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Expressiveness of SETAFs and
Support-Free ADFs under 3-valued Semantics

Wolfgang Dvořák, Atefeh Keshavarzi Zafarghandi, Stefan Woltran

Abstract

We investigate the expressiveness of argumentation frameworks with collective
attacks and argumentation frameworks with a general attack relation (but without
supporting links) under 3-valued semantics. To this end we consider SETAFs and
Support-Free ADFs.

1 Introduction
Abstract argumentation frameworks (AFs) as introduced by Dung [7] are a core for-
malism in formal argumentation. A popular line of research investigates extensions of
Dung AFs that allow for a richer syntax (see, e.g. [3]). In this work we investigate
two generalisations of Dung AFs that allow for a more flexible attack structure (but do
not consider support between arguments). First SETAFs as introduced by Nielsen and
Parsons [13] that extend Dung AFs by allowing for collective attacks such that a set
of arguments B attacks another argument a but no proper subset of B attacks a. Sec-
ond, Support-Free Abstract Dialectical Frameworks (SFADFs). Abstract Dialectical
Frameworks (ADFs) [4] are studied as a general formalism for modeling and evalu-
ating argumentation, that can cover several generalizations of AFs [3]. In this work
we will consider the sub-class of Support-Free ADFs (SFADFs), i.e., ADFs where
each link between arguments is attacking. We study the expressiveness of SETAFs and
SFADFs w.r.t. their 3-valued semantics (a.k.a. labelling-based semantics) in terms of
their signatures. A signature of a semantics σ contains all sets of 3-valued labellings,
interpretations resp., that correspond to the σ -labellings, σ -interpretations resp., of
some framework.

Argumentation frameworks with collective attacks have received increasing inter-
est in the last years. For instance, semi-stable, stage, ideal, and eager semantics have
been adapted to SETAFs in [8, 10]; translations between SETAFs and other abstract
argumentation formalisms are studied in [15]; and the expressiveness of SETAFs with
two-valued semantics is investigated in [9]. [19] observed that for particular instan-
tiations, SETAFs provide a more convenient target formalism than Dung AFs. ADFs
are among the most prominent abstract argumentation formalisms (see e.g. [2]) and
recently the support-free fragment of ADFs was identified in a study on the expressive-
ness of sub-classes of ADFs [6].
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In this work we complement the investigations on expressiveness of SETAFs [9]
by (a) providing exact characterisations of the 3-valued signatures of SETAFs and (b)
by relating it to the expressiveness of ADFs with arbitrary attack relations but no sup-
porting links.

The expressiveness of SETAFs has first been investigated in [12] where different
sub-classes of ADFs, i.e. AFs, SETAFs and Bipolar ADFs, are related w.r.t. their signa-
tures of 3-valued semantics. Moreover, they provide an algorithm to decide realizabil-
ity in one of the formalisms under admissible, preferred, complete, model and stable
semantics. However, no explicit characterisations of the signatures are given. Recently
Pührer [16] presented explicit characterisations of the signatures of general ADFs (but
not for the sub-classes discussed above). In contrast [8] provides explicit characteri-
sations of the two-valued signatures and shows that SETAFs are more expressive than
AFs from the perspective of realizability. In both works all arguments are relevant for
the signature. On the other hand, in [10] it is shown that when allowing to add extra ar-
guments to an AF which are not relevant for the signature, i.e. the extensions/labellings
are projected on common arguments, then SETAFs and AFs are equivalent.

In [17], it is shown that ADFs that only consist of attack links, i.e., support-free
ADFs (SFADFs), and where the acceptance condition of each argument is satisfiable,
can be equivalently represented as a SETAF. This provides a sufficient condition for
rewriting an ADF as SETAF and raises the question whether it is also a necessary con-
dition. We will show that a SFADF has an equivalent SETAF iff all acceptance con-
ditions are satisfiable. Further, given that BADFs are more expressive than SETAFs
from [12], raises the question whether SFADFs have the same expressiveness power
as SETAFs. We will show that SFADFs are more expressive than SETAFs and char-
acterise the precise difference under admissible, preferred, grounded, complete, stable
and two-valued model semantics.
The main contribution of our paper are as follows:

• We embed SETAFs under 3-valued labeling based semantics [10] in the more
general framework of ADFs. That is, we show 3-valued labeling based SETAF
semantics to be equivalent to the corresponding ADF semantics. By that we
show the equivalence of the 3-valued SETAF semantics in [12] and [10].

• We investigate the expressiveness of SETAFs under 3-valued semantics by pro-
viding exact characterizations of the signatures.

• We study the relations between SETAFs and support-free ADFs (SFADFs). In
particular we give the exact difference in expressiveness between SETAFs and
SFADFs.

2 Background
In this section we briefly recall the necessary definitions for SETAFs and ADFs.

Definition 1. A set argumentation framework (SETAF) is an ordered pair F = (A,R),
where A is a finite set of arguments and R⊆ (2A \{ /0})×A is the attack relation.
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Given a SETAF (A,R), we write S 7→R b if there is a set S′ ⊆ S attacking b, i.e.
(S′,b) ∈ R. We say that in this case also S attacks b. Moreover, we write S′ 7→R S if
S′ 7→R b for some b∈ S. We drop the subscript in 7→R if the attack relation is clear from
the context.

Notions of conflict and defense can be defined for SETAFs in analogy to these
notions in the context of AFs. Given a SETAF F = (A,R), a set S ⊆ A is conflicting in
F if S 7→R S; S⊆ A is conflict-free in F , if S is not conflicting in F , i.e. if S′∪{a} 6⊆ S
for each (S′,a) ∈ R. An argument a ∈ A is defended (in F) by a set S ⊆ A if for each
B⊆ A, such that B 7→R a, also S 7→R B. A set T of arguments is hence defended (in F)
by S if each a ∈ T is defended by S (in F).

The semantics of SETAFs can now also be defined similarly to AFs via a charac-
teristic operator. With a slight abuse of notation, we thus define first of all also for
a SETAF F = (A,R), ΓF(S) = {a ∈ A | a is defended by S in F}; here the notion of
“defense” clearly being that defined for SETAFs. For completeness we detail the defi-
nitions of all semantics we consider in this work for SETAFs, although the definitions
are exactly as those for AFs (modulo the use of the more general notions of attack and
the characteristic operator for SETAFs):

Definition 2. Let F = (A,R) be a SETAF. A set S which is conflict-free in F is

• naive in F iff S is ⊆-maximal among all conflict-free sets;

• admissible in F iff S⊆ ΓF(S);

• complete in F iff S = ΓF(S);

• grounded in F iff S is the ⊆-least fixed-point of ΓF ;

• preferred in F iff S is ⊆-maximal admissible (resp. complete) in F ;

• stable in F iff for all a ∈ A\S, S attacks a.

We next present 3-valued labelling based semantics as in [10].

Definition 3. A (3-valued) labelling of a SETAF F = (A,R) is a total function λ : A 7→
{in,out,undec}. For x ∈ {in,out,undec} we write λx to denote the sets of argu-
ments a with λ (a) = x. We sometimes denote labellings λ as triples (λin,λout,λundec).

Definition 4. Let F = (A,R) be a SETAF. A labelling is called conflict-free if (a) for
all (S,a) ∈ R either λ (a) 6= in or there is a b ∈ S with λ (b) 6= in, and (b) for all a ∈ A
if λ (a) = out then there is an attack (S,a) ∈ R such that λ (b) = in for all b ∈ S. A
labelling λ which is conflict-free in F is

• naive iff λin is ⊆-maximal among all conflict-free labellings, i.e. there is no
conflict-free λ ′ with λin ⊂ λ ′in;

• admissible in F iff for all a ∈ A if λ (a) = in then for all (S,a) ∈ R there is a
b ∈ S such that λ (b) = out;

• complete in F iff for all a ∈ A (a) λ (a) = in iff for all (S,a) ∈ R there is a b ∈ S
such that λ (b) = out, and (b) λ (a) = out iff there is an attack (S,a) ∈ R such
that λ (b) = in for all b ∈ S;
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Figure 1: The SETAF of Example 1.

• grounded in F iff it is complete and λin is ⊆-minimal among all complete la-
bellings;

• preferred in F iff it is complete and λin is ⊆-maximal among all complete la-
bellings, i.e. there is no complete λ ′ with λin ⊂ λ ′in;

• a stable in F iff λundec = /0.

Remark: Differences to the definitions in [12]: [12] defines admissible, complete,
preferred, and mod as 3-valued interpretations (not labellings), i.e. grounded, and sta-
ble are missing. preferred is defined via admissible. They already provide equivalence
results for their semantics and the corresponding ADF semantics.

The basic definitions of ADFs and semantics of ADFs are derived from those given
in [4, 1]. In the following we provide an example of a SETAF to illustrate the concept
of labellings and semantics for SETAFs.

