dbai Technical **R** E P O R T

INSTITUT FÜR LOGIC AND COMPUTATION

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Characteristics of Multiple Viewpoints in Abstract Argumentation under Complete Semantics

DBAI-TR-2018-113

Thomas Linsbichler

DBAI TECHNICAL REPORT 2018

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Institut für Logic and Computation Abteilung Datenbanken und Artificial Intelligence Technische Universität Wien Favoritenstr. 9 A-1040 Vienna, Austria Tel: +43-1-58801-18403 Fax: +43-1-58801-918403 sek@dbai.tuwien.ac.at

DBAI TECHNICAL REPORT DBAI TECHNICAL REPORT DBAI-TR-2018-113, 2018

Characteristics of Multiple Viewpoints in Abstract Argumentation under Complete Semantics

Thomas Linsbichler¹

Abstract. This report provides a characterization of the signature of complete semantics in abstract argumentation. By that it solves a problem that was left open by recent work on the expressiveness of abstract argumentation semantics.

¹Institute of Information Systems, TU Wien, Austria. E-mail: linsbich@dbai.tuwien.ac.at Copyright © 2018 by the authors

1 Introduction

This is an addendum to [1] characterizing the signature of complete semantics. By that we solve what was mentioned to be among the open problems in abstract argumentation [2]. We assume the reader is familiar with the basic definitions and concepts of [1]. Section 2 will show a property of extension-sets under complete semantics which is stricter than the one shown in the original paper and Section 3 will show that this property is sufficient for realizability, giving rise to an exact characterization of the signature of complete semantics given in Section 4.

2 Properties of extension-sets under complete semantics

We recall and extend definitions from [1] concerning complete realizability:

Definition 1. Given an extension-set $\mathbb{S} \subseteq 2^{\mathfrak{A}}$ and $E \subseteq Args_{\mathbb{S}}$. We define the completion-sets $\mathbb{C}_{\mathbb{S}}(E)$ of E in \mathbb{S} as the set of \subseteq -minimal sets $S \in \mathbb{S}$ with $E \subseteq S$. If $|\mathbb{C}_{\mathbb{S}}(E)| = 1$ we denote this single set as $\mathcal{C}_{\mathbb{S}}(E)$.

Definition 2. Let $\mathbb{S} \subseteq 2^{\mathfrak{A}}$. If for a set $\mathbb{T} \subseteq \mathbb{S}$ and a set $P \subseteq (Args_{\mathbb{S}} \times Args_{\mathbb{S}})$ it holds that $(a, b) \in P$ for each $a, b \in Args_{\mathbb{T}}$, but $\bigcup \mathbb{T} \notin \mathbb{S}$, then $\bigcup \mathbb{T}$ is a completion-candidate of \mathbb{S} wrt. P. The set of all completion-candidates of \mathbb{S} wrt. P is denoted by $cc_{\mathbb{S}}(P)$. \mathbb{S} is called *com-closed* wrt. P if each completion-candidate t of \mathbb{S} wrt. P has a unique completion-set in \mathbb{S} , i.e. $|\mathbb{C}_{\mathbb{S}}(T)| = 1$. Finally, letting T be a completion-candidate of \mathbb{S} wrt. P, we define $X_{\mathbb{S},P}^T = \{x \in Args_{\mathbb{S}} \mid \exists u \in C_{\mathbb{S}}(T) : (u, x) \notin P, \forall t \in T : (t, x) \in P\}$.

Example 1. Let $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}\}$ and observe that $\{a, b\}$ is a completion-candidate of \mathbb{S} wrt. *Pairs*_{\mathbb{S}}, i.e. $\{a, b\} \in cc_{\mathbb{S}}(Pairs_{\mathbb{S}})$. Moreover, $\{a, b\}$ has a unique completion-set in \mathbb{S} , namely $C_{\mathbb{S}}(\{a, b\}) = \{a, b, c\}$. Since $\{a, b\}$ is the only completion-candidate of \mathbb{S} wrt. *Pairs*_{\mathbb{S}}, \mathbb{S} is com-closed wrt. *Pairs*_{\mathbb{S}}.

