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Abstract. For ground ASP programs where an appropriate graph representation
has bounded treewidth, algorithms that exploit this bound on the treewidth theo-
retically only require linear time for checking existence of an answer set. However,
in practice such algorithms are hardly competitive against state-of-the-art CDCL-
based solvers, which do not explicitly rely on bounded treewidth. In this work we
investigate the hypothesis that CDCL-based solvers leverage small treewidth im-
plicitly. We identify modeling constructs in non-ground ASP that significantly blow
up the treewidth in the grounding and we give guidelines for modeling problems in
non-ground ASP such that grounding preserves small treewidth of the input. We
also experimentally show that a non-ground rule decomposition technique can de-
crease the treewidth of the grounding substantially. Finally, we identify a class of
non-ground ASP programs that preserves bounded treewidth in the sense that the
treewidth of the grounding only depends on the treewidth and the degree of the
input graph instead of its size.
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1 Introduction

Answer Set Programming (ASP) [10, 20, 25, 28] is a well-established logic programming
paradigm based on the stable model semantics of logic programs. Its main strength is a
fully declarative language and the fact that, generally, each answer set of a given logic pro-
gram directly describes a valid answer to the original question. Moreover, ASP solvers—see,
e.g., [2, 3, 15, 24]—have made huge strides in efficiency and are increasingly used for indus-
trial applications like planning or scheduling. A logic program usually consists of a set of
logical implications (called rules) and a set of facts. Deciding the consistency problem, that
is, whether a given disjunctive logic program has an answer set, is NExpTimeNP-complete
in the combined complexity, where both the rules and facts are treated as input, and Σ2

P-
complete in the data complexity, where the set of rules is fixed; cf. [14].

In practice, when problems are modeled using the ASP logic programming language, the
usual goal is to write a fixed program (i.e., set of rules) that solves the general problem. The
concrete input is then supplied as a set of (ground) facts. The answer set solver takes the fixed
program, plus the ground facts, and computes the answer sets, that is, the solutions to the
original problem, as described earlier. Logic programming in general, and ASP in particular,
have gained popularity because of this intuitive, declarative way to solve problems and the
straightforward syntax. The following example illustrates this:

Example 1. For an input graph specified as vertex(.) and edge(.,.) facts, the following
program solves the three-colorability problem:

1 { col(V,red), col(V,blue), col(V,green) } 1 :- vertex(V).

:- edge(X,Y), col(X,C), col(Y,C).

The first rule guesses exactly one of three colors for each vertex, while the second rule makes
sure that no neighboring vertices have the same color.

Evaluating an ASP program is usually a two-step approach (all current state-of-the-art
solvers work in this way): First, the input program is grounded, that is, the variables in the
program are replaced (in the worst case) by all possible, valid combinations of constants from
the input domain. Secondly, a solver evaluates the (now) ground program, and computes
the answer sets. Note that the grounding step is exponential in general. The difficulty
of solving ASP programs is then often determined by certain parameters of this ground
input program. Straightforward parameters include the size of the grounding, or the ratio
between rules and atoms in the program. However, there are also more evolved, structural
parameters. One such parameter is the treewidth of the ground program. The ground
program is converted to a graph representation, and, intuitively, the treewidth then measures
how close this graph is to a tree. It turns out that favorable theoretical runtime results can
be established if the treewidth is small. Several algorithms have been proposed [26, 31]
and implemented [29], but, despite linear runtime in theory, they have generally turned out
to be hardly competitive when compared to state-of-the-art answer set solvers like clasp for
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consistency checking1. Furthermore, these algorithms are not designed to be general-purpose
solvers, since they can only perform well on low-treewidth input programs. However, other
solvers, like clasp, perform well consistently on such low-treewidth inputs, but also perform
well on other instances. This begs the question whether existing CDCL-based solvers are
inherently sensitive to low treewidth ASP programs.

It is the aim of this report to investigate the impact of the treewidth of ground programs
on the runtime of existing state-of-the-art CDCL-based solvers. Our working hypothesis is
that the answer to this question is affirmative. However, ASP problem encodings are usually
written in non-ground form, in order to make use of the full, intuitive, and expressive ASP
language. The actual input instance, consisting of ground facts, is then combined with
the encoding, grounded, and then finally passed to the solver. Therefore, another interesting
question arises: Assuming that the ground facts of the input instance, represented as a graph,
already have low treewidth, which ASP language constructs may be used when writing the
encoding, such that the low treewidth of the input instance is preserved in the grounded
program? Furthermore, does the recently proposed approach of rule decomposition on the
non-ground program [5, 7, 30] have an influence on the treewidth of the ground program
obtained from it? Having these questions in mind, our main contributions can be stated as
follows:

1. We perform an in-depth experimental investigation of different encodings for the same
graph problems in order to identify those encodings that best preserve the low treewidth
of the input graph (represented as ground facts) in the ground program obtained from
combining the input graph with the respective encoding. We show that constructs
like transitivity lead to a dramatic increase in the treewidth, while constructs like
reachability do not, and identify the reasons for this, formulating several overarching
guidelines for encoding problems in ASP in such a way that the treewidth of the input
instance is preserved.

2. We investigate, via an experimental evaluation, the impact of a certain rewriting tech-
nique (viz. rule decomposition of non-ground programs, cf. [6]) on the treewidth of
the corresponding ground program, that is, we compare the original encoding with the
decomposed encoding for the same input graph. We show that this impact can be
substantial and often reduces the treewidth by a large amount.

3. We isolate a class of ASP programs with restricted syntax that guarantees that for
any encoding in the class and for any input graph of bounded treewidth and bounded
degree, the treewidth of the corresponding ground program remains bounded as well.
To be more precise, we showed that the treewidth and the degree of the grounded
program only depends on the clique-width (a parameter more general than treewidth)
and degree of the input graph. That is, for any non-ground ASP programs in this

1This, however, is another story for answer set counting, where these approaches prove to be highly
competitive in some settings [17].
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class, the treewidth of the grounded program does not depend on the size of the input
graph.

The remainder of the paper is structured as follows. In the next section, we will intro-
duce relevant background information regarding the ASP language and tree decompositions.
Then, we report on our experimental evaluation regarding the impact of different encodings
and rewriting strategies on the treewidth of the grounding. Section 4 provides our theoretical
results on classes of programs which show robust treewidth with respect to the grounding
step. In the final section, we conclude the paper with some observations and ideas for future
work.

2 Preliminaries

General Definitions. We define two pairwise disjoint countably infinite sets of symbols:
a set C of constants and a set V of variables. Different constants represent different values
(unique name assumption). By X we denote sequences (or, with slight notational abuse,
sets) of variables X1, . . . , Xk with k > 0. For brevity, let [n] = {1, . . . , n}, for any integer
n > 1.

A (relational) schema S is a (finite) set of relational symbols (or predicates). We write
p/n for the fact that p is an n-ary predicate. A term is a constant or variable. An atomic
formula a over S (called S-atom) has the form p(t), where p ∈ S and t is a sequence of
terms. An S-literal is either an S-atom (i.e. a positive literal), or an S-atom preceded by
the negation symbol “¬” (i.e. a negative literal). For a literal `, we write dom(`) for the set
of its terms, and var(`) for its variables. This notation naturally extends to sets of literals.
For brevity, we will treat conjunctions of literals as sets. For a domain C ⊆ C, a (total or
two-valued) S-interpretation I is a set of S-atoms containing only constants from C such
that, for every S-atom p(a) ∈ I, p(a) is true, and otherwise false. When obvious from the
context, we will omit the schema-prefix.

A substitution from a set of literals L to a set of literals L′ is a mapping s : C∪V→ C∪V
that is defined on dom(L), is the identity on C, and p(t1, . . . , tn) ∈ L (resp. ¬p(t1, . . . , tn) ∈
L) implies p(s(t1), . . . , s(tn)) ∈ L′ (resp., ¬p(s(t1), . . . , s(tn)) ∈ L′).

Answer Set Programming (ASP). A logic programming rule is a universally quantified
reverse first-order implication of the form

H(X,Y)← B+(X,Y,Z,W) ∧ B−(X,Z),

where H (the head), resp. B+ (the positive body), is a disjunction, resp. conjunction, of
atoms, and B− (the negative body) is a conjunction of negative literals, each over terms from
C ∪V. For a rule π, let H (π), B+(π), and B−(π) denote the set of atoms occurring in the
head, the positive, and the negative body, respectively. Let B(π) = B+(π) ∪ B−(π). A rule
π where H (π) = ∅ is called a constraint. Substitutions naturally extend to rules. We focus
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on safe rules where every variable in the rule occurs in the positive body. A rule is called
ground if all its terms are constants. The grounding of a rule π w.r.t. a domain C ⊆ C is the
set of rules groundC(π) = {s(π) | s is a substitution, mapping var(π) to elements from C}.

