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1 Introduction

Argumentation has emerged, over the last two decades, as a major research area in Artificial In-
telligence (Al) [8, 50]. This is due not just to the intrinsic interest of the topic and to its recent
applications (e.g., in legal reasoning [9] and e-governance [16]), but also because of fundamental
connections between argumentation and other areas of Al, mainly non-monotonic reasoning.

The significant landmark in the consolidation of argumentation as a distinct field of Al has
been the introduction of abstract argumentation frameworks (AFs) [31], which are directed graphs
whose nodes represent arguments and where links correspond to attacks between arguments. To
this day AFs remain the most widely used and investigated among the several argumentation for-
malisms. The study of AFs is mainly concerned with finding subsets of arguments (called exten-
sions) that can all be accepted together when taking into consideration the structure encoded in the
graph. As a result, the argumentation literature offers a wide range of criteria (called semantics of
AFs) for establishing which arguments are jointly acceptable [3].

Our work fits into the growing number of studies on the dynamics of argumentation frame-
works [5, 10, 11, 12, 14, 18, 30, 39, 40, 49, 52]. This line of research is motivated by a realization
that, as part of interactive reasoning processes, argumentation frameworks have to undergo change
when new information becomes available. Particularly important in this respect is change with
respect to the acceptability of certain arguments: one can imagine that increased knowledge of
facts would settle certain issues, with the effect that arguments pertaining to them would have to
either become part of, or be excluded from any extension of our AF. Thus, we would expect such
increased knowledge to be reflected in a new AF which managed to preserve as much semantic
information from the original one, while making sure that its extensions satisfy the added con-
straints. The main issue, in this setting, is finding appropriate ways of formalizing such a notion of
minimal change at the semantic level, with the understanding that the graph structure of the revised
AF is then constructed around the semantic information. Settling on a specific graph structure for
the revised AF is an interesting problem in its own right, though it is a separate issue from the one
concerning us here, and left for future work.

We look at the problem in the spirit of the AGM paradigm in propositional belief revision
[1, 36], and our analysis is in particular modelled after the model-based approach of Katsuno and
Mendelzon [38]. The issue was first tackled in this way by Coste-Marquis et al. [19],' where AF
revision was defined as follows: given a semantics, an AF and a revision formula encoding desired
changes in the status of some arguments, find a set of AF's satisfying the revision formula, whose
extensions are as close as possible to the extensions of the input AF. Remarkably, a representation
theorem illuminates the problem by co-opting the semantics of AFs: performing AF revision in ac-
cordance with some rationality postulates was shown to be equivalent to choosing among possible
extensions of AFs, according to a particular type of rankings on extensions.

A notable difference between this work and our approach is that we study AF revision operators
producing a single AF as output. The motivation for this is twofold. First, such a restriction
is more in line with standard AGM revision, where revising an input propositional theory by a
revision formula produces a single propositional theory. Second, revision yielding a single AF

10ther recent work in this direction includes [6, 11, 25, 44, 45]; we discuss these papers in Section 6.
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makes concepts of iterated revision [24, 54] amenable to argumentation: indeed, for an iterated
application of belief change operations, it is desirable that the input and output are of the same
type. The same point holds for persuasion, where some current state of discourse needs to be
updated such that an agent is convinced to accept a certain argument: it has been emphasized that
modelling persuasion can benefit from applying change operations in argumentation [37]. Thus,
understanding belief change of abstract argumentation formalisms can pave the way towards a
general theory of formal persuasion.

Restricting the output of AF revision operators to single AFs poses significant challenges, as
standard operators from the propositional belief change literature are not easily applicable in the
new context and familiar representation results break down. A conspicuous problem is ensuring
that what we get from an AF revision operator, which is typically a set of extensions, can be
expressed as a single AF under some given semantics. The problem is exacerbated by the variety
of semantics on offer and their expressive particularities.

We study two types of revision operators. The first type considers the new information rep-
resented as a propositional formula. This formula encodes, by its models, a set of extensions
representing the change (in terms of extensions) we want to induce in the original AF. The second
type is revision by an AF, where new information is restricted in the sense that it can only stem
from another AF’s outcome. While the first type follows the framework of [19], the latter assumes
that the knowledge to be incorporated (for example another agent’s beliefs) is in the form of an
AF. This is more in line with work on Horn revision [26], where all involved formulas belong to
a single fragment of propositional logic. The two types of revision present interesting differences.
Revision by a propositional formula is characterizable using standard revision postulates, as long
as rankings on extensions satisfy a compliance restriction. Revision by an AF, on the other hand,
turns out not to require compliance, but is only characterizable using an extra postulate called Acyc
and what we call proper [-maximal semantics.

Our main contributions can be summarized as follows.

e We obtain full representation theorems for the two types of revision mentioned. Notably, our
results are generic in the sense that they hold for a wide range of argumentation semantics,
including preferred, semi-stable, stage, and stable semantics.

e For the revision-by-formula approach, we give novel notions of compliance [26] to restrict
the rankings (Section 3.1). This is required to guarantee that the outcome of the correspond-
ing operators can be realized as an AF under a given semantics. To this end, exact knowledge
about the expressiveness of argumentation semantics is needed. For most of the standard se-
mantics, the necessary results are known [33]. It turns out that standard revision operators
such as Dalal’s operator [23] do not satisfy the required compliance. We thus introduce a new
class of AF revision operators, following the intuition of minimal-distance based revision in
a similar way to Dalal’s operator (Section 3.2).

e In the revision-by-AF approach, we show that the concept of compliance can be dropped
and standard revision operators satisfying all postulates like Dalal’s operator can be directly
applied to revision of AFs. However, an additional postulate (borrowed from Horn revi-



sion [26]) is needed for the representation theorem (Section 4). This amended set of pos-
tulates, together with an explicit commitment to what we call proper I-maximal semantics,
turns out to characterize a class of I-faithful rankings on extensions.

e Finally, we analyse the computational complexity of some specific revision operators when
using stable and preferred semantics. For the revision-by-AF approach our result of ©F-
completeness for stable semantics matches the known complexity for Dalal’s revision in
(fragments of) classical logic [34, 42, 22], while it turns out that the intrinsically higher
complexity of preferred semantics [32] is also reflected in the revision task for which we
show @5 -completeness (Section 5). For the refinement of Dalal’s operator in the revision-
by-formula approach our results indicate a slight increase in complexity to AF for stable and
to A for preferred semantics.

The paper is structured as follows. In Section 2 we provide background notions and results for
argumentation and belief revision. In Section 3 we study revision of AFs by propositional formulas,
introduce the concept of o-compliance and faithful assignments, prove a representation result and
introduce novel revision operators that satisfy all postulates in this setting. In Section 4 we switch
to revision of AFs by other AFs, introduce I-faithful assignments and prove a representation result.
Section 5 provides a complexity analysis of operators introduced in previous sections. Section 6
discusses related work. Section 7 contains the conclusion and outlines directions for future work.

This article is an extended version of [28]. Additional material includes the specific revision
operators for revision by propositional formulas in Section 3 and the complexity analysis in Sec-
tion 5.

2 Preliminaries

We first recall basic notions of Dung’s abstract argumentation frameworks (Dung [31], Baroni
et al. [3] provide further background), present recent results on signatures of semantics [33], and
then recall the basic concepts of belief revision.

Argumentation We assume an arbitrary but finite domain 2( of arguments. An argumentation
framework (AF) is a pair F' = (A, R) where A C 2l is a set of arguments and R C A x A is the
attack relation. The collection of all AFs is given as AFy.

Given F' = (A, R), an argument a € A is defended (in F')by aset S C Aif foreachb € A such
that (b,a) € R, thereisac € S with (¢,b) € R. AsetT C Aisdefended (in F') by Sifeacha € T
is defended (in F') by S. A set S C A is conflict-free (in F)), if there are no arguments a,b € S,
such that (a,b) € R. We denote the set of all conflict-free sets in I as ¢f(F'). A set S € ¢f(F) is
called admissible (in F) if S defends itself. We denote the set of admissible sets in F' as adm(F).
For S C A, the range of S (with respect to F'), denoted S}, is the set SU{a | 3s € S : (s,a) € R}.

A semantics maps each I' € AFy to a set of extensions S C 2%. For the stable, preferred,
stage [56], and semi-stable [15] semantics, the extensions are defined as follows:



S € sth(F),if S € ¢f(F) and S = A (stable)
S € prf(F),if S € adm(F) and T € adm(F)st.T D> S (preferred)
S € stg(F),if S € ¢f(F) and AT € cf(F) with T D S} (stage)
S € sem(F),if S € adm(F) and 3T € adm(F) s.t. T O S} (semi-stable)

Figure 1: AF discussed in Example 1.

Example 1. To illustrate the semantics, consider the following AF F':

F=({abcde f},{(ab),(ba),(bc),(c,d),(de)(ec) (e f),(f, /)})-

In Figure 1 we depict this AF as a directed graph, with the arguments as nodes and the attacks
as directed edges. It can be checked, by direct inspection, that there is no conflict-free set of
arguments in F attacking all other arguments, hence stb(F') = (). The admissible sets of F' are
given by adm(F) = {0, {a}, {b},{b,d}}, and hence prf(F) = {{a}, {b,d}}. By {a}} = {a,b} C
{a,b,c,d,e} = {b,d}}. we get that {b,d} is the only semi-stable extension of F, i.e. sem(F) =
{{b,d}}. Finally, it holds that stg(F') = {{a, e}, {b, e}, {b,d}}.

A set of extensions S can be realized under a semantics o if there exists an AF F' € AFy
such that o(F') = S. The signature ¥, of semantics o is defined as X, = {o(F) | F' € AFy},
containing exactly those sets of extension which can be realized under o. Exact characterizations
of the signatures of the introduced semantics are known [33]. If S; and S, are two extensions
such that S; # S,, we say that S; and Sy are C-comparable if S; C Sy or Sy C S;. We say
that S; and S, are C-incomparable if they are not C-comparable.? A set of extensions S C 2% is
incomparable if all its elements are pairwise C-incomparable. A set of extensions S C 2% is tight
if for all extensions S € S and arguments a € (Jgg S, it holds that: if S U {a} ¢ S, then there
exists an s € S such that {a, s} Z S’ for any S’ € S.

The signatures of the semantics of interest have precise characterizations using the notions just
introduced. For the stable and stage semantics the characterizations are as follows:

Y = {S C 2%|Sisincomparable and tight},
Yy = {SC2%|S () andS is incomparable and tight}.

Regarding the other semantics, it suffices for our purposes to state that Yy, C X, = X,r [33].
We will make use of these results in Sections 3 and 4. Also, some of our results will apply to
semantics for which the following properties hold.

Definition 1. A semantics o is called proper I-maximal if for each S € ¥, it holds that

Note that a set S of arguments is C-incomparable to itself.
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1. Sis incomparable,
2. e, forany S’ C S with S’ # (), and
3. forany S, S, € 2% it holds that {5}, S»} € %,.

In words, an I-maximal [2] semantics o is proper if, on the one hand, it holds that for any
AF F we can realize under o any non-empty subset of o(F’), and, on the other hand, any pair of
C-incomparable sets of arguments, is realizable under 0. The next observation follows from the
characterizations of the signatures [33], and shows that the semantics we are interested in are all
proper I-maximal.

Proposition 1. Preferred, stable, semi-stable and stage semantics are proper I-maximal.

Proof. We need to show that properties (1) to (3) from Definition 1 hold. (1) is well-known.
Properties (2) and (3) were already shown in the following results of Dunne et al. [33]: (2) follows
directly from Lemma 2.2 for stable and stage semantics and from Lemma 4.2 for preferred and
semi-stable semantics; Proposition 10 contains (3). O

Definition 2. Given a semantics o, we define the function f, : 22" 5 AFy mapping sets of

extensions to AFs such that f,(S) = F with o(F) =SifS € ¥, and f,(S) = (0, ?) otherwise.

By definition, S € Y, guarantees that we can find an AF which, when evaluated under o, results
in having S as set of o-extensions. We leave the exact specifications of such AFs open but canonical
constructions for the semantics we consider have been published [33]. Such constructions may
result in AFs with additional arguments to those contained in S, though recent work on realizability
in compact AFs [7] could pave the way for constructions of AFs without new arguments. The
function f, is not necessarily unique. Nevertheless, throughout the paper we assume f,, to be fixed
for every o.

For an AF F' = (B, S) we use A to refer to B and Ry refers to S. Finally, given AFs F' and
G and arguments X C Ap, we define F' — X = (Ar \ X,{(a,b) € Rp | a,b € (Ar \ X)}) and
FUG = (AFUA(;,RFURg).

Belief revision By Py we denote the set of propositional formulas over 2(, where the arguments
in 2 are taken to be propositional variables. A set of arguments £/ C 2( can be seen as an interpre-
tation, where a € E means that a is assigned true and a ¢ E means that a is assigned false. If a
formula ¢ € Py evaluates to true under an interpretation £, F is a model of ¢. The set of models
of ¢ is denoted by [¢]. We write 1 = s if [p1] = [p2]. A formula p is consistent if [@] # 0. We
will identify a finite set K of propositional formulas with A K, such that [K] = [\ K] and K is
consistent if /\ K is consistent.