Example 1. The SETAF F = ({a,b,c},{({a,b},c),({a,c},b)}) is depicted in Fig-
ure 1. In F , ({a,b},c) ∈ R says that there is a joint attack from a and b to c, and
({a,c},b) ∈ R says that there is a joint attack from a and c to b. The former attack
represents that neither a nor b are strong enough to attack c by themselves. The
latter attack indicates that neither a nor c are strong enough to attack b by them-
selves. The conflict-free labellings of F are cf(F) = {{a 7→ undec,b 7→ undec,c 7→
undec},{a 7→ in,b 7→ undec,c 7→ undec},{a 7→ undec,b 7→ in,c 7→ undec},{a 7→
undec,b 7→ undec,c 7→ in},{a 7→ in,b 7→ undec,c 7→ in},{a 7→ in,b 7→ out,c 7→
in},{a 7→ in,b 7→ in,c 7→ undec},{a 7→ in,b 7→ in,c 7→ out},{a 7→ undec,b 7→
in,c 7→ in}}, the admissible labellings adm(F) = {{a 7→ undec,b 7→ undec,c 7→
undec},{a 7→ in,b 7→ undec,c 7→ undec},{a 7→ in,b 7→ out,c 7→ in},{a 7→ in,b 7→
in,c 7→ out}}, the complete labellings com(F) = {{a 7→ in,b 7→ undec,c 7→ undec},
{a 7→ in,b 7→ out,c 7→ in},{a 7→ in,b 7→ in,c 7→ out}}, the unique grounded la-
belling grd(F) = {{a 7→ in,b 7→ undec,c 7→ undec}}, and the preferred labellings
prf(F) = stb(F) = {{a 7→ in,b 7→ out,c 7→ in},{a 7→ in,b 7→ in,c 7→ out}}. Note
that, for instance, {a 7→ in,b 7→ undec,c 7→ in} is a conflict-free labelling. However,
it is not an admissible labelling, since c is mapped to in but neither a nor b is mapped
to out. Further, {a 7→ in,b 7→ undec,c 7→ undec} is an admissible and a complete
extension,which is not a preferred labelling because λin = {a} is not a ⊆-maximal
among all complete labellings.
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Notice that Dungs Abstract Argumentation Frameworks (AFs) [7] and their seman-
tics can be identified with SETAFs whose attacks are restricted a single argument at-
tacking an argument [13]. That is all attacks are of the form (b,a) for some arguments
a,b (in the setting of Dung AFs such attacks are then denoted by pairs of arguments
(b,a)).

We next turn to abstract dialectical frameworks.

Definition 5. An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where:

• S is a finite set of arguments (statements, positions);

• L⊆ S×S is a set of links among arguments;

• C = {ϕs}s∈S is a collection of propositional formulas over arguments, called
acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and
links show the relation among arguments. Each argument s in an ADF is attached
by a propositional formula, called acceptance condition, ϕs over par(s) such that,
par(s) = {b | (b,s) ∈ R}. The acceptance condition of each argument clarifies un-
der which condition the argument can be accepted. Further, the acceptance conditions
indicate the type of links. An interpretation v (for F) is a function v : S 7→ {t, f,u},
that maps arguments to one of the three truth values true (t), false (f), or undecided (u).
Truth values can be ordered via information ordering relation <i given by u <i t and
u <i f and no other pair of truth values are related by <i. Relation ≤i is the reflexive
and transitive closure of <i. Let V be the set of all interpretations for an ADF D. Then,
we call a subset of all interpretations of the ADF, V⊆ 2V , an interpretation-set. Inter-
pretations can be ordered via≤i with respect to their information content. It is said that
an interpretation v is an extension of another interpretation w, if w(s) ≤i v(s) for each
s∈ S, denoted by w≤i v. Interpretations v and w are incomparable if neither w�i v nor
v�i w, denoted by w 6∼ v.

Semantics for ADFs can also defined via a characteristic operator ΓD for an ADF
D, although given that the semantics of ADFs give interpretations rather than sets of
arguments. Given an interpretation v (for D), the characteristic operator ΓD for D is
defined as

ΓD(v) = v′ such that v′(s) =





t if ϕv
s is irrefutable (i.e., a tautology) ,

f if ϕv
s is unsatisfiable,

u otherwise,

where the partial valuation of ϕs by v, is given by ϕv
s = v(ϕs) = ϕs[p/> : v(p) =

t][p/⊥ : v(p) = f]. Here p ∈ par(s).
The semantics for ADFs, as defined via the characteristic operator, are provided

next in Definition 6.

Definition 6. Given an ADF D = (S,L,C), an interpretation v is

• conflict-free in D iff v(s) = t implies ϕv
s is satisfiable and v(s) = f implies ϕv

s is
unsatisfiable;
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• admissible in D iff v≤i ΓD(v);

• complete in D iff v = ΓD(v);

• grounded in D iff v is the least fixed-point of ΓD;

• preferred in D iff v is ≤i-maximal admissible (resp. complete) in D;

• a (two-valued) model of D iff v is two-valued and for all s ∈ S, it holds that
v(s) = v(ϕs);

• a stable model of D if v is a model of D and vt = wt, where w is the grounded
interpretation of the stb-reduct Dv = (Sv,Lv,Cv), where Sv = vt, Lv = L∩ (Sv×
Sv), and ϕs[p/⊥ : v(p) = f] for each s ∈ Sv.

As for AFs and SETAFs, the set of all σ interpretations for D is denoted by σ(D),
where σ ∈ {cf,adm,com,grd,prf, mod,stb} abbreviates the different semantics in the
obvious manner.

Intuitively, the idea of defining stable models of ADFs follows the idea of stable
models of logic programming, that breaks self-justify support cycles. In fact, in ADF
D, a model v is a stable model if there exists a constructive proof for all arguments
assigned to true in v, if all arguments which are assigned to false in v are actually
false. Since in AFs and SETAFs there is no direct support link, stable models and
models are equal. The relation among semantics of ADF D are as follows: stb(D) ⊆
mod(D)⊆ prf(D)⊆ com(D)⊆ adm(D)⊆ cf(D), further, grd(D)⊆ com(D). The same
as AF each ADF contains at least one admissible, preferred, complete, and grounded
interpretation, however the existence of stable models, and models respectively, is not
guaranteed.

In ADFs links between arguments can be classified into four types, reflecting the
relationship of attack and/or support that exists among the arguments. In Definition 7
we consider two-valued interpretations that are only defined over the parents of a, that
is, only give values to par(a).

Definition 7. Let D = (S,L,C) be an ADF. A link (b,a) ∈ L is called

• supporting (in D) if for every two-valued interpretation v of par(a), v(ϕa) = t
implies v|bt (ϕa) = t;

• attacking (in D) if for every two-valued interpretation v of par(a), v(ϕa) = f
implies v|bt (ϕa) = f;

• redundant (in D) if it is both attacking and supporting;

• dependent (in D) if it is neither attacking nor supporting.

The classification of the types of the links of ADFs is also relevant for classifying
ADFs themselves. Thus, one particularly important subclass of ADFs is that of bipo-
lar ADFs or BADFs for short, first defined in [4]. In such an ADF each link is either
attacking or supporting (or both; thus, the links can also be redundant). The follow-
ing example clarifies the role of the acceptance conditions in ADFs and illustrates the
functioning of the different semantics in the context of ADFs.
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Figure 2: The ADF of Example 2.

Example 2. An example of an ADF D = (S,L,C) is shown in Figure 2. To each argu-
ment a propositional formula is associated, the acceptance condition of the argument.
In the acceptance condition of an argument only the parents of that argument occur as
variables. The acceptance condition indicates how the acceptance-status of an argu-
ment depends on that of its parents in the ADF. For instance, the acceptance condition
of c, namely ϕc : ¬a∨¬b, states that c can be accepted in an interpretation where ei-
ther a or b (or both) are rejected. The acceptance condition ϕa : ¬b states that a is
acceptable if b is rejected. The acceptance condition ϕb : b∨¬c indicates that b can
be accepted if and only if b is accepted or c is rejected, thus also indicating a form of
self-support for b.

Since in ADFs an argument appears in the acceptance condition of an argument a if
and only if it belongs to the set par(a), the set of links L of an ADF is given implicitly
via the acceptance conditions. Thus, there is no need of presenting the links explicitly
in the structure of ADFs. For instance, since b appears in ϕb, (b,b) ∈ L. Moreover,
given that for every two-valued interpretation v, v(ϕb) = t implies v|bt (ϕb) = t, the link
(b,b) is supporting (in D). Further, D is a bipolar ADF in which L+ = {(b,b)} is the set
of all supporting links, and L− = {(a,c),(b,c),(c,b),(b,a)} is the set of all attacking
links.

In D the interpretation v = {a 7→ u,b 7→ u,c 7→ t} is conflict-free. However, v
is not an admissible interpretation, because ΓD(v) = {a 7→ u,b 7→ u,c 7→ u}, that is,
v 6≤i ΓD(v). The interpretation v1 = {a 7→ f,b 7→ t,c 7→ u} on the other hand is an
admissible interpretation. Since ΓD(v1) = {a 7→ f,b 7→ t,c 7→ t} and v1 ≤i ΓD(v1).
Further, prf(D) = mod(D) = {{a 7→ t,b 7→ f,c 7→ t},{a 7→ f,b 7→ t,c 7→ t}}, but only
the first interpretation in this set is a stable model. This is because for v = {a 7→ t,b 7→
f,c 7→ t} the unique grounded interpretation w of Dv is {a 7→ t,c 7→ t} and vt = wt.
The interpretation v′ = {a 7→ f,b 7→ t,c 7→ t} is not a stable model, since the unique
grounded interpretation w′ of Dv′ is {b 7→ u,c 7→ t} and v′t 6= w′t. Actually, v′ is not
a stable model because the truth value of b in v′ is since of self-support. Moreover,
the unique grounded interpretation of D is v = {a 7→ u,b 7→ u,c 7→ u}. In addition, we
have that for the ADF D, com(D) = prf(D)∪grd(D).

Another subclass of ADFs, having only attacking links, is defined in [11], called
support free ADFs in the current work, defined formally in Definition 8.