A logic program Π is a finite set of logic programming rules. The schema of a program
Π, denoted sch(Π), is the set of predicates appearing in Π. We call a predicate intensional
in Π if it occurs in the head of a rule of Π, and we call it extensional otherwise. An atom
is intensional or extensional whenever the involved predicate is. The active domain of Π,
denoted adom(Π), with adom(Π) ⊆ C, is the set of constants appearing in Π. A program Π
is ground if all its rules are ground. The grounding of a program Π is the ground program
ground(Π) =

⋃
π∈Π groundadom(Π)(π). The (Gelfond-Lifschitz) reduct of a ground program Π

w.r.t. an interpretation I is the ground program ΠI = {H (π)← B+(π) | π ∈ Π,B−(π)∩ I =
∅}.

A sch(Π)-interpretation I is a (classical) model of a ground program Π, denoted I � Π
if, for every ground rule π ∈ Π, it holds that I ∩ B+(π) = ∅ or I ∩ (H (π) ∪ B−(π)) 6= ∅,
that is, I satisfies π. I is a stable model (or answer set) of Π, denoted I �s Π if, in
addition, there is no J ⊂ I such that J � ΠI , that is, I is a subset-minimal model of
the reduct ΠI . The set of answer sets of Π, denoted AS (Π), are defined as AS (Π) =
{I | I is a sch(Π)-interpretation, and I �s Π}. For a non-ground program Π, we define
AS (Π) = AS (ground(Π)). When referring to the fact that a logic program is intended to be
interpreted under the answer set semantics, we often refer to it as an ASP program.

ASP Language Extensions. The ASP-Core-2 language specification for the standardized
ASP language [11] defines several additional constructs to those discussed above, which
we will briefly introduce here. Please see [11] for precise formal definitions of syntax and
semantics. We will call rules that do not contain any such extensions simple.

Arithmetic expressions are atoms of the form

X 4 ϕ(Y),

where 4∈ {<,6,=, 6=,>, >} is a built-in relation, and ϕ is a mathematical expression
built from constant numbers, variables from Y, and the arithmetic connectives “+,” “−,”
“×,” and “÷,” with the obvious intuitive meaning. A (non-ground) rule π may contain
such expressions in its body. Such a rule is safe, if (i) every variable in the arithmetic
expression is safe, or (ii) 4 is the equality relation ”=” and all variables in ϕ are safe,
in which case also X is safe. The notion of grounding extends naturally to arithmetic
expressions. Note, however, that ground arithmetic expressions can be directly evaluated.
Thus, after grounding, rules with unsatisfied arithmetic expressions in the body are removed,
and otherwise, the arithmetic expression is removed. Without loss of generality, we therefore
assume that ground rules do not contain arithmetic expressions.

A weak constraint of the form
π[k, t]

is a constraint π annotated with a term k representing a weight and a sequence of terms t
occurring in π. The notion of grounding extends naturally to arithmetic expressions. Each
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answer set M is annotated by a total weight w(M), which is the sum over all constants k
for each tuple of constants t, where the body of a corresponding weak constraint is satisfied
in M . Note that k and t consist of constants after grounding.

An aggregate atom is an atom of the form

t 4 #agg{t : ϕ(X)},

where t is a term; 4∈ {<,6,=, 6=,>, >} is a built-in relation; agg is one of sum, count ,
max , and min; t = 〈t1, . . . , tn〉 is a sequence of terms; and ϕ(X) is a set of literals and
arithmetic expressions, called the aggregate body. Aggregates may appear in rule bodies,
with the following semantic meaning: Given an interpretation I, for each valid substitution
s such that s(ϕ(X)) ⊆ I, take the tuple of constants s(t). Let us denote this set with T .
Now, execute the aggregate function on T as follows: for #count , calculate |T |; for #sum,
calculate Σt∈T t1, where t1 is the first term in t; for #max and #min, take the maximum and
minimum term appearing in the first position of each tuple in T , respectively. Finally, an
aggregate expression is true if the relation 4 between term t and the result of the aggregate
function is fulfilled. Grounding of aggregates is done by rewriting aggregates into simple
ground rules; see [22] for details.

A choice rule π is a rule

l{H(X,Y)}u← B+(X,Y,Z,W) ∧ B−(X,Z),

where B+ and B− are as before, l and u are terms (the upper and lower bound), and H is
a set of choice elements of the form a(V) : ϕ(V,V′), where ϕ is a set of literals over the
variables V and V′, and V ⊆ (X ∪Y). Such a choice rule is a form of syntactic sugar, and
stands for the rule

a(V) ∨ a(V)← B+(X,Y,Z,W),B−(X,Z), ϕ(V,V′),

where a is an fresh relation, along with the two constraints of the form

⊥ ← B+(X,Y,Z,W),B−(X,Z), k 4 #count{V : a(V), ϕ(V,V′)},

where k and 4 are l and >, or u and <, respectively.
An optimization statement is a statement of the form

#opt{k, t : ϕ(X)},

which is another form to write a weak constraint of the form

⊥ ← ϕ(X)[k′, t],

where k′ = k if opt = maximize, or k′ = −k if opt = minimize.
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Figure 1: A graph with treewidth 2 and an (optimal) tree decomposition for it

Graph Representations. A ground ASP program can be represented as a graph struc-
ture. Two graph representations are often used in the literature. Firstly, the primal graph
of a ground program Π is a graph G = (V,E), where the set of vertices V contains a vertex
va for every atom a appearing in Π. There is an edge (va, vb) ∈ E, if atoms a and b appear
together in some rule π in Π.

Secondly, the incidence graph of a ground program Π is a graph G = (V,E), where the
set of vertices V contains a vertex va (called atom vertex ) for every atom a appearing in
Π, and a vertex vπ (called rule vertex ) for every rule π appearing in Π. There is an edge
(va, vπ) ∈ E, if atom a appears in rule π.

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair T = (T, χ),
where T is a rooted tree and χ is a labeling function over nodes t of T , with χ(t) ⊆ V called
the bag of t, such that the following holds: (i) for each v ∈ V , there exists a node t in T , such
that v ∈ χ(t); (ii) for each {v, w} ∈ E, there exists a node t in T , such that {v, w} ⊆ χ(t);
and (iii) for all nodes r, s, and t in T , such that s lies on the path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). The width of a tree decomposition is defined as the cardinality of its
largest bag minus one. The treewidth of a graph G, denoted by tw(G), is the minimum width
over all tree decompositions of G.

Figure 1 shows a graph together with a tree decomposition of it that has width 2. This
decomposition is optimal because the graph contains a cycle and thus its treewidth is at
least 2.

To decide whether a graph has treewidth at most k is NP-complete [4]. For an arbitrary
but fixed k however, this problem can be solved (and a tree decomposition constructed) in
linear time [9].

The primal (resp. incidence) treewidth of a ground ASP program Π is the treewidth of
its primal (resp. incidence) graph.

Clique-width. Clique-width is a more general parameter than treewidth in the sense that
graphs of bounded treewidth also have bounded clique-width, but there are classes of graphs
that have bounded clique-width and unbounded treewidth.

A k-graph, for k > 0, is a graph whose vertices are labeled by integers from {1, . . . , k} =:
[k]. We call the k-graph consisting of exactly one vertex v (say, labeled by i ∈ [k]) an initial
k-graph and denote it by i(v). Graphs can be constructed from initial k-graphs by means of
repeated application of the following three operations:
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• Disjoint union (denoted by ⊕);

• Relabeling : changing all labels i to j (denoted by ρi→j);

• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j via
an edge (denoted by ηi,j); i 6= j; already existing edges are not doubled.

A construction of a k-graph G using the above operations can be represented by an algebraic
term composed of i(v), ⊕, ρi→j, and ηi,j (i, j ∈ [k], and v a vertex). Such a term is then
called a cwd-expression defining G. A k-expression is a cwd-expression in which at most k
different labels occur.

As an example consider the complete bipartite graph Kn,n with bipartition A =
{a1, . . . , an} and B = {b1, . . . , bn}. A cwd-expression of Kn,n using at most two labels is
given by the following steps: (1) introduce all vertices in A using label 1, (2) introduce all
vertices in B using label 2, (3) take the disjoint union of all these vertices, and (4) add all
edges between vertices with label 1 and vertices with label 2, i.e., such a cwd-expression is
given by η1,2(1(a1) ⊕ · · · ⊕ 1(an) ⊕ 2(b1) ⊕ · · · ⊕ 2(bn)). As a second example consider the
complete graph Kn on n vertices. A cwd-expression for Kn using at most two labels can be
obtained by the following iterative process: Given a cwd-expression σn−1 for Kn−1, where
every vertex is labeled with label 1, one takes the disjoint union of σn−1 and 2(v) (where v is
the vertex only contained in Kn but not in Kn−1), adds all edges between vertices with label
1 and vertices with label 2, and then relabels label 2 to label 1. Formally, the cwd-expression
σn for Kn is given by (ρ2→1(η1,2(σn−1 ⊕ 2(v2))).

