarchy and is thus also more
expensive than deciding skeptical acceptance for i-naive se-
mantics which has been shown to be coNP-complete. For
well-formed CAFs, skeptical reasoning admits the same
complexity for both claim-level and inherited naive seman-
tics but remains more expensive than in AFs.

For general CAFs, the verification problem is more ex-
pensive than for AFs for all of the considered seman-
tics. Comparing claim-level and inherited semantics we ob-
serve that the complexity of the verification problem for cl-
preferred semantics drops while the complexity for cl-naive
semantics admits a higher complexity than their inherited
counterparts; the claim-level and inherited variants of stable,
semi-stable and stage semantics admit the same complexity.
For well-formed CAFs, the complexity of the verification
problem coincides with the known results for AFs.

Theorem 1. The complexity results for CAFs depicted in
Table 3 hold.

In the following we provide proofs for the results in
Table 3. We will first discuss the membership proofs of
the considered decision problems. To begin with, we will



Table 3: Complexity of CAFs. Results that deviate from the
corresponding AF results are in bold-face; results that devi-
ate from those w.r.t. inherited semantics are underlined.

σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

semc ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

stgc ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

cl -stbadm NP-c coNP-c NP-c NP-c
cl -stbcf NP-c coNP-c NP-c NP-c
cl -prf NP-c ΠP

2 -c DP-c NP-c
cl -naive in P ΠP

2 -c DP-c in P

cl -sem ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

cl -stg ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

give poly-time respectively coNP procedures for decid-
ing whether a given set of arguments E is a σ-realization
for σ ∈ {cl -stbadm , cl -stbcf , cl -sem, cl -stg}. This lemma
yields upper bounds for the respective reasoning problems;
notice that the complexity goes up one level in the polyno-
mial hierarchy since one requires an additional guess for E.

Lemma 1. Given a CAF CF = (A,R, claim) and some
E ⊆ A. Deciding whether E realizes (1) a τ -cl-stable
claim-set in CF for τ ∈ {adm, cf } is in P; (2) a cl-semi-
stable (cl-stage) claim set in CF is in coNP.

Proof. Checking admissibility (conflict-freeness) of E is in
P (cf. Table 1); moreover, νCF (E) can be computed in poly-
nomial time by looping over all claims c ∈ claim(A) and
adding each c to νCF (E) ifE attacks each occurrence of c in
CF . For τ -cl-stable semantics, it remains to check whether
claim(E) ∪ νCF (E) = claim(A) to verify that E real-
izes a τ -cl-stable claim-set in CF . For cl-semi-stable (cl-
stage) semantics, we have to check that each E′ ⊆ A with
claim(E′)∪νCF (E′) ⊃ claim(E)∪νCF (E) is not admissi-
ble (conflict-free). This can be solved in coNP by a standard
guess & check algorithm, i.e. guess a set and verify that it
is admissible (conflict-free), compute the claims and verify
that they are a proper superset of the claims of the original
set, yielding a coNP algorithm to verify that E realizes a
cl-semi-stable (cl-stage) claim-set in CF .

We use this lemma to show membership results for
VerCAF

σ , σ ∈ {cl -stbτ , cl -sem, cl -stg}: For a CAF CF =
(A,R, claim), S ⊆ claim(A), one can verify S ∈ σ(CF )
by guessing a set of arguments E ⊆ A with claim(E) = S
and checking whether E is a σ-realization of S. The latter is
in P, respectively coNP by Lemma 1, yielding NP- and ΣP

2 -
procedures for the respective semantics. DP-membership of
VerCAF

σ for σ ∈ {cl -prf , cl -naive} is by (1) checking that
a given claim-set S is admissible (conflict-free) and (2) ver-
ifying subset-maximality of S. The former has been shown
to be NP-complete (cf. Table 2); the latter is in coNP: Guess
a set of arguments E such that S ⊂ claim(E) and check
admissibility (conflict-freeness) of E. ΣP

2 -membership of
VerCAF

σc for σ ∈ {sem, stg} is by guessing a set E ⊆ A
and checking E ∈ σ((A,R)) which is coNP-complete by
known results for AFs (cf. Table 1).

x1 1 y1 1

z̄1 1ȳ2 2

z2 2

x̄3 3 ȳ3 3

y4 4 z4 4

z̄4 4

x x y y

x̄ x̄ ȳ ȳ

a1 1

a2 2

a3 3

Figure 1: CAF from the proof of Proposition 1 for
the formula ∀xy∃zϕ, where ϕ is given by the clauses
{{x, y,¬z}, {¬y, z}, {¬x,¬y}, {y, z,¬z}}.

Membership proofs for SkeptCAF
σ are via the complemen-

tary problem: For a claim c ∈ claim(A), guess a set E ⊆ A
such that c /∈ claim(E) and check claim(E) ∈ σ(CF ). For
σ ∈ {cl -stbτ , cl -sem, cl -stg}, the latter can be verified in P
respectively coNP by Lemma 1; for σ ∈ {cl -prf , cl -naive},
we use the result for VerCAF

σ , i.e., claim(E) ∈ σ(CF )
can be verified via two NP-oracle calls, which shows that
SkeptCAF

σ is in ΠP
2 ; for σ ∈ {semc, stgc}, it suffices to check

E ∈ sem((A,R)) or E ∈ stg((A,R))–both are in coNP
(cf. Table 1)–to derive the desired upper bound.

Membership for CredCAF
σ follows the same line of rea-

soning for σ ∈ {cl -stbτ , cl -sem, cl -stg , semc, stgc}. For cl-
preferred and cl-naive semantics, we exploit the fact a claim
c ∈ claim(A) is credulously accepted with respect to cl-
preferred (cl-naive) semantics iff it is contained in some i-
admissible (i-conflict-free) claim-set and thus the complex-
ity of CredCAF

θ for θ ∈ {cfc, admc} (cf. Table 2) applies.
Finally, NECAF

σ for σ ∈ {semc, stgc, cl -prf , cl -naive,
cl -sem, cl -stg} coincides with either NEAF

adm or NEAF
cf

and we get the complexity directly from Table 1. For σ ∈
{cl -stbadm , cl -stbcf }, NECAF

σ can be verified by guessing
a non-empty set E ⊆ A and utilizing Lemma 1 (1).

We now turn to the hardness results. First observe that one
can reduce AF decision problems to the corresponding prob-
lems for CAFs by assigning each argument a unique claim.
Thus CAF decision problems generalize the corresponding
problems for AFs and are therefore at least as hard. It re-
mains to provide hardness proofs for the decision problems
with higher complexity. We will first present a reduction
from QSAT ∀2 to show ΠP

2 -hardness of SkeptCAF
cl-naive before

we address the verification problem: DP-hardness with re-
spect to cl-preferred and cl-naive semantics is by reductions
from SAT-UNSAT; ΣP

2 - hardness with respect to i-semi-
stable and i-stage semantics are by reductions from credu-
lous reasoning for AFs with the respective semantics; the
remaining hardness results are shown via reductions from
appropriate decision problems for inherited semantics.

Proposition 1. SkeptCAF
cl-naive is ΠP

2 -hard.

Proof. We present a reduction from QSAT ∀2 ; see Figure 1
for an illustration. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance
of QSAT ∀2 , where ϕ is a 3-CNF given by a set of clauses
C = {cl1, . . . , cln} over atoms in X = Y ∪ Z. We con-
struct a CAF CF = (A,R, claim) as follows: For each
clause cli, we introduce three arguments representing the lit-
erals contained in cli and assign them claim i; moreover, we



add arguments representing literals over Y and assign them
unique names; furthermore, we add arguments a1, . . . , an−1

with claims 1, . . . , n− 1; formally, A = {xi | x ∈ cli, i ≤
n} ∪ {x̄i | ¬x ∈ cli, i ≤ n}∪ Y ∪ Ȳ ∪ {a1, . . . , an−1}
where Ȳ = {ȳ | y ∈ Y }, and claim(xi) = claim(x̄i) =
claim(ai) = i, claim(y) = y, claim(ȳ) = ȳ. We introduce
conflicts between each argument representing a variable
x ∈ X and its negation; moreover, the additional n − 1 ar-
guments attack every argument xi, x̄i representing literals in
clauses cli; i.e.,R = {(xi, x̄j), | i, j ≤ n}∪{(y, ȳi), (yi, ȳ),
(y, ȳ) | y ∈ Y } ∪ {(ai, xj), (ai, x̄j) | i < n, j ≤ n}.

It can be shown that Ψ is valid iff the claim n is skeptically
accepted with respect to cl-naive semantics in CF : For every
Y ′ ⊆ Y , the set Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {a1, . . . , an−1} is
conflict-free in (A,R) by construction, and therefore Y ′ ∪
{ȳ | y /∈ Y ′}∪{1, . . . , n− 1} is in cfc(CF ). Consequently,
n is skeptically accepted with respect to cl-naive semantics
iff for every Y ′ ⊆ Y , the set Y ′∪{ȳ | y /∈ Y ′}∪{1, . . . , n}
is cl-naive. It suffices to check that for every Y ′ ⊆ Y , the
set Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n} is cl-naive iff there is
Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ.

Hardness results for verification admits a higher complex-
ity compared to AFs. We first recall the standard reduction
that provides the basis for DP-hardness of verification with
respect to cl-preferred semantics and reappears in Section 5.

Reduction 1. Let ϕ be given by a set of clauses C =
{cl1, . . . , cln} over atoms in X . We construct (A,R) with
• A = X ∪ X̄ ∪ C ∪ {ϕ}, with X̄ = {x̄ | x ∈ X};
• R = {(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈
cl} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(cli, ϕ) | i ≤ n}.

Proposition 2. VerCAF
cl-prf is DP-hard.

Proof. We present a reduction from SAT-UNSAT. Let
(ϕ1, ϕ2) be an instance of SAT-UNSAT, where ϕi, i = 1, 2,
is given over a set of clauses Ci over atoms in Xi with
X1 ∩X2 = ∅. We will construct a CAF CF which consists
of two independent frameworks CF i = (Ai, Ri, claimi),
i = 1, 2, both representing one of the formulas ϕ1, ϕ2: For
the formula ϕi, let (Ai, Ri) be defined as in Reduction 1.
Let CF i = (Ai, R

′
i, claimi) with R′i = Ri ∪ {(cl, cl) |

cl ∈ Ci}; moreover, we define claimi(x) = claimi(x̄) = x
for all x ∈ Xi, claimi(cl) = d for all cl ∈ Ci and
claimi(ϕi) = ϕi. We define CF = CF 1 ∪ CF 2 as the
component-wise union of CF 1 and CF 2.

It can be checked that ϕi is satisfiable iff Xi ∪ {ϕi} is
a cl-preferred claim-set of CF i. Since Xi is i-admissible in
CF i (for an admc-realization, consider X ′ ∪ {x̄ | x /∈ X ′}
for any X ′ ⊆ Xi), we furthermore obtain that ϕi is unsatis-
fiable iff Xi is a cl-preferred claim-set of CF i. Since CF 1

and CF 2 are unconnected and have no common arguments,
we have cl -prf (CF ) = {S ∪ T | S ∈ cl -prf (CF 1), T ∈
cl -prf (CF 2)}. Thus X1 ∪X2 ∪ {ϕ1} is cl-preferred in CF
iff ϕ1 is satisfiable and ϕ2 is unsatisfiable.