Definition 8. A Bipolar ADF D = (S,L,C) is called support-free ADFs (SFADFs) if it
neither has supporting nor redundant links, that is, L = L−.
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Next consider stable semantics in the context of SFADFs. The motivation behind
the reduct in the definition of stable semantics is to avoid cyclic support among argu-
ments. As we now consider support-free ADFs there is no need for such an reduct and
thus the models semantics and the stable semantics coincide.

Lemma 1. Let D = (S,L,C) be an ADF, let v be a model of D and let s ∈ S be an
argument such that all parents of s are attackers. Thus, ϕv

s is irrefutable if and only if
ϕs[p/⊥ : v(p) = f] is irrefutable.

Proof. Assume that D = (S,L,C) is an ADF and v is a model of D. Further, assume
that s∈ S such that ∀p∈ par(s), (p,s) is an attacking in D. Clearly if ϕs[p/⊥ : v(p) =
f] is irrefutable then also ϕv

s = ϕs[p/> : v(p) = t][p/⊥ : v(p) = f] is irrefutable. It
remains to show that if ϕv

s is irrefutable then also ϕs[p/⊥ : v(p) = f] is irrefutable.
Let ϕ ′s = ϕs[p/⊥ : v(p) = f]. Towards a contradiction, assume that ϕv

s is irrefutable
and ϕ ′s is not irrefutable. That is, either ϕ ′s is unsatisfiable or it is undecided. In both
cases, ϕ ′s[p/> : v(p) = t] is unsatisfiable (as all the links are attacking). Thus, ϕv

s =
ϕ ′s[p/> : v(p) = t] is unsatisfiable as well. This is a contradiction with the assumption
that ϕv

s is irrefutable.

Proposition 2. For every SFADF D it holds the mod(D) = stb(D).

Proof. Let D = (S,L,C) be a SFADF. Since stb(D) ⊆ mod(D) for each ADF D, it re-
mains to show that each model of D is also a stable model of D. Toward a contradiction
assume that mod(D) 6⊆ stb(D). Thus, there exists a model v of D which is not a stable
model. Let Dv be a stb-reduct of D and let w be the unique grounded interpretation of
Dv. Since it is assumed that v is not a stable model, vt 6= wt. That is, there exists s ∈ S
such that v(s) = t and w(s) 6= t. Thus, ϕs[p/⊥ : v(p) = f] is not irrefutable. Since, D
is a SFADF, all parents of s are attackers. Hence, By Lemma 1, ϕv

s is not irrefutable,
that is, v(s) 6= t. This is a contradiction by the assumption that v(s) = t. Thus, the
assumption that D consists of a model which is not a stable model is incorrect.

3 Embedding SETAFs in ADFs
As observed by Polberg [14] and Linsbichler et.al [12], the notion of collective attacks
can also be represented in ADFs by using the right acceptance conditions. We next
introduce the class SETADFs of SFADFs that only have collective attacks (including
simple binary attacks) in their link structure.

Definition 9. An ADF D = (S,L,C) is called SETAF-like (SETADF) if each of the
acceptance conditions in C is given by a formula

∧

cl∈C

∨

a∈cl

¬a.

with C being a set of non-empty clauses cl.

That is, in a SETADF each acceptance condition is either > (if C is empty) or a
proper CNF formula over negative literals.

We next study the relation between SETAFs and SETADFs. We first give a trans-
lation from SETAFs to ADFs.

8



Definition 10. Let F = (A,R) be a SETAF. The ADF associated to F is a tuple DF =
(S,L,C) in which, S = A, L = {(a,b) | (B,b) ∈ R,a ∈ B} and C = {ϕa}a∈S is the col-
lection of acceptance conditions defined, for each a ∈ S, as

ϕa =
∧

(B,a)∈R

∨

a′∈B

¬a′.

Clearly the ADF associated to a SETAF is a SETADF. Also, as we show next, a
SETADF can directly be written as a SETAF.

Definition 11. Let D = (S,L,C) be a SETADF. We construct the SETAF F = (A,R) in
which, A= S, and R is constructed as follows. For each argument s∈ S with acceptance
formula

∧
cl∈C

∨
a∈cl¬a we add the attacks {(cl,s) | cl ∈ C }.

Notice that D is the ADF associated to the constructed SETAF F .
We next deal with the fact that SETAFs semantics are defined as three-valued la-

bellings while semantics for ADFs are defined as three valued interpretations. In order
to compare these semantics we associate the in label with t the out label with f and the
undec with u.

Definition 12. The function Lab2Int(·) maps three-valued labellings to three-valued
interpretations such that

• Lab2Int(λ )(s) = t iff λ (s) = in,

• Lab2Int(λ )(s) = f iff λ (s) = out, and

• Lab2Int(λ )(s) = u iff λ (s) = undec.

For a labelling λ and an interpretation I we write λ ≡ I iff Lab2Int(λ ) = I. For a set
L of labellings and a set V of interpretations we write L ≡ V iff {Lab2Int(λ ) | λ ∈
L }= V.

Theorem 3. For a SETAF F and its associated SETADF D we have σL (F) ≡ σ(D)
for σ ∈ {cf,adm,com,prf,grd,stb}.

Proof. Let F = (A,R) be a SETAF and D = (S,L,C) be its corresponding SETADF.
We show that {Lab2Int(λ ) | λ ∈ σL (F)}= σ(D). Let λ be an arbitrary three-valued
labelling and let v = Lab2Int(λ ). We investigate that λ ∈ σL (F) if and only if v ∈
σ(D).

• Let σ = adm. We first assume that λ ∈ admL (F) and show that v ∈ adm(D).
Consider s ∈ S and the acceptance condition ϕs =

∧
(B,s)∈R

∨
a∈B¬a. If v(s) = t

we have that λ (s) = in and thus that for all (B,s) ∈ R there exists b ∈ B s.t.
λ (b) = out. The latter holds iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) = f
iff partial evaluation of ϕs under v is irrefutable iff ΓD(v)(s) = t. If v(s) = f
we have that λ (s) = out and thus that there exists (B,s) ∈ R s.t. for all b ∈ B:
λ (b) = in. The latter holds iff there exists (B,s)∈ R s.t. for all b∈ B: v(b) = t iff
ϕv

s is unsatisfiable iff ΓD(v)(s) = f. We thus obtain that v≤i ΓD(v) and therefore
v ∈ adm(D).
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Now we assume v ∈ adm(D) and show that λ ∈ admL (F). That is for each s
with λ (s) = in we have ΓD(v)(s) = t and, as argued above, that for all (B,s)∈ R
there exists b ∈ B s.t. λ (b) = out. Moreover for each s with λ (s) = out we have
ΓD(v)(s) = f and, as argued above, that there exists (B,s) ∈ R s.t. for all b ∈ B:
λ (b) = in. We obtain λ ∈ admL (F).

• Let σ ∈ {com,prf,grd}. Let λ ∈ comL (F) and let ϕs =
∧

(B,s)∈R
∨

a∈B¬a be the
acceptance condition of s ∈ S in D. For complete semantics it is enough to show
that λ (s) = in iff ΓD(v)(s) = t and λ (s) = out iff ΓD(v)(s) = f.

– It holds that λ (s) = in (i.e. v(s) = t) iff for all (B,s) ∈ R there exists b ∈ B
s.t. λ (b) = out iff for all (B,s)∈ R there exists b∈ B s.t. v(b) = f iff partial
evaluation of ϕs under v is irrefutable iff ΓD(v)(s) = t.

– On the other hand, λ (s) = out (i.e. v(s) = f) iff there exists (B,s) ∈ R s.t.
for all b ∈ B: λ (b) = in iff there exists (B,s) ∈ R s.t. for all b ∈ B: v(b) = t
iff ϕv

s is unsatisfiable iff ΓD(v)(s) = f.

Now as complete semantics coincide it is easy to verify that also the maximal, i.e.
the preferred, extensions and the minimal, i.e. the grounded, extension coincide.

• Let σ = stb. Recall that, by Proposition 2, on SETADFs we have that stable
and models semantics coincide. We will show that λ ∈ stbL (F) iff v ∈mod(D).
That is we show that For complete semantics it is suffice to show that for each
s ∈ S we have (i) λ (s) = in iff v(ϕs) = t and (ii) λ (s) = out iff v(ϕs) = f. To
this end let ϕs =

∧
(B,s)∈R

∨
a∈B¬a be the acceptance condition of s.

– It holds that λ (s) = in (i.e. v(s) = t) iff for all (B,s) ∈ R there exists b ∈ B
s.t. λ (b) = out iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) = f iff
v(ϕs) = t.

– On the other hand, λ (s) = out (i.e. v(s) = f) iff there exists (B,s) ∈ R s.t.
for all b ∈ B: λ (b) = in iff there exists (B,s) ∈ R s.t. for all b ∈ B: v(b) = t
iff v(ϕs) = f.

• Finally let σ = cf. We first assume that λ ∈ cfL (F) and show that v ∈ cf(D).
Consider s ∈ S and the acceptance condition ϕs =

∧
(B,s)∈R

∨
a∈B¬a. If v(s) = t

we have that λ (s) = in and thus that for all (B,s) ∈ R there exists b ∈ B s.t.
λ (b) 6= in. The latter holds iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) 6= t
iff ϕv

s is satisfiable. If v(s) = f we have that λ (s) = out and thus that there exists
(B,s) ∈ R s.t. for all b ∈ B: λ (b) = in. The latter holds iff there exists (B,s) ∈ R
s.t. for all b ∈ B: v(b) = t iff ϕv

s is unsatisfiable. We thus obtain that v ∈ cf(D).