The clique-width of a graph G is the smallest integer k such that G can be defined by
a k-expression. Our discussion above thus witnesses that complete (bipartite) graphs have
clique-width 2. Furthermore, co-graphs also have clique-width 2 (co-graphs are exactly given
by the graphs which do not contain an induced P4 ,i.e., whenever there is a path (a, b, c, d)
in the graph then {a, c}, {a, d} or {b, d} is also an edge of the graph) and trees have clique-
width 3.

Monadic Second-Order Transductions. A monadic second-order (MSO) transduc-
tion [13] defines a function that maps “input graphs” to “output graphs”, and this function is
defined in terms of MSO logic.2 To this end, an MSO transduction consists of MSO formulas
χ, δ1, . . . , δc, θ1,1, θ1,2, . . . , θc,c, where c is a positive integer, each δi has one free variable x,
and each θi,j has two free variables x, y.

The purpose of the formula χ is to characterize the class of graphs for which the trans-
duction is defined, namely those graphs G such that G � χ holds.3 We call a graph G an
input graph if G � χ.

2In fact, MSO transductions apply not only to graphs but to relational structures in general. However,
we only describe the special case of graphs for simplicity; it can be generalized in a straightforward way.

3To be more precise, χ is an MSO formula over the signature consisting of just the binary edge predicate,
and G � χ denotes that χ is satisfied by the relational structure that has V (G) as its domain and that
interprets the edge predicate as E(G).
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1 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(X).

2 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 pTrans(X,Y) :- p(X,Y).

4 pTrans(X,Z) :- pTrans(X,Y), pTrans(Y,Z).

5 :- vertex(X), vertex(Y), not pTrans(X,Y).

6 #show p/2.

Listing 1: ASP Hamiltonian Cycle encoding that uses transitivity.

We now explain the intended meaning of the δi formulas. Let G be an input graph. We
denote the corresponding output graph (i.e., the result of the transformation on G) by H.
The δi formulas define which vertices exist in H. For each v ∈ V (G), there can be up to
c copies of v in H. In fact, there is a copy vi in H iff (G, v) � δi (i.e., δi evaluates to true
under G when the free variable x is interpreted as v).

Finally, the edges in H are specified using the θi,j formulas. For each pair of vertices
(v, w) ∈ V (G)2, there is an edge (vi, wj) ∈ E(H) iff (G, v, w) � θi,j in addition to (G, v) � δi
and (G,w) � δj.

It makes a difference whether an MSO transduction transforms an input graph into an
output graph directly, or whether it transforms the incidence structure of an input graph into
the incidence structure of an output graph.4 MSO transductions that process graphs directly
are useful because they allow us to conclude that the transformations they describe preserve
bounded clique-width (i.e., the output graph’s clique-width is bounded whenever the input
graph’s clique-width is bounded). On the other hand, MSO transductions that deal with
the incidence structures of the input and output graphs guarantee that the corresponding
transformations preserve bounded treewidth [13, Corollary 1.53].

3 Empirical Investigation of Modeling Techniques

In this section, we first show and describe different encodings for the graph problems Hamil-
tonian Cycle, Secure Set and Minimum Weighted Dominating Set. Next, we describe our
experiments on finding the treewidths of the grounded encodings using traffic networks as
input. We then show a correlation between the treewidth of the grounded program and a
lower clingo running time for solving these problems. Finally, we investigate the impact
of splitting non-ground rules up into smaller rules and find that this not only reduces the
grounding size and primal treewidth but also the incidence treewidth of the ground program.

4An incidence structure of a graph is the structure whose domain consists not only of vertices but also of
edges, and whose signature consists of the incidence relation.
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1 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(X).

2 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 pTrans(X,Y) :- p(X,Y).

4 pTrans(X,Z) :- pTrans(X,Y), p(Y,Z).

5

6 :- vertex(X), vertex(Y), not pTrans(X,Y).

7 #show p/2.

Listing 2: Refined ASP Hamiltonian Cycle encoding that uses transitivity.

3.1 Encodings

3.1.1 Hamiltonian Cycle

We define the Hamiltonian Cycle problem as follows: Given a simple undirected graph
G = (V,E), with V = {1,2,...,n}, and a weight function w: E → R+, we seek a cyclic
permutation σ = (1, σ(1), σ2(1), ..., σn−1(1)) of V , σi(1) denoting the ith successor of vertex
1 (with σ0(1) = σn(1) = 1), such that

w(σ) =
n−1∑
i=0

w({σi(1), σi+1(1)})

is minimal. To this end, we will present several encodings, with transitivity, reachability and
saturation approaches, respectively.

Listing 1 uses transitivity to find directed Hamiltonian cycles in a graph. In Lines 1
and 2 we guess for each vertex exactly one outgoing and one ingoing edge to be part of the
path which turns into one cycle in actual solutions. Next, in Lines 3 and 4 we define the
transitivity relation for edges that are selected to be part of the path. Finally, we check for
connectivity, namely that we have exactly one cycle. As we stated in Line 3 that each edge
in the guessed path is part of the transitivity relation, we know that a pair (a, b) of vertices
is not in the transitivity relation if the guessed path does not connect a with b. We throw
away solution candidates that contain such a pair in Line 5. Line 6 only filters what is being
printed as the solution, namely the edges that are part of the cycle.

In Listing 2, we show a refined version of our ASP encoding for finding directed Hamil-
tonian cycles in a graph, using transitivity. The difference to the encoding in Listing 1 lies
in Line 4. Given that the predicate pTrans/2 can be inferred only in Lines 3 and 4, we now
define the transitivity relation using predicate p/2 instead of pTrans/2 in the body of the
rule in Line 4 once.

The encoding in Listing 3 replaces Lines 3 to 5 from the encodings in Listings 1 and 2 and
ensures the connectedness of the solutions by means of reachability instead of transitivity.
In Lines 3 and 4 of Listing 3 we first pick a starting vertex and then state that it is reachable
from itself. In Line 5 we state that, if a vertex is reached and one of its outgoing edges is
selected for the path, also the other endpoint is reached. Finally, in Line 6 we throw away
all solution candidates in which there exist vertices that are not reached.
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1 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(X).

2 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 start(X) :- X = #min{ Y : vertex(Y) }.

4 reach(X) :- start(X).

5 reach(Y) :- reach(X), p(X,Y).

6 :- vertex(X), not reach(X).

7 #show p/2.

Listing 3: ASP Hamiltonian Cycle encoding that uses reachability.

1 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(X).

2 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 s1(X) | s2(X) :- vertex(X).

4 s1(X) :- saturate , vertex(X).

5 s2(X) :- saturate , vertex(X).

6 :- not saturate.

7 saturate :- p(X,Y), s1(X), s2(Y).

8 numVertices(N) :- N = #count{ X : vertex(X) }.

9 saturate :- N #count{ X : s1(X) }, numVertices(N).

10 saturate :- N #count{ X : s2(X) }, numVertices(N).

11 #show p/2.

Listing 4: ASP Hamiltonian Cycle encoding that uses saturation.

Next, we present an encoding, in Listing 4, that finds again directed Hamiltonian cycles,
now ensuring connectedness by means of saturation. The key idea here is that the guessed
edges are connected iff for each partition of the vertices into two nonempty sets, there is a
guessed edge between the two sets. Guessing edges in Lines 1 and 2 works like in the first
three encodings. Next, in Line 3 we (tentatively) partition the vertex set into two sets, in
Line 7 we derive saturate if there exists a guessed edge that connects the two partitions, and
in Line 6 we say that saturate must be derived. Lines 4 and 5 then cause us to “saturate”
the predicates that identify the partitions, hence the answer sets themselves do not encode
partitions. However, the predicates that identify partitions play a crucial role in the subset-
minimality check, which is done implicitly due to the ASP semantics: In order for a model to
be an answer set, we go through all proper subsets and make sure none of them satisfies the
reduct. In this particular case, if we have a model M containing some guessed set of edges
that is not connected, then the reduct will have a model N that does not contain saturate

and encodes a partition of the vertices such that no guessed edge connects the two parts.
Because of the latter, N satisfies Line 7, and it trivially satisfies Line 6 because this rule is
not present in the reduct. Hence N witnesses that M is no answer set because N ⊂M . This
means that every answer set encodes a set of guessed edges such that for every partition of
the vertices into two parts there is a crossing edge. Lines 8 to 10 are merely used to make
sure that we only check partitions where both parts are nonempty.
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1 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(X).

2 1 { p(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3 s1(X) | s2(X) :- vertex(X).

4 s1(X) :- saturate , vertex(X).