DP-hardness of verification with respect to cl-naive se-
mantics can be shown via a reduction from SAT-UNSAT
by combining ideas from the previous propositions. As

in Proposition 2, one constructs two independent frame-
works CF 1, CF 2 representing the formulas (3-CNFs) ϕ1,
ϕ2 with sets of clauses C1 = {cl1, . . . , clm} respectively
C2 = {clm+1, . . . , cln}. The construction is similar to the
one in Proposition 1, i.e., one introduces an argument with
claim i for each literal in a clause cli ∈ Cj and adds
|Cj | − 1 arguments with claims 1, . . . ,m − 1 respectively
m + 1, . . . , n − 1. One can show that {1, . . . , n − 1} is cl-
naive in CF 1 ∪CF 2 iff ϕ1 is satisfiable and ϕ2 is unsatisfi-
able.

Proposition 3. VerCAF
cl-naive is DP-hard.

In the following, we show ΣP
2 -hardness of the verification

problem for CAFs with respect to i-semi-stable and i-stage
semantics, utilizing a reduction from the respective credu-
lous acceptance problem for AFs.

Proposition 4. VerCAF
semc and VerCAF

stgc are ΣP
2 -hard.

Proof. We present a proof for VerCAF
semc , the proof for VerCAF

stgc

is analogous. For an instance (A,R), b ∈ A of CredAF
sem ,

we construct a CAF CF = (A′, R, claim) with A′ =
A ∪ {x}, x 6∈ A and claim(b) = c1, claim(a) = c2 for
all a ∈ A′ \ {b}. Then, as the argument x is not involved
in any attack, it is contained in every semi-stable extension
of (A′, R) and thus, as claim(x) = c2, c2 is contained in
every i-semi-stable claim-set of CF . Furthermore, as CF
contains only two claims, the only candidates for i-semi-
stable claim-sets are {c1, c2} and {c2}. Moreover, as b is the
only argument with claim c1, {c1, c2} is i-semi-stable iff b is
contained in some semi-stable set of arguments in (A′, R).
Thus, b is credulously accepted in (A,R) w.r.t. semi-stable
semantics iff {c1, c2} is i-semi-stable in CF . ΣP

2 -hardness
of VerCAF

semc thus follows from known results for AFs.

Finally, we provide hardness results for cl-semi-stable,
τ -cl-stable and cl-stage semantics. We will present reduc-
tions from the verification problem of suitable inherited se-
mantics. To that end, we consider the following translations.

Definition 8. For a CAF CF = (A,R, claim), we define
Tr1(CF ) = (A′, R′, claim ′) with
• A′ = A ∪ {a′ | a ∈ A};
• R′ = R ∪ {(a, a′), (a′, a′) | a ∈ A}; and
• claim ′(a) = claim(a) for a ∈ A, claim(a′) = ca for
a′ ∈ {a′ | a ∈ A} and fresh claims ca /∈ claim(A).

Moreover, we define Tr2(CF ) = (A′, R′2, claim
′) with

R′2 = R′ ∪ {(a, b′) | (a, b) ∈ R}; and Tr3(CF ) =
(A′, R′3, claim

′) with R′3 = R′2 ∪ {(b, a) | (a, b) ∈ R} ∪
{(a, b) | a ∈ A, (b, b) ∈ R}.

It can be shown that Tr1 maps i-preferred semantics to
cl-semi-stable semantics, while Tr2 (Tr3) maps inherited
to claim-level stable (respectively stage) semantics.

Lemma 2. For a CAF CF = (A,R, claim),
1. prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF ));
2. stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for
τ ∈ {adm, cf };

3. stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).



Table 4: Complexity of well-formed CAFs. Results that de-
viate from general CAFs (cf. Table 3) are in bold-face.

σ Credwf
σ Skeptwf

σ Verwf
σ NEwf

σ

semc ΣP
2 -c ΠP

2 -c coNP-c NP-c
stgc ΣP

2 -c ΠP
2 -c coNP-c in P

cl -stbcf NP-c coNP-c in P NP-c
cl -stbadm NP-c coNP-c in P NP-c
cl -naive in P coNP-c in P in P

cl -prf NP-c ΠP
2 -c coNP-c NP-c

cl -sem ΣP
2 -c ΠP

2 -c coNP-c NP-c
cl -stg ΣP

2 -c ΠP
2 -c coNP-c in P

Lower bounds for VerCAF
σ , σ ∈ {cl -stbadm , cl -stbcf ,

cl -sem, cl -stg}, thus follow from the results of the respec-
tive inherited semantics: For a given CAF CF = (A,R,
claim) and a set of claims S ⊆ claim(A), one can check
S ∈ σ′c(CF ), σ′ ∈ {stb, prf , stg}, by applying the respec-
tive translation and checking whether S is a σ-realization in
the resulting CAF. This concludes the proof of Theorem 1.

We next turn to the complexity of well-formed CAFs.

Theorem 2. The complexity results for well-formed CAFs
depicted in Table 4 hold.

First observe that all upper bounds from Theorem 1 carry
over since well-formed CAFs are a special case of CAFs.
It remains to give improved upper bounds for verification
with respect to all of the considered semantics as well as
for Skeptwf

cl-naive . The latter also requires a genuine hardness
proof as it remains harder than the corresponding problem
for AFs even in the well-formed case. For the remaining se-
mantics, we obtain hardness results from the corresponding
problems for AFs since they constitute a special case of the
respective problems for CAFs.

We first discuss improved upper bounds for verification.
For preferred as well as for both variants of cl-stable se-
mantics, membership is immediate by the corresponding re-
sults for inherited semantics as the respective semantics col-
lapse in the well-formed case (Dvořák et al., 2020). For the
remaining semantics, we exploit the following observation
(Dvořák & Woltran, 2020).

Lemma 3. Let CF = (A,R, claim) be well-formed. For
S ⊆ claim(A), let E0(S) = {a ∈ A | cl(a) ∈ S},
E1(S) = E0(S)\E0(S)+

(A,R), andE2 = {a ∈ E1(S) | b ∈
E1(S)+

(A,R) for all (b, a) ∈ R}. Then S ∈ cfc(CF ) iff S =

claim(E1(S)) and S ∈ admc(CF ) iff S = claim(E2(S)).

To check whether a set S ⊆ claim(A) is cl-naive in a
given well-formed CAF CF = (A,R, claim), we utilize
Lemma 3 to test (i) S ∈ cfc(CF ) and (ii) S∪{c} /∈ cfc(CF )
for all c ∈ claim(A)\S, which yields a poly-time procedure
for Verwf

naive . For inherited as well as claim-level semi-stable
and stage semantics, we first compute E1(S), respectively
E2(S) in P (cf. Lemma 3). For cl-semi-stable (cl-stage) se-
mantics, utilize Lemma 1 to check in coNP whether E2(S)
(E1(S)) realizes a cl-semi-stable (cl-stage) claim set; sim-
ilarly, for i-semi-stable (i-stage) semantics, we check that

Table 5: Complexity of deciding ConCAF
σ and Conwf

σ .

prf naive stbτ sem stg

ConCAF
σ ΠP

2 -c coNP-c ΠP
2 -c ΠP

3 -c ΠP
3 -c

Conwf
σ trivial in coNP trivial ΠP

2 -c ΠP
2 -c

E2(S) ∈ sem((A,F )) (E1(S) ∈ stg((A,F ))), which is
known to be coNP-complete.

Finally, we will discuss coNP-completeness of skeptical
reasoning in well-formed CAFs w.r.t. cl-naive semantics.

Proposition 5. Skeptwf
cl-naive is coNP-complete.

Proof. As the verification problem is in P, the membership
is by a standard guess and check algorithm. Hardness can be
shown via a reduction from UNSAT: For a formula ϕ with
clauses C = {cl1, . . . , cln} over the atoms X , let (A,R) be
defined as in Reduction 1. We define CF = (A′, R′, claim)
with A′ = A \ {ϕ} and R′ = R \ {(cli, ϕ) | i ≤ n}, more-
over, we set claim(x) = x, claim(x̄) = x̄, claim(cli) = ϕ̄.
Observe that CF is indeed well-formed. It can be checked
that ϕ is unsatisfiable iff ϕ̄ is skeptically accepted with re-
spect to cl-naive semantics.

5 Deciding Concurrence
This section examines the complexity of deciding concur-
rence of the different variants of the considered semantics.
Our results (cf. Table 5) reveal that deciding concurrence
is in general computationally hard; observe that for semi-
stable and stage semantics, the problem is complete for the
third level of the polynomial hierarchy.

Theorem 3. The complexity results depicted in Table 5 hold.

In what follows, we will present upper bounds for the
(non-trivial) problems and discuss ΠP

3 -hardness of deciding
concurrence for semi-stable and stage semantics.

Membership of deciding concurrence is by the following
generic guess and check procedure for the complementary
problem: To verify for a given (well-formed) CAF CF =
(A,R, claim) that σc(CF ) = cl -σ(CF ) one first guesses
a set of claims S ⊆ claim(A) and checks whether S ∈
σc(CF ) and S /∈ cl -σ(CF ) or vice versa. The complexity
of the procedure thus follows from the corresponding results
for verification with respect to the considered semantics.

For preferred and naive semantics, we get improved up-
per bounds by the following observation: If a CAF CF ad-
mits incomparable i-preferred (i-naive) claim-sets then both
variants of the respective semantics coincide; that is, for
σ ∈ {prf ,naive}, σc(CF ) = cl -σ(CF ) if and only if
σc(CF ) is incomparable. Thus it suffices to verify incompa-
rability of σc(CF ). We give a ΣP

2 (NP resp.) procedure for
the complementary problem: Guess E,G ⊆ A and check
(i) E,G ∈ σ((A,R)) and (ii) claim(E) ⊂ claim(G). The
former is in coNP for prf (in P for naive) by Table 1.

We next extend Reduction 1 in order to show ΠP
3 -hardness

of concurrence with respect to semi-stable semantics.
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Figure 2: Reduction 2 for the formula ∃X∀Y ∃Zϕ(X,Y, Z)
with clauses {{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

Reduction 2. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an in-
stance of QSAT ∃3 , where ϕ is given by a set of clauses
C = {cl1, . . . , cln} over atoms in V = X ∪ Y ∪ Z. We
can assume that there is a variable y0 ∈ Y with y0 ∈ cli for
all i ≤ n (otherwise we can add such a y0 without changing
the validity of Ψ). Let (A,R) be the AF constructed from ϕ
as in Reduction 1. We define CF = (A′, R′, claim) with
• A′ = A ∪ {d1, d2, ϕ̄} ∪ {dv, dv̄ | v ∈ X ∪ Y };
• R′ = R ∪ {(a, da), (da, da), | a ∈ X ∪ X̄ ∪ Y ∪ Ȳ } ∪
{(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, d1)} ∪ {(di, dj) | i, j ≤ 2};

• claim(v) = claim(v̄) = v for v ∈ Y ∪ Z; claim(cli) =
ϕ̄ for i ≤ n; claim(di) = d for i = 1, 2; claim(a) = a
else.

An illustrative example of the reduction is given in Fig-
ure 2. Next we provide some properties for the reduction
making use of the observation that for any instance of
QSAT ∃3 , each i-semi-stable and each cl-semi-stable claim-
set in the resulting CAF is of the form X ′ ∪ {x̄ | x /∈ X ′}∪
Y ∪ Z ∪ {e} for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}; in
fact, it can be shown that each such set is cl -sem-realizable.
Note that this is not the case for i-semi-stable semantics (as a
counter-example, consider e = ϕ̄ andX = {x} in Figure 2).