A propositional revision operator o maps a set K of propositional formulas and a propositional
formula ¢ to a propositional formula K o ¢. The set K, called a knowledge base, is the theory to
be revised, ¢ is the revision formula representing new information which needs to be incorporated
into K, and K o ¢ is the revision outcome. The revision outcome is constrained by rationality
postulates, a core set of which [38] we present below:

6



{c}? ]

{a,c}! /

‘ {a,b} {a,b,c} ‘ d(E,K)

{a,c} 2 1 1 K a,b}, {a,b,c}°
el 2 D] K] {a b} fo,be)
Table 1: d(E, K), for E € [¢]. Figure 2: Preorder on interpretations.

(KMol) Koy = .

(KMo2) If K A ¢ is consistent, then K o p = K A ¢.

(KM0o3) If ¢ is consistent, then K o ¢ is consistent.

(KMoc4) If K1 = K5 and 1 = @9, then K 0 o1 = K5 0 9.

(KMo5) (K ow1) Ay = Ko (pr Aps).

(KMo6) If (K o ¢1) A s is consistent, then K o (o1 A p2) = (K 0 1) A po.

A key insight in belief change is that any propositional revision operator satisfying postulates
KMo1-KMo6 can be characterized using rankings on the possible worlds described by the lan-
guage. Intuitively, such rankings can be thought of as plausibility relations, whereby possible
states of affairs are ordered according to how ‘close’ they are to K. Revising a knowledge base /'
by a formula ¢ then amounts to selecting the models of ¢ closest to K.

The natural way of parsing the idea of closeness is to use some distance between interpreta-
tions. A common choice is Hamming distance dy, defined as the number of atoms on which two
interpretations differ. For example, dy ({a, b, ¢}, {b, ¢, d}) = |{a, d}| = 2. Known in propositional
revision as Dalal’s operator [23], this approach consists in first defining the distance between an
interpretation E and a knowledge base K as d(E, K) = min{dy(E, E’) | E' € [K]}. Then, to
revise K by ¢, one selects the models of ¢ with minimal distance to /.

Example 2 (Dalal operator for propositional revision). Consider the knowledge base K = {a A b},
which we want to revise by ¢ = —b A ¢. The models of ¢ are [p] = {{a,c},{c}}, and Dalal’s
approach gives us that d({a, ¢}, K) = 1, while d({c}, K') = 2. The distances from each model of
 to each model of K are shown in Table 1, with models of ¢ as row names and models of K as
column names. Models in [¢] can now be ordered according to their distance to K, visualized in
Figure 2. The revision operator selects the models of ¢ with minimal distance to K as the models
of the revision outcome. Intuitively, these are the models of ¢ ‘closest’ to K, to be ultimately
converted back to a propositional formula. In our case we get the single interpretation {a, c},
which corresponds to K o p =a A —b A c.

To apply this approach to AF revision we will use a unified semantic representation of AFs
and logical formulas. Thus, in our approach, sets of arguments from 2 play the role both of

7



extensions of AFs and of models of propositional formulas, and will be the possible worlds a
revision operator chooses from. In the following we define the kinds of rankings on 2% which will
be used to characterize the class of AF revision operators.

A preorder < on 2% is a reflexive, transitive, binary relation on 2% If B, < Eyor Fy, < E, for
any Fn, Ey € 2% the preorder =< is total. Moreover, for Ey, Fy € 2% E, < E, denotes the strict
part of <, thatis £} < Fs and Ey A E;. We write | =~ FE to abbreviate the case when E; < F,
and E, < E,. An I-total preorder on 2* is a preorder on 2% such that £}, < E, or E5 < E, for any
pair E;, E5 of C-incomparable extensions. Finally, for a set of extensions S C 2% and a preorder
<, min(S, <) ={E, €S| PE, €S: E, < E;}.

A general way of mapping every knowledge base K to a preorder <y on interpretations is
called an assignment, and in propositional revision one typically works with assignments that are
faithful. Example 2 illustrates one way of generating faithful preorders on interpretations for propo-
sitional revision. We will formally introduce faithful assignments in Section 3.1. Here we mention
that assignments provide the opportunity of a model-based characterization of revision operators.
We say that an assignment represents an operator o (or, alternatively, that o is represented by an
assignment) if, for any knowledge base K and formula ¢, it holds that [K o | = min([p], <g). In
the case of propositional revision, working with faithful assignments satisfies postulates KMo1—
KMo6. The following representation result expresses this fact.

Theorem 1 ([38]). If o is a propositional revision operator, then o satisfies postulates KMo 1—-KMo6
if and only if there exists a faithful assignment which represents it.

The notion of revision operators being represented by assignments stays the same when K
or ¢ are replaced by AFs. In the remaining sections we obtain similar representation results for
AF revision, use these results to construct concrete AF revision operators and, finally, analyse the
computational complexity of our proposed operators.

3 Revision by Propositional Formulas

We first consider revision of an AF by a propositional formula, performed through operators of the
type x,: AFy X Py — AFy. Given a semantics o, such operators map an AF /" and a consistent
propositional formula ¢ to a revised AF, denoted F' x,, 4,0.3 As mentioned in the introduction, we
insist that the revision outcome should be a single AF rather than a set of AFs: this requirement is
reflected in our definition of AF revision operators.

Intuitively, the revision formula ¢ encodes information which should be incorporated in F'.
More concretely, a revision operator *, is expected to change F' such that the o-extensions of
F' %, ¢ come to incorporate the models of . At the same time, F' should not suffer more change
than is strictly necessary. This requirement of minimal change, along with other natural require-
ments expected from an AF revision operator, are captured by the logical postulates presented in
Section 3.1.

3We restrict the second argument to consistent formulas because argumentation semantics usually are not capable
of expressing the empty set of extensions. For semantics which can realize the empty set, such as the stable semantics,
our results in this section apply even without this restriction.

8



)e@ © @

(@) (@)
F €

Figure 3: F'is to be revised with ¢ = ¢ A d, which may result in G.

B |{ad} {b.d}) | dylEF) {e.d){abed? |4
c,d 2 2 2
{i . C}Z} 13 | {a,¢,d}, {b,c, d}" /
Y Y ‘
{b,c,d} | 3 1 1 5
{a,b,c,d} 2 2 2 p’f(F)\{ﬁd}a{b: d}
Table 2: d(E, F), for E € [¢]. Figure 4: Preorder on extensions.

Example 3. Take 2 = {a,b,c¢,d} and the AF F' in Figure 3, whose preferred extensions are
prf(F) = {{a,d},{b,d}}. Revising F' by a formula ¢ = ¢ A d would mean finding an AF F’,
guaranteed to contain the arguments c and d in each of its preferred extensions. In other words, we
need to find an AF F” such that prf(F’) C [p], where [¢] = {{c,d},{a,c,d}, {b,c,d},{a,b,c,d}}.
The AF G in Figure 3 fits this requirement, as prf(G) = {{a, ¢, d}, {b, ¢, d} }. However, this is not
the only property that the revised AF is expected to satisfy: we also want to ensure that there is
no other such AF which is ‘closer’ to F', according to some measure of closeness on extensions
considered suitable.

It is straightforward to adapt Dalal’s operator for the context of AF revision. Thus, we define the
distance between a set of arguments £ and an AF F’ with respect to a semantics o as d,(E, F') =
min{dy(E, E') | E' € o(F)}. The AF revision operator then selects the models of ¢ with minimal
distance to F'. See Example 4 below for a concrete application.

Example 4. Using Dalal’s (adapted) approach for the AF F' in Example 3 under preferred se-
mantics, we obtain the distances in Table 2, which generate the preorder <? partly depicted in
Figure 4. The interpretations with minimal distance to F’ are {a, ¢, d} and {b, ¢, d}, which gives
us that o(F +)). ©) = {{a,c,d},{b,c,d}}. Hence the AF G in Example 3 is a suitable revision
outcome according to Dalal’s (adapted) operator.

Unfortunately, as we show in Section 3.1, Dalal’s approach does not work in general for defin-
ing AF revision operators, as the semantic output is not guaranteed to be realizable under a se-
mantics 0. We show this on a concrete example and outline our approach for overcoming these
difficulties in the rest of this section.



3.1 Postulates and Representation Result

We adapt the revision postulates [38] to the context of AF revision, in a manner similar to work by
Coste-Marquis et al. [19].

(Px1) o(F %, ¢) C [¢4].

(Px2) If o(F) N [;p] # 0 then o(F %, ) = o(F) N [¢].

(Px3) If [¢] # 0 then o(F %, ©) # 0.

(Pxd) If o(F}) = o(F) and ¢ = ¢ then o(Fy %4 @) = 0(Fy %o ).
(P5) 0(F %, ) N [1] C o(F %5 (9 A 1)),

(Px6) If o(F %, ¢) N [1)] # 0 then o(F %, (9 A ) C o(F %, ) O [1].

A few words are in order regarding the meaning of the postulates. Px1 says that when we revise
an AF F' by a formula ¢, the extensions of the revision output should be among the models of ¢.
Px2 specifies that if ¢ is consistent with F', in the sense that they share models, revision amounts
to nothing more than taking the common models. Px3 says that if ¢ is a consistent formula, then
revision by ¢ should also be consistent. Px4, known as irrelevance of syntax, guarantees that the
output of revision does not depend on how the revision formula is specified. Px5 and Px6 ensure
that revision is performed with minimal change to the AF F'. Motivation for the postulates has
been extensively discussed in the belief revision literature ([1, 36, 38]).

We next define faithful assignments for AFs, adapting the concept with the same name from
propositional revision [38], which will be used to characterize AF revision operators.

Definition 3. Given a semantics o, a faithful assignment maps every ' € AFy to a total preorder
=< on 2% such that, for any E, F, € 2% and F, I, F, € AFy, it holds that:

(Z) ifEl,EQ S J(F),then E, ~r Es,
(i7) if By € o(F) and Ey ¢ o(F'), then By <p Es,
(ZZZ) lfO'(Fl) :O'(Fg),then jFlszQ'

The preorder < assigned to F' by a faithful assignment is called the faithful ranking associated
with F'.

At this point, one natural strategy would be to import existing propositional revision operators
and use them for AF revision. Such a move was gestured towards in Example 4. However, it turns
out that doing so is not possible, because the outcome of the revision under a semantics o could be
a set of extensions S which cannot be realized under o (see Example 5 below). This is significant,
since as argued in Section 1, we require the output of an AF revision operator to be a single AF.
In this, we face a similar challenge to that encountered in Horn revision [26]. To overcome this
problem we use Y, to define the following restriction on preorders, which we will need to obtain
our representation theorem.

10



Definition 4. A preorder < is o-compliant if for every consistent formula ¢ € Py it holds that
min([g], <) € %,

The following example shows why the adapted Dalal operator does not work for AF revision,
the reason being that it generates preorders which are not o-compliant.

Example 5. Let 2 = {a, b, c}, a semantics o and an AF F' such that o(F) = {{a,b,c}}. Dalal’s
approach, using Hamming distance,* generates the following preorder <:

{a,b,c} <{a,b} =~ {a,c} =~ {b,c} < {a} = {b} =~ {c} < 0.

Now take ¢ = —(a A b A ¢). We obtain that min([p], <X) = {{a,b},{a,c},{b,c}}. Observe,
now, that {a,b} U {c} ¢ {{a,b},{a,c},{b,c}}, but the arguments ¢ and b appear together in
some extension in {{a, b}, {a,c}, {b,c}}, and the same holds true of ¢ and a. This means that
{{a,b},{a,c},{b,c}} is not tight, and given the characterization of the signatures of semantics
introduced in Section 2, it follows that {{a, b}, {a, c}, {b,c}} ¢ %, for o € {stb, stg}.> Hence, <
is not o-compliant.

On the other hand, let <" be the preorder defined as {a,b,c} <’ {a} =~ {b} =~ {c} <
{a,b} <" {a,c} <" {b,c} <" (. It is straightforward to verify that, for o € {stb, prf, stg, sem}, =<'
is o-compliant. As an example, for ¢ from above we get that min([p], <) = {{a}, {0}, {c}} € ..

For the semantics of interest (stable, preferred, stage and semi-stable) and a set of extensions
S, we can check in polynomial time whether S € 3, [33]. Hence, we can decide in polynomial
time whether a given preorder is o-compliant.

The concept of o-compliance makes an AGM-style representation result possible for AF re-
vision by propositional formulas under arbitrary semantics. The following two results make this
characterization precise.

Theorem 2. [f, for some semantics o, there exists a faithful assignment mapping any F' € AFgy to
a o-compliant and faithful ranking <, let x,: AFy X Py — AFy be a revision operator defined
as follows:

Fg o = fo(min(g], ZF)).
Then x, satisfies postulates P 1—P6.

Proof. Consider an arbitrary F' € AFy. Since =< is o-compliant, we have min ([¢], <p) €
Y, for every ¢ € Pg. Therefore, by definition of f, (see Definition 2), it holds that
o(f,(min([p], <F))) = min([p], <r). Hence, o(F *, ¢) = min([y], <) and postulate Px1 fol-
lows immediately. We will use this equality for arbitrary formulas as a shortcut in the rest of the
proof.

If o(F) N [p] # 0, it follows from < being faithful that min([¢], <p) = o(F) N [¢], and
thus Px2 is satisfied. Postulate Px3 holds because < is transitive and 2l is finite and therefore if
[¢] # 0 then [¢] has minimal elements, hence min([p], <r) # 0.