Now we assume v ∈ cf(D) and show that λ ∈ cfL (F). That is for each s with
λ (s) = in we have ϕv

s is satisfiable and, as argued above, that for all (B,s) ∈ R
there exists b ∈ B s.t. λ (b) 6= in. Moreover for each s with λ (s) = out we have
ϕv

s is unsatisfiable and, as argued above, that there exists (B,s) ∈ R s.t. for all
b ∈ B: λ (b) = in. We obtain λ ∈ cfL (F).
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Notice that by the above theorem we also have that the 3-valued SETAF semantics
introduced in [12] coincide with the 3-valued labelling based SETAF semantics of [10].
Notice that model semantics of [12] corresponds to the stable semantics of [10].

4 3-valued Signatures of SETAFs
By Theorem 3 we can use labellings of SETAFs and interpretations of the SETADF
class of ADF interchangeable. In this section on 3-valued Signatures of SETAFs/SE-
TADFs, for convenience, we will use the SETAF terminology.

Definition 13. We define the signature of SETAFs under a labelling-based semantics
σL as

Σσ
SETAF = {σL (F) | F ∈ SETAF}.

Proposition 4. The signature ΣstbL
SETAF is given by all sets L of labellings such that

1. all labellings λ ∈ L have the same domain and λ (s) 6= undec for all λ ∈ L and
arguments s.

2. if the domain is non-empty each λ ∈ L assigns at least one argument to in.

3. for arbitrary λ1,λ2 ∈ L with λ1 6= λ2 there is an argument a such λ1(a) = in

and λ2(a) = out.

Proof. We first show that for each SETAF F the set stbL (F) satisfies the conditions
of the proposition. First clearly all λ ∈ stbL (F) have the same domain and by the
definition of stable semantics do not assign undec to any argument. That is the first
condition is satisfied. Now, toward a contradiction assume that λ ∈ stbL (F) assigns all
arguments to out. Consider an arbitrary argument a. By definition of stable semantics
a is only labeled out if there is an attack (B,a) such that all arguments in B are labeled
in in, a contradiction. Thus by the above contradiction we obtain there is at least one
argument a with λ (a) = in. For condition 3, toward a contradiction assume that for
all arguments a with λ1(a) = in also λ2(a) = in holds. As λ1 6= λ2 there is an a with
λ2(a) = in and λ1(a) = out. That is, there is an attack (B,a) such that λ1(b) = in

for all b ∈ B. But then also λ2(b) = in for all b ∈ B and by λ2(a) = in we obtain that
λ2 6∈ cfL (F), a contradiction.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with stbL (FL) = L.

AL = ArgsL

RL = {(λin,a) | λ ∈ L,λ (a) = out}

We first show stbL (FL) ⊇ L: Consider an arbitrary λ ∈ L: By condition 1 there is
no a ∈ ArgsL with λ (a) = undec and it only remains to show λ ∈ cfL (FL). We first
consider out labeled arguments. First, if λ (a) = out for some argument a then by
construction and condition (2) we have an attack (λin,a) and thus a is legally labeled
out. Now toward a contradiction assume there is a conflict (B,a) such that B∪{a} ⊆
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λin. Then, by construction of RL there is a λ ′ ∈ L with λ ′in = B and λin 6= B (as
a ∈ λin). That is, λ ′in ⊂ λin, a contradiction to (3). Thus, λ ∈ cfL (FL) and therefore
λ ∈ stbL (FL).

We complete the proof by showing stbL (FL) ⊆ L: Consider λ ∈ stbL (FL): If λ
maps all arguments to in then there is no attack in RL which means that L contains
only the labelling λ . Thus we can assume that λ (a) = out for some argument a and
there is (B,a) ∈ RL with λ (b) = in for all b ∈ B. By construction there is λ ′ ∈ L
such that λ ′in = B. Then by construction we have (B,c) ∈ RL for all c 6∈ B and thus
λ ′in = B = λin and moreover λ ′out = λout and thus λ = λ ′.

By Theorem 3 we get the corresponding characterisation of Σstb
SETADF.

Proposition 5. The signature ΣprfL
SETAF is given by all sets L of labellings such that

1. all labellings λ ∈ L have the same domain.

2. if λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. for arbitrary λ1,λ2 ∈ L with λ1 6= λ2 there is an argument a such λ1(a) = in

and λ2(a) = out.

Proof. We first show that for each SETAF F the set prfL (F) satisfies the conditions
of the proposition. The first condition is satisfied as clearly all λ ∈ prfL (F) have the
same domain. Now, assume that λ ∈ prfL (F) assigns an argument a to out. By the
definition of conflict-free labellings there is an attack (B,a) such that all arguments b∈
B are labeled in. Thus condition 2 is satisfied. For condition 3, toward a contradiction
assume that for all arguments a with λ1(a)= in also λ2(a)= in holds. As for preferred
semantics the out labels are fully determined by the in labels and λ1 6= λ2 there is an
a with λ2(a) = in and λ1(a) 6= in. This is in contradiction to the⊆-maximality of λin.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with prfL (FL) = L.

AL = ArgsL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) = undec}

We first show prfL (FL) ⊇ L: Consider an arbitrary λ ∈ L: We first show λ ∈
cfL (FL). We first consider out labeled arguments. First, if λ (a) = out for some
argument a then by construction and condition (2) we have an attack (λin,a) and thus
a is legally labeled out. Now toward a contradiction assume there is a conflict (B,a)
such that B∪{a} ⊆ λin. If |L| = 1, by the construction of FL there is no (B,a) ∈ RL
such that a ∈ λin. That is, a is legally labeled in. If |L|> 1, by construction there is a
λ ′ ∈ L with λ ′in = B \ {a}, a contradiction to (3). Thus, λ ∈ cfL (FL). Next we show
that λ ∈ admL (FL). Consider an argument a with λ (a) = in and an attack (B,a).
Then, by construction there is a λ ′ ∈ L with λ ′in = B \ {a} and, by condition (3), an
argument b ∈ B such that λ (b) = out. Thus, λ ∈ admL (FL). Finally we show that
λ ∈ prfL (FL). Towards a contradiction assume that there is a λ ′ ∈ admL (FL) with
λin ⊂ λ ′in. Let a be an argument such that λ ′(a) = in and λ (a) ∈ {out,undec}. By
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construction there is either an attack (λin,a) or an attack (λin∪{a},a). In both cases
λ ′ 6∈ admL (FL) a contradiction. Hence, λ ∈ prfL (FL).

We complete the proof by showing prfL (FL) ⊆ L: Consider λ ∈ prfL (FL): If λ
maps all arguments to in then there is no attack in RL which means that L contains
only the labelling λ . Thus we can assume that λ (a) = out for some argument a and
there is (B,a) ∈ RL with λ (b) = in for all b ∈ B. By construction there is λ ′ ∈ L such
that λ ′in = B. Then by construction we have (B,c) ∈ RL for all c with λ ′(c) = out and
(B∪{c},c) ∈ RL for all c with λ ′(c) = undec. We obtain that λ ′in = B = λin and thus
λ = λ ′.

Proposition 6. The signature ΣcfL
SETAF is given by all sets L of labellings such that

1. all λ ∈ L have the same domain ArgsL.

2. if λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. for λ ∈ L and C ⊆ λin also (C, /0,ArgsL \C) ∈ L

4. for λ ∈ L and C ⊆ λout also (λin,λout \C,λundec∪C) ∈ L

5. for λ ,λ ′ ∈ L with λin ⊆ λ ′in also (λ ′in,λout∪λ ′out,λundec∩λ ′undec) ∈ L.

6. for λ ,λ ′ ∈ L and C ⊆ λout (s.t. C 6= /0) we have λin∪C 6⊆ λ ′in

Proof. We first show that for each SETAF F the set cfL (F) satisfies the conditions of
the proposition. The first condition is satisfied as clearly all λ ∈ cfL (F) have the same
domain. Now, assume that λ ∈ cfL (F) assigns an argument a to out. By the definition
of conflict-free labellings there is an attack (B,a) such that all arguments b ∈ B are
labeled in. Thus condition 2 is satisfied. For condition 3, toward a contradiction as-
sume that (C, /0,ArgsL \C) is not conflict-free. Then there is an attack (B,a) such that
B∪{a}⊆C. But then also B∪{a}⊆ λin and thus λ 6∈ cfL (F), a contradiction. Condi-
tion 4, is satisfied as in the definition of conflict-free labellings there are no conditions
for label an argument undec. Further, the conditions that allow to label an argument
out solely depend on the in labeled arguments. Since λout \C ⊆ λout, the condition
for arguments labeled out is satisfied. For condition 5 consider λ ,λ ′ ∈ cfL (F) with
λin ⊆ λ ′in and λ ∗ = (λ ′in,λout ∪λ ′out,λundec ∩λ ′undec). First there cannot be an attack
(B,a) such that B∪{a} ⊆ λ ∗in as λ ′ ∈ cfL (F). Hence, λ ′in∩λout = /0 and thus λ ∗ is a
well-defined labelling. Moreover, for each a with λ ∗(a) = out there is an attack (B,a)
with B ⊆ λ ∗in as either λ (a) = out or λ ′(a) = out. Thus, λ ∗ ∈ cfL (F) and therefore
condition 5 holds. For condition 6 consider λ ,λ ′ ∈ cfL (F) and a set C⊆ λout contain-
ing an argument a such that λ (a) = out. That is, there is an attack (B,a) with B⊆ λin

and thus λin∪C 6⊆ λ ′. That is, condition 6 is satisfied.
Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)

with cfL (FL) = L.