5 s2(X) :- saturate , vertex(X).

6 :- not saturate.

7 saturate :- p(X,Y), s1(X), s2(Y).

8 all1 :- all1_upto(X), sup(X).

9 all1_upto(X) :- inf(X), s1(X).

10 all1_upto(Y) :- all1_upto(X), succ(X,Y), s1(Y).

11 all2 :- all2_upto(X), sup(X).

12 all2_upto(X) :- inf(X), s2(X).

13 all2_upto(Y) :- all2_upto(X), succ(X,Y), s2(Y).

14 saturate :- all1.

15 saturate :- all2.

16 notSucc(X,Z) :- vertex(X), vertex(Y), vertex(Z), X < Y, Y < Z.

17 succ(X,Y) :- vertex(X), vertex(Y), X < Y, not notSucc(X,Y).

18 notInf(X) :- succ(_,X).

19 inf(X) :- vertex(X), not notInf(X).

20 notSup(X) :- succ(X,_).

21 sup(X) :- vertex(X), not notSup(X).

22 #show p/2.

Listing 5: ASP Hamiltonian Cycle saturation encoding with loops.

The encoding in Listing 5 also uses saturation to establish connectedness. We use this
encoding to check how avoiding aggregates can influence the treewidth. The approach is the
same as in Listing 4 but replaces Lines 8 to 10, which use aggregates, by Lines 8 to 21 in
which we check if for the current partition all vertices are contained in one set by means of
creating a succession for the vertices and checking for each of them if they belong to s1/1

and s2/1, respectively.

3.1.2 Secure Set

The Secure Set problem asks for a set of vertices S in a graph G such that for each subset
X ⊆ S, |N [X] ∩ S| ≥ |N [X] \ S| holds, where N [X] is the closed neighborhood of X in G,
i.e., the set X together with all vertices adjacent to some vertex in X. For this problem we
used the encodings in Listing 6 to Listing 9, which have been introduced and thoroughly
explained in [1]. The first three encodings use the concept of loops, the difference between
the ones in Listing 6 and Listing 7 lying in the formula we use for determining if a set is
secure or not, using either a sum or a count aggregate. The encoding in Listing 8 uses border
vertices to define secure sets, besides the concept of loops. In Listing 9 we have an encoding
that uses a different approach.

In order to avoid using loops we guess a partition of the attack set into active and inactive
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1 edge(U,V) :- edge(V,U).

2 1 #count { V : inS(V) : vertex(V) }.

3 outS(V) :- vertex(V), not inS(V).

4 attackSet(V) :- inS(U), edge(U,V), outS(V).

5 inX(V) | outX(V) :- inS(V).

6 defendSet(V) :- inX(V).

7 defendSet(V) :- inX(U), edge(U,V), inS(V).

8 lt(U,V) :- vertex(U), vertex(V), U < V.

9 nsucc(U,W) :- lt(U,V), lt(V,W).

10 succ(U,V) :- lt(U,V), not nsucc(U,V).

11 ninf(V) :- lt(U,V).

12 nsup(U) :- lt(U,V).

13 inf(V) :- vertex(V), not ninf(V).

14 sup(V) :- vertex(V), not nsup(V).

15 okto(V,U) :- vertex(U), vertex(V), inf(U), outX(U).

16 okto(V,U) :- vertex(U), vertex(V), inf(U), outS(U).

17 okto(V,U) :- vertex(U), vertex(V), inf(U), inX(U), not edge(U,V).

18 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V),outX(V).

19 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V),outS(V).

20 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V), inX(V),

not edge(V,W).

21 ok(V) :- sup(U), okto(V,U).

22 inactiveAttacker(V) :- inS(U), edge(U,V), ok(V), outS(V).

23 defended :- #sum { 1,V,pos : vertex(V), defendSet(V);

1,V,pos : vertex(V), inactiveAttacker(V);
-1,V,neg : vertex(V), attackSet(V) } >= 0.

24 inX(V) :- defended , inS(V).

25 outX(V) :- defended , inS(V).

26 :- not defended.

27 :- inS(V), T = #count { U : edge(U,V) },

#count { W : vertex(V), vertex(W), edge(V,W), inS(W) } < T / 2.

28 #show inS/1.

Listing 6: ASP Secure Set loop encoding.

attackers instead of a subset X of S. Further, for performance reasons all encodings for Secure
Set we use in this technical report have an extra last constraint, compared to those in [1],
that throws away all answer set candidates that contain vertices in S with less neighbors in
S than outside of it.

3.1.3 Minimum Weighted Dominating Set

Finally, we will present two encodings for Minimum Weighted Dominating set. The task is
to compute all vertex-weight-minimal dominating sets of an undirected graph G = (V,E).
A subset X of V is a dominating set of G if for each v ∈ V the vertex is part of X or v is
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1 edge(U,V) :- edge(V,U).

2 1 #count { V : inS(V) : vertex(V) }.

3 outS(V) :- vertex(V), not inS(V).

4 attackSet(V) :- inS(U), edge(U,V), outS(V).

5 inX(V) | outX(V) :- inS(V).

6 defendSet(V) :- inX(V).

7 defendSet(V) :- inX(U), edge(U,V), inS(V).

8 lt(U,V) :- vertex(U), vertex(V), U < V.

9 nsucc(U,W) :- lt(U,V), lt(V,W).

10 succ(U,V) :- lt(U,V), not nsucc(U,V).

11 ninf(V) :- lt(U,V).

12 nsup(U) :- lt(U,V).

13 inf(V) :- vertex(V), not ninf(V).

14 sup(V) :- vertex(V), not nsup(V).

15 okto(V,U) :- vertex(U), vertex(V), inf(U), outX(U).

16 okto(V,U) :- vertex(U), vertex(V), inf(U), outS(U).

17 okto(V,U) :- vertex(U), vertex(V), inf(U), inX(U), not edge(U,V).

18 okto(W,V) :- vertex(U),vertex(V),vertex(W),okupto(W,U),succ(U,V),outX(V).

19 okto(W,V) :- vertex(U),vertex(V),vertex(W),okupto(W,U),succ(U,V),outS(V).

20 okto(W,V) :- vertex(U),vertex(V),vertex(W),okupto(W,U),succ(U,V), inX(V),

not edge(V,W).

21 ok(V) :- sup(U), okto(V,U).

22 inactiveAttacker(V) :- inS(U), edge(U,V), ok(V), outS(V).

23 size(N) :- N = #count { V : vertex(V) }.

24 defended :- #count { V,pos : vertex(V), defendSet(V);

V,pos : vertex(V), inactiveAttacker(V);
V,neg : vertex(V), not attackSet(V) } >= N, size(N).

25 inX(V) :- defended , inS(V).

26 outX(V) :- defended , inS(V).

27 :- not defended.

28 :- inS(V), T = #count { U : edge(U,V) },

#count { W : vertex(V), vertex(W), edge(V,W), inS(W) } < T / 2.

29 #show inS/1.

Listing 7: ASP Secure Set loop encoding with count aggregate.

adjacent to at least one u ∈ X. With Listing 10 and Listing 11 we will illustrate the effects
of using an extra cost function with an aggregate. In both encodings we first guess which
vertices should be in the dominating set, we state that a vertex is dominated if its neighbor
is in the set and we set the constraint that all vertices must be dominated, in Lines 1 to 3. In
Listing 10 we directly minimize over the weights of the vertices which are in the dominating
set, in Line 4, while in Listing 11 we first calculate the sum of these weights in Line 4 and
only then minimize over that value, in Line 5.
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1 edge(U,V) :- edge(V,U).

2 1 #count { V : inS(V) : vertex(V) }.

3 outS(V) :- vertex(V), not inS(V).

4 attackSet(V) :- inS(U), edge(U,V), outS(V).

5 border(U) :- inS(U), outS(V), edge(U,V).

6 inX(V) | outX(V) :- border(V).

7 outX(V) :- inS(V), not border(V).

8 defendSet(V) :- inX(V).

9 defendSet(V) :- inX(U), edge(U,V), inS(V).

10 lt(U,V) :- vertex(U), vertex(V), U < V.

11 nsucc(U,W) :- lt(U,V), lt(V,W).

12 succ(U,V) :- lt(U,V), not nsucc(U,V).

13 ninf(V) :- lt(U,V).

14 nsup(U) :- lt(U,V).

15 inf(V) :- vertex(V), not ninf(V).

16 sup(V) :- vertex(V), not nsup(V).

17 okto(V,U) :- vertex(U), vertex(V), inf(U), outX(U).

18 okto(V,U) :- vertex(U), vertex(V), inf(U), outS(U).

19 okto(V,U) :- vertex(U), vertex(V), inf(U), inX(U), not edge(U,V).

20 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V),outX(V).

21 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V),outS(V).