Lemma 4. Let CF = (A,R, claim) be as in Reduction 2
for an instance ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT ∃3 . Then, (1)
cl -sem(CF )={X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e} | X ′⊆X,
e ∈ {ϕ, ϕ̄}}; (2) semc(CF ) ⊆ cl -sem(CF ); and (3) X ′∪
{x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} ∈ semc(CF ) for all X ′ ⊆ X .

Proposition 6. ConCAF
sem is ΠP

3 -hard.

Proof. Let CF = (A,R, claim) be the CAF generated
by Reduction 2 from Ψ = ∃X∀Y ∃Zϕ(X,Y, Z). We
show Ψ is valid iff semc(CF ) 6= cl -sem(CF ). Since
semc(CF ) ⊆ cl -sem(CF ) by Lemma 6 (2), the latter re-
duces to semc(CF ) ⊂ cl -sem(CF ). By Lemma 6 (3), this
is the case if there is some X ′ ⊆ X such that X ′ ∪ {x̄ | x /∈
X ′} ∪ Y ∪ Z ∪ {ϕ̄} is not semc-realizable.

Assume Ψ is valid, then there is X ′ ⊆ X such that
Ψ′ = ∀Y ∃Zϕ(X ′, Y, Z) is valid (ϕ(X ′, Y, Z) is the for-
mula which arises after replacing each x ∈ X with >
in case x ∈ X ′ and ⊥ if x /∈ X ′). One can show that
S = X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{ϕ̄} /∈ semc(CF ): Towards
a contradiction, assume there is a semc-realization E of S

(observe that ϕ̄ ∈ E and d1, d2 /∈ E⊕(A,R)). Let Y ′ = E ∩ Y
and consider the set D = M ∪ {v̄ | v /∈ M} ∪ {ϕ},
where M = X ′ ∪ Y ′ ∪ Z ′ is a model of ϕ (since Ψ′ is
valid, there is such a Z ′ ⊆ Z). It can be checked that D
is admissible; moreover, D attacks d1 since ϕ ∈ D. Thus
D⊕(A,R) ⊃ E⊕(A,R), contradiction to E ∈ sem((A,R)).

In case Ψ is not valid, one can show that for all X ′ ⊆ X ,
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ̄} ∈ semc(CF ). Let
X ′ ⊆ X . Since Ψ is not valid, there is Y ′ ⊆ Y such that
for all Z ′ ⊆ Z, X ′ ∪ Y ′ ∪ Z ′ is not a model of ϕ. It can be
shown that X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ C′ ∪
{ϕ̄}, where Z ′ ⊆ Z and C′ ⊆ C being all clauses which are
not satisfied, is semi-stable in (A,R). Thus semc(CF ) =
cl -sem(CF ).

ΠP
3 -hardness of ConCAF

stg also uses Reduction 2; in fact,
we have stgc(CF ) = semc(CF ) and cl -stg(CF ) =
cl -sem(CF ) for all CAFs CF generated via the reduction.

Well-formed CAFs. For well-formed CAFs, cl-preferred
and i-preferred as well as all considered variants of stable
semantics coincide (Dvořák et al., 2020) thus the respective
problems become trivial. Since for semi-stable and stage se-
mantics, the complexity for verification drops for both vari-
ants, we get the ΠP

2 -membership results. Hardness is by a
reduction from QSAT ∀2 by appropriate adaptions of Reduc-
tion 1. Concurrence for well-formed CAFs with respect to
naive semantics is a special case of CAFs and is therefore in
coNP; establishing a corresponding lower bound remains an
open problem.

6 Discussion
In this work we complemented complexity results for in-
herited semantics and provided a full complexity analysis of
claim-level semantics. We highlight three observations here:
(a) for both approaches the verification problem is harder
than in the AF setting, which is in particular relevant when it
comes to the enumeration of extensions; (b) however, when
restricted to well-formed CAFs the complexity of verifica-
tion drops to the complexity of AFs; and (c) the complex-
ity of inherited and claim-level semantics differs for naive
and preferred semantics. Our complexity analysis paves the
way for reduction-based implementation (Charwat, Dvořák,
Gaggl, Wallner, & Woltran, 2015) of the considered seman-
tics which is next on our agenda.

We also settled the complexity of the concurrence prob-
lem, i.e., deciding whether two variants of a semantics coin-
cide on a CAF. The concurrence problem is in the tradition
of the well-known coherence problem (Dunne & Bench-
Capon, 2002), whose complexity for inherited semantics has
been studied in (Dvořák & Woltran, 2020); for claim-based
semantics this remains for future research. While we fo-
cused on two different claim-based argumentation semantics
in this paper, exploring further concepts of claim-focused
evaluation – as also recently addressed in (Baroni & Riveret,
2019) indicating alternative ways of lifting semantics to the
claim-level – is a further point on our agenda.
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A Appendix
In this appendix we provide full proofs for the main results
of the paper.

We occasionally make use of relations between seman-
tics (Dvořák & Woltran, 2020; Dvořák et al., 2020). For any
CAF CF :

stbc(CF ) ⊆ semc(CF ) ⊆ prfc(CF ) ⊆ admc(CF )

stbc(CF ) ⊆ stgc(CF ) ⊆ naivec(CF ) ⊆ cfc(CF )

Moreover,

stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF )

cl -prf (CF ) ⊆ prfc(CF )

cl -sem(CF ) ⊆ prfc(CF )

cl -naive(CF ) ⊆ naivec(CF )

cl -stg(CF ) ⊆ naivec(CF )

If the CAF CF is well-formed, we additionally have
stbc(CF ) = cl -stbadm(CF ) = cl -stbcf (CF ), furthermore
prfc(CF ) = cl -prf (CF ).

We will make use of the following notations: For a propo-
sitional atom x, we will denote its negation by x̄. Moreover,
we write X̄ = {x̄ | x ∈ X} for any set of atoms X . Fur-
thermore, let [n] = {1, . . . , n} for any n ∈ N.

Proofs of Section 4
Theorem 1 (restated). The complexity results for CAFs de-
picted in Table 3 hold.
Proposition 1 (restated). SkeptCAF

cl-naive is ΠP
2 -hard.

Proof. We present a reduction from QSAT ∀2 . Let Ψ =
∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 , where ϕ is a 3-
CNF given by a set of clauses C = {cl1, . . . , cln} over
atoms in X = Y ∪ Z. We construct a CAF CF =
(A,R, claim) as follows: For each clause cli, we introduce
three arguments representing the literals contained in cli and
assign them the claim cli; moreover, we add separate ar-
guments for each literal in Y ∪ Ȳ and assign them their
unique name; furthermore, we define n − 1 additional ar-
guments a1, . . . , an−1 with claim cl1, . . . cln−1; formally,
A = {xi | x ∈ cli, i ≤ n} ∪ {x̄i | x̄ ∈ cli, i ≤
n}∪Y ∪Ȳ ∪{a1, . . . , an−1} and claim(xi) = claim(x̄i) =
claim(ai) = i for all i ≤ n, claim(y) = y, claim(ȳ) = ȳ.
We introduce conflicts between each argument represent-
ing a variable x ∈ X and its negation; moreover, the ad-
ditional n − 1 arguments attack every argument represent-
ing literals xi, x̄i in a clause; i.e., R = {(xi, x̄j), | i, j ≤
n} ∪ {(y, ȳi), (yi, ȳ), (y, ȳ) | y ∈ Y } ∪ {(ai, xj), (ai, x̄j) |
i < n, j ≤ n}.

We will first prove the following observation: (a) For ev-
ery Y ′ ⊆ Y , Y ′ ∪ {ȳ | y /∈ Y ′} ∪ [n] ∈ cl -naive(CF ) iff
there is Z ′ ⊆ Z such that M = Y ′ ∪Z ′ is a model of ϕ. Let
S = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ [n].

First assume S ∈ cl -naive(CF ). Consider a cfc-
realization E of S and let Z ′ = {z ∈ Z | zi ∈ E}. Then

M = Y ′ ∪ Z ′ is a model of ϕ: Consider an arbitrary clause
cli. Since [n] ⊆ S, there is some argument with claim i inE,
that is, either ai ∈ E or xi ∈ E or x̄i ∈ E for some x ∈ X
(observe that yi ∈ E iff y ∈ E and ȳi ∈ E iff ȳ ∈ E, thus
a further case distinction for y ∈ Y , ȳ ∈ Ȳ is not required).
We have that ai /∈ E since n ∈ S and for each argument
b with claim(b) = n we have (ai, b) ∈ R. Thus there is
x ∈ X such that either xi ∈ E or x̄i ∈ E. In the former
case, we have x ∈ M and thus M satisfies cli, in the latter
case x /∈ M and thus cli is satisfied. We obtain that M is a
model of ϕ.

Now assume there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is
a model of ϕ. Let E = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {xi | x ∈
M} ∪ {x̄i | x /∈ M}. E is conflict-free since ai /∈ E for all
i < n; other conflicts appear only between arguments xi, x̄j
referring to the same atom x. Moreover, as M is a model of
ϕ, we have that for each clause cli, there is either a positive
literal x ∈ cli with x ∈ M or a negative literal x̄ ∈ cli
with x /∈ M . Thus [n] ⊆ claim(E); moreover, Y ′ ∪ {ȳ |
y /∈ Y ′} ⊆ claim(E) and therefore claim(E) = S. S is a
maximal cl-conflict-free claim-set since S∪{c} /∈ cf c(CF )
for any c ∈ (Y ∪Ȳ )\S as each realization of S∪{c} contains
y, ȳ for some y ∈ Y . Thus S ∈ cl -naive(CF ).

We show that Ψ is valid iff the claim n is skeptically ac-
cepted with respect to cl-naive semantics in CF .

Assume Ψ is not valid. Then there is Y ′ ⊆ Y such that
for all Z ′ ⊆ Z, M = Y ′ ∪ Z ′ does not satisfy ϕ. Let S =
Y ′ ∪ {ȳ | y /∈ Y ′} ∪ [n− 1]. Observe that S is i-conflict-
free, witnessed by the cfc-realization Y ′ ∪ {ȳ | y /∈ Y ′} ∪
{a1, . . . , an−1}. S is cl-naive since S ∪ {n} /∈ cf c(CF ) by
(a) and S ∪ {c} /∈ cf c(CF ) for any c ∈ (Y ∪ Ȳ ) \ S as
each realization of S ∪ {c} contains y, ȳ for some y ∈ Y .
Thus n is not skeptically accepted with respect to cl-naive
semantics in CF .

Assume n is not skeptically accepted with respect to naive
semantics in CF . Then there is a set S ∈ cl -naive(CF )
such that n /∈ S. Observe that S contains Y ′ ∪ {ȳ | y /∈ Y }
for some Y ′ ⊆ Y by construction. Let Y ′ = S ∪ Y . We
show that for all Z ′ ⊆ Z, Y ′ ∪ Z ′ is not a model of ϕ:
Towards a contradiction assume there is Z ′ ⊆ Z such that
M = Y ′ ∪ Z ′ is a model of ϕ. By (a), T = Y ′ ∪ {ȳ |
y /∈ Y ′} ∪ [n] ∈ cl -naive(CF ). Thus T ⊃ S since n /∈ S,
contradiction to S being cl-naive in CF . It follows that Ψ is
not valid.