4See Example 4.
3The characterizations of signatures [33] show that also {{a, b}, {a, c},{b,c}} & 2, for T € {prf, sem}.
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The preorder < being a faithful ranking means it has been obtained from a faithful assignment.
Therefore, for any AF G with o(F') = o(G) it must hold that < == (cf. (#i7) from Definition 3).
Therefore, for formulas ¢ = v, min([p], <p) = min([¢)], Zg). It follows that o(F x, ¢) =
0(G *, 1), showing that *, satisfies Px4.

Postulates Px5 and Px6 are trivially satisfied if o(F %, ¢) N [¢)] = (. Assume
o(F *, ) N [¢)] # () and, towards a contradiction, that there is some E € min([¢], <) N [¢]
with £ ¢ min([p A ¢], <r). Since £ € [p A 1] there must be some E’ € [p A Y] with E' <p E,
a contradiction to £ € min([p], =r). Therefore o(F x, ¢) N [¢] C o(F %, (¢ A 1)). To show
that o(F %, (¢ A ¢Y)) C o(F %, ) N [¢] also holds, assume F € min([¢ A 9], <) and E ¢
min ([¢], =F)N[Y]. Since E € [¢], it follows that £ ¢ min([¢], <r). Let E' € min ([¢], <r)N[Y]
(assumed to be non-empty). Then E’ € [ A ¢] holds. As E' € min([p A 9], <) and < is total,
E < E'. Hence from E’ € min([¢], <) it follows that £ € min([¢], <r), a contradiction. [

Theorem 2 shows that o-compliant preorders can be used to obtain AF revision operators which
meet our requirement of having their output expressible as a single AF. We specify some concrete
ways of constructing o-compliant preorders in Section 3.2. The next result shows that all operators
satisfying postulates Px1-Px6 are represented by some o-compliant assignment.

Theorem 3. If x,: AFy x Py — AFy is an operator satisfying postulates PxI—-Px6, for some
semantics o, then there exists a faithful assignment mapping every ' € AFy to a o-compliant
faithful ranking <r on 2* such that o(F x, ¢) = min([p], <r), for every ¢ € Py.

Proof. For a set of interpretations S, we denote by ¢(S) a propositional formula with models
[6(S)] = S. If the elements of S = {F1, ..., E,, } are given explicitly we also write ¢(E1, ..., E,)
for ¢(S).

Let F' € AFy be an arbitrary AF. We define the binary relation <z on 2% as follows:
E <p E' ifandonlyif F € o(F x, ¢(E,E")).

We begin by showing that <p is a total preorder. It follows from Px1 and Px3 that o(F *,
¢(E, E")) is a non-empty subset of { F, E'}, therefore <. is total. Moreover, if E = E’ then, also
by Px1 and Px3, o(F %, ¢(F)) = {E}. Hence E < E holds for each E € 2%. In other words,
< 1is reflexive.

To show transitivity of <, let B, Ey, E5 € 2% and assume E;, <p E, and B, <p Es. By
Px1 and Px3, o(F x, ¢(FE1, E2, F3)) is a non-empty subset of { £, Ey, E5}. We reason by case
analysis. Case I. Assume, first, that o(F %, ¢(Ey, Eo, E3)) N {Ey, Ex} = (. Then o(F %,
¢(E1, By, E3)) = {E3}. Knowing that ¢(Es, E3) = ¢(Esy, E3) A ¢(FE1, Ey, E3), we get from
Px4 that o(F x, ¢(Eso, E3)) = 0(F x5 ¢(Eq, E3) A ¢(E, Es, E3)). By Px5 and Px6 we obtain
0(F %, ¢(Ey, Eo, E3)) N{Ey, Es} = 0(F x5 (¢(Es, E3) N\ ¢(Ey, Ey, E3))). Combining the last
two equalities, we get o (F' %, ¢(E1, Es, E3)) N {Es, B3} = o(F %, ¢(E2, E5)). But this implies
that o (F *, ¢(Es, E3)) = {FEs}, contradicting the fact that £y <p E3. Case 2. Assume, next,
that o(F x, ¢(E, Ey, E3)) N {Ey, Es} # (. Since By <p Fy we know that By € o(F %,
¢(F1, Ey)) holds. Considering that ¢(E1, E2) = ¢(E, Esy) A ¢(E, Ey, E5), we obtain from Px4,
Px5, and Px6 that o (F %, ¢(F1, Es, E3)) N{E1, Es} = o(F *, ¢(Ey, Ey)). Thus, Ey € o(F *,
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O(FEr, Ey, E3)) N {Ey, Es}, and also By € o(F %, ¢(E1, Es, E3)) N {Ey, E3} holds. Considering
the fact that ¢(F1, F3) = ¢(E1, E3) A ¢(E1, Es, E3), we obtain from Px4, Px5 and Px6 that
0(F x5 ¢(E1, Eo, E3)) N{Ey, Es} = o(F %, ¢(E1, E3)). Therefore £y € o(F *, ¢(E1, E3)),
meaning that £y <p Ejs.

Having shown that < is total, reflexive and transitive, it follows that <y is a total preorder.
The following lemmata show that x, is indeed represented by the assignment mapping F' to <p.

Lemma 1. If E,, B, € 2% such that B, <p E,, then for all formulas ¢ € Py, it holds that if
Ey € [p] and Ey € 0(F %, @), then Ey € 0(F x5 ¢).

Proof. Let ¢ be a formula such that E;, € [p] and Ey € o(F %, ). Then from Px5 and Px6
it follows that o(F %, (p A ¢(Ey, E))) = o(F *, ) N [¢(E, Ey)]. Moreover, from E, €
o(F %, ¢) and Px1 we derive that Fy € [¢], hence [¢(F1, E3)] C [¢]. By Px4 we now get
0(Fxs (@ NG(EL, Es))) = o(F %, ¢(E1, Ey)). Therefore we can simplify the equation we derived
from Px5 and Px6 to o(F x, ¢(E1, Es)) = o(F *, ©) N [¢(E1, E2)]. This, together with the
assumption that £y <p Fs (and therefore F; € o(F x, ¢(E, Es))), entails By € 0(F x, ). O

Lemma 2. If ¢ € Py, then it holds that min([p], <p) = o (F *, ¢).

Proof. We show the double inclusion. For the C-direction, take ¢ € Pg and an extension E; €
min([¢], <r). Since E; € [¢] and [p] # 0, we get by Px3 that o (F *, ¢) # (). Take, therefore, an
extension Ey € o(F %, ¢). By Px1 we have that 5 € [] and hence F; < F>. By Lemma 1, it
follows that £ € o(F *, ¢).

For the D-direction, take ¢ € Py and Ey € o(F %, ). By Pxl, we know that E;, € [p].
We show that for all By € [p] it holds that £y <p Es,. To this end, take an arbitrary Es € [p]:
from E; € o(F %, ¢) we know that o(F x, ) N [¢p(E1, E2)] # 0. By Px5 and Px6 we get
o(F %5 ) N [p(Ey, Ey)] = o(F x5 (¢ A ¢(Ey, Ey))). Since Ey, Ey € [g] it follows by Px4
that o(F x, (¢ A ¢(Er, E))) = o(F %, ¢(Ey, Ey)). Now as By € o(F %, ) by assumption,
Ey € o(F %, ¢(E4, Ey)) must also hold, meaning that £y < FEs. Since E, was chosen arbitrarily,
it follows that F; € min([g], <F). O

It is uncontroversial that o(F x, @) € ¥, so by Lemma 2 it follows that <z is o-compliant.
What is left to show is that the definition of <z gives rise to a faithful assignment for AFs. We
begin by showing that properties (7) and (i7) of Definition 3 hold. If o(F') = () this is trivially the
case, hence let us assume that o (F') # (). By Px2 we get o(F x, T) = o(F) (since [T] = 2% and
therefore [T] N o(F) = o(F)). Hence o(F) = min([T], Xr) = min(2¥, <r), meaning that for
By, By € 2%, By Ap Eyif B, By € o(F) and By <p Eyif By € o(F) and Ey ¢ o(F). Therefore
conditions (i) and (7¢) from Definition 3 are fulfilled. Finally, condition (i7i) holds since, for any
AFs F,G € AFy with o(F) = o(G) and any sets of arguments E, £’ C 2, Px4 ensures that
o(F *, (B, E") = 0(Gx, ¢(F, E")), hence <p==¢. It follows that < gives rise to a faithful
assignment. [

Theorems 2 and 3 are very general in capturing any possible semantics of AFs. However,
rather implicitly, the results impose an important property on a semantics o: namely, that for each
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AF F, every non-empty subset S of o(F’) is again realizable under ¢.° In Theorem 2 this is by
the preorder being both faithful and o-compliant, while in Theorem 3 it is ensured by the operator
satisfying Px2. The following result shows that no rational operators exist for semantics not having
this property.

Proposition 2. Let 7 be a semantics such that Property 2 from Definition I does not hold. Then
there is no operator x, : AFy X Py — AFy satisfying Px2.

Proof. Semantics 7 not fulfilling Property 2 from Definition 1 means that are is some S € >,
and some S’ C S such that S # ) and S' ¢ X,. Now let F' be an AF such that 7(F) = S (it
exists by S € ¥,) and consider the formula ¢(S') having [¢(S')] = S'. By ' C Sand S’ # ()
we have 7(F) N [¢(S')] # (. Therefore any operator x, would be required to give 7(F %, ¢) =
T(F) N [p(S")] =S, which is not possible since S’ ¢ 3. O

3.2 Concrete Operators

With Theorems 2 and 3, finding concrete AF revision operators comes down to defining appropriate
rankings on extensions, where by appropriate we mean faithful and o-compliant. When dealing
with proper I-maximal semantics, an easy and immediate way to construct such rankings is to use
linear orders on extensions.

Proposition 3. Consider a faithful assignment from AF's to faithful rankings which, for any seman-
tics o, F € AFy, and E\, E, € 2%, satisfies the following additional property:

() if E1, By ¢ o(F), then either Ey <p E5 or Ey <p Ej.

If o is proper I-maximal, any revision operator x, represented by this assignment satisfies postu-
lates PxI—Px6.

Proof. Considering Theorem 2, all that is left to show is that < is o-compliant. If o (F')N[¢] # 0,
it follows that min([p], <r) = o(F) N [¢] C o(F). By Property 2 of proper I-maximal semantics,
o(F) N [¢] is realizable under o. If o(F) N [¢] = 0, notice first that condition (iv) is equivalent
to saying that for the interpretations outside o(F), <r behaves like a linear order. This means
that min([p], <) is a singleton, and thus realizable under o (cf. Property 3 of proper I-maximal
semantics). [

Example 6. Take the AF F’ from Example 3 with prf(F) = {{a,d}, {b,d}}, which we revise by
© = ¢ A d. Suppose that we have an assignment which maps F' to a preorder <y where {c,d} <p
{a,c,d} <p {b,c,d} <r {a,b,c,d}, being in line with Property (iv) from Proposition 3. We get
that min([¢], <r) = {{c, d}}, hence for an operator x,,, represented by this assignment, F' s ¢
corresponds to an AF which has only one preferred extension, namely {c, d}. Thus, F' %,y could
be the AF GG’ in Figure 5.

®As it turns out, this coincides with Property 2 of proper I-maximal semantics, the class of semantics we will focus
on in Section 4.
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Figure 5: F is to be revised with ¢ = ¢ A d, resulting in G'.

As mentioned in Section 2, for any o-realizable set of extensions S there are infinitely many
AFs F such that o(F) = S. Thus, in Example 6 we could have chosen any AF whose set of
preferred extensions is the singleton {{c, d}}, and it is a legitimate question which of the possible
AFs to choose as the revision outcome. We do not touch on this issue other than by saying that
some AF shall be chosen. Nevertheless, it would be natural to enforce some kind of minimality
requirement at this step as well, for instance by expecting F' x, ¢ to modify the attack relation as
little as possible. Such a requirement is to be explored in future work, where it would be integrated
with recent results in this direction [20, 48].

Though easy to define, AF revision operators based on linear preorders can be excessively dis-
criminating in their choice of extensions. Using a more familiar option such as Dalal’s operator also
does not work, since the rankings obtained with Hamming distance are usually not o-compliant
for the semantics o under consideration and argumentation semantics in general (see Example 5).

To obtain alternative revision operators, we first introduce some new notions. In the following,
we assume that arguments in 2{ are strictly ranked according to something like an alphabetical
order, such that a is preferred to b, a; is preferred to as, and so on. The exact choice of thls
ranking does not matter so much, just that it orders the arguments linearly. For an extension £, E
is a vector obtained by ordering the arguments in £ in descending order according to the ranking
just introduced. Thus, if £ = {c,a,d,b}, then E = (a,b,c,d). We are then able to compare
such vectors according to the lexicographic order < in the obvious way. Thus, we have that
(a ¢) <iex (b,c) and (a,b) < (a,c). If the length of E is k, then the prefix of E, denoted
E#, is the vector containing the first £ — 1 elements of E. For example, if E = (a,b,c,d), then
E# = (a,b, c). By convention, if | E| = 1, then E# = 0.

Next, we show that any set of extensions can be partitioned in such a way that elements of the
partition are o-realizable, at least for any semantics o such that Xy, C >,. This partition then
provides the means to define a broad range of faithful rankings.