On the other hand consider $\mathbb{S}' = \mathbb{S} \cup \{\{a, b, d\}\}$. Still $cc_{\mathbb{S}'}(Pairs_{\mathbb{S}'}) = \{\{a, b\}\}$, but now $\{a, b\}$ has two completion-sets in \mathbb{S}' , that is $\mathbb{C}_{\mathbb{S}'}(\{a, b\}) = \{\{a, b, c\}, \{a, b, d\}\}$. Hence \mathbb{S}' is not com-closed wrt. *Pairs*_{\mathbb{S}'}.

Definition 3. An extension-set S is com-fortable if it holds that $\bigcap S \in S$ and there exists a removalset $Z \subseteq (Args_S \times Args_S) \setminus Pairs_S$ such that

- \mathbb{S} is com-closed wrt. *Pairs*_{\mathbb{S}} \cup *Z*,
- for each $T \in cc_{\mathbb{S}}(Pairs_{\mathbb{S}} \cup Z)$ it holds that $U \subseteq grd((U \cup X_{\mathbb{S},P}^T, ((U \cup X_{\mathbb{S},P}^T) \times (U \cup X_{\mathbb{S},P}^T)) \setminus P))$ with $U = \mathcal{C}_{\mathbb{S}}(T) \setminus T$ and $P = Pairs_{\mathbb{S}} \cup Z$, and
- for each S ∈ S and a ∈ S it holds that if, for some b ∈ Args_S, (a, b) ∈ Z and (b, a) ∉ Z then there is an s ∈ S with (s, b) ∉ Pairs_S ∪ Z.

Note that an extension-set \mathbb{S} being com-fortable implies $\mathbb{S} \neq \emptyset$, since otherwise $\bigcap \mathbb{S} = \emptyset \notin \emptyset$.

Example 2. Consider the extension-set S from Example 1. It can easily be verified that S is comfortable. In particular, $\bigcap S = \emptyset \in S$ and the empty removal-set $Z = \emptyset$ fulfills all conditions. On the other hand we immediately see that S' from Example 1 is not com-fortable. As it is not com-closed wrt. *Pairs*_{S'} there cannot be a set Z such that it is com-closed wrt. *Pairs*_{S'} $\cup Z$.

Example 3. Let $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b, c\}, \{a, d, e\}, \{b, d, f\}, \{x, c\}, \{x, d\}\}$. It was discussed in Example 8 of [1] that, despite \mathbb{S} is com-closed wrt. *Pairs*_{\mathbb{S}}, there exists no AF *F* having $com(F) = \mathbb{S}$. We will argue that \mathbb{S} is also not com-fortable. First assume $Z = \emptyset$. We have $T = \{a, b\} \in cc_{\mathbb{S}}(Pairs_{\mathbb{S}})$ and get $U = C_{\mathbb{S}}(T) \setminus T = \{c\}$ and $X_{\mathbb{S},Pairs_{\mathbb{S}}}^T = \{d\}$. However, $grd(\{c, d\}, \{(c, d), (d, c)\}) = \emptyset$, hence *Z* violates the second condition of Definition 3. Assuming $Z = \{(d, c)\}$ gives us the same *T* and *U* but now $X_{\mathbb{S},Pairs_{\mathbb{S}}\cup Z}^T = \emptyset$ and we get $grd(\{c\}, \emptyset) = \{c\}$, fulfilling the second condition. But now we have $\{x, d\} \in \mathbb{S}$ and $(d, c) \in Z$ and $(c, d) \notin Z$ but both $(x, c), (d, c) \in Pairs_{\mathbb{S}} \cup Z$, violating the third condition. Finally, choosing $Z = \{(c, d), (d, c)\}$ fulfills these conditions, but we get $\{x, c, d\} \in cc_{\mathbb{S}}(Pairs_{\mathbb{S}} \cup Z)$ as new completion-candidate of \mathbb{S} wrt. $Pairs_{\mathbb{S}} \cup Z$ which has no completion-set in \mathbb{S} . Hence \mathbb{S} is not com-closed wrt. $Pairs_{\mathbb{S}} \cup Z$. It can be verified that there is also no other choice of *Z* fulfilling the conditions of Definition 3. Therefore \mathbb{S} is not com-fortable.

On the other hand the extension-set $S' = S \setminus \{\{x, c\}, \{x, d\}\}$ is com-fortable as the removal-set $\{(d, c)\}$ fulfills all properties of Definition 3.