Proposition 2 (restated). VerCAF
cl-prf is DP-hard.

Proof. We present a reduction from SAT-UNSAT. Let
(ϕ1, ϕ2) be an instance of SAT-UNSAT, where ϕi, i = 1, 2,
is given over a set of clauses Ci over atoms in Xi with
X1 ∩X2 = ∅. We will construct a CAF CF which consists
of two independent frameworks CF i = (Ai, Ri, claimi),
i = 1, 2, both representing one of the formulas ϕ1, ϕ2: For
the formula ϕi, let (Ai, Ri) be defined as in Reduction 1.
Let CF i = (Ai, R

′
i, claimi) with R′i = Ri ∪ {(cl, cl) |

cl ∈ Ci}; moreover, we define claimi(x) = claimi(x̄) = x
for all x ∈ Xi, claimi(cl) = d for all cl ∈ Ci and
claimi(ϕi) = ϕi. We define CF = CF 1 ∪ CF 2 as the
component-wise union of CF 1, CF 2.



We will show that X1 ∪ X2 ∪ {ϕ1} is cl-preferred in
CF iff ϕ1 is satisfiable and ϕ2 is unsatisfiable. Since CF 1

and CF 2 are unconnected and have no common arguments
(and thus cl -prf (CF ) = {S ∪ T | S ∈ cl -prf (CF 1), T ∈
cl -prf (CF 2)}), it suffices to show that (a) ϕi is satisfiable
iffXi∪{ϕi} is a cl-preferred claim-set of CF i and (b) ϕi is
unsatisfiable iff Xi is a cl-preferred claim-set of CF i. The
latter follows from (a) since Xi is i-admissible in CF i inde-
pendently of the satisfiability of ϕi (for an admc-realization,
consider X ′ ∪ {x̄ | x /∈ X ′} for any X ′ ⊆ Xi).

We show ϕi is satisfiable iff Xi ∪ {ϕi} is a cl-preferred
claim-set of CF i:

Assume ϕi is satisfiable and consider a model M of ϕi.
Let E = M ∪ {x̄ | x /∈ M}. We show that E′ = E ∪ {ϕi}
is admissible in (Ai, R

′
i): First observe that E is admissi-

ble since each a ∈ Xi ∪ X̄i defends itself. Since M sat-
isfies ϕi, we have that for any clause cl ∈ Ci, there is
either x ∈ cl with x ∈ M or x̄ ∈ cl with x /∈ M ,
thus E attacks each cl ∈ C. Consequently, E defends ϕi;
we conclude that E′ is admissible in (Ai, R

′
i). Moreover,

claim(E′) is a subset-maximal i-admissible claim-set since
claim(E′) = Ai \ {d}, that is, claim(E′) contains ev-
ery claim c ∈ claim(Ai) which is assigned to non-self-
attacking arguments. Thus claim(E′) = Xi ∪ {ϕi} is cl-
preferred in CF i.

Now assumeXi∪{ϕi} is cl-preferred in CF i. Let E be a
admc-realization ofXi∪{ϕi} and letM = E∩Xi. Consider
an arbitrary clause cl ∈ Ci. Since ϕi ∈ E is defended by E
we have that E attacks cl, thus there is either an argument
x ∈ E such that (x, cl) ∈ R′i or an argument x̄ ∈ E with
(x̄, cl) ∈ R′i. In the former case, we have x ∈M and thusM
satisfies cl, in the latter case x /∈ M and thus cl is satisfied.
We obtain that M is a model of ϕi.

Proposition 3 (restated). VerCAF
cl-naive is DP-hard.

Proof. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT, where
ϕ1 is a 3-CNF given over a set of clauses C1 =
{cl1, . . . , clm} over atoms in X , ϕ2 is a 3-CNF given over
a set of clauses C2 = {clm+1, . . . , cln} over atoms in Y .
We construct a CAF CF = CF 1 ∪ CF 2 which consists
of two independent frameworks where CF 1 represents ϕ1

and CF 2 represents ϕ2. For both CF 1, CF 2, we introduce
three arguments for each clause cli representing the liter-
als in the clause and assign them claim i; moreover, we
introduce conflicts between each variable and its negation;
furthermore, we add arguments A′1 = a1, . . . , am−1 (re-
spectively A′2 = am+1, . . . , an−1) with claims 1, . . . , n− 1
(respectively m + 1, . . . , n − 1) where each ai attacks ev-
ery argument representing a literal in ϕ1 (respectively ϕ2).
Formally, CF j = (Aj , Rj , claimj), j = 1, 2 is given by
Aj = A′j ∪{xi | x ∈ cli, i ≤ m}∪{x̄i | x̄ ∈ cli, cli ∈ Cj};
Rj = {(xi, x̄k) | i 6= k} ∪ {(ai, b) | ai ∈ A′j , b ∈ A \ A′j};
and claimj(xi) = claim(x̄i) = i.

We show ϕ1 is satisfiable and ϕ2 is unsatisfiable iff
[n− 1] ∈ cl -naive(CF ) by proving (a) ϕ1 is satisfi-
able iff [m] ∈ cl -naive(CF 1). (b) ϕ2 is unsatisfiable iff
{m + 1, . . . , n − 1} ∈ cl -naive(CF 2). Since CF 1, CF 2

are unconnected and claim(A1) ∩ claim(A2) = ∅, we

have naivec(CF ) = {S ∪ T | S ∈ naivec(CF 1), T ∈
naivec(CF 2)}. Thus ϕ1 is satisfiable and ϕ2 is unsatisfiable
iff [n− 1] ∈ cl -naive(CF ).

(a) First assume ϕ1 is satisfiable and consider a model
M of ϕ1. Let E = {xi | x ∈ M, i ≤ m} ∪ {x̄i | x /∈
M, i ≤ m}. E is conflict-free by construction. We show
that claim(E) = [m]. Let cli ∈ C1. Since ϕ1 is satisfiable,
there is either x ∈ M ∩ cli or x̄ ∈ cli such that x /∈ M .
Thus either xi ∈ E with claim(xi) = i or x̄i ∈ E with
claim(x̄i) = i and therefore claim(E) = [m].

Now assume [m] ∈ cl -naive(CF ) and let E be a cfc-
realization of [m]. Let M = {x | ∃i ≤ n : xi ∈ E}. Now,
consider an arbitrary clause cli ∈ C1. Then E contains an
argument with claim i, that is, either xi ∈ E or x̄i ∈ E. In
the former case, x ∈M and thus cli is satisfied. In the latter
case, x /∈ M as x̄i is in conflict with all arguments xj and
thus cli is satisfied. We obtain that M is a model of ϕ and
thus ϕ1 is satisfiable.

(b) First notice that claim(A′2) = {m + 1, . . . , n −
1} ∈ cfc(CF 2) by construction. By (a), ϕ2 is unsatisfiable
iff {m + 1, . . . , n} /∈ cl -naive(CF ′2). As claim(A′2) ⊂
{m + 1, . . . , n}, we have ϕ2 is unsatisfiable iff {m +
1, . . . , n} /∈ cl -naive(CF 2) iff {m + 1, . . . , n − 1} ∈
cl -naive(CF 2).

Lemma 2 (restated). For a CAF CF = (A,R, claim),
1. prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF ));
2. stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for
τ ∈ {adm, cf };

3. stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).

We prove the three statements separately. First, we show
prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF )).

Proof. Let Tr1(CF ) = CF ′ = (A′, R′, claim ′). The proof
proceeds in three steps:

(i) We first show that C ∈ cfc(CF ) if and only if C ∈
cfc(CF

′) and further that prfc(CF ) = prfc(CF
′).

⇒: Let E be a cfc-realization of C in (A,R). As E ⊆ A,
it cannot contain any a′. Thus, E ∈ cf ((A′, R′)), as all ad-
ditional attacks contain at least one argument a′, which are
not contained in E and therefore C ∈ cfc(CF

′).
⇐: Let E be a cfc-realization of C in (A′, R′). As all ar-
guments a′ are self-attacking, E ∩ A′ = ∅. Therefore, as
R ⊆ R′, E ∈ cf ((A,R)) and thus C ∈ cfc(CF ).

Moreover, also E ∈ adm((A,R)) if and only if E ∈
adm((A′, R′)), asE∩A′ = ∅. Now, as preferred extensions
are subset maximal admissible sets, we further obtain that
E ∈ prf ((A,R)) if and only if E ∈ prf ((A′, R′)) and thus,
prfc(CF ) = prfc(CF

′).
(ii) Next, to show that prfc(CF ′) ⊆ cl -sem(CF ′), let

C ∈ prfc(CF
′) and E be a prfc-realization of C in

(A′, R′). Furthermore, towards a contradiction, let F ∈
adm((A′, R′)) and C ∪ νCF ′(E) ⊂ claim ′(F ) ∪ νCF ′(F ).
As E ∈ prf ((A′, R′)), there must be some a ∈ E \ F . Fur-
thermore, as all arguments b′ ∈ A′ \ A are self-attacking,
it must hold that a ∈ A and thus, by the construction of
Tr1, there must be some argument a′ such that a is the
only argument attacking a′ and a′ is the only argument
with claim claim ′(a′). Therefore, claim ′(a′) ∈ νCF ′(E)



but claim(a′) 6∈ claim ′(F ) ∪ νCF ′(F ), contradicting that
C ∪ νCF ′(E) ⊂ claim ′(F ) ∪ νCF ′(F ). Thus, such a set F
cannot exist and therefore, prfc(CF ′) ⊆ cl -sem(CF ′).

(iii) Finally, to show that cl -sem(CF ′) ⊆ prfc(CF
′), let

C ∈ cl -sem(CF ′) and E ⊆ A′ be a admissible set witness-
ing C. Towards a contradiction, let F ⊆ prf ((A′, R′)) such
that E ⊂ F . Then, C ∪ νCF ′(E) ⊆ claim ′(F ) ∪ νCF ′(F ).
Furthermore, as E ⊂ F , there must be some a ∈ F \ E
and thus some a′ ∈ A′ attacked by a. As, by the construc-
tion of Tr1, a′ is the only argument with claim claim ′(a′)
and is only attacked by a (except for itself), claim ′(a′) ∈
claim ′(F ) ∪ νCF ′(F ) and claim ′(a′) 6∈ C ∪ νCF ′(E) and
thus C ∪ νCF ′(E) ⊂ claim ′(F ) ∪ νCF ′(F ), contradicting
that C ∈ cl -sem(CF ′). Thus, such a set F cannot exist and
therefore, cl -sem(CF ′) ⊆ prfc(CF

′).

Next, we show the second statement that stbc(CF ) =
stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for τ ∈ {adm, cf }.

Proof. Let Tr2(CF ) = CF ′ = (A′, R′, claim ′). Since
stbc(CF ) ⊆ cl -stbadm(CF ) ⊆ cl -stbcf (CF ) holds for any
CAF CF , it suffices to show that (i) stbc(CF ) ⊆ stbc(CF

′)
and (ii) cl -stbcf (CF ′) ⊆ stbc(CF ).

First observe that (a) for every set of argumentsE ⊆ A,E
attacks the argument a′ in CF ′ iff a ∈ E ∪ E+

(A,R). Indeed,
E attacks an argument a′ iff either a ∈ E or if there is b ∈ E
such that (b, a) ∈ R.