Definition 5. If S is a finite set of extensions, the indexed preorder <5 on S is defined, for any
FE, E5 €8S, as follows:

E, <% E, ifand only if |E| < |E] or,
|E1| = |Es| and BYF <1 By7
It is straightforward to see that <® is reflexive, transitive and total, and is thus a total preorder

on S. In the following we will refer to it as the indexed preorder on S. Moreover, <° partitions
S into sets of extensions, which can be visualized as distinct levels of S (see Example 7). We call
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{(I,b, C} {b7 &) d7€7 f}
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{b> C} {G,C, d7€7f}7 {G,C, daeag}

{a,b},{a,c} {a,b,c,d, e}, {a,b,c,d, f},{a,b,c,d, g}
{a}, {b}, {c} {d,e, f}
0 {e.d, e}, {c,d, g}
<51 <52

Figure 6: The indexed levels of S; and S;.

the sets in this partition of S the indexed levels of S. The indexed levels are such that for any two
extensions E;, B, € S, if E; and E, are in the same indexed level, then E;, ~° FE,, and if F; and
FE)5 belong to different indexed levels, then either £ <S E,, or By <5 Ej.

Example 7. Figure 6 depicts two sets of extensions S; and S, arranged according to their indexed
levels. The convention is that the more preferred a level is, the lower it is displayed in the preorder.
Extensions with greater cardinality are strictly less preferred than extensions with smaller cardinal-
ity, and among extensions of equal cardinality tie-breaking occurs according to the lexicographic
order applied to the prefixes. Thus, indexed levels consist of extensions of equal cardinality with
the same prefix.

Intuitively, the indexed preorder gives precedence to extensions with fewer elements, and then
to elements placed earlier in the alphabetical order. This approach fits nicely with the idea that
arguments have a certain priority, such that if forced to choose between extensions, then we will
choose extensions with higher priority arguments. And, while the specific choice of a priority rela-
tion may seem arbitrary here without more concrete information about the argumentation context,
it seems clear that we need to select among extensions if revision is to occur. For instance, con-
sider revising an AF F' by a formula ¢, where the models of ¢ are [p] = {{a,b},{b,c},{a,c}}
and o(F') N [p] = (. We cannot accept [p] as the outcome of the revision operator, because [¢] is
not o-realizable under any of the semantics among stable, preferred, semi-stable and stage. Hence,
one way or another, some kind of choice has to be made among the models of ¢, and it seems nat-
ural to assume that a revision operator would choose according to some implicit preference over
arguments. In our case, the indexed preorder gives us that {a, b} ~I¥! {a,c} <I¥l {b, c}, and hence
{a, b} and {a, c} are chosen, while {b, c} is left out.

Sets of extensions constituting a indexed level of any indexed preorder turn out to have benefi-
cial properties.

Proposition 4. IfS is a set of extensions and S; is one of its indexed levels, then any set of exten-
sions S' C S, is tight and incomparable.
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Proof. Suppose S' = {F1,..., E,}. Since Ej, ..., E, are on the same level, they have the same
cardinality and their prefixes coincide. Let us then write F; = {ay, ..., a, b;}, fori € {1,... ,n}.
One can immediately see that any two distinct extensions F; and E; in S’ are C-incomparable,
since they differ in arguments b; and b;. Moreover, take an extension E; from S’ and an argument
a € Jges S such that £; U {a} ¢ S. The only way this can happen is if a = b;, for j # 4. But then
b; and b; never appear together in any of the extensions of S’, which shows that S’ is tight. U

Since, for a non-empty set of extensions S, tight and incomparable are sufficient conditions for
S € X, the insight gained from Proposition 4 allows us to define o-compliant preorders based on
the indexed preorder for any semantics o which has >, O Y,. In the remainder of this section, we
assume o to be an arbitrary such semantics. In particular, as pointed out in Section 2, this includes
also stable, preferred and semi-stable semantics.

Definition 6. For an AF F' and a proper I-maximal semantics o such that >, O Y, the canonical
preorder <¢" on 2% is defined, for any Iy, Es € 2% as follows:

E, <¢" E, ifand only if FE,; € o(F) or,
Ei, B> ¢ o(F) and B, <2 V) B,

Definition 7. For an AF F, a proper I-maximal semantics ¢ such that ¥, O ,, and a given
faithful ranking <p, the indexed refinement of <p is a preorder defined, for any £, Fs € 2% as
follows:

E, <& E, ifand only if E; € o(F) or,
E\, By ¢ o(F), Ey ~p By and E; <>"\°) E, or,
El,EQ ¢ O'(F) and El <F EQ.

In the canonical preorder <z we have the extensions of F' as the minimal elements, while the
remaining extensions in 2% are ordered according to the indexed preorder. The indexed refinement
is obtained by taking an existing faithful ranking <z (which, recall, may not be o-compliant) and
rearranging its levels according to the indexed preorder, leaving the inter-level ranking unchanged.
The up-shot is that the new levels will be o-compliant (see Example 8).

Example 8. Let /' be an AF such that stb(F') = {{b,c}}. Figure 7 depicts the canonical pre-
order <%" and Figure 8 shows the ranking j?’ir, obtained by refining the ranking <2. The
latter, in turn, is generated with Hamming distance and is not o-compliant, for any semantics
o € {stb, prf, sem, stg}. Notice, on the other hand, that both <%" and j?’lr are a—compliant. Also
notice how the levels of <2 get split according to the indexed preorder to obtain j?’ "

Using the canonical and the refined preorders, we can define AF revision operators in the
familiar way, by taking F' *, ¢ = f,(min([¢], =r)). We will call the operator defined using the
canonical preorder the canonical operator, and denote it by *5*". If xZ is an existing AF revision
operator, we will call the operator defined using the indexed preorder the indexed-refined revision
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fabc} {a,b},{a,c}

{a,b},{a,c} {a} 0

{a}, {b}. {c} {a,b}, {a,c}.0 T (0 b, )

\
0 {3, {c}, {a,b,¢} {b},{c}
\ \
{b,c} {b, c} {b,c}

Figure 7. %" Figure 8: <2 and <D™

operator, and denote it by x> I'. Notice that Definition 7 can be used to refine any existing, standard
revision operator, by defining a new assignment on top of the standard one. In particular, we get
operators such as 2", obtained by refining Dalal’s operator. We show next that they also satisfy
postulates Px1-Px6.

Theorem 4. For a proper I-maximal semantics o such that ¥,, C X, the revision operator x;*"
and the family of revision operators x%'" are well defined and they satisfy postulates PxI1—Px6.

Proof. By Proposition 4, the canonical and refined assignments are o-compliant on 2"\ o (F'). By
proper I-maximality of o, any proper subset of o (F') is also o-realizable. Therefore the operators
are well-defined. They are also faithful, hence by Theorem 2 the operators satisfy postulates Px1—
Px6. O

4 Revision by Argumentation Frameworks

Next, we consider revision of an AF by another AF, performed through operators of the type
%o AFy X AFy — AFy. Such operators map an AF F' and an AF G to an AF F %, G, the
intuitive idea being that we want to change F’ minimally, in order to incorporate the models of
G. The underlying concept of a model is given, as before, by the argumentation semantics 0. We
consider here the class of proper I-maximal semantics including stable, preferred, stage and semi-
stable semantics. As before, we show a correspondence between a set of postulates and a class of
rankings on 2% The revision postulates, in the manner of [38], are formulated as follows.

(Ax1) o(F %, G) C o(G).

(A%2) If o(F) N o(Q) # 0, then o(F %, G) = o(F) N a(G).

(Ax3) If o(G) # 0, then o(F *, G) # 0.

(Axd) If o(F)) = o(F,) and o(G) = o(H), then o(F} %, G) = o(Fy %, H).
18
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Figure 9: Cycles in rankings on extensions.

(Ax5) o(Fx, G)No(H) Co(F *, f,(c(G)No(H))).
(Ax6) If o(F x, G)No(H) # 0, then o(F %, f,(c(G)No(H))) Co(F *, G)No(H).

(Acye) If for 0 < i < n, o(F %, Giz1) No(G;) # 0 and o(F %, Go) N o(G,) # () then
o(F x, Gp) Na(Gy) # 0.

The postulate Acyc is adapted from [26] and is motivated by the realization that, without it,
postulates Ax1—-Ax6 can characterize revision operators generated with unsuitable rankings (see
Example 9).

Example 9. Suppose that for an AF F' we have a ranking < on 2% which behaves as in Figure 9
for the extensions {a}, {b, c}, {a, c} and {b}, and as a faithful ranking otherwise. An arrow means
that the relation is strict: for example, {a} <p {b,c} and {b,c} Ar {a}, abbreviated as {a} <p
{b, c}. The relation <, then, contains a non-transitive cycle and is not a preorder. However, quick
inspection of the figure reveals that for any non-empty o-realizable set S, min(S, <) is still well
defined and non-empty (recall that we are assuming o to be proper I-maximal; therefore elements
of S are pairwise C-incomparable). For instance, if S = {{a}, {b, c}}, then min(S, <r) = {{a}}.
Thus we can define an operator *, in the familiar way, by taking F' x, G = f,(min(c(G), <)),
and it is then straightforward to verify that this operator *, is well-defined and satisfies postulates
Ax1-Ax6.

Additionally, there is no ranking =<’. which is transitive and yields the same revision oper-
ator. To see this, notice that if such a ranking (call it <) existed, it would have to satisfy
min({{a}, {b,c}}, =%) = {{a}}, because we know that o(F *, f,({{a},{b,c}})) = {{a}}.
Thus it would hold that {a} <= {b, c}. Similarly, we get that {b, c} < {a,c} <% {b} <% {a},
and the cycle is reiterated.

Nonetheless, we want to avoid non-transitive cycles: since a natural reading of the rankings
on 2% is that they are plausibility relations, one would expect them to be transitive, and it is thus
undesirable to have revision operators that characterize non-transitive rankings. To prevent this
situation we make use of the additional postulate Acyc.

On the ranking side we define a less demanding version of faithful assignments, which is
adjusted to the nature of (proper) I-maximal semantics.
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Definition 8. Given a semantics o, an I-faithful assignment maps every ' € AFy to an I-total
preorder < on 2* such that, for any C-incomparable E,, F5 € 2% and F, F}, F, € AFy, it holds
that:

(i) if By, By € o(F), then E, ~p By,
(i7) if By € o(F) and Ey ¢ o(F), then Ey <p Es,
(i17) if o(Fy) = o(Fy), then =g ==p,.

The preorder < assigned to F' by an I-faithful assignment is called the I-faithful ranking associ-
ated with F.

I-faithful assignments differ from faithful assignments in that they require the rankings to be
only I-total, thus allowing (but not requiring) them to be partial with respect to C-comparable pairs
of extensions. Our use of I-faithful assignments is motivated by how proper I-maximal semantics
work. Given a revision operator *, and F' € AFy, the natural way to rank two extensions £; and
E, is by appeal to F' x, f,({E, Ex}): if By € o(F %, f,({E1, Ex})), then E is considered ‘at
least as plausible’ as F; and it should hold that £y <p E5. However, by proper I-maximality of o,
fo({E1, E5}) exists only if F and Ey are C-incomparable. Thus if £ and F, are C-comparable,
*, might not have any means to decide between E; and Fs, hence it is natural to allow them
to be incomparable with respect to <z. With these preliminaries, we can now state our main
representation results.

Theorem 5. If, for some proper I-maximal semantics o, there exists an I-faithful assignment map-
ping any F' € AFy to an I-faithful ranking <p, let x,: AFy X AFy — AFy be a revision operator
defined as follows:

Fx, G = f,(min(c(G), <F)).
Then x, satisfies postulates Ax1-Ax6 and Acyc.

Proof. Since o is proper I-maximal, any non-empty subset of o(G) (and in particular,
min(o(G), <)) is realizable under . Thus *, is well-defined and we do not need to add any extra
condition on <, such as o-compliance. Specifically, for any AF G, o(F %, G) = min(o(G), <F),
which we use without further comment in the remainder of the proof.

It is straightforward to see that Ax1 is satisfied. Postulate Ax2 holds, since the elements of
o(F') are the minimal elements of <, as < is [-faithful. Postulate Ax3 follows from transitivity
of < and finiteness of GG. Postulate Ax4 follows from Property (iii) of I-faithful assignments.
Postulates A*5 and Ax6 can be shown analogously to Px5 and P«x6 in Theorem 2.

It remains to be shown that Acyc also holds. Let Gy, Gy, ..., G, be a sequence of AFs such
that for all 0 < i < n, 0(F %, Gi11) N o(G;) # 0 and o(F *, Go) N o(G,) # 0 holds. From
o(Fx*,G1)No(Gy) # () we derive by proper I-maximality of o that min (o(G1), <r)No(Gy) # 0.
Hence there is an extension E{, € o(Gy) such that Ej; <y F, for all E; € o(G,). Likewise we get
from o(F *, G3) N o(G1) # () that there is an extension E} € o(G1) such that E} <p FE, for all
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E; € 0(G3), ..., and from (F % G,,) N o(G,_1) # 0 that there is an extension E! _; € o(Gp_1)
such that E! | <p E, for all £, € o(G,). From transitivity of <p we get £, < F,, for all
E, € o(G,). Finally, from o(F %, Go) N o(G,) # 0 it follows that there is some E! € o(G,,)
with B! <p E, for all £y € o(G)p) (in particular for E})). Now from E/, <p E{ <p E, (for all

E, € 0(G,)) it follows that E! € min(c(G,,), <r). Hence o(F x, G,,) N o(Gy) # 0. O

Theorem 6. If x,: AFy X AFy — AFy is an operator satisfying postulates Ax1-Ax6 and Acyc, for
a proper I-maximal semantics o, then there exists an I-faithful assignment mapping every F' € AFy
to an I-faithful ranking < on 2% such that o(F *, G) = min(o(G), =r), for any G € AFy,.