22 okto(W,V) :- vertex(U),vertex(V),vertex(W),okto(W,U),succ(U,V), inX(V),

not edge(V,W).

23 ok(V) :- sup(U), okto(V,U).

24 inactiveAttacker(V) :- inS(U), edge(U,V), ok(V), outS(V).

25 defended :- #sum { 1,V,pos : vertex(V), defendSet(V);

1,V,pos : vertex(V), inactiveAttacker(V);
-1,V,neg : vertex(V), attackSet(V) } >= 0.

26 inX(V) :- defended , inS(V).

27 outX(V) :- defended , inS(V).

28 :- not defended.

29 :- inS(V), T = #count { U : edge(U,V) },

#count { W : vertex(V), vertex(W), edge(V,W), inS(W) } < T / 2.

30 #show inS/1.

Listing 8: ASP Secure Set border loop encoding.

3.2 Experiments

In order to find out the treewidths of the groundings of the encodings when applied to traffic
network instances, we first fed each combination of an encoding and an instance to gringo
4.5.0 [19,21] and then ran DynASP 2.0 [18] five times with options -d -c1, -d -c4 and -d -c5
each to determine the primal, incidence and incidence-weighted-primal treewidth, respec-
tively and always took into consideration the smallest among the five resulting treewidths
provided by DynASP. The incidence-weighted-primal treewidth is the treewidth of a modi-
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1 edge(U,V) :- edge(V,U).

2 1 #count { V : inS(V) : vertex(V) }.

3 outS(V) :- vertex(V), not inS(V).

4 border(U,V):- inS(U), outS(V), edge(U,V).

5 attackSet(V) :- border(U,V).

6 activeAttacker(V) | inactiveAttacker(V) :- attackSet(V).

7 inX(U) : border(U,V) :- activeAttacker(V), outS(V).

8 defended :- inactiveAttacker(U), inX(V), edge(U,V).

9 defendSet(V) :- inX(V).

10 defendSet(V) :- inX(U), edge(U,V), inS(V).

11 defended :- #sum { 1,V,pos : vertex(V), defendSet(V);

1,V,pos : vertex(V), inactiveAttacker(V);
-1,V,neg : vertex(V), attackSet(V) } >= 0.

12 inX(V) :- defended , inS(V).

13 activeAttacker(V) :- defended , attackSet(V).

14 inactiveAttacker(V) :- defended , attackSet(V).

15 :- not defended.

16 :- inS(V), T = #count { U : edge(U,V) },

#count { W : vertex(V), vertex(W), edge(V,W), inS(W) } < T / 2.

17 #show inS/1.

Listing 9: Alternative ASP Secure Set encoding.

1 { in(X) : vertex(X) }.

2 dominated(Y) :- in(X), edge(X,Y).

3 :- vertex(X), not in(X), not dominated(X).

4 #minimize { W,X: in(X), weight(X,W) }.

Listing 10: ASP Minimum Weighted Dominating Set encoding.

fication of the incidence graph, such that the literals of all choice heads and weighted bodies
(for details please see [32]) each form a clique. Weighted bodies appear in the grounding
when using aggregate functions. The used instances represent rail traffic networks, such as
metro, tram and train networks, of cities, metropolitan areas or states, having treewidths
of 2, 3 and 4 and at most 70 vertices. The graphs were extracted from mass transit data
feedsthat are publicly available using gtfs2graphs [16] and split by transportation type, such

1 { in(X) : vertex(X) }.

2 dominated(Y) :- in(X), edge(X,Y).

3 :- vertex(X), not in(X), not dominated(X).

4 cost(C) :- C = #sum { W,X: in(X), weight(X,W) }.

5 #minimize { C : cost(C) }.

Listing 11: ASP Minimum Weighted Dominating Set encoding with aggregate.
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Figure 2: Treewidths of groundings of Hamiltonian Cycle encodings and quantum of in-
stances per time, solved by the latter with clingo.

as tram, metro, train and combinations thereof. For Minimum Weighted dominating set we
used the same instances to create three test sets. For the first we inserted for each vertex a
weight of 1, for the second we inserted random weights between 1 and 10 and for the third
random weights between 1 and 100. Further, to determine the running time for the encod-
ings on our set of traffic networks, we used clingo 4.5.4 [23] on a machine with an AMD
Opteron 6308@3.5 GHz processor operated with Debian 8 (jessie, kernel 3.16.0-4-amd64).



Technical Report DBAI-TR-2016-97 19

Incidence Treewidth

Tr
ee

w
id

th
 o

f G
ro

un
de

d 
P

ro
gr

am

0
50

0
10

00
15

00
20

00
25

00
30

00

● ● ●

●

●
●

●

●
●

●

●
● ●

● ●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

# 1 

● Listing 1
Listing 2

0.0 0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Runtime

Time (s)

Q
ua

nt
um

 o
f I

ns
ta

nc
es

 S
ol

ve
d

Listing 1
Listing 2

Figure 3: Treewidths of groundings of Hamiltonian Cycle encodings using transitivity and
quantum of instances per time, solved by the latter with clingo.

3.2.1 Hamiltonian Cycle

In Figure 2 we present the primal, incidence and incidence-weighted-primal treewidths of the
groundings of four Hamiltonian Cycle encodings, one using transitivity, one using reachability
and one using saturation, all applied to each of the traffic networks. In each of the first three
graphs, each vertical line stands for a traffic network instance. Further, we show the relation
between the consumed time for solving and the quantum of instances solved. What leaps to
the eye first is the fact that for all different types of graphs of the groundings, the encoding
in Listing 2, that uses transitivity, is the one producing the highest treewidths. At the same
time, the latter encoding is the slowest among the four compared in Figure 2. This can be
explained by the fact that the number of pTrans/2 instantiations can be quadratic in the
number of vertices, leading to complex grounding graphs. This is why we dissuade from
using such constructions that lead to the formation of a transitive closure. In addition, we
recommend using encodings ensuring connectivity using the reachability approach. For the
latter, materialized in the encoding in Listing 3, the structure of the grounding graphs is
simpler due to the fact that instead of pTrans/2 we have reach/1 in Line 5 and the number
of the latter are is linear in the number of vertices in the graph. This is why the grounding
treewidths all remain linear or even constant in the treewidths of the original graphs. The
incidence and incidence-weighted-primal treewidths for the groundings of the encoding based
on saturation from Listing 4 also remain linear in dependence of the original treewidth of the
instances, yet the primal treewidth also correlates with the size of the instance, in numbers
of vertices, which can be explained by the presence of the rule in Line 7. Nevertheless, in
matters of running time the encoding using saturation was only slightly slower than the one
using reachability.

Looking at the charts in Figure 3 we can see that among the encodings using transitivity,
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Figure 4: Treewidths of groundings of Hamiltonian Cycle encodings using saturation and
quantum of instances per time, solved by the latter with clingo.

the one in Listing 2 performs better than the one in Listing 1 both in terms of treewidth and
running time, although the difference lies solely in replacing one occurrence of pTrans/2 with
p/2 in Line 4. This can be explained by the fact that the number of pTrans/2 instantiations
is quadratic in the number of vertices when the graph is connected while the number of
p/2 instantiations corresponds to the number of edges which is quadratic in the number of
vertices only in case of a clique which is rather uncommon in traffic networks.

In Figure 4 we show how the two encodings for Hamiltonian Cycle using saturation behave
w.r.t. running time and treewidth. The primal treewidth is correlated with the size of the
input graph for both encodings rises dramatically with the former. However, incidence and
incidence-weighted-primal treewidth grow with the size of the input graph for the encoding
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Figure 5: Treewidths of groundings of Secure Set encodings and quantum of instances per
time, solved by the latter with clingo.

in Listing 5, while for the encoding in Listing 4 they remain linear in the treewidth of the
original graph. The reason for the former behavior lies in the loops in Lines 8 to 13 from
Listing 5, which result in complex structures of the grounding graphs. These are similar to
those induced by a transitive closure, even if not as complex. This is why we advise against
the use of loops. Furthermore, also here we can see a correlation between incidence and
incidence-weighted-primal treewidths of the groundings and a lower running time for solving
the problems with clingo.
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3.2.2 Secure Set

Another example where loops have a negative impact on running time and treewidth is one
of the Secure Set encodings, as we can see in Figure 5. The encodings that make use of a
loop, namely those in Listings 6, 7 and 8, all have similar treewidths that depend on the sizes
of the input instances, and are slower than the encoding in Listing 9, which avoids loops.
The primal and incidence-weighted-primal treewidths for the groundings of the latter are
lower than those for the groundings of the encodings with loops, yet they increase with the
size of the input graph. Similarly to the behavior of the treewidths of grounded Hamiltonian
Cycle encodings using saturation, also here, it is the incidence treewidth that remains linear
or even constant in the treewidth of the original program. Unlike in the latter case, now the
incidence-weighted-primal treewidth increases due to the restriction on the count aggregate.