(i) Let S ∈ stbc(CF ) and consider a stbc-realization
E ⊆ A. We show that E is stable in CF ′: First notice that E
is conflict-free since we introduced no attacks between exist-
ing arguments in CF ′. Moreover, E attacks every argument
a ∈ A′ \ E: Clearly, E attacks every argument a ∈ A \ E;
moreover, E attacks every a′ ∈ {a′ | a ∈ A} by (a) since
E ∪ E+

(A,R) = A.
(ii) Let S ∈ cl -stbcf (CF ′), then there is a set E ∈ A′

such that E ∈ cf ((A′, R′)) and claim(E) ∪ νCF ′(E) =
claim(A′). We show that E ∈ stb((A,R)). First observe
that E ⊆ A since each argument a′ ∈ {a′ | a ∈ A} is self-
attacking; moreover, E is conflict-free in (A,R). We show
thatE attacks every argument a ∈ A\E: We have {ca | a ∈
A} ⊆ νCF ′(E) since claim(E) ∪ νCF ′(E) = claim(A′).
Thus E attacks each argument a′ in CF ′. We conclude by
(a) that a ∈ E ∪ E+

(A,R) for every argument a ∈ A. We
have shown that E ∈ stb((A,R)) and, consequently, S ∈
stbc(CF ).

Finally we show stgc(CF ) = stgc(Tr3(CF )) =
cl -stg(Tr3(CF )).

Proof. Let Tr3(CF ) = CF ′ = (A′, R′, claim ′). The proof
proceeds in three steps:

(i) First, observe that cf ((A,R)) = cf ((A′, R′)) as all
added arguments are self-attacking and we only add attacks
between arguments {a, b} ⊆ A if there was already one
in at least one direction or the attacked argument was self-
attacking. Moreover, {∅} ∈ stgc(CF ) if and only if all ar-
guments are self-attacking which is the case if and only if
{∅} ∈ cl -stg(CF ).

(ii) Regarding stgc(CF ) = stgc(CF
′): For every maximal

(with regard to⊆) E ∈ cf (A′, R′),A ⊆ E∪E+
(A′,R′), as all

arguments in A are either contained or, due to the fact that
E is maximal, are attacked by E. Thus, such sets E, due
to the fact that all arguments a′ are self-attacking, are the
only witnessing candidates for the extensions in stgc(CF )
and stgc(CF

′). Furthermore, by construction of Tr3, E ∪
E+

(A′,R′) = A ∪ {a′ ∈ A′ | a ∈ E ∪ E+
(A,R)} and thus

E ∪ E+
(A,R) will be maximal if and only if E ∪ E+

(A′,R′) is
maximal.

(iii) Finally, stgc(CF ′) = cl -stg(CF ′) follows by observ-
ing that the claims of all arguments in A′ are unique.

Theorem 2 (restated). The complexity results for CAFs de-
picted in Table 4 hold.

To show that Skeptwf
naive is coNP-complete we make use

of the following reduction which will also reappear in sev-
eral proofs from Section 5.

Reduction 3. Let ϕ be given by a set of clauses C =
{cl1, . . . , cln} over atoms in X and let (A,R) be as in
Reduction 1. We define (A′, R′) with A′ = A \ {ϕ} and
R′ = R \ {(cli, ϕ) | i ≤ n}.

Proposition 5 (restated). Skeptwf
naive is coNP-complete.

Proof. For a well-formed CAF CF = (A,R, claim), one
can verify skeptical acceptance of a claim c ∈ claim(A)
by (1) guessing a set E ⊆ A such that c /∈ claim(E); (2)
checking if claim(E) is a cl-naive claim-set of CF . The
latter can be verified in polynomial time, yielding a NP-
procedure for the complementary problem.

Hardness can be shown via a reduction from UNSAT: For
a formula ϕ with clauses C = {cl1, . . . , cln} over the atoms
X , we define CF = (A,R, claim) where (A,R) is de-
fined as in Reduction 3 and claim(x) = x, claim(x̄) = x̄,
claim(cli) = ϕ̄. Observe that CF is well-formed. We show
ϕ is satisfiable iff ϕ̄ is not skeptically accepted in CF .

In case ϕ is satisfiable, then there is a model M ⊆ X of
ϕ. Consider E = M ∪ {x̄ | x /∈ M}, which is conflict-
free and cannot be extended by any argument cli assigned
with claim ϕ̄: Indeed, since each clause cli is satisfied by
M , there is either a positive literal x ∈ cli with x ∈ M
or a negative literal x̄ ∈ cli with x /∈ M , thus cli is at-
tacked by E in (A,R). Moreover, we have that for each
x ∈ X , either x ∈ E (and thus x ∈ claim(E)) or x̄ ∈ E
(and thus x̄ ∈ claim(E)) and (x, x̄) ∈ R. Consequently,
claim(E) is maximal among i-conflict-free claim-sets and
thus claim(E) ∈ cl -naive(CF ). It follows that ϕ̄ is not
skeptically accepted in CF .

Now assume ϕ̄ is not skeptically accepted in CF , then
there is a set S ∈ cl -naive(CF ) such that ϕ̄ /∈ S. For a
cfc-realization E of S, we have M = E ∩X is a model of
ϕ: Consider an arbitrary clause cli. As ϕ̄ /∈ S we have that
E attacks cli, thus there is either an argument x ∈ E such
that (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R.
In the former case, we have x ∈M and thus M satisfies cli,
in the latter case x̄ /∈ M and thus cli is satisfied. We obtain
that M is a model of ϕ.



Proofs of Section 5
Theorem 2 (restated). The complexity results depicted in
Table 5 hold.

Proposition 7. For a CAF CF = (A,R, claim), for σ ∈
{prf ,naive}, σc(CF ) = cl -σ(CF ) if and only if σc(CF ) is
incomparable.

Proof. Let σ = prf (the proof for σ = naive is anal-
ogous). Assume prfc(CF ) is incomparable and let S ∈
prfc(CF ). Then S ∈ admc(CF ). Now assume there is
T ∈ admc(CF ) with T ⊃ S. Consider a admc-realization
E of T in CF and let E′ ∈ prf ((A,R)) with E ⊆ E′.
But then claim(E′) ∈ prfc(CF ) and claim(E′) ⊇ T ⊃ S,
contradiction to prfc(CF ) being incomparable.

Proposition 8. ConCAF
prf is ΠP

2 -hard.

Proof. We present a reduction from SkeptAF
prf : Given an

instance (A,R), a ∈ A from SkeptAF
prf . W.l.o.g. we can

assume that the preferred extensions of (A,R) are non-
empty (otherwise add an isolated argument). We construct
CF = (A′, R′, claim) with A′ = A ∪ {i, j}, R′ = R ∪
{(j, b), (b, j) | b ∈ A}, and claim(a) = claim(j) = c1,
claim(b) = c2 for b ∈ (A\{a})∪{i}. Then prf ((A′, R′)) =
{E ∪ {i} | E ∈ prf ((A,R))} ∪ {{i, j}} since the ar-
gument i is isolated and thus appears in each extension;
moreover, j mutually attacks each argument b ∈ A. For
all extensions D ∈ prf ((A′, R′)) with a ∈ D we have
claim(D) = {c1, c2}; for all extensionsD ∈ prf ((A′, R′)),
D 6= {i, j}, with a /∈ D, we have claim(D) = {c2}; more-
over, claim({i, j}) = {c1, c2} and thus we have {c1, c2} ∈
prfc(CF ) independently of the considered instance. Thus
a is not skeptically accepted in (A,R) with respect to pre-
ferred semantics iff {c2} ∈ prfc(CF ) iff prfc(CF ) is not
incomparable.

Proposition 9. ConCAF
naive is coNP-hard.

Proof. For hardness, we present a reduction from UNSAT:
Let ϕ be given by a set of clauses C = {cl1, . . . , cln} over
literals in X . W.l.o.g. we can assume that ϕ does not con-
tain tautological clauses, i.e., there is no cli, i ≤ n with
x, x̄ ∈ cli for any x ∈ X . Let AX = {ax | x ∈ X}
and AX̄ = {ax̄ | x ∈ X} and let (A,R) be defined as in
Reduction 3. We construct a CAF CF = (A′, R′, claim)
with A′ = A ∪ AX ∪ AX̄ ; R′ = R ∪ {(a, b) | a ∈
AX ∪AX̄ , b ∈ C ∪X ∪ X̄} ∪ {(cli, clj) | i 6= j ≤ m}; and
claim(x) = claim(ax) = x, claim(x̄) = claim(ax̄) = x̄
and claim(cli) = c. We will show ϕ is unsatisfiable iff
naivec(CF ) is incomparable.

First asssume ϕ is satisfiable and consider a model M of
ϕ. Let E = M ∪ {x̄ | x /∈ M}. Clearly, E is conflict-
free; moreover, as M satisfies each clause cli there is either
x ∈ cli with x ∈ M or x̄ ∈ cli with x /∈ M , thus E attacks
each cli. As E is attacked by each a ∈ AX ∪ AX̄ and since
E contains either x or x̄ for each x ∈ X and each pair x, x̄
is conflicting, we can conclude that E is a subset-maximal
conflict-free set. Moreover,X∪X̄ ∈ naivec(CF ) witnessed

by the set AX ∪ AX̄ which is conflict-free and attacks ev-
ery remaining claim b ∈ A′ \ (AX ∪ AX̄). It follows that
naivec(CF ) is not incomparable since claim(E) = E ∈
naivec(CF ) and E ⊂ X ∪ X̄ .

Now assume ϕ is not satisfiable. We will show that
naivec(CF ) = {X ∪ X̄} ∪ {X ′ ∪ {x̄ | x /∈ X ′} ∪ {c} |
X ′ ⊆ X} (implying that naivec(CF ) is incomparable).

(a) {X ∪ X̄} ∪ {X ′ ∪ {x̄ | x /∈ X ′} ∪ {c} | X ′ ⊆ X} ⊆
naivec(CF ): Consider X ′ ⊆ X and let E = X ′ ∪ {x̄ |
x /∈ X ′}. E is conflict-free. As ϕ is not satisfiable, there is a
clause cli such that x /∈ cli for all x ∈ X ′ and x̄ /∈ cli for all
x /∈ X ′, otherwise, X ′ would be a model of ϕ. Thus E′ =
E ∪ {cli} ∈ cf ((A′, R′)). E′ is a maximal conflict-free set
since E′∪{a} is conflicting for each argument a /∈ E′; thus
X ′ ∪ {x̄ | x /∈ X ′} ∪ {c} ∈ naivec(CF ). The statement
follows as X ∪ X̄ ∈ naivec(CF ) by construction.

(b) naivec(CF ) ⊆ {X∪X̄}∪{X ′∪{x̄ | x /∈ X ′}∪{c} |
X ′ ⊆ X}: Let S ∈ naivec(CF ). First assume c /∈ S and
consider a naivec-realization E of S. As c /∈ S we have that
E is in conflict with each cli ∈ C. As ϕ is unsatisfiable,
we conclude that the only possible naivec-realization of S
is AX ∪ AX̄ ; indeed, in case E ∩ (X ∪ X̄) 6= ∅, consider
M = E ∩X , then M is a model of ϕ since for each clause
cli, there is either x ∈ cli with x ∈ M or x̄ ∈ cli with
x /∈ M . Thus S = X ∪ X̄ in case x /∈ S. Now, assume
c ∈ S and consider a naivec-realization E of S. Let cli be
the argument realizing c in E. Notice that for every x ∈ X ,
either {x, cli} or {x̄, cli} is conflict-free since there is no
clause cli with x, x̄ ∈ cli. Thus there is X ′ ⊆ X such that
X ′ ∪ {x̄ | x /∈ X ′} ⊆ E, that is, S = X ′ ∪ {x̄ | x /∈
X ′} ∪ {c} in case c ∈ S.