Proof. Assume there is an operator *,: AFgy X AFy — AFy satisfying postulates Ax1-Ax6 and
Acyc, and take an arbitrary F' € AFy. We construct < in two steps. First we define a relation <’
on 2% by saying that for any two C-incomparable £, E' € 2%:

E <, E'ifand only if E € o(F %, f,({E, E'})).

The relation <’ is reflexive, as Ax1 and A%3 imply that £ € o(F *, f,({E£})). In the next step
we take < to be the transitive closure of <. In other words:

E < E'if and only if there exist E1, ..., I, such that:
Bi=E, E,=FE and By < - <, E,.

The remainder of the proof shows that < is the desired I-faithful ranking. First, notice that
if By = Esthen E; <p E,. Hence < is reflexive and, by construction, it is transitive, which
makes it a preorder on 2%. Additionally, for any two C-incomparable extensions £, E,, proper
[-maximality of o guarantees that f,({E1, E2}) exists. By Ax1 and Ax3, o(F *, f,({E1, E2})) is
a non-empty subset of { £y, F»}, thus £y = Ey or By = E) and < is I-total. Next we argue
that < is an I-faithful ranking.

Due to proper I-maximality of o, a set {E}, Ey} is realizable whenever F; and E, are C-
incomparable. Thus, we usually write { F'1, F»} instead of o (f,({E1, E2})).

Lemma 3. If £y, E5 € o(F), then By ~p Es.

Proof. From Ax2 and proper I-maximality of o, we get o(F *, f,({E1, Ex})) = o(F) N
{El, EQ} = {Ela EQ} Thus El le E2 and E2 j/F El, which 1mphes El ~r EQ. ]

Lemma 3 shows that < satisfies Property (i) of I-faithful assignments. For Property (ii) we
make use of the following lemmas. It is in this context that Acyc proves crucial.

Lemma 4. If F1, ..., E, are pairwise distinct extensions with By =<z Ey =< - 20 B, <% Ey,
then FEy, = E,,.

Proof. If n = 2 the conclusion follows immediately. In the following we assume that n > 2.
From the hypothesis we have that E; € o(F *, f,({F;, Ei11})), fori € {I,n — 1}, and E,, €
0(F %, fo({En, E1})). It follows that £y € o(F %, fo({E1, E2})) N{E,, Er}, E; € o(F %,
fo({Ei, By })){ B, E;}, fori € {2,...,n—1},and E,, € o(F*, f,({En, E1})) {En_1, En}.
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Applying Acyc, we get that o (F *, f,({E,, E1})) N {E1, Es} # 0. From A%5 and Ax6 it follows
that o(F *, fo({En, E1})) N{E1, B3} = o(F *4 fo({En, E1} N{Ey, Ey})). Since {E,,, E1} N
{E1, By} = {E1} we get by Ax4 that o(F *, fo({En, E1} N {E1, E2})) = o(F %, fo({EL})).
Finally, using Ax1 and Ax3 we conclude that o(F *, f,({E1})) = {E1}, and thus E; € o(F *,
fa({En’ El}))’ implying El jIF En- O

Lemma 5. For any extensions F and F', if E <. E' then E <p E'.

Proof. From the definition of < it is clear that £ <y E’. It remains to be shown that £’ Ap E.

Suppose, towards a contradiction, that £/ < E. Then there exist F1, ..., E, such that £, = F’,
E, = E and Ey <X} --- =% E,. Since we also have £ <’ E’ by assumption, we can apply
Lemma 4 to get £, =<’ FE,, a contradiction. O]

Lemma 6. If £, and Ey are C-incomparable extensions and E, € o(F), Ey ¢ o(F), then
Ey < B,

Proof. By proper I-maximality of o and Ax2 we get o (F *, f,({E1, E2})) = o(F)N{Ey, Ex} =
{E1}. This implies that F; <% E, and, by Lemma 5, E; <p Es. O

Lemma 6 gives us Property (i7). For Property (ii) assume an AF F/ € AFy with o(F) =
o(F"). Ax4 ensures that =<7,=="., and therefore it also holds that <p==<p.

Lastly, we show that the extensions of F' x, (&, for any G € AFy, are the minimal elements of
o(G) with respect to <p.

Lemma 7. For any two extensions Ey, Fy C A and any G € AFy, if By € 0(G), Ey € o(F *, G)
and FEy = Es, then By € o(F %, G).

Proof. From the assumption that By € o(F *, G), we have o(F *, G) N {Ey, E;} # 0. By
Ax5 and Ax6 we get o(F *, G) N {E1, Es} = o(F *, fs(c(G) N {Ey, Esy})). Moreover, by
Ax1, we get that Fy € o(G). We also know that £y € o(G), so {Ey, Es} C o(G). Thus
o(G)N{E1, Es} = {E1, By} and from this and Ax4 it follows that o (F', f,(c(G)N{E}, Ex})) =
o(F #, f,({E1, E2})). Putting these results together with the fact that £y € o(F *, f,({FE1, E2}))
(since By = Ey), we get that Ey € o(F *, G). O

Lemma 8. For any G € AFy, min(c(G), <%) = o(F *, G).

Proof. Keeping in mind that for any two o-extensions F;, F of GG, by proper I-maximality of o,
E, = Es or B3 <. Ej, the proof resembles the one for Lemma 2. O

Lemma 9. For any G € AFy, min(c(G), <r) = min(o(G), <}).

Proof. C: Let E; € min(o(G), <) and suppose there exists £y € o(G) with By <} E;. By
Lemma 5, this implies that F; <z FEj, a contradiction to F; € min(o(G), <p). It follows that
Ey =%y By, thus By € min(o(G), =%).

D: Take ) € min(o(G), X%) and any Fs € o(G). If Ey = Ey, it follows that F; <. Es. If
E, # Ej, then by proper I-maximality of o, F; and E, are C-incomparable and thus £ < E,
or By <% E;. We cannot have that £y <’ Fj, since this would contradict the hypothesis that
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E, € min(o(G), =), therefore £y =<’= FE,. In both cases it follows that £y < F», hence
E, € min(o(G), <p). O

Lemmas 8 and 9 imply that for any G € AFy, o(F *, G) = min(o(F), <p). This concludes
the proof. 0

Regarding concrete operators, notice that any faithful assignment for AFs can be used, via
Theorem 5, to represent a revision operator *, : AFy X AFy — AFy. Remarkably, then, for revision
by AFs we do not need a restriction on rankings such as o-compliance to ensure that operators are
well defined. The reason revision by AFs is easier than revision by propositional formulas is the
fact that any subset of o(F') is realizable under o, for any proper I-maximal semantics ¢ and
F € AFy. Also, any faithful assignment is an I-faithful assignment in our sense, which implies,
by Theorem 35, that %, satisfies Ax1-Ax6 and Acyc. Thus, any model-based revision operator
from the standard literature on belief change (for example Dalal’s operator [23]) can be used as a
revision operator of AFs by AFs.

Example 10. Consider an AF F' as in Example 5, with stb(F) = {{a,b,c}}, for instance
F = ({a,b,c},0). The corresponding ranking obtained with Hamming distance, {a,b,c} <%
{a,b} =P {a,c} =2 {b,c} <P {a} =2 {b} =B {c} <P (), was problematic when revising by
a propositional formula, because the desired outcome of a revision operator could turn out to be
{{a,b},{b,c},{a,c}}, which usually is not o-realizable (see Example 5). We cannot, however,
run into this problem when revising by an AF G, since the outcome of revision will, by definition,
be a proper subset of ¢(G), namely min(o(G), <2). Due to the proper I-maximality of &, any
proper subset of o () is also o-realizable. It follows that Dalal’s operator and, by the same token,
any other standard revision operator, can be applied in this setting.

5 Complexity

Next, we study the complexity of Dalal’s operator and its refinement in the argumentation setting.
We will consider the following decision problem for semantics o € {stb, prf}:

GIVEN: the original AF F, the revising AF G (or formula (),
and a set of arguments £,
DECIDE: whether E is a o-extension of the revision of F' by G (or ¢).

In particular, the problem is closely related to model checking in propositional logic revision,
the complexity of which was studied by Liberatore and Schaerf [42]. We will first show the exact
complexity of Dalal revision by AFs and then give complexity bounds for the refinement of Dalal’s
operator for revision by formulas.

We assume familiarity with standard complexity concepts, such as P, NP and completeness.
Given a complexity class C, a C oracle decides a given sub-problem from C in one computation
step. The class ¥ (and AF) contains the problems that can be decided in polynomial time by
a non-deterministic (deterministic) Turing machine with unrestricted access to a f_, oracle. In
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particular, ¥ = P, ¥ = NP, and A} = PNP. The classes A} have been refined by the classes ©F
(also denoted AP [O(logm)]), in which the number of oracle calls in bounded by O(log m), where
m is the input size.

The complexity classes introduced above have complete problems involving quanti-
fied Boolean formulas (QBFs). By a k-existential QBF we denote a QBF of the form
Qle - Qkaﬁp(Xl, L. ,Xk) with Ql =4, QQ, . ,Qk € {H,V}, Qz 7& Qi-i-l for1 <i < k, and
(1) if Qr = V¥ then ¢ is in DNF containing no monoms which are trivial for X; U --- U X4, (i7)
if () = dthen ¢ is in CNF containing no clauses which are trivial for X; U---U X;_;. A monom
m (or clause c) is trivial for X if all atoms occurring in m (or ¢) are contained in X. In particular,
a 1-existential QBF is of the form 3X ¢ (X) with ¢ being in CNF without empty clauses. It is true
if and only if (X)) is satisfiable. For a set of arguments X = {z,,...,x,} we denote by X the
set of arguments {77, ..., T, }.

The classes Of 41 (for & > 1) have the following complete problems [35, 57, 55], which we
will make use of in the subsequent hardness proofs:

GIVEN: k-existential QBFs @4, ..., ®,, such that ®; being false implies
®;, 1 being false for 1 < i < m,
DECIDE: whether max{1 <i < m | ®; is true} is odd.

Given an AF F and a set of arguments £, deciding whether E € stb(F') is in P and deciding
whether E € prf(F') is coNP-complete [29].

We begin with the complexity of Dalal’s operator for revision by AFs under stable semantics.
We will make use of the following construction, which is adapted from reductions used in proofs
by Dimopoulos and Torres [29] and Dunne and Bench-Capon [32]. In what follows, we consider
a more general setting by giving up the restriction that 2l is finite.

Definition 9. Given a propositional formula p(X) = A c with each ¢ € C a disjunction of
literals from X, we define F, = (A,, R,,) as:

4, =X UK UCU{s,3),
Ry —{(2,7), (7,2) | 2 € X}U{(6,¢) | 6,¢ € Coe £ ¢}U
{(z,c) | x occurs in ¢} U {(Z, ) | =z occurs in c}U

{(c,p) [ c€ CU{(p,?)}

Figure 10 depicts F,, for an exemplary CNF formula ¢(X).

Lemma 10. Given a propositional formula o(X) = A . c with each ¢ € C a disjunction of
literals from X, it holds that:

1.  is satisfiable if and only if there exists E € stb(F,) such that ¢ ¢ E;

’

2. foreach E, E' € stb(F,) such that o ¢ E and ¢ € E' it holds that |[E| + 1 = |E’

3. for each E € stb(F,) such that © ¢ E and each E' € stb(F, — (C' U {@})) it holds that
|E] = [E"].
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Figure 10: AF F, for ¢(X) = (z1 V —z2) A (m21 V 23) A (22 V —13).

Proof. We begin with the observation that every stable extension of £, or £, — (C'U{®}) contains
SU (X \S) for some S C X, since each argument € X is in symmetric conflict with Z and
neither receives any further attacks.

1. (=): Assume ¢ is satisfiable, hence there exists S C X such that for each c € C, S | ¢
Therefore, by construction of F,, S U (X \ S) attacks all ¢ € C. Thus S U (X \ S) U
{p} € stb(F,). («<): Let E € stb(F,) with o ¢ E. Moreover let S C X for which
SU(X \S) C E (recall from before that such an .S must exist). Since ¢ is the only attacker
of @ it follows that ¢ € E and further ¢ ¢ E for all ¢ € C. Therefore S U (X \ S) must
attack each ¢ € C, meaning by construction of F, that S |= ¢ for each ¢ € C, hence S |= ¢;
that is, ¢ is satisfiable.

2. From the («<)-direction of (1) we get that each E € stb(F,) with ¢ E has |E| = | X| + 1.
For an arbitrary £’ € stb(F,,) with € E’ it must hold that ¢ ¢ E’, hence for at least one
¢ € C we must have ¢ € E'. Since, as we know, S U (X \ §) C E’ for some S C X, and
by C forming a clique, ¢ € E for at most one ¢ € C, it follows that |E’| = | X| + 2, that is
|E|+1=|E|.

3. Obviously, |E’| = | X |+ 1 foreach E’' € stb(F,, — (C'U{p})). Hence, from the observation
in (2), the result follows.

This concludes the proof. [

Given these observations we can show the exact complexity of Dalal’s operator for revision
under stable semantics.

Theorem 7. Given AFs F,G € AFy and E C %, deciding whether E € stb(F x5, G) is ©F-
complete.