AL = ArgsL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(B,b) | b ∈ B,@λ ∈ L : λin = B}
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We first show cfL (FL)⊇L: Consider an arbitrary λ ∈L: First, if λ (a) = out for some
argument a then by construction and condition (2) we have an attack (λin,a) and thus
a is legally labeled out. Now toward a contradiction assume there is a conflict (B,a)
such that B∪{a} ⊆ λin. By condition (3) it cannot be the case that a ∈ B. Thus, by
construction there is a λ ′ ∈ L with λ ′in = B, a contradiction to condition (6). Thus,
λ ∈ cfL (FL).

We complete the proof by showing cfL (FL)⊆L: Consider λ ∈ cfL (FL): If λ maps
all arguments to in then there is no attack in RL which means that L contains only the
labelling λ . Thus we can assume that λ (a) ∈ {out,undec} for some argument a. If
λin 6= λ ′in for all λ ′ ∈ L then by construction of the second part of RL there would be
attacks (λin,b) for all b ∈ λin, which is in contradiction to λ ∈ cfL (FL). Thus, there
is λ ′ ∈ L such that λ ′in = λin. For arguments a with λ (a) = out there is an attack
(B,a) with B⊆ λin and, by construction, a λ ∗ ∈ L such that λ ∗in = B and λ ∗(a) = out.
By the existence of λ ′ ∈ L and condition (5) we have that there exists λ ′′ ∈ L such
that λin = λ ′′in, λ ′out ⊆ λ ′′out and a ∈ λ ′′out. By iteratively applying this argument for
each argument a with λ (a) = out we obtain that there is a labelling λ̂ ∈ L such that
λin = λ̂in and λout ⊂ λ̂out. By condition (4) we obtain that λ ∈ L.

Remark: For extension-based semantics we have that cf sets fully determine naive
extensions and vice versa. For labelling-based semantics only the former is true.

Proposition 7. The signature ΣnaiL
SETAF is given by all sets L of labellings such that

1. all λ ∈ L have the same domain ArgsL.

2. if λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. for λ ∈ L and C ⊆ λout also (λin,λout \C,λundec∪C) ∈ L

4. for λ ,λ ′ ∈ L with λin = λ ′in also (λin,λout∪λ ′out,λundec∩λ ′undec) ∈ L.

5. for arbitrary λ ,λ ′ ∈ L we have λin 6⊂ λ ′in.

Proof. First we show that for each SETAF F the set naiL (F) satisfies the conditions
of the proposition. Since each naive labelling (in F) is a conflict-free labelling (in
F), the first two conditions are satisfied by Proposition 6. For condition 3, notice that
the definition of naive labellings does not require any arguments to be labeled out.
Thus, whenever there is a naive labelling λ that labels some arguments out there is
also another naive labelling λ ′that labels these arguments undec and coincide with λ
on the other arguments. Given two naive labelling λ ,λ ′ with λin = λ ′in we know that
for each a ∈ λout ∪λ ′out there is an attack (B,a) with B ⊆ λin. Thus also (λin,λout ∪
λ ′out,λundec∩λ ′undec) ∈ naiL (F) and condition 4 is satisfied. Finally condition 5 is by
the maximality of λin in naive labelings.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with cfL (FL) = L.

AL = ArgsL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) = undec}
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We first show naiL (FL)⊇L: Consider an arbitrary λ ∈L: We first show λ ∈ cfL (FL).
First, if λ (a) = out for some argument a then by construction and condition (2) we
have an attack (λin,a) and thus a is legally labeled out. Now toward a contradiction
assume there is a conflict (B,a) such that B∪{a} ⊆ λin. If |L|> 1, then, by construc-
tion there is a λ ′ ∈ L with λ ′in = B \ {a}, a contradiction to (5). Thus, λ ∈ cfL (FL).
Finally we show that λ ∈ naiL (FL). Towards a contradiction assume that there is
a λ ′ ∈ cfL (FL) with λin ⊂ λ ′in. Let a be an argument such that λ ′(a) = in and
λ (a) ∈ {out,undec}. By construction there is either an attack (λin,a) or an attack
(λin∪{a},a). In both cases λ ′ 6∈ cfL (FL) a contradiction. Hence, λ ∈ naiL (FL).

We complete the proof by showing naiL (FL) ⊆ L: Consider λ ∈ naiL (FL): If λ
maps all arguments to in then there is no attack in RL which means that L contains only
the labelling λ . Thus we can assume that λ (a) ∈ {out,undec} for some argument a
and there is (B,a) ∈ RL with B ⊆ λin ∪ {a}. By construction there is λ ′ ∈ L such
that λ ′in = B \ {a}. By the above λ ′ ∈ naiL (FL) and thus λ = λ ′in (cf. condition 5).
Moreover, for each argument b with λ (b) = out, by construction, we have a λ b ∈ L
with λ b

in = λin and λ b(b) = out. Let us next define the labelling

λ ∗ = (λ ′in,λ
′
out∪

⋃

b∈λout

λ b
out,λ

′
undec∩

⋂

b∈λout

λ b
undec).

By condition 4 we have that λ ∗ ∈ L. By the construction of λ ∗ we have λout ⊆ λ ∗out
and λin = λ ∗in. Thus, by condition 3, λ ∈ L.

Proposition 8. For each L ∈ ΣadmL
SETAF we have:

1. all λ ∈ L have the same domain.

2. if λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. for λ ,λ ′ ∈ L and C ⊆ λout (s.t. C 6= /0) we have λin∪C 6⊆ λ ′in

4. for arbitrary λ ,λ ′ ∈ L either (a) (λin ∪λ ′in,λout ∪λ ′out,λundec ∩λ ′undec) ∈ L or
(b) there is an argument a such λ (a) = in and λ ′(a) = out.

5. for λ ,λ ′∈L with λout ⊆ λ ′out, and C ⊆ λin \
⋃

λ ∗∈L: λ ∗in=λ ′in λ ∗out we have (λ ′in∪
C,λ ′out,λ ′undec \C) ∈ L.

6. for λ ,λ ′ ∈Lwith λin⊆ λ ′in, and C⊆ λout we have (λ ′in,λ ′out∪C,λ ′undec\C)∈L.

7. for λ ,λ ′ ∈ L with λin ⊆ λ ′in and λout ⊇ λ ′out we have (λin,λ ′out,ArgsL \ (λin∪
λ ′out)) ∈ L.

8. ( /0, /0,ArgsL) ∈ L

Proof. We show that for each SETAF F the set admL (F) satisfies the conditions of the
proposition. Conditions (1)-(3) are by the fact that admL (F)⊆ cfL (F). For condition
4, let λ ,λ ′ be admissible labellings such that λin ∩ λ ′out = {} (since each admissible
labelling defends itself, λ ′in ∩λout = {}). Thus, λ ∗ = (λin ∪λ ′in,λout ∪λ ′out,λundec ∩
λ ′undec) is a well-defined labelling. Consider that λ ∗(a) = in, that is, either λ (a) = in
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or λ ′(a) = in. Since λ ,λ ′ are admissible labellings, for each conflict (B,a) there exists
b ∈ B s.t. λ (b) = out in the former case and λ ′(b) = out in the latter case. Thus, for
each conflict (B,a) there exists b∈ B s.t. λ ∗(b) = out. Moreover, if λ ∗(a) = out there
is an attack (B,a) with B⊆ λin or B⊆ λ ′in, that is, there exists a conflict (B,a) such that
B ⊆ λ ∗in. On the other hand, assume that λin ∩λ ′out 6= {}, for instance, a ∈ λin ∩λ ′out .
Therefore, a ∈ λ ∗in and a ∈ λ ∗out. That is, λ ∗ is not a well-defined labelling.

For condition 5, let λ ∗ = (λ ′in∪C,λ ′out,λ ′undec \C). By the definition of C, it is easy
to check that λ ∗in∩λ ∗out = {}, λ ∗in∩λ ∗undec = {}, and λ ∗out∩λ ∗undec = {} hold. Thus, λ ∗
is a well-defined labelling. In the definition of admissible labelling there is no condition
for label an argument undec. Further, λ ∗out = λ ′out, λ ′in ⊆ λ ∗in and λ ′ is an admissible
labelling, therefore, the condition for arguments which are labelled out in λ ∗ are also
satisfied. For argument a with λ ∗(a) = in either a ∈ λ ′in or a 7→ in ∈C ⊆ λin. Each
of them implies that for each conflict (B,a) there exists b ∈ B s.t. λ ∗(b) = out, since
λ ,λ ′ are admissible labelling and λout ⊆ λ ′out. Thus, λ ∗ is an admissible labelling.

For condition 6, first we show that λ ′in ∩ (λ ′out ∪C) = {}. To this end, let a ∈ C
we show that a 6∈ λ ′in. Since C ⊆ λout, there exists (B,a) ∈ R such that λ (b) = in

for all b ∈ B. By the assumption of this condition, namely λin ⊆ λ ′in, the relation
B ⊆ λ ′in holds. Thus, λ ′(a) 6= in. Since λ ′ ∈ admL (F), to show that λ ∗ ∈ admL (F)
it is enough to show that each a ∈C is actually labelled out in λ ∗. This condition is
trivially satisfied, because C ⊆ λout, λin ⊆ λ ′in and λ ′ ∈ admL (F).