Proposition 10. ConCAF
stbτ , τ ∈ {cf , adm} is ΠP

2 -hard.

Proof. We present a reduction from QSAT ∀2 . Let Ψ =
∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2 , where ϕ is given
by a set of clauses C = {cl1, . . . , cln} over atoms in X =
Y ∪Z. Let (A,R) be as in Reduction 3. We construct a CAF
CF = (A,R′, claim) withR′ = R∪{(cli, cli) | i ≤ n} and
claim(y) = y, claim(ȳ) = ȳ, claim(v) = claim(cli) = c
for i ≤ n, v ∈ Z ∪ Z̄.

We will first show that (a) cl -stbτ = {Y ′ ∪ {ȳ | y /∈
Y ′}∪{c} | Y ′ ⊆ Y }: Each τ -cl-stable claim-set S contains
either y or ȳ by construction; moreover, c ∈ S since c is
not defeated by any conflict-free set of arguments E ⊆ A,
thus each τ -cl-stable claim-set is of the form Y ′ ∪ {ȳ | y /∈
Y ′}∪{c} for some Y ′ ⊆ Y . Moreover, each such set is stbτ -
realizable, since for any Y ′ ⊆ Y , z ∈ Z, the set E = Y ′ ∪
{ȳ | y /∈ Y ′} ∪ {z} is admissible (conflict-free) in (A,R′)
and attacks every a ∈ A such that claim(a) /∈ claim(E).

We show Ψ is valid iff stbc(CF ) = cl -stbτ (CF ).
Assume Ψ is valid. Let Y ′ ⊆ Y . Then there is Z ′ ⊆ Z

such that ϕ is satisfied by M = Y ′ ∪Z ′. Let E = M ∪ {x̄ |
x /∈ M}. Since M satisfies each clause cli, there is either
x ∈ cli with x ∈ M or there is x̄ ∈ cli with x /∈ M . It
follows that each cli, i ≤ n, is attacked by E. Since E is
also conflict-free we have shown that E is a stable extension
of (A,R) and therefore Y ′∪{ȳ | y /∈ Y ′}∪{c} ∈ stbc(CF ).
As Y ′ was arbitrary, we have that Y ′∪{ȳ | y /∈ Y ′}∪{c} ∈



stbc(CF ) for all Y ′ ⊆ Y . We conclude that stbc(CF ) =
cl -stbτ (CF ) by (a).

Assume stbc(CF ) = cl -stbτ (CF ). Let Y ′ ⊆ Y . By (a)
we have that S = Y ′∪{ȳ | y /∈ Y ′}∪{c} ∈ cl -stbτ (CF ) =
stbc(CF ). Consider a stbc-realization E of S and let Z ′ =
E∩Z. ThenM = Y ′∪Z ′ satisfies ϕ: Consider an arbitrary
clause cli. AsE attacks cli there is either an argument x ∈ E
with (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈
R. In the former case, x ∈ cli and x ∈ M and thus cli is
satisfied; in the latter case, x̄ ∈ cli and x /∈ M and thus cli
is satisfied. ThusM is a model of ϕ. We have shown that for
every Y ′ ⊆ Y , there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ satisfies
ϕ. It follows that Ψ is valid.

We will now consider ΠP
3 -hardness of semi-stable and

stage semantics. We will make use of the following obser-
vations.

Lemma 5. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of
QSAT ∃3 and let CF = (A,R, claim) be as in Reduction 2.
Then for all E ∈ sem((A,R)),

1. ϕ ∈ E ⇔ ϕ̄ /∈ E;
2. ϕ ∈ E ⇔ E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪
Ȳ ) \ E} ∪ {d2});

3. ϕ̄ ∈ E ⇔ E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪
Ȳ ) \ E} ∪ {d1, d2}).

Proof. (1) is immediate by construction.
For (2), first assume ϕ ∈ E. Then ϕ̄, d1 ∈ E⊕(A,R) since

ϕ ∈ E; also, ϕ ∈ E only if E defends ϕ against each cli,
i ≤ n, thus each cli is attacked by E; moreover, each a ∈
V ∪ V̄ is either contained or attacked by E, otherwise, there
is D = E ∪ {a} with D⊕(A,R) ⊃ E⊕(A,R), contradiction to
E ∈ sem((A,R)). Thus V ∪ V̄ ∈ E⊕(A,R) and da ∈ E⊕(A,R)

for a ∈ E ∩ (X ∪ X̄ ∪Y ∪ Ȳ ). In case E⊕(A,R) = A \ ({da |
a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \E} ∪ {d2}), we have ϕ ∈ E since
ϕ is the only argument attacking d1.

To show (3) first assume ϕ̄ ∈ E. Then ϕ ∈ E+
(A,R); more-

over, each a ∈ V ∪ V̄ is either contained or attacked by E,
otherwise, there is D = E ∪ {a} with D⊕(A,R) ⊃ E⊕(A,R),
contradiction to E ∈ sem((A,R)). Thus we have V ∪ V̄ ∈
E⊕(A,R) and da ∈ E⊕(A,R) for a ∈ E∩(X∪X̄∪Y ∪Ȳ ). Also,
each cli is either attacked by E or defended by E (observe
that there is at least one i ≤ n such that cli ∈ E, otherwise
D = (E ∪{ϕ}) \ {ϕ̄} is admissible and D⊕(A,R) ⊃ E⊕(A,R)).
The other direction follows since d1 /∈ E⊕(A,R) and thus
ϕ /∈ E.

Lemma 6. Let CF = (A,R, claim) be as in Reduction 2
for an instance ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT ∃3 . Then, (1)
cl -sem(CF )={X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e} | X ′⊆X,
e ∈ {ϕ, ϕ̄}}; (2) semc(CF ) ⊆ cl -sem(CF ); and (3) X ′∪
{x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} ∈ semc(CF ) for all X ′ ⊆ X .

Lemma 6 (restated). Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an
instance of QSAT ∃3 and let CF = (A,R, claim) be as in
Reduction 2. Then

1. cl -sem(CF ) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} |
X ′⊆X, e ∈ {ϕ, ϕ̄}};

2. semc(CF ) ⊆ cl -sem(CF ); and
3. X ′∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} ∈ semc(CF ) for all
X ′ ⊆ X .

Proof. To prove the statements we will first show that (i)
each cl-semi-stable and each i-semi-stable claim-set is of
the form X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} for some
X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}: As semc(CF ) ⊆ prfc(CF )
and cl -sem(CF ) ⊆ prfc(CF ), it suffices to prove the state-
ment for each i-preferred claim-set S. First observe that S
cannot contain both a, ā for a ∈ X ∪ {ϕ} since there is no
cfc-realization containing both a, ā. As each other claim in
claim(A) \ (V ∪ V̄ ∪{ϕ, ϕ̄}) is self-attacking, it remains to
show that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} ⊆ S for some
X ′ ⊆ X , for e ∈ {ϕ, ϕ̄}. S contains X ′ ∪ {x̄ | x /∈ X ′}
for some for some X ′ ⊆ X: Assume there is x ∈ X such
that x, x̄ /∈ S. Consider a prfc-realization E of S and let
D = E ∪ {x}. D is conflict-free since x̄, dx /∈ E, more-
over, cli /∈ E for each clause cli with (x, cli) ∈ R, since
cli is not defended against the attack (x, cli). Also, D is ad-
missible since E does not contain the only attacker x̄ of x
and D ⊃ E, contradiction to E being preferred in (A,R). S
contains Y ∪Z: Assume there is v ∈ Y ∪Z such that v /∈ S.
Consider a prfc-realization E of S and let D = E ∪ {v}. D
is admissible since v̄ /∈ E by assumption v /∈ S andD ⊃ E,
contradiction to E being preferred in (A,R). S contains ei-
ther ϕ or ϕ̄: Towards a contradiction, assume ϕ, ϕ̄ /∈ S.
Consider a prfc-realization E of S and let D = E ∪{ϕ̄}. D
is admissible since ϕ /∈ E and D ⊃ E, contradiction to E
being preferred in (A,R).

(1) By (i), it suffices to show that (a) for all X ′ ⊆ X ,
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ̄} is cl-semi-stable; and
(b) for all X ′ ⊆ X , X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ} is
cl-semi-stable.

(a) Let X ′ ⊆ X and fix Y ′ ⊆ Y , Z ′ ⊆ Z. Let C′ ⊆ C
denote the set of clauses cli which are not attacked by
X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′}. Let E =
X ′∪Y ′∪Z ′∪{v̄ | v /∈ X ′∪Y ′∪Z ′}∪C′∪{ϕ̄}. ThenE is ad-
missible and claim(E) = X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{ϕ̄}
and νCF (E) = {da | a ∈ X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈
X ′ ∪ Y ′ ∪ Z ′}} ∪ {ϕ}. claim(E) ∪ νCF (E) is subset-
maximal among admissible sets since it contains every claim
c ∈ claim(A) which is assigned to non-self-attacking argu-
ments; moreover, it contains a maximal set of claims among
{dv | v ∈ V ∪ V̄ } since it contains precisely one of dv, dv̄
for each v ∈ V ; furthermore observe that d /∈ νCF (E) for
all conflict-free sets E ⊆ A since d2 /∈ E+

(A,R) for every
E ∈ cf ((A,R)).

(b) Let E = X ′∪Y ′∪Z ′∪{v̄ | v /∈ X ′∪Y ′∪Z ′}∪{ϕ}
for some X ′ ⊆ X , Z ′ ⊆ Z and Y ′ ⊆ Y with y0 ∈ Y ′. E
defends ϕ as y0 ∈ cli for all i ≤ n, thus E is admissible.
Moreover, claim(E) = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪
{ϕ} and νCF (E) = {da | a ∈ X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈
X ′ ∪ Y ′ ∪ Z ′}} ∪ {ϕ̄}. Similar as above, we conclude that
claim(E) ∪ νCF (E) is subset-maximal.

(2) semc(CF ) ⊆ cl -sem(CF ) by (i) and (1).
(3) Consider X ′ ⊆ X and let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ |

v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ {ϕ} for some Z ′ ⊆ Z and Y ′ ⊆ Y



with y0 ∈ Y ′. E defends ϕ as y0 ∈ cli for all i ≤ n, thus
E is admissible. Moreover, E is semi-stable since E⊕(A,R) =

V ∪ V̄ ∪{da | a ∈ E ∩ (X ∪ X̄ ∪Y ∪ Ȳ )}∪C ∪{ϕ, ϕ̄, d1}
is subset-maximal: Assume there is D ∈ adm((A,R)) with
D⊕(A,R) ⊃ E⊕(A,R), that is, there is e ∈ {d2} ∪ {da | a ∈
(X∪X̄∪Y ∪Ȳ )\E} such that e ∈ D⊕(A,R); in particular, e ∈
D+

(A,R) because all considered arguments are self-attacking.
Observe that d2 /∈ D+

(A,R) since its only attacker is self-
attacking. In case e = da for some a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \
E we have a ∈ D and ā ∈ D and thus D is conflicting,
contradiction to D being conflict-free. Thus we have shown
that claim(E) = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ} is
i-semi-stable.