Proof. For membership in ©F we sketch an algorithm that decides E € stb(F L), ) in polynomial
time with O(logm) calls to an NP oracle, where m = |Ar| 4+ |Ag|. First we check whether
E € stb(G) (in P); if no, then we return with a negative answer. Then the minimal distance
z = min{d,,(T, F) | T € stb(G)} is determined. It holds that z < m, since S C Ap (resp.
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Figure 11: Illustration of the AF obtained from the reduction in the proof of Theorem 7.

T C Ag) for each S € stb(F) (resp. T € stb(G)). Now z can be computed by binary search
with O(log m) calls to the following NP procedure: guess S C Ap, T C A and check whether
S € sth(F), T € stb(G) and dy(S,T) < z (checking this is in P). Having obtained z, we finally
call another NP oracle to check whether there is an S € stb(F) such that dy (S, F') = z. If such an
S does exist, then E € stb(F x5, @), otherwise not.

To show ©F hardness we give a polynomial-time reduction from the following problem (recall
that a 1-existential QBF being false is equivalent to a propositional formula being unsatisfiable):

GIVEN: propositional formulas ¢ (X1), ..., om(X,,) such that
; unsatisfiable implies ;1 unsatisfiable, for 1 <7 < m,
DECIDE: whether k = max{1 < i < m | ¢; is satisfiable} is odd.
Without loss of generality we can assume that: (i) X;NX; = (0 forall1 <i,j <m,i # j, (i)
n = |X;| = |X;| forall 1 <1i,j <m, (iii) each ; is in CNF with C; denoting the set of clauses of
¢;, and (iv) m is odd. Now given an instance of this problem, define F' = |J,.,.,, F,,, U F; where

F,, is given by Definition 9 and:

by = ({@’@Hl} U Ci, {(®i1,@:) } U{(@ip1,0) | c € Cz}) 1<i<m
Fn = {@p, 7,2} U Cp, {(z,2), (2, 2), (2, 2,)} U{(2', ) [ c € C}) .

Intuitively, F' contains the frameworks F,, constructed according to Definition 9 together with
“connecting frameworks” F; which make @, attack ©; and all clause-arguments Cj. F,,, can be
seen as the “starting framework”. A schematic illustration of /' can be seen in Figure 11. Moreover,
we define G = ({z,2'}, {(x,2'), (2/,2)}) and £ = {x}.

Due to the splitting Property [4], the stable extensions of F' are composed of the union of
stable extensions of its components, where the computation of stb(F,,) has to take into account

sth(F,.,.). Thatis, stb(F) = {{a} UU,ic,, Bi | @ € {2, 2}, E; € stb(F", )} where

o F, =F,, ifa=zad I, =F,, —(CrU{p,})ifa =2 and
o I =F,ifp,, ¢ BEinand I, = F, — (C;U{y;})if 9, € By for 1 <i <m.

Recall that k is the highest index such that ¢y, is satisfiable. Consider an ¢ with & < ¢ < m.
If F, = F,, then we know, by Lemma 10.1 and ¢; being unsatisfiable, that o, € FE;, hence
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Figure 12: AF Fy for the QBF ® = Jy;, yoVz1, 20 1 (11 A—ya A21) V(Y1 Aya A—29) V (mya A —21).
F,  =F,_ , —(CisiU{®;_}). On the other hand if F}, = F,, — (C; U {®;}) then obviously
@, ¢ E;, hence F;if L= F,, .. Now consider an ¢ with 1 < 7 < k. Again from Lemma 10.1,
we get that there is some E € stb(F,,) with ; ¢ E. Therefore, by Lemma 10.2 and 10.3, for
a € {z,2'} the extension S} = {a} U<, Bi With @, ¢ E; for 1 < i < k is the one with
the minimal distance to {«} among all elements of stb(F') (recall the assumption that | X;| = | X;|
forall 1 <4,57 < m). Now if k is odd, we get, by the assumption that m is odd, that m — k is
even. Hence dy(S:,{z}) = dg(S%,{z'}) and furthermore stb(F x5, G) = {{z},{2'}}, that is
E € stb(F *S?b G). If, on the other hand, & is even, then m — k is odd and, by Lemma 10.2 and 10.3,
du (St {x}) = du(S:,{2'}) + 1, hence E ¢ sth(F xD G) = {{«'}}.

x’

]

Now we turn to preferred semantics, where we will make use of the following construction.

Definition 10. Given a 2-existential QBF ® = 3Y'VZ (Y, Z) where ¢ is a DNF \/ ., d with each
d a conjunction of literals from X =Y U Z, we define Fy = (Ag, Rg) as:

Ap =X UX UDU{p 7},

Ry ={(x,7),(T,x) | x € X }U
{(z,d) | z occurs in d} U {(x,d) | -z occurs in d}U
{(d,?) [ d e DYU{(®,9),(p,0)} U{(p,2) | 2 € Z}.

The construction is illustrated on an exemplary 2-existential QBF & in Figure 12. We show
two technical lemmata before giving the actual complexity result.

Lemma 11. Let ® = 3YVZp(Y, Z) where ¢ is a DNF \/ ;. d. Foreachd € D, S CY and
T C Z it holds that:

o SUT |=difandonly if d is defended by S U (Y \ S)UT U (Z\T);

e SUT W difand only if d is attacked by SU (Y \ S)UT U (Z\T).

Proof. If SUT = - d, then the set of arguments attacking d is, according to Definition 10, contained
inSU Y \S)UTU(Z\T). Therefore, it is not attacked and even defended by S U (Y \ S) U

TU(Z\T).
If SUT [~ d, then there is some argument attacking d which is not contained in SU(Y'\ S)UT U

\
(Z\T). Therefore, it is attacked and, consequently, not defended by SU(Y \ S UTU(Z\ T). O
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Lemma 12. Consider the 2-existential QBF ® = 3YVZp(Y,Z) where ¢ is a DNF \/ ;. d. It
holds that:

1. @ is true if and only if there exists E € prf(Fg) such that ¢ ¢ E;

2. for each E € prf(Fg) it holds that (a) |[E| = |Y |+ |Z|+ 1ifg € E and (D) |E| = |Y] if
¢ E;
3. foreach E € prf(Fp — {®}) is holds that |E| = |Y'|.

Proof. 1. =: Assume @ is true. That is, there is some .S C Y such that for all 7" C Z it holds
that (S, T) is true. We show that £ = SU (Y \ S) € prf(Fs). First, E is easily checked to
be admissible. Towards a contradiction, assume there is some £’ € adm(Fy) with E' D E.
Further assume there is some d € D included in £’ \ E. Due to the non-triviality of d there
isatleastone z € ZU Z attacking d and, consequently, it must hold that Z € E’. Then,
due to ¢ attacking all Z U Z, @ € E', we get a contradiction to conflict-freeness of £’ since
also d € D. Knowing that d ¢ £’ for all d € D, assume that p € E’. To this end ¥ has to
be defended by £’ from each d € D. This means that there must be some 7" C Z such that
TU(Z\T)C E and each d € D is attacked by SU (Y \ S)UT U (Z \ T). But then, by
Lemma 11, S UT £ d for each d € D, a contradiction to (S, T') being true.

<=: We show the contrapositive, that if @ is false then all ' € prf(Fy) have p € E. Observe
that for any S C Y, S U (Y \ S) is admissible in Fp, hence S U (Y \ S) is contained in
some preferred extension. Moreover, each preferred extension must contain S U (Y \ .S) for
some S C Y. Consider an arbitrary S C Y. As, by assumption, ® is false, there must be
some 7" C Z such that ¢(S,T') is false. Hence for every d € D it must hold that S U T |~ d
and consequently, by Lemma 11, d is attacked by Xg = SU (Y \ S)UT U (Z \ T). Hence
Xs U {®} is admissible and, by attacking all other arguments, also preferred in Fy. Now
assume there is an £’ € prf(Fg) with S C E' and @ ¢ E'. By the latter no argument among
7 U Z can be in F’ as it cannot be defended from . Hence, to be C-incomparable to all
the preferred extensions which do include @, E’ must include some d € D. But also this in
not possible as by assumption there must be some 7" C Z making S U T [~ d, meaning, by
Lemma 11, that d is attacked by SU (Y \ S)UT U (@ If it is attacked by S U (Y \ .5)
then E’ is not conflict-free; if it is attacked by 7"U (Z \ T') then E’ is not admissible. We
conclude that all E' € prf(Fy) have p € E.

2. Consider some E € prf(Fp). () If g € E'thend ¢ E for all d € D, hence a maximal
conflict-free selection of arguments among Y UY U Z U Z must be included in F, therefore
SU(Y \ S)UTU(Z\T) C Eforsome S CY andT C Z. Hence |E| = |Y|+]|Z|+1. (b)
If p ¢ E then no argument among Z U Z can be defended. Moreover, as ¢ does not contain
monoms which are trivial for Y, it follows by Lemma 11 that no d € D can be defended.

On the other hand, £ must include a maximal conflict-free selection of arguments among
YUY, hence |[E| = |Y]|.

3. Let I, = Fp — {} and observe that the self-attacking argument ¢ is unattacked in Fg.
Hence none of the arguments Z U Z can be defended. Moreover, as ¢ does not contain
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Figure 13: Illustration of the AF obtained from the reduction in the proof of Theorem 8.

monoms which are trivial for Y, each argument d € D is attacked by ZUZ and can therefore
also not be defended. It follows that the preferred extensions of F}, are given by SU (Y \ )
for each S C Y, each containing |Y'| arguments.

]

Theorem 8. Given AFs F,G € AFy and E C %, deciding whether E € prf(F x); G) is ©F-
complete.

Proof. To show membership in ©F we sketch an algorithm that decides E € prf(F *If’# G) in
polynomial time with O(logm) calls to a X oracle, where m = |Ar| + |Ag|. First, we check
whether £ € prf(G) (in coNP); if no we return with a negative answer. Second, the minimal
distance z = min{d, (T, F') | T" € prf(G)} is determined. Since S C A (resp. ' C Ag) for
each S € prf(F) (resp. T' € prf(G)), it holds that d < m. Therefore it can be computed by binary
search with O(logm) oracle calls to the following X5 procedure: Guess S C Ap, T C Ag and
check (in coNP) whether S € prf(F), T € prf(G) and dy(S,T) < z. Having obtained z, we
finally call the oracle once again to check whether there is an S € prf(F') with dy (S, E) = z. If
such an S does exist then E' € prf(F *ﬁf (), otherwise not.

To show ©F -hardness we give a polynomial-time reduction from the following problem: Given
2-existential QBFs @4, ..., ®,, such that ®; being false implies ®;; being false for 1 < i < m,
decide whether k£ = max{1 < i < m | ®, is true} is odd. We use the following notation to identify
the elements of QBFs: ®; = 3Y;VZ,;p;. W.l.o.g. we can assume that (7) the variables of the QBFs
are pairwise distinct, (i) |Y;| = |Y;| and |Z;| = | Z;| forall 1 < i,j < m, and (¢ii) m is odd. Due
to (i) we will use |Y| to denote |Y;| and |Z| to denote | Z;| for any i. Now for each ®; = 3Y;VZ,;p;,
let F, be as given in Definition 10. We define F' = | J,,.,, Fo, U F; where:

Fy = ({08 1 {(@i01,9)}) 1<i<m
Fn = ({@m? Z, l'/}v {(1'7 lJ)? (x/a x)v (xlﬁm)}) :

Figure 13 depicts a schematic example of F'. The subframeworks F; can be regarded as “connecting
frameworks”, adding just an attack from @, , to @;. I}, is the “starting framework”. Moreover,
we define G = ({z, 2}, {(z,2'), («/,2)}) and E = {x}. We show that E € prf(F . G) if and
only if & is odd.

Due to the splitting property of preferred semantics [4], the preferred extensions of F' are
composed as prf(F) = {{a} UU, i, Ei | @ € {2’} E; € pif(Fj, )}, where:
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o [y =Fy, ifa=zand Fy = (Fy,, —{9,,})if a =2/, and

o Iy =Fp,if @, ¢ Eipiand Fy, = Fo_y —{9;}) if 0,4 € Eipq for 1 <i <m.
Recall that £ is the highest index such that ®, is true. Due to Lemma 12 it holds that:

e 1 <i < k:wehaveeither |E;| = |Y|or |E;| = Y|+ |Z] + 1;

o k<i<m:ifao=axwehave |E;|=1|Y|+|Z|+ 1forie€ {m,m—2,...}and |E;| = |Y]
fori € {m —1,m — 3,...}; otherwise we have |E;| = |Y| fori € {m,m —2,...} and
|Ei|=Y|+|Z|+1forie {m—1,m—3,...}.

Moreover, we get from Lemma 12 that each Fp, with 1 < ¢ < k has an extension E} € prf(Fs,)
with ; ¢ E7, hence |E}| = |Y|. Let S% € prf(F') be now such that E; = E} forall 1 <i < k. By
the observations above and assumption (77), S’ has minimal distance to {a} among all preferred
extensions containing «, for o € {z, 2'}.

If k is odd, we get, by the assumption that m is odd, that m — k is even, hence dg (S, {a}) =
m|Y| + 275(]Z| + 1) + 1 for both o € {x,2'}. Therefore prf(F D, G) = {{z},{a'}}, ie.
E € prf(F «). Q).

If k is even, then m — k is odd. We get dy(S%, {2'}) = m|[Y| + [ZE](|Z] +1) +1 <

mY |+ [2551(1Z] + 1) + 1 = du (S, {2}), hence E & pif(F ), G) = {{2'}}.