For condition 7, it is enough to show that λin ∩ λ ′out = {}, λin ∩ (ArgsL \ (λin ∪
λ ′out))= {}, and λout∩(ArgsL\(λin∪λ ′out))= {}. Let λ ∗=(λin,λ ′out,ArgsL\(λin∪
λ ′out)). For a with λ ∗(a) = in (a ∈ λin) it holds that a 6∈ λout , because λ ∈ admL (F).
Further, since λ ′out ⊆ λout, a 6∈ λ ′out , that is, a 6∈ λ ∗out. If a ∈ λ ∗out (a ∈ λ ′out), since
λ ′out ⊆ λout, a ∈ λout. Therefore, a 6∈ λin as λ ∈ admL (F). Thus, a 6∈ λ ∗in. Moreover,
a is included either in λ ∗in or λ ∗out if and only if a 6∈ (ArgsL \ (λin ∪ λ ′out)). On the
other hand, condition of admissible labelling for arguments labelled out in λ ∗ are
trivially satisfied as λ ∗in = λin and λ ∗out ⊆ λout. Toward a contradiction, assume that
λ ∗(a) = in and there exists conflict (B,a) s.t. for each b ∈ B, λ ∗(b) 6= out, that
is, λ ∗(b) = in/undec. If λ ∗(b) = in, then λ (b) = in and if λ ∗(b) = undec, then
b 6∈ λ ′out ⊆ λout. That is, λ (b) 6= out for each b ∈ B. This is a contradiction with the
assumption that λ ∈ admL (F).

For condition 8 let λ = ( /0, /0,ArgsL). The conditions of admissible labelling for
arguments labelled with in or out in λ are satisfied, there is no such an argument, and
there is no condition for arguments labelled with undec in the conditions of admissible
labelling. Thus, λ ∈ admL (F).

The condition in the above proposition are necessary for an labelling-set to be adm-
realizable, but it remains open whether they are also sufficient.

Finally, we give a characterisation of the signature of grounded semantics.

Proposition 9. The signature ΣgrdL
SETADF is given by sets L of labellings such that

• |L|= 1,

• if λ ∈ L assigns one argument to out then λin 6= /0.
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Proof. We first show that for each SETAF F the set grdL (F) satisfies the conditions
of the proposition. Toward a contradiction assume that there are λ ,λ ′ ∈ grdL with
λ 6= λ ′. By the definition of grounded labelling λin λin are ⊆-minimal among all
complete labelling, thus, λin = λ ′in. Assume that λout ⊂ λ ′out. Since each grounded
labelling is a conflict-free, for each a with a ∈ λ ′out there is (B,a) such that B ⊆ λ ′in.
Since λin = λ ′in, a ∈ λout. Therefore, λ = λ ′. Now, assume that λ ∈ grdL (F) assigns
an argument a to out. By the definition of conflict-free labeling there is an attack (B,a)
such that B⊆ λin.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with grdL (FL) = L.

AL = ArgsL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) = undec}

Consider the unique λ ∈ L and the unique λ G ∈ grdL (FL. For each argument a ∈ λin

we have that a is not attacked in FL and thus a ∈ λ G
in. For each argument a ∈ λout there

is an attack (λin,a) in FL and as λ∈ ⊆ λ G
∈ by the definition of complete labellings we

have a ∈ λ G
out. Finally for each argument a ∈ λundec the attack (λin∪{a},a) is the only

attack towards a in FL. Thus, by the definition of complete labellings, we have that a
is neither labelled in nor out in FL and therefore a ∈ λ G

undec. We obtain that λ G = λ
and thus grdL (FL) = L.

Notice that the above proof basically exploits that grounded semantics is a unique
status semantics and based on admissibility. The results thus immediately extends to
other semantics satisfying these two properties, e.g. to ideal or eager semantics [10].

5 On the relation of SETAFS and Support-Free ADFs
In order to compare SETAFs with SFADFS we switch to SETADF notation (cf. Theo-
rem 3). We start with the formal definition of the signatures of sub-classes of ADFs.

Definition 14. We define the signature of a class of ADFs D under semantics σ as

Σσ
D = {σ(D) | D ∈D}.

We start with the observation that each SETADF can be rewritten as a SETADF
that is a SFADF.

Lemma 10. For Each SETADF D = (S,L,C) there is an equivalent SETADF D′ =
(S,L′,C′) that is also a SFADF, i.e. for each s ∈ S, ϕs ∈ C, ϕ ′s ∈ C′ we have ϕs ≡ ϕ ′s
over atoms S.

Proof. Given a SETADF D, by Definition 9, each acceptance condition is a CNF over
negative literals and thus does not have any support link which is not redundant. We can
thus obtain L′ by removing the redundant links from L and C′ by, in each acceptance
condition, deleting the clauses that are super-sets of other clauses.
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As discussed in [15] in general SETAFs translate to Bipolar ADFs that contain
attacking and redundant links. However, when we consider SETAFs without redundant
attacks we obtain a SFADF.

We next characterise the acceptance conditions of SFADF that can be rewritten as
collective attacks.

Lemma 11. Let D = (S,L,C) be a SFADF. If s ∈ S has at least one incoming link
then the acceptance condition of argument s can be written in conjunctive normal form
containing only negative literals.

Proof. Since the acceptance condition of each argument in an ADF is indicated by a
propositional formula, it can be transformed to CNF. It remains to show that each of the
resulting formulas in CNF can be transformed into a CNF that consists of only negative
literals. Let ϕs be acceptance condition of an argument s with an incoming link (t,s) in
conjunctive normal form that contains t as positive literal. If t doesn’t not appear in any
model of the formula ϕs we can safely delete the literal t from each clause of the CNF
to obtain an equivalent CNF without t. Otherwise let v be a model of ϕs with v(t) = t
then, as (t,s) is attacking, we have that v|tf is a model of ϕs. Again we can safely delete
the literal t from each clause of the CNF to obtain an equivalent CNF without t. That
is, we can iteratively remove positive literals from the CNF to obtain a CNF with only
negative literals.

While we can rewrite each attack relation as a collection of collective attacks this
is not true for arguments that have no incoming link. That is, an argument with unsat-
isfiable acceptance condition cannot be modeled in a SETADF. One can use this fact to
show that there are some difference in expressiveness between SETADFs and SFADFs.

For instance, given an interpretation-set V = {{s 7→ f}} which is prf-realizable in
SFADFs. It is easy to check that there is no SETADF that realize V under preferred se-
mantics (cf. Proposition 5). That is we obtain that SFADFs are strictly more expressive
than SETADFs for all ADF semantics under our considerations.

Theorem 12. Σσ
SETADF ( Σσ

SFADF , for σ ∈ {adm,stb,mod,com,prf,grd}.
Proof. In the following first we show that Σσ

SETADF ⊆ Σσ
SFADF , for σ ∈ {adm,stb,mod,

com,prf,grd}. Let V be an interpretation-set which is σ -realizable in SETADFs for
σ ∈ {adm,stb,mod,com,prf,grd}. Thus, there exists a SETADF D = (S,L,C) such
that V = σ(D). By Lemma 10 D has an equivalent SFADF and thus V ∈ Σσ

SFADF.
Thus, for σ ∈ {adm,stb,mod, com,prf,grd}, Σσ

SETADF ⊆ Σσ
SFADF.

We complete the proof of theorem by showing Σσ
SFADF 6⊆Σσ

SETADF, for σ ∈{adm,stb,
mod,com,prf,grd}. To investigate, Σadm

SETADF ( Σadm
SFADF, let V= {{a 7→ u,b 7→ u},{a 7→

u,b 7→ f},{a 7→ t,b 7→ f}} be an interpretation-set. A witness of adm-realizability of
V in SFADFs is D = ({a,b},{ϕa = ¬a∨¬b,ϕb = ⊥}). However, V is not realiz-
able by any SETADF for admissible (cf. Proposition 8). Thus, Σadm

SFADF 6⊆ Σadm
SETADF. To

show Σσ
SFADF 6⊆ Σσ

SETADF, for σ ∈ {stb,mod,com,prf,grd}, let V = {{a 7→ f}}. The
interpretation V is σ -realizable in SFADFs for σ ∈ {stb,mod,com,prf,grd}, and a wit-
ness of σ -realizability of V in SFADFs is D = ({a},{ϕa = ⊥}). However, V cannot
be realized by any SETADF (cf. Propositions 4–9). Hence, Σσ

SETADF ( Σσ
SFADF , for

σ ∈ {adm,stb,mod,com,prf,grd}.
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The interpretation-sets V used in the proof of Theorem 12 to show that SFADFs are
more expressive than SETADFs, for σ ∈{adm,stb,mod,com,prf,grd}, are very special
interpretation-sets, which are only σ -realizable by a SFADF containing an argument
with unsatisfiable acceptance condition.

In [17, 18], it is shown that the unsatisfiable condition (ϕa = ⊥) has no direct
representation in SETAFs and in SETADFs, as well. However, there are SFADFs
with an unsatisfiable acceptance condition that have an equivalent SETADF, i.e. a SE-
TADF that has the same interpretations. For instance, the interpretation-set V= {{a 7→
f,b 7→ t}} can be σ -realized by SFADF D = ({a,b},{ϕa = ⊥,ϕb = >}) under σ ∈
{stb,mod,com,prf,grd}. The SFADF Dis a witness of σ -realizability of V in SFADF
and consists of unsatisfiable condition, however, we cannot conclude that V is not σ -
realizable in SETADFs. Actually, for the SETADF D′ = ({a,b},{ϕa = ¬b,ϕb = >})
we have V= σ(D′) and thus that V ∈ Σσ

SETADF for σ ∈ {stb,mod,com,prf,grd}.