Proposition 6 (restated). ConCAF
sem is ΠP

3 -hard.

Proof. Let CF = (A,R, claim) be the CAF generated
by Reduction 2 from Ψ = ∃X∀Y ∃Zϕ(X,Y, Z). We
show Ψ is valid iff semc(CF ) 6= cl -sem(CF ). Since
semc(CF ) ⊆ cl -sem(CF ) by Lemma 6 (2), the latter re-
duces to semc(CF ) ⊂ cl -sem(CF ). By Lemma 6 (3), this
is the case if there is some X ′ ⊆ X such that X ′ ∪ {x̄ | x /∈
X ′} ∪ Y ∪ Z ∪ {ϕ̄} is not semc-realizable.

Assume Ψ is valid, that is, there is X ′ ⊆ X such that
for all Y ′ ⊆ Y , there is Z ′ ⊆ Z such that X ′ ∪ Y ′ ∪ Z ′
is a model of ϕ. We show X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪
{ϕ̄} /∈ semc(CF ). Towards a contradiction, assume there is
E ∈ sem((A,R)) such that claim(E) = X ′ ∪ {x̄ | x /∈
X ′} ∪ Y ∪ Z ∪ {ϕ̄}. Then ϕ̄ ∈ E. By Lemma 5, E⊕(A,R) =

A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}). Let
Y ′ = E ∩ Y . By assumption Ψ is valid, there is Z ′ ⊆ Z
such that M = X ′ ∪ Y ′ ∪ Z ′ is a model of ϕ. Let D =
M ∪ {v̄ | v /∈ M} ∪ {ϕ}. D is conflict-free; moreover,
D attacks every cli, i ≤ n: Since M is a model of ϕ, we
have that for all clauses cli, i ≤ n, there is v ∈ V such that
either v ∈ cli ∩M (in that case, v ∈ D and (v, cli) ∈ R) or
v̄ ∈ cli and v /∈ M (in that case, v̄ ∈ D and (v̄, cli) ∈ R).
It follows that D is admissible. We show that D⊕(A,R) ⊃
E⊕(A,R): Clearly, V ∪ V̄ ⊆ D⊕(A,R); also, C ⊆ D⊕(A,R) as
shown above; moreover, ϕ̄, d1 ∈ D⊕(A,R) since ϕ ∈ D. As
D andE contain the same arguments a ∈ X∪X̄∪Y ∪ Ȳ by
construction, we furthermore have {da | a ∈ (X ∪ X̄ ∪Y ∪
Ȳ )\E} = {da | a ∈ (X ∪ X̄ ∪Y ∪ Ȳ )\D}. It follows that
D⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \E} ∪ {d2}).
Thus D is admissible and D⊕(A,R) ⊃ E⊕(A,R), contradiction
to our assumption E is semi-stable in (A,R).

Assume Ψ is not valid. We show that for all X ′ ⊆ X ,
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ̄} ∈ semc(CF ). Fix X ′ ⊆
X . Since Ψ is not valid, there is Y ′ ⊆ Y such that for all
Z ′ ⊆ Z,X ′∪Y ′∪Z ′ is not a model of ϕ. FixZ ′ ⊆ Z and let
E = X ′∪Y ′∪Z ′∪{v̄ | v /∈ X ′∪Y ′∪Z ′}∪C′∪{ϕ̄}, where
C′ ⊆ C contains all clauses cli which are not attacked by
X ′∪Y ′∪Z ′∪{ā | a /∈ X ′∪Y ′∪Z ′}. ThenE is admissible
and E⊕(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪
{d1, d2}). We show thatE is semi-stable in (A,R). Assume
there is D ⊆ A with D⊕(A,R) ⊃ E⊕(A,R). First observe that D

attacks the same arguments da, a ∈ X∪X̄∪Y ∪Ȳ , asE and
thusX ′∪Y ′ ⊆ D. By Lemma 5 and sinceD⊕(A,R) is strictly
bigger than E⊕(A,R), we have that D⊕(A,R) = A \ ({da | a ∈
(X ∪ X̄ ∪ Y ∪ Ȳ ) \D} ∪ {d2}). It follows that ϕ ∈ D. Let
Z ′′ = D ∩ Z. Then M = X ′ ∪ Y ′ ∪ Z ′′ is a model of ϕ:
As each cli, i ≤ n, is attacked by D, there is a literal l ∈ D
with l ∈ cli; now, if l is a positive literal, we have l ∈ M ,
in case l is a negative literal, we have l /∈M . Therefore ϕ is
satisfied by M , contradiction to our initial assumption Ψ is
not valid. It follows thatX ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{ϕ̄} ∈
semc(CF ) for allX ′ ⊆ X . Thus semc(CF ) = cl -sem(CF )
by Lemma 6.

We now turn to stage semantics.

Lemma 7. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of
QSAT ∃3 and let CF = (A,R, claim) be as in Reduction 2.
Then

1. cl -sem(CF ) = cl -stg(CF ); and
2. semc(CF ) = stgc(CF ).

Proof. To prove the statements we will first show that (i)
each cl-stage and each i-stage claim-set is of the form X ′ ∪
{x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} for some X ′ ⊆ X and for e ∈
{ϕ, ϕ̄}: Let S ∈ stgc(CF ) ∪ cl -stg(CF ), V = X ∪ Y ∪ Z.
First notice that S ⊆ X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e}
for some X ′ ⊆ X , for e ∈ {ϕ, ϕ̄}: S cannot contain both
a, ā for a ∈ X ∪ {ϕ} since there is no cfc-realization E
containing both b, b̄, for b ∈ X , nor ϕ, b for b ∈ {ϕ̄} ∪ C. It
remains to show that X ′∪{x̄ | x /∈ X ′}∪Y ∪Z ∪{e} ⊆ S
for some X ′ ⊆ X , for e ∈ {ϕ, ϕ̄}.

Let S ∈ stgc(CF ) and consider a stgc-realization E of S.
E contains V ′ ∪ {v̄ | v /∈ V ′} for some V ′ ⊆ V : Assume
there is v ∈ V such that v, v̄ /∈ E and let D = (E \ {cli |
(v, cli) ∈ R}) ∪ {v}. D is conflict-free since v̄, dv /∈ E
and since cli /∈ E for each clause cli with (v, cli) ∈ R.
Moreover, each such cli is attacked byD and thusD⊕(A,R) ⊃
E⊕(A,R), contradiction toE being stage in (A,R). Moreover,
E contains either ϕ or ϕ̄: Towards a contradiction, assume
ϕ, ϕ̄ /∈ E and let D = E ∪ {ϕ̄}. D is conflict-free since
ϕ /∈ E and D⊕(A,R) ⊃ E⊕(A,R), contradiction to E being
stage in (A,R).

Let S ∈ cl -stg(CF ). We will first show that S contains
either ϕ or ϕ̄: Towards a contradiction, assume ϕ, ϕ̄ /∈ S.
As S is cl-stage, there is an cfc-realization E of S such that
claim(E)∪ νCF (E) is maximal among conflict-free claim-
sets. Let D = E ∪ {ϕ̄}. D is conflict-free since ϕ /∈ E and
thus claim(D)∪νCF (D) = claim(E)∪νCF (E)∪{ϕ, ϕ̄} ⊃
claim(E) ∪ νCF (E), contradiction to S being cl-stage. S
contains X ′ ∪ {x̄ | x /∈ X ′} and Y ∪ Z ⊆ S: Assume
there is x ∈ X such that x, x̄ /∈ S. As S is cl-stage, there
is an cfc-realization E of S such that claim(E) ∪ νCF (E)
is maximal among conflict-free claim-sets. In case ϕ ∈ S,
then ϕ ∈ E and ϕ̄ /∈ E, cli /∈ E, i ≤ n, since they
are in conflict with ϕ. Then D = E ∪ {x} is conflict-
free and properly extends E, thus claim(D) ∪ νCF (D) ⊃
claim(E) ∪ νCF (E), contradiction to S being cl-stage. In
case ϕ̄ ∈ E, let D = (E \ {cli | (x, cli) ∈ R}) ∪ {x, ϕ̄}.
D is conflict-free since x̄, dx /∈ E, cli /∈ E for each clause



cli with (v, cli) ∈ R and ϕ /∈ E by assumption ϕ̄ ∈ S.
claim(D) = claim(E) ∪ {x} since the only arguments
which have been removed from D are labelled with claim
ϕ̄ and D contains ϕ̄; moreover, νCF (E) ⊆ νCF (D) since
ϕ is the only attacked argument of each cli and (ϕ̄, ϕ) ∈ R.
Consequently, claim(D)∪νCF (D) ⊃ claim(E)∪νCF (E),
contradiction to S being cl-stage. Y ∪Z ⊆ S: Assume there
is v ∈ Y ∪ Z such that v /∈ S. As S is cl-stage, there is an
cfc-realizationE of S such that claim(E)∪νCF (E) is max-
imal among conflict-free claim-sets and E does not contain
v, v̄ by assumption. Analogous to above, one can extend E
appropriately to derive a contradiction to S being cl-stage.

(1) Analogous to Lemma 6, one can show that
cl -stg(CF ) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} | X ′ ⊆
X, e ∈ {ϕ, ϕ̄}}.

(2) We will show (a) stgc(CF ) ⊆ semc(CF ); and (b)
semc(CF ) ⊆ stgc(CF ).

To show (a), let S ∈ stgc(CF ). By (i), either ϕ ∈ S or
ϕ̄ ∈ S. In case ϕ ∈ S, we have S = X ′ ∪ {x̄ | x /∈
X ′}∪Y ∪Z ∪{ϕ} for some X ′ ⊆ X , thus S ∈ semc(CF )
by Lemma 6. In case ϕ̄ ∈ S, we consider a stgc-realization
E of S. E is admissible: Each a ∈ V ∪ V̄ ∪ {ϕ̄} defends it-
self; also, ϕ /∈ E by (i); moreover, each cli ∈ E is defended
by E, otherwise there is cli ∈ E which is not defended
by E against some argument a ∈ V ∪ V̄ , thus ā /∈ E,
that is, there is v ∈ V such that v, v̄ /∈ E, contradiction
to (i). Thus E is semi-stable, otherwise there is some set
D ∈ adm((A,R)) ⊆ cf ((A,R)) with D⊕(A,R) ⊃ E⊕(A,R),
contradiction to E being stage in (A,R).

To show (b), let S ∈ semc(CF ) and consider a semc-
realization E of S. Clearly, E is conflict-free. We show
that E ∈ stg((A,R)). Towards a contradiction, assume
that there is D ∈ cf ((A,R)) with D⊕(A,R) ⊃ E⊕(A,R).
Let a ∈ D⊕(A,R) \ E⊕(A,R). By Lemma 5, either E⊕(A,R) =

A\({da | a ∈ (X∪X̄∪Y ∪Ȳ )\E}∪{d2}) (in case ϕ ∈ E)
orE⊕(A,R) = A\({da | a ∈ (X∪X̄∪Y ∪Ȳ )\E}∪{d1, d2})
(in case ϕ̄ ∈ E); that is, a ∈ {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \
E} ∪ {d1, d2}. Also, for all v ∈ V , either dv ∈ E⊕(A,R) or
dv̄ ∈ E⊕(A,R), otherwise v, v̄ /∈ E; let E′ = E ∪ {v}, then
(E′)⊕(A,R) ⊃ E⊕(A,R), contradiction to E being semi-stable.
In case a = db for some b ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E},
we have db, db̄ ∈ D⊕(A,R) and thus b, b̄ ∈ D, contradic-
tion to D being conflict-free. Moreover, a 6= d2 since the
only attacker d1 of d2 is self-attacking. Consider the case
a = d1, then ϕ ∈ D since ϕ is the only attacker of d1.
Thus cli /∈ D for all i ≤ n by conflict-freeness of D; we
conclude that D attacks each cli, i ≤ n since cli ∈ E⊕(A,R)

for all i ≤ n and D⊕(A,R) ⊃ E⊕(A,R). Therefore D is ad-
missible and D⊕(A,R) ⊃ E⊕(A,R), contradiction to E being
semi-stable.