Proposition 1. For every $AF F \in AF_{\mathfrak{A}}$ it holds that com(F) is com-fortable.

Proof. Let $F \in AF_{\mathfrak{A}}$ be an arbitrary AF. It is well-known that $\bigcap com(F)$, that is the grounded extension of F, is also a member of com(F). Hence we have to show that there exists a removalset $Z \subseteq (Args_{com(F)} \times Args_{com(F)}) \setminus Pairs_{com(F)}$ fulfilling the conditions given in Definition 3. Let $Z = ((Args_{com(F)}) \times Args_{com(F)}) \setminus Pairs_{com(F)}) \setminus R_F.$ In other words, $(a, b) \in Z$ iff $a, b \in Args_{com(F)}$, $(a,b) \notin Pairs_{com(F)}$ and $(a,b) \notin R_F$ (implicit conflicts among $Args_{\mathbb{S}}$ according to hidden power paper). Let $P = Pairs_{com(F)} \cup Z$ which is just the inverse of R_F among arguments $Args_{com(F)}$. (1) Let $T \in cc_{com(F)}(P)$. In other words, T is the union of complete extensions E_1, \ldots, E_n $(n \ge 2)$ of F which is conflict-free in F but not a complete extension of F itself. Note that T, being the union of admissible sets, is also admissible in F (cf. Lemma 1 in [1]). Now iteratively adding the defended arguments to T gives a unique complete extension F, hence T has a unique completion-set in com(F), showing that com(F) is com-closed wrt. $Pairs_{com(F)} \cup Z$. (2) Now let E be the unique \subseteq -minimal complete extension of F extending T (i.e. $E = \mathcal{C}_{com(F)}(T)$) and let $U = E \setminus T$. As $T \notin com(F)$, T must defend at least one argument of U, which, together with T, defends another argument, and so on. In other words $U = grd(F|_{A_F \setminus T^+})$. Let F' = $(U \cup X_{com(F),P}^T, ((U \cup X_{com(F),P}^T) \times (U \cup X_{com(F),P}^T)) \setminus P)$ and note that F' coincides with $F|_{A_F \setminus T^+}$ among arguments in $U \cup X_{com(F),P}^{T}$. Therefore it holds that if an argument $u \in U$ is attacked in F' then it is attacked in $F|_{A_F \setminus T^+}$ and if an argument $u \in U$ attacks an argument of $U \cup X_{com(F),P}^T$ in $F|_{A_F \setminus T^+}$ then it also attacks this argument in F'. Hence $grd(F') \supseteq grd(F|_{A_F \setminus T^+})$. Therefore $U \subseteq grd(F')$, which was to show. (3) We have to show that for each $E \in com(F)$ and each $a \in E$, it holds that if for some $b \in Args_{com(F)}$, $(a, b) \in Z$ and $(b, a) \notin Z$, then there is some $c \in E$ with $(c,b) \notin P$. Let $E \in com(F), a \in E$ and assume there is an argument $b \in Args_{com(F)}, (a,b) \in Z$ and $(b, a) \notin Z$. By the definition of Z this means that b attacks a but is not attacked by a in F. Since E must be admissible it has to attack b in F, which means that there is some $c \in E$ with $(c, b) \in R_F$, i.e. $(c, b) \notin P$.

3 Realizability

Definition 4. Given a com-fortable (with removal-set Z) extension-set S and an argument $a \in Args_{\mathbb{S}}$, let $P = Pairs_{\mathbb{S}} \cup Z$. We define the completion-formula $\mathcal{C}_{a}^{\mathbb{S},P}$ of argument a as \top if $a \in \bigcap \mathbb{S}$ and

$$\bigvee_{cc_{\mathbb{S}}(P) \text{ s.t. } a \in (\mathcal{C}_{\mathbb{S}}(S) \setminus S)} \bigwedge S$$

otherwise. $\mathcal{C}_{a}^{\mathbb{S},P}$ converted to CNF is denoted by $\mathcal{C}_{a}^{\mathbb{S},P}$. The extended defense-formula $\mathcal{ECD}_{a}^{\mathbb{S},P}$ of a is $\mathcal{D}_{a}^{\mathbb{S}} \vee \mathcal{C}_{a}^{\mathbb{S},P}$ in CNF.