5.1 On the exact difference of SETADFs and SFADFs
We already have seen that SFADFs are strictly more expressive than SETADFs. In this
section we investigate the exact difference in the signatures of SFADFs and SETADFs

As each SFADF without unsatisfiable acceptance condition can be translated into
a SETADF the interpretations in Σσ

SFADF \Σσ
SETADF must be based on unsatisfiable ac-

ceptance conditions. An argument with unsatisfiable acceptance conditions allows for
interpretations that assign an argument to f without assigning an argument to t. We will
denote the set of interpretation-sets containing such an interpretation by ∆σ .

Definition 15. Let σ be a semantics of ADFs. ∆σ is a subset of Σσ
SFADF such that:

∆σ = {σ(D) | D ∈ SFADF,∃v ∈ σ(D) s.t. ∀a v(a) ∈ {f,u}∧∃a v(a) = f}.

Moreover ∆̄σ = Σσ
SFADF \∆σ .

In this section we will first show that ∆σ characterises the difference between
SFADFS and SETADFs and then further investigate the sets ∆σ for the different se-
mantics.

We first show that each SFADF realizing an interpretation-set of ∆σ has an argu-
ment with an unsatisfiable acceptance conditions (and thus is not a SETADF).

Lemma 13. Given an interpretation-setV∈∆σ , for σ ∈{adm,stb,mod, com,prf,grd}.
Let v ∈ V be a non-trivial interpretation in which v(a) = f/u, for each argument a. In
all SFADFs that realize V under σ , the acceptance conditions of all arguments as-
signed to f by v are equal to ⊥.

Proof. let D be a SFADF that realizesV under σ , for σ ∈{adm,stb,mod,com, prf,grd}.
Let v ∈V be an non-trivial interpretation that assigns all arguments either to f or u. To-
ward a contradiction, assume that there exists an argument a which is assigned to f by
v, and ϕa 6=⊥ in D.

• First we show that V cannot be adm-realizable in SFADFs. Since a is assigned
to f in v the acceptance condition of a cannot be equal to >. By Lemma 11, the
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acceptance condition of a is in CNF and having only negative literals. Since all
b ∈ par(a) are either assigned to f or u by v, ϕv

a cannot be unsatisfiable. That is,
v(a) 6≤i ΓD(v)(a). Therefore, v is not an admissible interpretation of D. Thus, V
consists of v is not adm-realizable in SFADF.

• To complete the proof we show that V cannot be σ -realizable for σ ∈ {stb,mod,
com,prf,grd} in SFADF D. SupposeV=σ(D) for σ ∈ {stb,mod,com,prf,grd},
that is, each interpretation of V is a σ interpretation. Since each σ interpretation,
for σ ∈ {stb,mod,com,prf,grd}, is an admissible interpretation, v is an admissi-
ble interpretation, as well. This is a contradiction by the previous item in which
it is shown that v is not an admissible interpretation.

Hence, if V ∈ ∆σ for σ ∈ {adm,stb,mod,com,prf,grd} in all SFADFs that realize
V under σ , ϕa =⊥ for all a assigned to f in v,

From Lemma 13, and the fact that unsatisfiable conditions do not have a direct
analogue in SETAFS, via [17], we have the following theorem.

Theorem 14. Given an interpretation-set V ∈ ∆σ . The interpretation-set V is not σ -
realizable in SETADFs, for σ ∈ {adm,stb,prf,mod,com,grd}.

Proof. SinceV∈ ∆σ , the interpretation-setV is σ -realizable in SFADFs for σ ∈ {adm,
stb,prf,mod, com,grd}. Let v ∈ V be an interpretation in which all arguments are as-
signed to either f or u. By Lemma 13, in any SFADF D which is a witness of σ -
realizability of V, that is V = σ(D) for σ ∈ {adm,stb,prf,mod,com,grd}, the accep-
tance conditions of arguments which are assigned to f in V are unsatisfiable. That is D
is not a SETADF.

By the above we have that all interpretation-sets in ∆σ are not realizable with SE-
TADFs. It remains to show that all other interpretation-sets in Σσ

SFADF can be realized
with SETADFs, i.e. we have to show that ∆̄σ = Σσ

SETADF.
Theorem 14, is a motivation to study whether ∆σ is the only set elements of which

cannot be realized by any SETAFs under σ . We first show this for admissible seman-
tics.

Lemma 15. Given an interpretation-set V ∈ ∆̄adm. Each SFADF that realizes V has
no unsatisfiable acceptance condition.

Proof. Given an arbitrary interpretation-setV∈ ∆̄adm Suppose to the contrary that there
exist a SFADF D = (S,L,C) such that adm(D) = V and there exists s ∈ S such that
ϕs = ⊥. Then, an interpretation v that assigns s to f and all other arguments of S to u
is an admissible interpretation of D. This is a contradiction with the assumption that
V 6∈ ∆adm. Thus, the acceptance condition of all arguments of all SFADFs that realize
V under σ is either > or the argument has at least one incoming link.

By Lemma 15 and Lemma 11 each V ∈ ∆̄adm can be realized as SETADF.

Proposition 16. Σadm
SFADF = Σadm

SETADF∪∆adm.
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Note that Lemma 15, does not hold for σ ∈ {stb,mod,prf,com,grd}. That is, a wit-
ness of σ -realizability of an interpretation-set V ∈ ∆̄σ may contain arguments with un-
satisfiable acceptance condition. For instance, the interpretation-set V= {{a 7→ t,b 7→
f}} that V ∈ ∆̄σ can also be realized by SFADF D = ({a,b},{ϕa = ¬b,ϕb =⊥}), for
σ ∈ {stb,mod,prf, com,grd}, in which there is an argument with unsatisfiable accep-
tance condition.

Proposition 17 shows that under which condition an interpretation-set V ∈ Σσ
SFADF

is σ -realizable in SETADFs, for σ ∈ {stb,grd,prf,mod,com}, beside the fact that a
witness of σ -realizability of V in SFADFs consists of an argument with unsatisfiable
acceptance condition.

Proposition 17. Σσ
SFADF = Σσ

SETADF∪∆σ , for σ ∈ {stb,grd,prf,mod, com}.

Proof. It remains to show that eachV∈ ∆̄σ can be σ -realizable in SETADFs. Consider
a witness D = (S,L,C) of σ -realizability of V in SFADFs. If there is no argument with
acceptance condition ⊥, then V is σ -realizable in SETADFs by Lemma 11. Assume
there are arguments s1, . . . ,s` with acceptance condition ⊥ and thus si is denied by
any vi ∈ V. Notice that as V ∈ ∆̄σ , we then have that each vi ∈ V assigns at least one
argument to t. For each vi ∈ V let bi be an argument such that vi(bi) = t.

We construct a SETADF FD =(S,L′,C′) such that C′ is a collection of ϕ ′a as follows.

ϕ ′a =

{
ϕa if ϕa 6=⊥
¬a∧∧vi∈V¬bi otherwise.

It is now easy to verify thatV= σ(FD) and as, by construction FD, has no argument
with acceptance condition ⊥, by Lemma 11, V is σ -realizable in SETADFs.

In the proof of Proposition 17, it is shown constructively how an interpretation-set
that is σ -realizable in SFADFs for σ ∈ {stb,grd,prf,mod,com} and each element of
which accepts an argument, can be realized by a SETADF.

Example 3. Let V= {{a 7→ f,b 7→ t,c 7→ t,d 7→ f},{a 7→ f,b 7→ t,c 7→ f,d 7→ t}} be an
interpretation-set. A witness of σ -realizability of V in SFADFs, for σ ∈ {stb,prf,mod}
can be D = ({a,b,c,d},{ϕa = ⊥,ϕb = ¬a,ϕc = ¬d,ϕd = ¬c}). By the construction
in the proof of Proposition 17, a SETADF FD constructed based on SFADF D is, FD =
({a,b,c,d},{ϕa = ¬a∧¬b,ϕb = ¬a,ϕc = ¬d,ϕd = ¬c}).

Theorem 18 summarizes or results and shows that ∆σ is the only set of interpretation-
sets that cannot be realized by any SETADF, for σ ∈ {adm,stb,mod,com,prf,grd}.

Theorem 18. Σσ
SETADF = ∆̄σ , for σ ∈ {adm,stb,mod,com,prf,grd}.

Given that the difference in Σσ
SETADF and Σσ

SFADF is captured by the sets ∆σ we
further investigate the properties of these sets.

We first show that for σ ∈ {stb,mod,prf} the set ∆σ only contains interpretation-
sets that contain only a single interpretation.

Lemma 19. For V ∈ ∆σ and σ ∈ {stb,mod,prf} we have |V|= 1. For σ ∈ {stb,mod}
the unique v ∈ V assigns all arguments to f.
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Proof. Toward a contradiction assume that there existsV∈ ∆σ , for σ ∈ {stb,mod,prf},
such that |V| > 1. Let v ∈ V be an interpretation that assign all arguments to either f
or u (since V ∈ ∆σ , such a v exists). By Lemma 13, the acceptance condition of all
arguments that are assigned to f by v is equal to ⊥ in all SFADFs that realize V under
σ ∈ {stb,mod,prf}. Let D = (S,L,C) be a witness of σ -realizibility of V in SFADFs,
under σ ∈ {stb,mod,prf}. If all arguments are assigned to f in v, the acceptance con-
ditions of all arguments are ⊥ in SFADF D. Thus, |σ(D)|= 1 for σ ∈ {stb,mod,prf}.
This is a contradiction by the assumption that the cardinal of the interpretation-set V is
more than one.