O

As elaborately discussed in Section 3.2, Dalal’s operator cannot be directly applied to revision
of AFs by propositional formulas, as the rankings obtained from Hamming distance do not meet
the requirements for inducing rational operators. Therefore we consider here the refinement of
Dalal’s operator ', as introduced in Definition 7. We begin by showing that hardness carries

over from the operator x2 for revision by AFs.
Theorem 9. Given an AF F' € AFy, ¢ € Py and E C 2, then:
e deciding whether E € stb(F " ) is ©F-hard;

e deciding whether E € prf(F *f,]’cir ©) is OF -hard.

Proof. Leto € {stb, prf}. Further, let G = ({z, 2}, {(x,2'), (¢, ) }) and ¢(o(G)) be the formula
having exactly o(G) as its models. We will give a polynomial time reduction from the problem,
given ' € AFy and E C 2, whether £ € o(Fx2G). Inspecting the hardness proofs of Theorems 7
and 8, we see that this problem is ©F-hard for o = stb and ©F -hard for o = prfeven for this fixed
G.” Hence the reduction will give the desired resul.

TFor the sake of interest, we give the reduction of an arbitrary, but fixed, AF G.

30



Consider some F' € AFy and £ C 2. W.lo.g. assume that n = |E| is even and that the
elements of E are the alphabetically minimal arguments. We define:

F'=FU{wy,. ,y=},0), and

p=o@@)A N |- Narn N -~ |cu]

1<i<n acE a'€(AG\E)

with {91, ..., ,} being newly introduced arguments. We show that £ € o(F x2 G) if and only if
E € o(F' xP:I' ). First recall that [¢(c(G))] = o(G). Now let S € o(G). The second part of ¢
then ensures that if S = E'then S € [p] and SUY ¢ [p] forany Y C {y1,...,y.} Y # 0), and
if S# Ethen SU{y1,...,yn} € [p]and SUY ¢ [p] forany Y C {y1,...,yn}. Therefore we
derive the following:

e denoting S’ = S U{y1,...,y,} forevery S € (0(G) \ {E}) and denoting E' = FE, it holds
that [p] = {5 | S € 0(G)};

e denoting 7" = TU{yy,...,y= } forevery T € o(F),itholds thato(F') = {T" | T € o(F)}.

Therefore, it holds for every S € [p] that d, (S, F') = d, (S, F') + & (note the initial assumption
that n is even), thatis S; <2 S, if and only if S| <, S5.

Now first assume £ ¢ o(F 2 G). That means there is some S € o(G) such that S <2 E.
But then, by our last observation, also Sf <§’/ E’ and, since the refinement only affects extensions
on the same level w.r.t. <P, also S" <%/ E'. Therefore E ¢ o(F +2* o).

On the other hand assume £ € o(F 2 (). That means that for all S € o(G) it holds that
E <P S. For those S € o(G) with E <2 S we get E' <2, S’ as before. Consider an S € o(G)
with E ~2 S. From n = |E| we get that |E| < |S’|. This together with the assumption that
E contains the alphabetically smal]est arguments, we get that £ ij\”(F ) S (cf. Definition 5).
Therefore, by Definition 7, E j?,’“ S’. Since this holds for every S € o(G) we conclude that
E € o(F' +D:ir ). O

As an upper bound for the complexity, we show membership in A¥ for revision with respect to
stable semantics and membership in Af for preferred semantics.

Theorem 10. Given an AF F' € AFy, ¢ € Pyand E C 2, then:
e deciding whether E € sth(F x2;" ) is in A

e deciding whether E € prf(F *ﬁ}ir @) is in AL,

Proof. We show the result for szb and then argue how to adapt the proof to obtain the result for
prf. To this end we sketch an algorithm that decides E € stb(F x;"" ¢) in polynomial time with
access to an NP oracle. Let m = |Ar| + |var(¢)|.® First we check whether £ € [p] (in P); if

no we return with a negative answer. Then the minimal distance of a model of ¢ to F', that is

8We denote by var(y) the set of variables occurring in ¢ here.
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z = min{dy(T, F) | T € [p]} is determined. As argued in the membership-part of the proof
of Theorem 7, this requires at most O(logm) calls to an NP procedure. Knowing the minimal
distance z, we have to determine the minimum indexed level of extensions with distance z to F,
where a model of ¢ is contained. There is one level for each e with 0 < e < m (the size of
an extension) and each prefix p = (ay,...,a,) with n < m and a; € Apr U var(p). Hence,
each level can be identified by a pair (e, p) and the number of levels is at most exponential in .
We can now determine the minimum (e, p)-level containing a model of ¢ by binary search with
O(log2™) = O(m) calls to the following NP procedure: guess S C Ap, T' C var(yp), and check
whether S € stb(F), T € [¢], du(S,T) = 2, |T| < e and T# <iex p. These checks can be
computed in polynomial time. Having obtained z, e, and p, we finally check |E| = e, E# = D,
and, by another NP oracle call, whether there is an S € stb(F)) such that dy (S, E) = z; if these
checks turn out positive, £ € stb(F *ﬁ; " ), otherwise not.

The proof for Af-membership of deciding whether E € prf(F *fm}ir ) uses the same polyno-
mial time procedure, now with access to a X5 oracle. That is, every oracle call involving a check
of containment in the stable extensions of an AF now has to check containment in the preferred
extensions of the AF, which is not in P but in NP. Therefore whenever the procedure for stb calls
an NP oracle, the procedure for prf has to make use of a ¥5 oracle. O

We have to leave the exact complexity for the refined version of Dalal’s operator for revision by
formulas open, but Theorem 10 suggests that the indexed refinement of the ranking obtained from
Hamming distance prevents us from determining the level of interest (which is the minimal one
where models of the revision formula occur) with logarithmically many oracle calls. Therefore
we tend to assume that the indexed refinement indeed leads to a computationally slightly more
complex operator.

6 Related Work

As indicated in the introduction, there has been a substantial amount of research in the dynamics of
argumentation frameworks, even though the problems investigated and approaches that have been
developed to address them differ considerably. For instance, a number of studies look at simple
modifications of AFs (e.g., adding/removing an argument/attack) and how they affect evaluation
via different semantics [10, 12, 13, 17, 18, 41].

In the following we describe those studies more closely related to the revision of AFs as con-
sidered in this work, more or less in the order of publication. Most of these studies deal with
revision of AFs in scenarios that are either more restrictive than our own, or otherwise approach
the problem from a slightly different perspective. Also, it is worth noting that no general results
on the complexity of revision of AFs have as yet been presented.

The focus of Baumann [5] is on whether one can modify an AF such that a certain subset
of arguments is contained in some extension (w.r.t. a semantics of interest) and, if so, what the
number of minimal modifications is. On the other hand, Kontarinis et al. [39] propose a strategy in
terms of rewriting rules to compute the minimal number of modifications on the attack relation of
an AF to enforce a desired acceptance status of an argument. Booth et al. [14] give an AGM-like

32



Y
EE ATV OO
RO AL

g

Figure 14: AFs discussed in Example 11.

characterization of revision of AFs when certain logical “constraints” expressing beliefs regarding
the labellings of the AFs are “strengthened” to incorporate newly held beliefs. But the focus is on
determining certain “fall back beliefs” when the newly held beliefs are inconsistent with those held
previously. How to compute the fall back beliefs is developed in detail for the complete semantics.

Our starting point was the work on AF revision by Coste-Marquis et al. [19], where revision
functions are defined following a two step process: first a counter-part to the concept of faithful
assignment on the models of the revision operators is defined; secondly, a set of AFs that generate
such extensions is constructed using different criteria, for example minimizing the changes in the
attack relation of the input AF vs. minimizing the number of AFs generated. The main difference
between the work by Coste-Marquis et al. [19] and our approach is that we consider the issue of
revision of AFs as minimal change in the extensions of the original AF under the constraint that a
single AF has to be produced. As already mentioned previously and showcased in Example 5, this
constraint requires us to take into account the expressive peculiarities of the different semantics.
Also, to realize the desired outcome by a single AF, the introduction of additional arguments is
inevitable in certain cases.

Example 11. Consider the AF ' depicted in Figure 14 (without the dotted part) and observe
that o(F) = {{a,b,c}, {a,b,}, {d’,b,c}, {a, b, c}, {a, b, '}, {d, b}, {d,V, c}, {d,V, }}
for o € {stb,prf,sem,stg}. Now let x : AFy X Py — AFy be an arbitrary revision operator
satisfying the rationality postulates. Then the revision of F' by the formula —(a’ A b' A ¢’) must,
by postulate P«2, result in an AF F’ having o(F") = (o(F) \ {{d’,V,c}}). If we want F’ to
contain only arguments {a, b, ¢, a’, ', ¢}, it can be verified that all attacks which occur in F' must
also be present in F and no other attack among the original arguments can be added. Hence we
necessarily end up having o(F’) = o(F') when disallowing additional arguments. With the use
of the new argument z, we can, however, realize (o(F) \ {{a/,V/,c}}) by the AF in Figure 14
including the dotted part (under o € {stb, sem, stg}; a different AF does the job for prf).

As the previous example shows, the choice of Coste-Marquis et al. [19] to let the revision result
in a set of AFs is indeed substantiated if a fixed set of arguments is assumed. But if the result is
to be instantiated as a single AF, as in our approach, then we have a good argument to allow the
advancement of new arguments as part of the dynamic process. Recent work by Baumann et al. [7]
looks at realizability in compact AFs, which could pave the way for revision where the result is a
single AF and no additional arguments are allowed to come into play.

An issue related to revision of AFs is enforcement of arguments through minimal modifications
to the attack relation. This is taken up in Doutre et al. [30], where enforcement is encoded in the
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framework of Dynamic Logic of Propositional Assignments (DL-PA). In the same direction, work
by Nouioua and Wiirbel [49] provides an adaptation of the Removed-Set-Revision approach in
propositional logic for the situation when adding attack relations and arguments to an AF results
in the AF having no stable extension. Coste-Marquis et al. [20] translate the revision problem for
AFs into propositional logic, thus enabling the use of classical AGM revision operators. However,
revision formulas are defined in terms of the sceptical acceptance of arguments and the output of
revision is still a set of AFs rather than a single AF. Coste-Marquis et al. [21] define operators to
enforce that a set of arguments is a subset of an extension of an AF, Implementing this as pseudo-
Boolean optimization problem leads to promising results.

Reasoning about the dynamics of AFs under different semantics is formalized in Baumann and
Brewka [6] by means of a monotonic logic (Dung logic), based on the notion of k-models. This
logic allows formulation of AGM-like postulates but, as with our results in Section 3 on revision by
propositional formulas, realizability issues prevent standard distance-based revision operators from
being applicable in this context. As a response, an alternative syntactic-based revision operator for
the stable semantics is developed, and this operator returns a unique AF as output. For the other
semantics, several other ideas for revision operators, selection functions from a set of possible AFs,
are sketched.

Moguillansky [44] develops a theory of remainder sets for abstract argumentation, where re-
vision is defined via expansion and contraction. A representation result for the basic postulates
(success, consistency, inclusion, vacuity and core-retainment) is obtained, but this is nonetheless a
more syntax-based approach to belief change in argumentation. Also, postulates in this approach
are formulated with respect to the acceptance of an argument, rather than, as we interpret them,
with respect to sets of extensions. An approach similar to ours, focused on postulates and repre-
sentation results, and which also highlights the subtleties of instantiating the output as a single AF,
looks at merging AFs in the presence of integrity constraints [27]. Merging differs from revision
in that it attempts to integrate different sources of information, none of which is taken to have any
priority.

Finally, we refer to recent work likewise inspired by the AGM theory of belief change, but
which goes well beyond our work. In [25] (see also preceding work [11]) a very general theory to
model dynamics of AFs is proposed. This theory makes it possible to express how an agent who
has beliefs in the form of her own argumentation system can interact on a target argumentation
system that may represent the state of knowledge at a given stage of a debate. Here AFs (and the
dynamics of AFs) are encoded within the general, tailor made first order language YALLA. Further
afield, both Moguillansky and Simari [45] and Snaith and Reed [53] present models of dynamics
in structured (as opposed to abstract) argumentation. The former offers a model building on results
by Moguillansky [44] (see also previous work from this group [46, 51, 47]), while the latter is a
model for ASPIC+, one of the main existing formalisms for structured argumentation.
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7 Conclusion and Outlook

In this work we have presented a generic solution to the problem of revision of AFs, which applies
to many prominent I-maximal argumentation semantics. Compared to previous attempts in the lit-
erature, we aimed for revision operators which guarantee that the result is representable by a single
AF. The key to obtaining our AGM-style representation theorems was the combination of recent
advances from argumentation theory [33] and belief change [26]. We have considered two different
approaches to revision of AFs. For revision by propositional formulas we have given a represen-
tation result which applies to arbitrary argumentation semantics in conjunction with compliant
rankings on extensions. This compliance requirement has led us to develop general refinements of
rankings, which in turn permitted us to obtain novel concrete operators for a wide range of seman-
tics. For revision by AFs, on the other hand, the representation result has been restricted to proper
I-maximal semantics, a class including standard semantics such as stable, preferred, semi-stable
and stage. This result is nonetheless significant, as it allows any revision operator from the propo-
sitional setting to be applied in the AF context. Finally, we analysed the computational complexity
of (a refinement of) Dalal’s operator, where hardness goes up to ©F for revision under preferred
semantics.