3.2.3 Minimum Weighted Dominating Set

Let us look at the treewidths of Minimum Weighted Dominating Set groundings and the
runtime performance for the two encodings on instances which contain vertices with weights
of up to 10, in Figure 6. Primal and incidence-weighted-primal treewidths are only slightly
lower for the encoding in Listing 10 than for the one in Listing 11. Incidence treewidth stays
linear or even constant in the treewidth of the input instances for the latter, while for the
former it increases with the number of vertices of the input instance. At the same time,
the encoding in Listing 11 is much faster than the one in Listing 10, which leads to more
complex incidence graphs as minimizing over a predicate that contains the sum of weights
of vertices in the dominating set instead of directly minimizing on the latter weights. Please
note that the treewidths are the same regardless of the values the weights of the vertices.

3.3 Impact of Rule Decomposition

As discussed earlier, when dealing with ASP programs, evaluation is usually a 2-step process.
First, the program is grounded, that is, variables are replaced by all possible, valid combina-
tions of symbols. Then, the solver is called on the ground program. The grounding process
is exponential in the size of the rules of the program in general, but a recent rule decompo-
sition tool named lpopt, presented in [6, 7] and originally based on an idea from [30], is able
to reduce this exponentiality to the treewidth of the rules. Roughly, this rule decomposition
tool works by representing non-ground rules as graphs, constructing a tree decomposition
of these graphs, and then splitting the rules up into multiple smaller rules based on this
decomposition. Interestingly, it seems that, apart from decreasing the grounding size, in cer-
tain instances also the treewidth of the ground program is reduced. Since the rules become
smaller, the tool clearly reduces the primal graph treewidth of the ground program obtained
from the original program after applying the rule decomposition. However, as the following
experimental tests show, interestingly, also the incidence treewidth is reduced.
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Figure 6: Treewidths of groundings of Minimum Weighted Dominating Set encodings and
quantum of instances per time, solved by the latter with clingo.

3.3.1 Experiment Setup

For evaluating lpopt ’s impact on ground incidence treewidth, we have considered three
sources of problem instances:

1. The 200 2-QBF instances evaluated in [7], encoded in the new paradigm presented
there, once before and once after being preprocessed by DepQBF [27]. For each in-
stance, this paradigm yields a program with a long rule which makes it an archetype
application for lpopt.
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2. 20 different voting problem encodings taken from the Democratix project5 [12] together
with 315 instances from the PrefLib project6.

3. Instances from the Fifth Answer Set Programming Competition 20147, providing two
encodings for most of the 25 problems: one from 2013 and one from 2014, each with 20
instances. The impact of lpopt on grounding sizes and running times of these instances
has already been investigated in [6].

Note that evaluation requires a logic program to be decomposable by lpopt at all, otherwise
“common” groundings would be the same as lpopt-assisted ones. Due to not being lpopt-
decomposable, the following instances could not be evaluated: “classic” 2-QBF encodings
from [7], secure set encodings from [1] and Steiner tree problems taken from the D-FLAT
project8 [8].

For each instance, evaluation has been performed in the following manner:

1. (optional) Decompose the instance with lpopt in order to split up rules

2. Ground the instance using gringo 4.5.4 [23]

3. Run DynASP 2.0 [18] with options -d -c4 on the grounding to determine its incidence
treewidth

If, for any given instance, either the plain program or the lpopt-decomposed version ran into
a timeout or a memory overflow in any of these steps, then this instance was considered
incomparable.

For the 2-QBF instance set, evaluation was performed on an Intel Xeon E5345 2.33 GHz
machine with gringo limits set to 10 minutes and 6 GB and DynASP limits set to 15 minutes
and 48 GB. The voting instances were evaluated on the same machine with limits set to 10
minutes and 6 GB for both gringo and DynASP. The ASP competition instance sets were
evaluated on an AMD Opteron 6308 3.5 GHz machine with the only limit being 5 minutes
for DynASP.

3.3.2 Results

In the 2-QBF case, due to the very big rules, only few instances could have been grounded
in the non-lpopt-assisted case within the time and memory limits. Additionally, DepQBF -
preprocessed instances that have already been solved by the preprocessing were considered
uninteresting and thus omitted from graphical representation. Therefore, as can be seen in
Figure 7, out of the 400 instances (200 plain, 200 DepQBF -preprocessed), only 8 have been
considered comparable (four plain, the same four DepQBF -preprocessed). Nevertheless, the

5http://democratix.dbai.tuwien.ac.at/
6http://www.preflib.org/data/packs/soc.zip
7https://www.mat.unical.it/aspcomp2014/
8http://dbai.tuwien.ac.at/research/project/dflat/system/

http://democratix.dbai.tuwien.ac.at/
http://www.preflib.org/data/packs/soc.zip
https://www.mat.unical.it/aspcomp2014/
http://dbai.tuwien.ac.at/research/project/dflat/system/
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Figure 7: Incidence treewidths of groundings of comparable instances, with lpopt and without
it (“native”). Instances are sorted by native treewidth. The left plot shows the results for
the 8 comparable 2-QBF instances in the paradigm used in [7]. The right plot shows the
results for the 6 comparable instances of the valves location problem in ASP competition’s
2013 encoding.

2-QBF evaluation and Figure 7 suggest that the method of rule decomposition strongly
reduces the ground incidence treewidths of these programs.

For voting, ground incidence treewidth was found to be de facto independent of whether
lpopt was applied: 11 out of 20 problems have been found comparable (that is, contain com-
parable instances), each of which only shows in exceptional cases an lpopt-induced minimal
change in ground incidence treewidth (both up and down).

The 187 comparable instances of the ASP competition show lpopt impact only in three
problems:

The ground treewidth of the valves location problem of 2013, depicted right in Figure 7,
benefits from the decomposition, although grounding size and solving time evaluation in [5]
shows no significant impact. Here, lpopt is able to split up one rule without having to
introduce auxiliary domain rules.

The ground treewidth of the weighted sequence problem of 2014 quite heavily suffers from
the decomposition, though evaluation in [5] only shows a slight increase in grounding size
(about 5 %). Here, lpopt introduced an auxiliary domain rule using an intensional predicate,
which causes the observed deterioration. For a discussion on auxiliary domain rules and
why they are needed, we refer to [6]. At this point, it suffices to mention that non-ground
auxiliary domain rules potentially introduce cycles, which do not manifest themselves in the
program’s ground incidence graph if they only use extensional predicates (as then the body
is grounded away).

The crossing minimization problem in the 2013 encoding also has its ground incidence
treewidth increased when being treated by lpopt, though evaluation in [5] depicted a ground-
ing size reduction by about 50% (again, with no significant runtime changes). Also here, an
auxiliary domain rule is introduced using a guessed (and therefore intensional) predicate.
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3.3.3 Discussion

The question of which predicates to select for auxiliary domain rules has already been posed
in [5,6]. As of the current version of lpopt, this selection is being computed by a simple greedy
algorithm that does not take into account whether predicates are extensional or intensional.
The paper [6] raised awareness that the number of ground rules, and therefore the grounding
size, depends on this selection. The work [5] suggested that the selection algorithm also
respect whether candidate predicates are intensional or extensional, and avoid intensional
ones. This would best be accomplished by incorporating rule decomposition into a grounder,
since grounders like gringo are already aware of which predicates are intensional and which
are extensional.

As the results show, rule decomposition is able to reduce the ground incidence treewidth
of answer set programs. In a few cases, the treewidth deteriorated by rule decomposition,
which may be avoided by including decomposition into the grounding process and prevent-
ing intensional predicates from being selected for auxiliary domain rules. If done so, our
experiments show no reason for rule decomposition to increase ground incidence treewidth.

4 Theoretical Investigation of Modeling Techniques

Our observations from Section 3 suggest that a problem can often be modeled in multi-
ple ways that lead to quite different relationships between the “input treewidth” (i.e., the
treewidth of the input graph) and the “output treewidth” (i.e., the primal or incidence
treewidth of the grounding). In particular, some encodings are “well-behaved” in the sense
that they preserve bounded treewidth. By this we mean that the output treewidth can be
bounded from above by a function that depends only on the input treewidth. Other en-
codings, however, may destroy bounded treewidth in the sense that the output treewidth
cannot be bounded by the input treewidth alone but depends on the input size. We would
like to identify which modeling techniques are responsible for this. In this section we first
give some examples of such “ill-behaved” modeling techniques. We then characterize a class
of non-ground ASP programs that excludes those techniques, and we prove that encodings
from this class preserve bounded treewidth.

4.1 Modeling Techniques That Destroy Bounded Treewidth

In this section, we give a small selection of modeling techniques that have to be avoided if
bounded treewidth is to be preserved. Note, however, that this is not a complete list and
that other techniques may also destroy bounded treewidth. In the following, we assume that
the input graph is directed and given by the unary vertex predicate v and the binary edge
predicate e.