Example 4. Let $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{a, c, d\}, \{a, b, c, d\}\}$. It can be verified that \mathbb{S} is comfortable with the empty removal set. Moreover observe that we have a single completion-candidate $cc_{\mathbb{S}}(Pairs_{\mathbb{S}}) = \{\{a, b\}\}$ which has completion-set $\mathcal{C}_{\mathbb{S}}(\{a, b\}) = \{a, b, c, d\}$. We get $\mathcal{C}_{a}^{\mathbb{S}, Pairs_{\mathbb{S}}} = \mathcal{C}_{b}^{\mathbb{S}, Pairs_{\mathbb{S}}} = \bot = \{\emptyset\}$ and $\mathcal{C}_{c}^{\mathbb{S}, Pairs_{\mathbb{S}}} = \mathcal{C}_{d}^{\mathbb{S}, Pairs_{\mathbb{S}}} = a \land b = \{\{a\}, \{b\}\}\}$. Moreover, we have $\mathcal{ECD}_{a}^{\mathbb{S}, Pairs_{\mathbb{S}}} = \mathcal{ECD}_{b}^{\mathbb{S}, Pairs_{\mathbb{S}}} = \top = \emptyset$ and $\mathcal{ECD}_{c}^{\mathbb{S}, Pairs_{\mathbb{S}}} = a \land (b \lor d) = \{\{a\}, \{b, d\}\}$, $\mathcal{ECD}_{d}^{\mathbb{S}, Pairs_{\mathbb{S}}} = a \land (b \lor c) = \{\{a\}, \{b, c\}\}$.

Definition 5. Given a com-fortable (with removal-set Z) extension-set S, let $P = Pairs_{\mathbb{S}} \cup Z$. We define the canonical completion-argumentation-framework as

$$F^{com}_{\mathbb{S},P} = (Args_{\mathbb{S}} \cup D_{\mathbb{S},P} \cup C_{\mathbb{S},P}, R^{cf}_{\mathbb{S},P} \cup R^{def}_{\mathbb{S},P} \cup R^{com}_{\mathbb{S},P})$$

where

$$\begin{split} D_{\mathbb{S},P} &= \bigcup_{a \in Args_{\mathbb{S}}} \{ \alpha_{a,\gamma} \mid \gamma \in \mathcal{ED}_{a}^{\mathbb{S},P} \}, \\ C_{\mathbb{S},P} &= \bigcup_{a \in Args_{\mathbb{S}}} \{ \beta_{a,\gamma} \mid \gamma \in \mathcal{C}_{a}^{\mathbb{S},P} \}, \\ R_{\mathbb{S},P}^{cf} &= (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus P, \\ R_{\mathbb{S},P}^{def} &= \bigcup_{a \in Args_{\mathbb{S}}} \{ (b, \alpha_{a,\gamma}), (\alpha_{a,\gamma}, \alpha_{a,\gamma}), (\alpha_{a,\gamma}, a) \mid \gamma \in \mathcal{ED}_{a}^{\mathbb{S},P}, b \in \gamma \}, \\ R_{\mathbb{S},P}^{com} &= \bigcup_{a \in Args_{\mathbb{S}}} \{ (b, \beta_{a,\gamma}), (\beta_{a,\gamma}, \beta_{a,\gamma}), (\beta_{a,\gamma}, a), (a, \beta_{a,\gamma}) \mid \gamma \in \mathcal{CC}_{a}^{\mathbb{S},P}, b \in \gamma \}. \end{split}$$

Example 5. The canonical completion-argumentation-framework of extension-set S from Example 4 with $Pairs_S$ is depicted in Figure 1. It is easy to verify that $com(F_{S,Pairs_S}^{com}) = S$. In particular, note that $\{a, b\} \notin S$ is admissible in $F_{S,Pairs_S}^{com}$, but as it defends both c and d it is, as expected, not a complete extension of $F_{S,Pairs_S}^{com}$.