Assume that v assigns some arguments to u. Thus, V cannot be mod or stb-realized
in any ADF. It remains to show that the interpretation-set V in question is not prf-
realizable. Let B ⊂ S such that v(b) = u for b ∈ B. For each s ∈ S \B, by Lemma 13,
ϕs =⊥ in D. Therefore, in all v′ ∈ V, v′(s) = f for s ∈ S\B. For each v′ 6= v in V there
exists at least b ∈ B such that v′(b) 6= u, therefore, v < v′. By the definition of preferred
interpretations v cannot be a preferred interpretation. Therefore, the assumption |V|> 1
is not correct. Thus, if V ∈ ∆σ , for σ ∈ {stb,mod,prf}, then V consist of only one
interpretation.

In other words each interpretation-set which is σ -realizable in SFADFs and con-
tains at least two interpretation can be realized in SETADFs, for σ ∈ {stb,prf,mod}

However, this is not a sufficient condition for admissible and complete semantics,
shown in Example 4.

Example 4. Let V= {{a 7→ f,b 7→ u,c 7→ u},{a 7→ f,b 7→ t,c 7→ f},{a 7→ f,b 7→ f,c 7→
t}}. A witness of com-realizability of V in SFADFs can be D = ({a,b,c},{ϕa =
⊥,ϕb = ¬c,ϕc = ¬b}) and V′ = grd(D) = {{a 7→ f,b 7→ u,c 7→ u}}. However, there
is no SETADF that realize V under com and V′ under grd.

Finally we give an alternative characterisation for complete semantics.

Theorem 20. Let V ∈ Σcom
SFADF and g =

d
v∈V v, then V ∈ Σcom

SETADF if and only if g is
grd-realizable in SETADFs.

Proof. Let D = (S,L,C) be a witness of realizability of V in SFADFs under complete
semantics. Assume that V is com-realizable in SETADFs by D′ = (S,L′,C′) then it is
clear that g = grd(D) = grd(D′) and thus g is grd-realizable in SETADFs. To show the
if part of the theorem, assume that g is grd-realizable in SETADFs. By Theorem 14,
either (a) there exists s ∈ S which is assigned to t in g or (b) all s ∈ S are assigned to u.
In case (a) this s is assigned to t by any v ∈ V. By the method presented in the proof
of Proposition 17 this V is com-realizable in SETAFs. In case (b) we have that in D
there is no argument with acceptance condition ⊥ (or >) and thus by Lemma 11 D is
equivalent to a SETADF.

5.2 SETADFs vs. Symmetric SFADFs
In this section we consider the special subclass of SFADF in which the attack link
relation is symmetric in the sense of [5].
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Definition 16. An ADF D = (S,L,C) is symmetric if L is irreflexive and symmetric
and L does not contain any redundant links.

Definition 17. A support free ADF D=(S,L,C) is a support free symmetric ADF(SFSADF
for short) if it is symmetric.

In Lemma 21, the sufficient condition under which a SFSADF can be written as a
SETADF is investigated. Notice that in symmetric ADFs, due to the lack of redundant
links, arguments with unsatisfiable acceptance condition are always isolated arguments.

Lemma 21. Given a SFSADF D which does not contain any isolated argument with
unsatisfiable acceptance condition. The SFSADF D can be written as a SETADF.

Proof. Assume that D = (S,L,C) is a SFSADF in which there is no isolated argument
s ∈ S such that ϕs =⊥. Since each SFSADF is a SFADF, D is a SFADF and by the as-
sumption of the lemma, D does not contain any argument with unsatisfiable acceptance
condition. Via Lemma 11, D can be rewritten as a SETADF.

Lemma 22. Let D be an SFSADF with no isolated argument. The unique grounded
interpretation of D is the trivial interpretation, vu.

Proof. We show that for any SFSADF D=(S,L,C) with no isolated argument, ΓD(vu)=
vu. Let s be an argument. Let v1 be an interpretation in which all parents of s are as-
signed to t and let v2 be an interpretation in which all par(s) are assigned to f. Since
D is an SFSADF, the former interpretation shows that ϕvu

s is not irrefutable and the
latter interpretation says that ϕvu

s is not unsatisfiable. Therefore, for each argument s,
ΓD(vu)(s) = u.

We next combine the two above Lemmas to obtain necessary and sufficient condi-
tions for realizability of V ∈ Σσ

SFSADF in SETADFs for σ ∈ {adm,com,grd}.
Proposition 23. Given a SFSADF D we have that

1. adm(D) ∈ Σadm
SETADF iff D does not contain any argument with unsatisfiable ac-

ceptance condition; and

2. σ(D) ∈ Σσ
SETADF for σ ∈ {grd,com} iff either (a) D contains an isolated argu-

ment with acceptance condition > or (b) D does not contain any argument with
unsatisfiable acceptance condition.

Proof. 1) The “if” direction is immediate by Lemma 21. For the “only if” direction
assume that D contains an argument a with unsatisfiable acceptance conditions. Then
there is a admissible interpretation that assigns a to f and all the other arguments to u.
By Theorem 18 such a σ(D) is not in Σσ

SETADF.
2) For “if” direction first assume (a) holds, i.e. there is an argument a with cs =>.

Then each complete interpretation assigns a to t and thus, by Theorem 18, σ(D) ∈
Σσ

SETADF. Otherwise, (b) holds and σ(D) ∈ Σσ
SETADF is immediate by Lemma 21. For

the “only if” direction assume that D contains arguments with unsatisfiable acceptance
conditions but no isolated arguments with acceptance condition >. By Lemma 22 we
then have an interpretation λ ∈ V that assigns some arguments to f and all the other
arguments to u. By Theorem 18 such a σ(D) is not in Σσ

SETADF.
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On the other hand, the conditions in the above proposition are not necessary for
σ ∈ {prf,stb,mod} as indicated in Example 5.

Example 5. LetV= {{a 7→ f,b 7→ t,c 7→ f},{a 7→ f,b 7→ f,c 7→ t}} be an interpretation-
set. A witness of σ -realizability of V in SFSADFs for σ ∈ {stb,mod,prf}, is D =
({a,b,c},{ϕa = ⊥,ϕb = ¬c,ϕc = ¬b}). D is a SFADF that contains an argument a
such that ϕa = ⊥, however, V 6∈ ∆σ . Thus, by Proposition 17, V can also be realized
by a SETADF, a witness of which is D′ = ({a,b,c},{ϕa = ¬a∧¬b∧¬c,ϕb = ¬c∧
¬a,ϕc = ¬b∧¬a}).

In [6] it is proven that Σσ
SFSADF = Σσ

SFADF, for σ ∈ {stb,mod}, and Σσ
SFSADF (

Σσ
SFADF, for σ ∈ {adm,grd,com,prf}. On the other hand, ∆σ 6⊆ ΣSFSADF for σ ∈
{adm,grd,com,prf}. For instance, let V = {a 7→ u,b 7→ f}. It is clear that V ∈ ∆σ
and V 6∈ Σσ

SFSADF, for σ ∈ {adm,grd,com,prf}. Let ∆′σ be a subset of ∆σ that is realiz-
able in Σσ

SFSADF, for σ ∈ {adm,grd,com,prf}. Theorem 24 clarifies the expressiveness
of SFSADFs and SETADFs.

Theorem 24. The following properties hold:

1. (Σσ
SFSADF \∆′σ )( Σσ

SETADF, for σ ∈ {prf,adm,com,grd},

2. Σσ
SETADF = (Σσ

SFSADF \∆σ ), for σ ∈ {stb,mod}.

Proof. We show the two statements separately.
1) By Theorem 18 we have that Σσ

SETADF = (Σσ
SFADF \∆σ ), and by the definition of

SFSADFs and ∆′σ we have Σσ
SFSADF \∆′σ ⊆ Σσ

SFADF \∆σ . Combining these two state-
ments we obtain (Σσ

SFSADF \∆′σ )⊆ Σσ
SETADF, for σ ∈ {prf,adm,com,grd}. To complete

the proof, let V = {{a 7→ u}}. The interpretation-set V is σ -realizable in SETADFs.
However, V 6∈ Σσ

SFSADF. Thus, Σσ
SETADF 6⊆ (Σσ

SFSADF \∆′σ ).
2) By Theorem 18 we have Σσ

SETADF = (Σσ
SFADF \∆σ ) and by [6]we have Σσ

SFSADF =
Σσ

SFADF for σ ∈{stb,mod}. Combining these two results we obtain Σσ
SETADF =Σσ

SFSADF\
∆σ for σ ∈ {stb,mod}.

The results of comparison of expressiveness of SETADFs, SFSADFs and SFADFs,
for σ ∈ {adm,prf,stb,mod,grd,com}, are depicted in Figure 3. In both figures it is
shown that the set Σσ

SETADF, depicted by vertical lines, is equal to the set ∆̄σ , for all
semantics. In addition, the expressiveness of SFSADFs is equal to SFADFs, for σ ∈
{stb,mod}. However, SFADFs are more expressive than SFSADFs, for σ ∈ {adm,prf,
com,grd}. Further, some of the interpretation-sets of ∆σ are not realizable in SF-
SADFs, for σ ∈ {adm,prf,com,grd}.
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