ASP grounders do not blindly instantiate the variables with all possible constants. In-
stead, they try to minimize the number of produced rules by suppressing ground rules whose
body can never be satisfied by any model of the program. This property is also crucial for
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the treewidth of the resulting program, since blindly instantiating each variable with every
constant almost always leads to unbounded output treewidth.

For our investigation, we therefore assume that a ground rule is suppressed from the
grounding if it contains an extensional literal that is not a consequence of the input facts.
This is the only assumption that we make on grounders in this work. For instance, this
excludes that a grounding contains a rule p(x,y):- e(x,y) if (x, y) is no edge in the input
graph.

As a first example, consider the rule p(X,Y):- v(X), v(Y). This destroys bounded
treewidth even for graphs without any edges: The output graph (i.e., the primal or inci-
dence graph of the grounding) contains the complete graph Kn as a minor, where n is the
number of input vertices. The problem here is that this rule allows for a too liberal instan-
tiation of the variables in the sense that the edges in the output graph are not restricted by
edges in the input graph.

As an attempt to remedy this, we may impose the restriction on each rule r that all
variables of r must be “chained together” by edge predicates in the positive body of r.
Unfortunately this is not enough: Already a simple rule like p(X,Z):- e(X,Y), e(Y,Z) destroys
bounded treewidth. To see this, consider the class of all stars, i.e., undirected graphs where
one vertex is adjacent to all other vertices, and let the class of input graphs be its directed
version, where we have the directed edges (a, b) and (b, a) instead of an undirected edge
{a, b}. Clearly this class has bounded treewidth because stars are trees. However, when
given a star with n vertices, the output graph has linear treewidth because it contains the
complete bipartite graph Kn−1,n−1 as a minor. Instead of further restricting the syntax of
the rules, in this work we impose a restriction on the input graphs, namely that they have
bounded degree.

Even for input graphs of bounded degree, it is crucial that the atoms that connect the
variables in each rule appear in the positive body. Otherwise we could construct a program
like the following.

p(X,Y) :- v(X), v(Y), not e(X,Y).

p(X,Y) :- v(X), v(Y), e(X,Y).

Here, for any input graph having n vertices, the output graph contains Kn as a minor.
Another observation is that it is important that the atoms that connect the variables of a

rule are extensional. Otherwise the following program would be allowed, which materializes
the transitive closure of the edge relation.

t(X,Y) :- e(X,Y).

t(X,Z) :- t(X,Y), e(Y,Z).

For any connected input graph, the output graph would again contain Kn as a minor. In
the restriction that we explore in this work, we exclude this because in the second rule X is
not part of an extensional atom. An alternative approach could be to avoid the construction
of transitivity by disallowing a certain kind of cycles in a dependency graph of the program,
similar to the concept of tightness in ASP. We will not pursue that approach in this work,
however, and leave it for future work.
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In fact, real-world grounders perform certain optimizations, which we ignore in this work,
that would not lead to the treewidth being destroyed by some of our examples. For instance,
if we have the rule p(X,Y):- v(X), v(Y), then Kn would not be a minor of the output graph
of real-world grounders. The reason is that they may simplify every ground instantiation
of this rule by removing both extensional atoms from the body because these atoms follow
from the input facts and are thus true in every model. In our conception of a grounder,
such simplifications are not performed. However, this is not a huge restriction because we
could easily adapt this example to again destroy bounded treewidth even for grounders that
perform such simplifications: We could replace both occurrences of the predicate v in the
body by a new predicate w and add a rule like {w(X) : v(X)}, which guesses for each vertex x
whether w(x) is true. A grounder would not be able to simplify the resulting rule p(x,y):-

w(x), w(y) because the body atoms are not deterministic consequences of the input.

4.2 A Treewidth-Preserving Class of Non-Ground ASP

The “ill-behaved” modeling techniques from Section 4.1 destroy bounded treewidth, but
they are not necessary conditions. We still lack a positive result that indicates under which
circumstances bounded treewidth is preserved. As we have seen, bounded treewidth is a
relatively fragile property, meaning that already quite simple ASP programs destroy it.
Hence we focus on preserving bounded treewidth together with bounded degree instead,
which is more robust.

In this section, we present a class of ASP programs that preserves bounded treewidth for
graphs of bounded degree. In fact, we even show that bounded clique-width together with
bounded degree leads to groundings of bounded treewidth because bounded clique-width
and bounded treewidth coincide on graphs of bounded degree [13, Corollary 1.53]. Before
we define our class, we first need to formalize the notion of “chaining variables together”
from Section 4.1. The idea is to restrict the structure of the output graph in a certain way
by the structure of the input graph.

Definition 2. Let r be a (non-ground) ASP rule. The join graph of r is the graph whose
vertices are the variables in r and where there is an edge between two variables if these
variables occur together in some positive body atom in r. The variables of r are connected
if they occur in a positive extensional body atom in r and the join graph of r is connected.

This allows us to define the class of programs that is of interest for this work.

Definition 3. We call a (non-ground) ASP program Π structure-restricted if, for each rule
r in Π, the variables of r are connected.

We use this class to state the main theorem of this work.

Theorem 4. Let Π be a structure-restricted ASP program and G be a graph. The primal
and incidence graph of the grounding of Π together with G (as a set of facts) have bounded
treewidth and bounded degree if G has bounded clique-width and bounded degree.
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We prove Theorem 4 using the framework of MSO transductions. First we discuss how
we can turn a structure-restricted ASP program Π into a certain normal form to simplify
the proof. Then we state the formulas that define our transduction, which formalizes how
the incidence graph of the grounding of Π together with facts describing a graph G can be
constructed from G. Finally, we discuss why this constitutes a proof of Theorem 4.

Simplifying the ASP program. Let Π be a structure-restricted ASP program. In the
following, we use Π to construct a simplified program Γ together with a set of facts F such
that, for every set of facts G that describe an input graph, Π∪G is equivalent to Γ∪F ∪G.

To obtain Γ from Π, we first eliminate constants by the following rewriting: We introduce
a new unary predicate Ca for each constant a. Then, for each constant a and each rule r
containing a, we replace each occurrence of a by a new variable Xa and we add Ca(Xa) to
the positive body of r. Finally, for each such new predicate Ca, we put a fact Ca(a) into F .

We call variables that we added to replace constants constant variables and all other
variables proper variables. We denote the set of all new predicates Ca that we added to replace
constants a by CV(Γ). Since Π is structure-restricted and thus has connected variables in
each rule, Γ has connected proper variables in each rule, but the constant variables need not
be connected. However, these will only be instantiated in a controlled way due to the facts
we added to F .

Next, we eliminate propositional atoms and enforce that each rule in Γ contains at least
one proper variable: We add an atom dummy(X) to the positive body of each rule in Γ, where
X is a new proper variable and dummy is a new predicate, then replace each propositional
atom q with q(X) and put a fact dummy(a) into F , where a is an arbitrary new constant.

In the following, we consider Π (and thus Γ and F ) to be fixed and write n to denote the
maximum number of distinct variables that occur in a rule of Γ.

Specifying the input graphs. Input graphs are simple, ordered and directed graphs
whose maximum degree is bounded by some constant d. The input structures of our MSO
formulas encode such graphs as well as the facts in F , which we obtained from Π. Hence
the domain of an input structure not only contains vertices of the input graph but also
objects that correspond to constants in F . The signature of input structures contains a
unary “vertex” relation and binary “edge” relation, which are used for specifying the input
graph, as well as the unary relations in CV(Γ) ∪ {dummy} for encoding F .

Even though the MSO transduction that we present in this work operates on graphs
directly instead of their incidence structures, it not only preserves bounded clique-width but
also bounded treewidth. This is because (a) we restrict ourselves to simple input graphs of
bounded degree, (b) our transformation preserves bounded degree, and (c) it is known that
bounded clique-width and bounded treewidth coincide on simple graphs of bounded degree.

The following formula states which structures our transformation is defined for, by ex-
pressing that the maximum degree is at most d and each predicate in the set CV(Γ) ∪
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{dummy} has exactly one domain element in its extension.