Figure 1: $F_{\mathbb{S},Pairs_{\mathbb{S}}}^{com}$ for \mathbb{S} as given in Example 4

Lemma 1. Given a com-fortable (with removal-set Z) extension-set \mathbb{S} , let $P = Pairs_{\mathbb{S}} \cup Z$. It holds that

- 1. If $S \in \mathbb{S}$ then S defends itself from $D_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$.
- 2. If S defends itself from $D_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$ then $\forall a \in S \exists T \in \mathbb{S}$ with $a \in T$ and $T \subseteq S$.
- 3. If $S \subseteq \operatorname{Args}_{\mathbb{S}}$ defends $a \in \operatorname{Args}_{\mathbb{S}} \setminus (S \cup \bigcap \mathbb{S})$ from $C_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$ then there is some $T \in cc_{\mathbb{S}}(P)$ with $T \subseteq S$ and $a \in C_{\mathbb{S}}(T)$.

Proof. (1) Let $S \in \mathbb{S}$ and $a \in S$. By definition of $\mathcal{D}_a^{\mathbb{S}}$ (cf. Definition 13 in [1]) it holds that $a \models \mathcal{D}_a^{\mathbb{S}}$, hence also $a \models \mathcal{C}\mathcal{D}_a^{\mathbb{S}}$ and $a \models \mathcal{E}\mathcal{C}\mathcal{D}_a^{\mathbb{S}}$ meaning that for each argument $\alpha \in D_{\mathbb{S},P}$ is attacked by \mathbb{S} , hence S defends itself from $D_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$.

(2) Assume S defends itself from $D_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$ and let $a \in S$. Each attacker $\alpha \in D_{\mathbb{S},P}$ of a has to be attacked by S, meaning that $S \models \mathcal{ECD}_a^{\mathbb{S},P}$. By definition, this means that (a) $S \models \mathcal{D}_a^{\mathbb{S}}$ or (b) $S \models \mathcal{C}_a^{\mathbb{S},P}$. In case of (a) we immediately get that there is some $T \in \mathbb{S}$ with $T \subseteq S$ and $a \in T$ (see also Lemma 6 of [1]). In case of (b) we know that there is some $T \in cc_{\mathbb{S}}(P)$ wit $T \subseteq S$ and $a \in T$. As T must be the union of elements of \mathbb{S} the result follows.

(3) Let $S \subseteq Args_{\mathbb{S}}$ and $a \in Args_{\mathbb{S}} \setminus (S \cup \bigcap \mathbb{S})$ and assume S defends a from $C_{\mathbb{S},P}$ in $F_{\mathbb{S},P}^{com}$. Each attacker $\beta \in C_{\mathbb{S},P}$ of a has to be attacked by S, meaning that $S \models \mathcal{C}_a^{\mathbb{S},P}$, hence also $S \models \mathcal{C}_a^{\mathbb{S},P}$. Therefore there must be some $T \subseteq S$ with $T \in cc_{\mathbb{S}}(P)$ and $a \in \mathcal{C}_{\mathbb{S}}(T)$.

Proposition 2. Given a com-fortable (with removal-set Z) extension-set \mathbb{S} , it holds that $\mathbb{S} = F_{\mathbb{S},P}^{com}$ with $P = Pairs_{\mathbb{S}} \cup Z$.

Proof. (\subseteq) Let $S = \bigcap \mathbb{S}$. For each $a \in S$ it holds that $\mathcal{C}_a^{\mathbb{S},P}$ is \top , hence both $\mathcal{C}_a^{\mathbb{S},P}$ and $\mathcal{E}\mathcal{D}_a^{\mathbb{S},P}$ contain no clauses, therefore a is not attacked by arguments in $C_{\mathbb{S},P}$ and $D_{\mathbb{S},P}$. Moreover, $(s, a) \in Pairs_{\mathbb{S}}$ for each $s \in Args_{\mathbb{S}}$, hence a has no attackers in $F_{\mathbb{S},P}^{com}$. This means S is admissible in $F_{\mathbb{S},P}^{com}$. For each other argument $b \in Args_{\mathbb{S}} \setminus S$ it holds that $\mathcal{C}_a^{\mathbb{S},P}$ has at least one (empty) clause γ , hence in order for S to defend b from $C_{\mathbb{S},P}$ there must be a completion-candidate $T \in cc_{\mathbb{S}}(P)$ with $T \subseteq S$ and $b \in \mathcal{C}_{\mathbb{S}}(T)$ (cf. Lemma 1.3). But this cannot be the case since $S \subseteq S'$ for each $S' \in \mathbb{S}$. Therefore b is not defended by S from $C_{\mathbb{S},P}$, hence S is complete in $F_{\mathbb{S},P}^{com}$.