ΠP
3 -hardness of ConCAF

stg thus follows from Lemma 7 and
Proposition 6.

Proposition 11. ConCAF
stg is ΠP

3 -hard.

Next we consider concurrence of semi-stable and stage
semantics in well-formed CAFs. We will adapt Reduction 1

ϕd1

d

d2

d

e

ϕ̄1 ϕ̄2

cl1 cl2 cl3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

dy1 dȳ1 dy2 dȳ2

Figure 3: Reduction 4 for the formula ∀Y ∃Zϕ(Y,Z)
where ϕ(Y,Z) is given by the clauses
{{z1, y1, y2}, {ȳ1, ȳ2, z̄2)}, {z̄1, ȳ1, z2}}.

as follows.

Reduction 4. Let Ψ = ∀Y ∃Zϕ(Y, Z) be an instance
of QSAT ∀2 , where ϕ is given by a set of clauses C =
{cl1, . . . , cln} over atoms in X = Y ∪ Z. Let (A,R) be
the AF constructed from ϕ as in Reduction 1. We define
CF = (A′, R′, claim) with
• A′ = A ∪ {e, d1, d2, ϕ̄1, ϕ̄2};
• R′ = R ∪ {(a, da)(da, da) | a ∈ Y ∪ Ȳ } ∪ {(di, dj) |
i, j = 1, 2} ∪ {(a, b) | a, b ∈ {ϕ, ϕ̄1, ϕ̄2}, a 6= b} ∪
{(ϕ, e), (e, e), (ϕ, d1), (ϕ̄1, d1)};

• claim(d1) = claim(d2) = d and claim(v) = v else.

An example to illustrate the reduction is given in Figure 3.

Lemma 8. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of
QSAT ∀2 , let σ ∈ {sem, stg} and let CF = (A,R, claim)
be as in Reduction 4. Then

1. for all E ∈ cf ((A,R)), (claim(E))+
CF = E+

(A,R) \
{d1};

2. every S ∈ cfc(CF ) admits a unique realization in
(A,R);

3. for all S ∈ σc(CF ) ∪ cl -σ(CF ), either ϕ ∈ S or ϕ1 ∈
S or ϕ2 ∈ S.

Proof. (1) and (2) follow since claim(a) = a for every non-
self-attacking argument a; moreover, d2 /∈ E+

(A,R) for every
conflict-free set E since d1 is the only attacker of d2; (3) is
immediate by construction.

Lemma 9. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of
QSAT ∀2 , let σ ∈ {sem, stg} and let CF = (A,R, claim)
be as in Reduction 4. Then σc(CF ) ⊆ cl -σ(CF ).

Proof. Consider S ∈ σc(CF ) and let E denote the unique
σc-realization of S in (A,R). As E ∈ σ((A,R)), we
have that E ∪ E+

(A,R) is subset-maximal among admissi-
ble (conflict-free) extensions. We will show that S ∪ S+

CF is
subset-maximal among i-admissible (i-conflict-free) claim-
sets. Towards a contradiction, assume S ∪ S+

CF is not
subset-maximal among i-admissible (i-conflict-free) claim-
sets, that is, there is T ∈ admc(CF ) (T ∈ cfc(CF )) with



T ∪ T+
CF ⊃ S ∪ S+

CF . Consider the unique cfc-realization
D of T in (A,R), then D ∪ D+

(A,R) \ {d1} = T ∪ T+
CF ⊃

S ∪ S+
CF = E ∪ E+

(A,R) \ {d1}. If either d1 ∈ D+
(A,R)

or d1 /∈ E+
(A,R) we are done since in this case, we have

D ∪D+
(A,R) ⊃ E ∪ E+

(A,R), contradiction to E being semi-
stable (stage) in (A,R). Thus we assume d1 ∈ E+

(A,R) but
d1 /∈ D+

(A,R). By Lemma 8, we have ϕ2 ∈ D since ϕ2 does
not attack d1; also, ϕ1 ∈ E or ϕ ∈ E. In case ϕ ∈ E,
we have e ∈ E+

(A,R), e /∈ D+
(A,R) thus e ∈ S ∪ S+

CF but
e /∈ T ∪ T+

CF , contradiction to the assumption T ∪ T+
CF ⊃

S ∪ S+
CF . In case ϕ2 ∈ D and ϕ1 ∈ E, consider D′ =

(D ∪ {ϕ1}) \ {ϕ2}. D′ is admissible (conflict-free) as D is
admissible (conflict-free) and exchanging ϕ2 with ϕ1 does
neither add conflicts nor undefended arguments. Moreover,
d1 ∈ (D′)+

(A,R) and D ∪D+
(A,R) = D′ ∪ (D′)+

(A,R) \ {d1}.
Therefore D′ ∪ (D′)+

(A,R) ⊃ E ∪ E+
(A,R), contradiction to

E being semi-stable (stage) in (A,R).

Lemma 10. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of
QSAT ∀2 , let σ ∈ {sem, stg} and let CF = (A,R, claim)
be as in Reduction 4. Then for all S ∈ σc(CF )∪ cl -σ(CF ),
ϕ ∈ S implies S ∈ σc(CF ) ∩ cl -σ(CF ).

Proof. By Lemma 9, σc(CF ) ⊆ cl -σ(CF ) thus it suffices
to prove the statement for S ∈ cl -σ(CF ). Let E denote
the unique cfc-realization of S in (A,R). We will show
E ∈ σ((A,R)). Towards a contradiction, assume there is
D ∈ adm((A,R)) (D ∈ cf ((A,R))) with D ∪ D+

(A,R) ⊃
E ∪ E+

(A,R). As ϕ ∈ E we have d1 ∈ E+
(A,R) and thus

D ∪ D+
(A,R) \ {d1} ⊃ E ∪ E+

(A,R) \ {d1}. By Lemma 8,
claim(D) ∪ claim(D)+

(A,R) = D ∪ D+
(A,R) \ {d1} ⊃

E ∪ E+
(A,R) \ {d1} = S ∪ S+

CF , contradiction to S being
cl-semi-stable (cl-stage) in CF .

Proposition 12. Conwf
σ , σ ∈ {sem, stg}, is ΠP

2 -hard.

Proof. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT ∀2
and let CF = (A,R, claim) be as in Reduction 4.

We will show Ψ is valid iff σc(CF ) = cl -σ(CF ).
First assume Ψ is valid. We show that in this case, ϕ ∈ S

for all S ∈ σc(CF )∪ cl -σ(CF ). By Lemma 10, this implies
S ∈ σc(CF ) ∩ cl -σ(CF ) and thus σc(CF ) = cl -σ(CF ).

By Lemma 9, it suffices to prove the statement for every
S ∈ cl -σ(CF ). Towards a contradiction, assume there is
S ∈ cl -σ(CF ) such that ϕ /∈ S. Then e /∈ S ∪ S+

CF . Let
Y ′ = S ∩ Y . Since Ψ is valid, there is Z ′ ⊆ Z such that
Y ′ ∪ Z ′ is a model of ϕ. Let E = Y ′ ∪ Z ′ ∪ {x̄ | x /∈
Y ′ ∪ Z ′} ∪ {ϕ}. Then S′ = claim(E) is i-admissible (i-
conflict-free) and S′∪(S′)+

CF = claim(A)\({d}∪{dy | y /∈
E} ∪ {dȳ | ȳ /∈ E}). We can conclude that S′ ∪ (S′)+

CF ⊃
S∪S+

CF since e /∈ S∪S+
CF and {d}∪{dy | y /∈ E}∪{dȳ |

ȳ /∈ E} * S ∪ S+
CF , contradiction to our initial assumption

S is cl-semi-stable (cl-stage). It follows that ϕ ∈ S for every
S ∈ cl -σ(CF ).

Now assume Ψ is not valid, i.e., there is Y ′ ⊆ Y such
that for all Z ′ ⊆ Z, Y ′ ∪ Z ′ is not a model of ϕ. We
will show that σc(CF ) ⊂ cl -σ(CF ). Fix Z ′ ⊆ Z and

let E = Y ′ ∪ Z ′ ∪ {x̄ | x /∈ Y ′ ∪ Z ′}. Moreover, let
E1 = E ∪ C′ ∪ {ϕ1} and E2 = E ∪ C′ ∪ {ϕ2} where
C′ ⊆ C contains all clauses cli such that E ∩ cli = ∅.
Clearly, E1, E2 ∈ adm((A,R)) (E1, E2 ∈ cf ((A,R)))
and thus E1 = claim(E1), E2 = claim(E2) ∈ admc(CF )
(E1 = claim(E1), E2 = claim(E2) ∈ cfc(CF )). Ob-
serve that (E2)⊕(A,R) ⊂ (E1)⊕(A,R) since d1 is attacked by
ϕ1 ∈ E1 but there is no a ∈ E2 such that (a, d1) ∈ R. It
follows that E2 = claim(E2) /∈ σc(CF ). We show that
E2 ∈ cl -σ(CF ) for σ ∈ {sem, stg}, that is, we show
that claim(E2) ∪ (E2)+

CF = claim(A) \ ({e, d} ∪ {dy |
y /∈ E} ∪ {dȳ | ȳ /∈ E}) is maximal among admissi-
ble (conflict-free) claim-sets: Towards a contradiction, as-
sume there is T ∈ admc(CF ) (T ∈ cfc(CF )) such that
T ∪T+

CF ⊃ claim(E2)∪ (E2)+
CF . As {dy | y ∈ Y ′}∪{dȳ |

y /∈ Y ′} ⊆ T+
CF we have Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ T and T+

CF

does not contain any claim in {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E}
since for every y ∈ Y , there is no conflict-free set attacking
both dy and dȳ . Moreover, d /∈ T+

CF for every T ∈ cfc(CF )
since d1 and d2 are the only attackers of d2 and d1 is self-
attacking. It follows that e ∈ T+

CF and thus ϕ ∈ T . Consider
the unique cfc-realization D of T . Since ϕ ∈ D we have we
have cli /∈ D for every i ≤ n and thus each cli is attacked by
D. Let M = D ∩X and consider an arbitrary clause cli. As
each cli is attacked by D, there is either x ∈ D with x ∈ cli
or x̄ ∈ D with x̄ ∈ cli. In the former case, we have x ∈ M
and thus cli is satisfied, in the latter case, x /∈ M and thus
cli is satisfied. Thus M is a model of ϕ and Y ′ ⊆ M , con-
tradiction to our initial assumption Y ′ ∪ Z ′′ is not a model
of ϕ for every Z ′′ ⊆ Z.