We identify several directions for future work. Fist, we want to extend our results in the
revision-by-AF approach to semantics which are not proper I-maximal. Another interesting is-
sue is the combination of semantics in the definition of revision operators for AFs, as done in the
hybrid approach to revision of abstract dialectical frameworks [43]. Moreover, meaningful revi-
sion operators will have to take the syntactic form of the AF into account. One possibility would
be a two-step approach, where our abstract revision is the first step. Based on this result, a second
step would revise the syntactic structure of the AF. On a more general level, we want to analyse
whether our insights can be extended to a broader theory of belief change within fragments. Fi-
nally we plan to apply our findings to other belief change operations In particular, iterated belief
revision seems to have natural applications in the argumentation domain and we believe that the
understanding of revision yielding a single AF is fundamental for this purpose.

References

[1] Carlos E. Alchourrén, Peter Girdenfors, and David Makinson. On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log., 50(2):510-530, 1985.

[2] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artif. Intell., 171(10-15):675-700, 2007.

[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-
tation semantics. Knowledge Eng. Review, 26(4):365-410, 2011.

[4] Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and Wolf-
gang Faber, editors, Proceedings of the 11th International Conference on Logic Programming

35



[5]

[6]

(71

[8]

[9]

[10]

[11]

[12]

and Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer
Science, pages 40-53. Springer, 2011.

Ringo Baumann. What does it take to enforce an argument? Minimal change in abstract
argumentation. In Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter J. FE. Lucas, editors, Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012), volume 242 of Frontiers in Artificial In-
telligence and Applications, pages 127-132. 10S Press, 2012.

Ringo Baumann and Gerhard Brewka. AGM meets abstract argumentation: Expansion and
revision for dung frameworks. In Qiang Yang and Michael Wooldridge, editors, Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pages
2734-2740. AAAI Press, 2015.

Ringo Baumann, Wolfgang Dvordk, Thomas Linsbichler, Christof Spanring, Hannes Strass,
and Stefan Woltran. On rejected arguments and implicit conflicts: The hidden power of
argumentation semantics. Artif. Intell., 241:244-284, 2016.

Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artif.
Intell., 171(10-15):619-641, 2007.

Trevor J. M. Bench-Capon, Henry Prakken, and Giovanni Sartor. Argumentation in legal
reasoning. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intel-

ligence, pages 363-382. Springer, 2009. ISBN 978-0-387-98196-3.

Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Change in argumentation systems: exploring the interest of removing
an argument. In Salem Benferhat and John Grant, editors, Proceedings of the 5th Inter-
national Conference on Scalable Uncertainty Management (SUM 2011), volume 6929 of
Lecture Notes in Computer Science, pages 275-288. Springer, 2011.

Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Enforcement in argumentation is a kind of update. In Weiru Liu, V. S.
Subrahmanian, and Jef Wijsen, editors, Proceedings of the 7th International Conference on
Scalable Uncertainty Management (SUM 2013), volume 8078 of Lecture Notes in Computer
Science, pages 30-43. Springer, 2013.

Guido Boella, Souhila Kaci, and Leendert van der Torre. Dynamics in argumentation with
single extensions: attack refinement and the grounded extension (extended version). In Peter
McBurney, Iyad Rahwan, Simon Parsons, and Nicolas Maudet, editors, Proceedings of the
6th International Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2009), Re-
vised Selected and Invited Papers, volume 6057 of Lecture Notes in Computer Science, pages
150-159. Springer, 2009.

36



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Guido Boella, Souhila Kaci, and Leendert van der Torre. Dynamics in argumentation with
single extensions: abstraction principles and the grounded extension. In Claudio Sossai and
Gaetano Chemello, editors, Procedings of the 10th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, (ECSQARU 2009), volume 5590 of
Lecture Notes in Computer Science, pages 107-118. Springer, 2009.

Richard Booth, Souhila Kaci, Tjitze Rienstra, and Leendert van der Torre. A logical the-
ory about dynamics in abstract argumentation. In Weiru Liu, V. S. Subrahmanian, and Jef
Wijsen, editors, Proceedings of the 7th International Conference on Scalable Uncertainty
Management (SUM 2013), volume 8078 of Lecture Notes in Computer Science, pages 148—
161. Springer, 2013.

Martin Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-stable semantics. J.
Log. Comput., 22(5):1207-1254, 2012.

Dan Cartwright and Katie Atkinson. Using computational argumentation to support e-
participation. [EEE Intell. Syst., 24(5):42-52, 2009.

Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Change in abstract bipolar argu-
mentation systems. In Christoph Beierle and Alex Dekhtyar, editors, Proceedings of the 9th
International Conference on Scalable Uncertainty Management (SUM 2015), volume 9310
of Lecture Notes in Computer Science, pages 314-329. Springer, 2015.

Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex.
Change in abstract argumentation frameworks: adding an argument. J. Artif. Intell. Res.,
38:49-84, 2010.

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. On the
revision of argumentation systems: minimal change of arguments statuses. In Chitta Baral,
Giuseppe De Giacomo, and Thomas Eiter, editors, Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pages
72—-81. AAAI Press, 2014.

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. A
translation-based approach for revision of argumentation frameworks. In Eduardo Fermé
and Jodo Leite, editors, Proceedings of the 14th European Conference on Logics in Artifi-
cial Intelligence (JELIA 2014), volume 8761 of Lecture Notes in Computer Science, pages
397-411. Springer, 2014.

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. Exten-
sion enforcement in abstract argumentation as an optimization problem. In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2015), pages 2876-2882. AAAI Press, 2015.

37



[22] Nadia Creignou, Reinhard Pichler, and Stefan Woltran. Do hard SAT-related reasoning tasks
become easier in the Krom fragment? In Francesca Rossi, editor, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013), pages 824-831. 1J-
CAI/AAALI 2013.

[23] Mukesh Dalal. Investigations into a theory of knowledge base revision. In Howard E. Shrobe,
Tom M. Mitchell, and Reid G. Smith, editors, Proceedings of the 7th National Conference on
Artificial Intelligence (AAAI 1988), pages 475-479. AAAI Press / The MIT Press, 1988.

[24] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision. Artif. Intell., 89
(1-2):1-29, 1997.

[25] Florence Dupin de Saint-Cyr, Pierre Bisquert, Claudette Cayrol, and Marie-Christine
Lagasquie-Schiex. Argumentation update in YALLA (Yet Another Logic Language for Ar-
gumentation). Int. J. Approx. Reasoning, 75:57-92, 2016.

[26] James P. Delgrande and Pavlos Peppas. Belief revision in Horn theories. Artif. Intell., 218:
1-22, 2015.

[27] Jérome Delobelle, Adrian Haret, Sébastien Konieczny, Jean-Guy Mailly, Julien Rossit, and
Stefan Woltran. Merging of abstract argumentation frameworks. In Chitta Baral, James P.
Delgrande, and Frank Wolter, editors, Proceedings of the 15th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016), pages 33—42. AAAI
Press, 2016.

[28] Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Riimmele, and Stefan Woltran. An
extension-based approach to belief revision in abstract argumentation. In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the 24th International Joint Conference on Ar-
tificial Intelligence, (IJCAI 2015), pages 2926-2932. AAAI Press, 2015.

[29] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci., 170(1-2):209-244, 1996.

[30] Sylvie Doutre, Andreas Herzig, and Laurent Perrussel. A dynamic logic framework for ab-
stract argumentation. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors,
Proceedings of the 14th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2014), pages 62—71. AAAI Press, 2014.

[31] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-357, 1995.

[32] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artif.
Intell., 141(1/2):187-203, 2002.

[33] Paul E. Dunne, Wolfgang Dvorak, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. Artif. Intell., 228:153-178, 2015.

38



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge base revi-
sion, updates, and counterfactuals. Artif. Intell., 57(2-3):227-270, 1992.

Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J. ACM, 42(1):
342, 1995.

Peter Girdenfors. Knowledge in flux. Modeling the dynamics of epistemic states. Cambridge:
MIT Press, 1988.

Anthony Hunter. Computational persuasion with applications in behaviour change. In Pietro
Baroni, Thomas F. Gordon, Tatjana Scheffler, and Manfred Stede, editors, Proceedings of
the 6th International Conference on Computational Models of Argument (COMMA 2016),
volume 287 of Frontiers in Artificial Intelligence and Applications, pages 5—18. IOS Press,
2016.

Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge base revision and
minimal change. Artif. Intell., 52(3):263-294, 1991.

Dionysios Kontarinis, Elise Bonzon, Nicolas Maudet, Alan Perotti, Leon van der Torre, and
Serena Villata. Rewriting rules for the computation of goal-oriented changes in an argumen-
tation system. In Jodo Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre, and Stefan
Woltran, editors, Proceedings of the 14th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA X1V), volume 8143 of Lecture Notes in Computer Science,
pages 51-68. Springer, 2013.

Patrick Kriimpelmann, Matthias Thimm, Marcelo A. Falappa, Alejandro J. Garcia, Gabriele
Kern-Isberner, and Guillermo R. Simari. Selective revision by deductive argumentation. In
Sanjay Modgil, Nir Oren, and Francesca Toni, editors, Proceedings of the 1st International
Workshop on Theory and Applications of Formal Argumentation - (TAFA 2011), Revised Se-
lected Papers, volume 7132 of Lecture Notes in Computer Science, pages 147—-162. Springer,
2012.

Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation systems: A division-
based method. Artif. Intell., 175(11):1790-1814, 2011.

Paolo Liberatore and Marco Schaerf. Belief revision and update: Complexity of model check-
ing. J. Comput. Syst. Sci., 62(1):43-72, 2001.

Thomas Linsbichler and Stefan Woltran. Revision of abstract dialectical frameworks: Prelim-
inary report. In Sarah Gaggl, Juan Carlos Nieves, and Hannes Strass, editors, Proceedings of

the 1st international Workshop on Argumentation in Logic Programming and Non-Monotonic
Reasoning (Arg-LPNMR 2016), pages 15-22, 2016.

Martin O. Moguillansky. A study of argument acceptability dynamics through core and re-
mainder sets. In Marc Gyssens and Guillermo Ricardo Simari, editors, Proceedings of the

39



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

9th International Symposium on Foundations of Information and Knowledge Systems (FolKS
2016), volume 9616 of Lecture Notes in Computer Science, pages 3—23. Springer, 2016.

Martin O. Moguillansky and Guillermo Ricardo Simari. A specialized set theoretic seman-
tics for acceptability dynamics of arguments. In Pietro Baroni, Thomas F. Gordon, Tatjana
Scheffler, and Manfred Stede, editors, Proceedings of the 6th International Conference on
Computational Models of Argument (COMMA 2016), volume 287 of Frontiers in Artificial
Intelligence and Applications, pages 391-402. 10S Press, 2016.

Martin O. Moguillansky, Nicolds D. Rotstein, Marcelo A. Falappa, Alejandro Javier Garcia,
and Guillermo Ricardo Simari. Argument theory change applied to defeasible logic pro-
gramming. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the 23rd Conference
on Artificial Intelligence (AAAI 2008), pages 132—-137. AAAI Press, 2008.

Martin O. Moguillansky, Renata Wassermann, and Marcelo A. Falappa. Inconsistent-tolerant
base revision through argument theory change. Logic Journal of the IGPL, 20(1):154-186,
2012.

Andreas Niskanen, Johannes Peter Wallner, and Matti Jarvisalo. Synthesizing argumentation
frameworks from examples. In Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hiiller-
meier, Virginia Dignum, Frank Dignum, and Frank van Harmelen, editors, Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI 2016), volume 285 of Frontiers
in Artificial Intelligence and Applications, pages 551-559. 10S Press, 2016.

Farid Nouioua and Eric Wiirbel. Removed set-based revision of abstract argumentation
frameworks. In Proceedings of the 26th International Conference on Tools with Artificial
Intelligence (ICTAI 2014), pages 784—791. IEEE Computer Society, 2014.

Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer, 2009.

Nicolés D. Rotstein, Martin O. Moguillansky, Marcelo A. Falappa, Alejandro Javier Garcia,
and Guillermo Ricardo Simari. Argument theory change: Revision upon warrant. In Philippe
Besnard, Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the 2nd International
Conference on Computational Models of Argument (COMMA 2008), volume 172 of Frontiers
in Artificial Intelligence and Applications, pages 336-347. 10S Press, 2008.

Chiaki Sakama. Counterfactual reasoning in argumentation frameworks. In Simon Parsons,
Nir Oren, Chris Reed, and Federico Cerutti, editors, Proceedings of the 5th International
Conference on Computational Models of Argument (COMMA 2014), volume 266 of Frontiers
in Artificial Intelligence and Applications, pages 385-396. 10S Press, 2014.

Mark Snaith and Chris Reed. Argument revision. J. Log. Comput., 2016. In Press. Available
online at http://dx.doi.org/10.1093/logcom/exw028.

40



[54] Wolfgang Spohn. Ordinal conditional functions: A dynamics theory of epistemic states. In
Causation in decision, belief change and statistics, vol. 2, pages 105-134. Kluwer Academic
Publishers, 1988.

[55] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Pre-
liminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
Sth Annual ACM Symposium on Theory of Computing, pages 1-9. ACM, 1973.

[56] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumenta-
tion stages. In John-Jules C. Meyer and Linda C. van der Gaag, editors, Proceedings of the
8th Dutch Conference on Artificial Intelligence (NAIC’96), pages 357-368, 1996.

[57] Klaus W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833-846, 1990.

41