Now let $S \in S$ but $S \neq \bigcap S$. By Lemma 1.1, S defends itself from arguments $C_{S,P}$. Moreover it defends itself form arguments $Args_S$ by the third condition of the removal-set Z which makes S com-fortable and by construction of $F_{S,P}^{com}$. Finally it defends itself from arguments $D_{S,P}$ by construction of $F_{S,P}^{com}$. Therefore S is admissible in $F_{S,P}^{com}$. In order to show that S is complete assume, towards a contradiction, there is an $a \in Args_S \setminus S$ which is defended by S. As $a \notin \bigcap S$, there must be a $T \in cc_S(P)$ with $T \subseteq S$ and $a \in C_S(T)$ by Lemma 1.3. But as $a \notin S$ this is already a contradiction to S being com-closed wrt. P, as on the one hand a is in the unique completion-set of T and on the other hand S extends T but does not contain a.

 (\supseteq) Let $S = grd(F_{\mathbb{S},P}^{com})$. By the definition of $F_{\mathbb{S},P}^{com}$ an argument a is unattacked iff $a \in \bigcap \mathbb{S}$. Hence $S \supseteq \bigcap \mathbb{S}$. Since we know from before that $\bigcap \mathbb{S} \in com(F_{\mathbb{S},P}^{com})$ it follows that $S = \bigcap \mathbb{S}$. Since \mathbb{S} is assumed to be com-fortable, the result follows.

Now let $E \in com(F_{\mathbb{S},P}^{com})$ but $E \neq grd(F_{\mathbb{S},P}^{com})$. As E defends itself in $F_{\mathbb{S},P}^{com}$, in particular from arguments $D_{\mathbb{S},P}$, it follows by Lemma 1.2 that $\forall a \in E \exists S \in \mathbb{S}$ with $a \in S$ and $S \subseteq E$. If for one such $a \in E$ this $S \in \mathbb{S}$ with $a \in S$ is S = E we are done. So assume that $E \notin \mathbb{S}$. Observe that as E is conflict-free in $F_{\mathbb{S},P}^{com}$ it must hold that $\forall a, b \in E : (a, b) \in P$. Hence, by \mathbb{S} being com-closed wrt. $P, E = \bigcup_{S \in \mathbb{S}, S \subset E} S$ (remember that for each $a \in E$ there is such an $S \in \mathbb{S}$ with $S \subset E$) is a completion-candidate of \mathbb{S} wrt. P, i.e. $E \in cc_{\mathbb{S}}(P)$. By \mathbb{S} being com-closed wrt. P there is a unique completion-set $C_{\mathbb{S}}(E)$ of E. Let $T = (C_{\mathbb{S}}(E) \setminus E)$. Since E is complete it must hold that for each $t \in T$, E does not defend T. By the fact that $E \models \mathcal{E}\mathcal{CD}_t^{\mathbb{S},P}$ and $E \models \mathcal{C}_t^{\mathbb{S},P}$ it follows that E defends t from arguments $D_{\mathbb{S},P}$ and $C_{\mathbb{S},P}$. Hence E does not defend t from some argument $a \in Args_{\mathbb{S}}$, that is, by construction of $F_{\mathbb{S},P}^{com}$, $(a,t) \notin P$ and $(e,a) \in P$ for all $e \in E$. But this means $a \in X_{\mathbb{S},P}^T$. We end up with a contradiction to the second property of Z making \mathbb{S} com-fortable. Hence $E \in \mathbb{S}$.

4 Signature

We can now give an exact characterization of the signature of the complete semantics.

Theorem 1. The signature of the complete semantics is given by the following collection of extension-sets:

$$\Sigma_{com} = \{ \mathbb{S} \neq \emptyset \mid \mathbb{S} \text{ is com-fortable} \}.$$

References

- [1] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics of multiple viewpoints in abstract argumentation. *Artif. Intell.*, 228:153–178, 2015.
- [2] Ringo Baumann and Hannes Strass. Open problems in abstract argumentation. In Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors, Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in Computer Science, pages 325–339. Springer, 2014.