χ ≡ ∀x¬∃y1 · · · ∃yd+1

( ∧
1≤i<j≤d+1

yi 6= yj ∧
d+1∧
i=1

(
edge(x, yi) ∨ edge(yi, x)

))
∧

∧
P∈CV(Γ)∪{dummy}

∃x
(
P (x) ∧ ¬∃y

(
x 6= y ∧ P (y)

))

Auxiliary formulas. We will use the following auxiliary formulas to express that a vertex
y is the i-th direct successor of a vertex x, for 1 ≤ i ≤ d:

edgei(x, y) ≡ edge(x, y) ∧ ¬∃z

(
z < y ∧ edge(x, z) ∧

i−1∧
j=1

¬ edgej(x, z)

)

The proper variables of each rule r must be connected in the join graph. Hence, for any
pair of proper variables x, y that occur together in r, we can observe that the body of every
ground instantiation of r that substitutes x and y with vertices that are “too far apart” will
always be false under any interpretation that encodes the input graph, since we cannot infer
extensional atoms. Such instantiations will not be produced by a reasonable grounder. To
be precise, two vertices are “too far apart” from another if the distance between them is at
least n: There are at most n distinct variables in a rule, so we can only make at most n− 1
steps from any vertex. Since the program is fixed and d is a constant, for each vertex v there
is a constant number of vertices that we can reach from v in n steps. With this in mind, we
define the formula reach(i1,...,ik)(x, y), for 0 ≤ k ≤ n, to express that y is reachable from x
via a sequence of vertices (x0, x1, . . . , xk) such that x0 = x, xk = y, and xj is the ij-th direct
successor of xj−1, for 1 ≤ j ≤ k. We write ε to denote the empty tuple.

reachε(x, y) ≡ x = y

reach(i1,...,ik)(x, y) ≡ ∃z
(
reach(i1,...,ik−1)(x, z) ∧ edgeik(z, y)

)
for 1 ≤ k ≤ n

Since the maximum degree is at most d, we can uniquely identify each path of length
at most n by the starting vertex and a number in {0, . . . ,

∑n
i=1 d

i}. We call every element
of {0, . . . ,

∑n
i=1 d

i} a path number. For every path number p, we write p̂ to denote the edge
sequence of p, i.e., the sequence of direct successor indices that is uniquely identified by p.
(For our purposes it does not matter which edge sequence gets which path number, but we
require that different edge sequences have different path numbers.)

There can be multiple paths from x to y. We will need to single out one of them for our
transduction. For each path number p, we therefore define the formula fpp(x, y), which is
true iff p is the smallest path number that encodes an actual path from x to y.

fpp(x, y) ≡ reachp̂(x, y) ∧
p−1∧
q=0

¬ reachq̂(x, y)
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We call a path number p valid from an input vertex a if there is an input vertex b such
that fpp(x, y) evaluates to true under x 7→ a, y 7→ b.

For each path number or constant p, we define an auxiliary formula correctp(x, y) that
is true iff y is interpreted by the domain element denoted by p (where the value of x is used
as the starting vertex if p is a path number).

correctp(x, y) ≡

{
fpp(x, y) if p is a path number

Cp(y) if p is a constant

Constructing the output graph. Using these auxiliary formulas, we define the remain-
ing formulas of our MSO transduction.9 The class of input graphs is characterized by the
formula χ from above. Our transduction formalizes how we can turn an input graph repre-
sented as a set of facts G into the incidence graph of the program obtained by grounding
Γ ∪ F together with G.

To make things easier to read, we do not use integers as the indices i, j of δi and θi,j, but
objects that make the intended meaning of the respective formulas clearer. For instance,
for every propositional atom q, we will define a formula δq(x) that will evaluate to true for
exactly one domain element that we use to interpret the free variable x; the intended purpose
of the corresponding output vertex is to represent the atom q in the incidence graph of the
grounding. Using objects such as q as an index obviously does not change the nature of the
approach but can be seen as “syntactic sugar” since there is a constant number of objects
that we use as indices in this way.

For every predicate P of (positive) arity k and for each sequence p1, . . . , pk−1 of path
numbers or constants, we define a formula δP [p1,...,pk−1](x) that is true iff we interpret x by an
input vertex a such that each pi that is a path number is valid from a. The idea is that for
each sequence b1, . . . , bk−1 such that bi is a constant or reachable from a in at most n steps
we put a copy of a into the output graph to represent the ground atom P (a, b1, . . . , bk−1).

δP [p1,...,pk−1](x) ≡
k−1∧
i=1

∃y correctpi(x, y)

We proceed in a similar way with rules. In contrast to before, we only make copies
for each possible value of the proper variables and we ignore the constant variables, since
a reasonable grounder will only instantiate these by the constants they actually stand for.
For each rule r in Γ with k proper variables (k > 0) and each sequence of path numbers
p1, . . . , pk−1, we define the following formula.

δr[p1,...,pk−1](x) ≡ vertex(x) ∧
k−1∧
i=1

∃y correctpi(x, y)

Here the conjunct vertex(x) makes sure that we only make copies of actual input vertices,
but not of domain elements that only stand for constants.

9In fact our MSO transduction happens to be a first-order transduction.
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We now define the formulas that specify the edges of the output graph. Let r be a
rule with (a positive number of) proper variables X1, . . . , Xk and (a non-negative number
of) constant variables Xk+1, . . . , Xk+m that stand for constants we denote by c1, . . . , cm,
respectively, and let p1, . . . , pk−1 be a sequence of path numbers. Let P be a predicate
of (positive) arity l and let AP (r) be the set of tuples (i1, . . . , il) of integers such that
P (Xi1 , . . . , Xil) occurs in r. We first define the following auxiliary formula:

compatr,P (x1, . . . , xk+m, y1, . . . , yl) ≡
∨

(i1,...,il)∈AP (r)

l∧
j=1

yi = xij

The intuition is that a structure satisfies compatr,P (x1, . . . , xk+m, y1, . . . , yl) iff it inter-
prets the variables of r in such a way that the ground instantiation of r according to the
values of x1, . . . , xk+m contains an atom P (a1, . . . , al) such that a1, . . . , al are exactly the
values of y1, . . . , yl. We use this to make sure that whenever we instantiate the variables of
r in such a way that the resulting ground rule r′ contains P (a1, . . . , al), the incidence graph
of the output program contains an edge between P (a1, . . . , al) and r′. For each sequence of
path numbers or constants q1, . . . , ql−1, we therefore define the following formula:

θr[p1,...,pk−1],P [q1,...,ql−1](x, y) ≡ ∃x1 · · · ∃xk+m∃y1 · · · ∃yl
(
x = x1 ∧ y = y1

∧ correctp1(x, x2) ∧ · · · ∧ correctpk−1
(x, xk)

∧ Cc1(xk+1) ∧ · · · ∧ Ccm(xk+m)

∧ correctq1(y, y2) ∧ · · · ∧ correctql−1
(y, yl)

∧ compatr,P (x1, . . . , xk+m, y1, . . . , yl)
)

Obtaining the actual incidence graph from the result. This MSO transduction
defines a graph that differs in the following ways from the incidence graph of the grounding of
Π together the facts describing the input graph: First, the output graph may contain several
isolated vertices that are not in the incidence graph of the grounding. For instance, the
formula δedge[p](x), where p is some path number, evaluates to true under every interpretation
of x even if this vertex has no neighbors at all. This causes that the output graph may contain
a vertex that corresponds to an atom edge(a, b) while there is no such edge in the input graph.
However, this does not matter because we can just delete such vertices without destroying
bounded treewidth or clique-width.10

The second difference between the output graph and the incidence graph of the grounding
is that our MSO transduction does not take care of the facts encoding the input graph,
whereas for every such fact the grounding contains a rule vertex that is connected to the
respective atom vertex. It is easy to see that adding the missing rule vertices and connecting
them with the respective atom vertices increases the treewidth or clique-width by at most 1.

10The class of graphs of bounded treewidth and the class of graphs of bounded clique-width are both
hereditary (i.e., closed under taking subgraphs).
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Finally, the output graph contains atom vertices involving the predicates from CV(Γ) ∪
{dummy}, which are not present in the incidence graph of the grounding. Again, we can
just delete these vertices and their incident edges without increasing the treewidth or clique-
width.

Discussion. Recall that Π is fixed, d is bounded and the grounder does not instantiate two
variables in a rule with vertices whose distance from each other is more than n − 1. Hence
the number of produced instantiations of a rule r depends only on n and d. This implies
that the incidence graph of the grounding also has bounded degree. As we have just seen, we
can easily obtain this graph from the output graph of the transduction without significantly
increasing the clique-width. Furthermore, as we have already mentioned, our transduction
preserves bounded clique-width, and bounded clique-width coincides with bounded treewidth
on graphs of bounded degree. It follows that grounding Π together with a set of facts
describing an input graph of degree d leads to a program whose incidence treewidth depends
only on d and the clique-width of the input graph. To prove Theorem 4 it remains to show
that also the primal graph has both bounded degree and bounded treewidth. The fact
that the incidence graph has bounded degree clearly implies that the primal graph also has
bounded degree. It also implies that the primal graph has bounded treewidth because we can
turn a tree decomposition of the incidence graph into one of the primal graph by replacing
the rule vertices in the bags with all adjacent atom vertices, which increases the treewidth
only by a constant.

5 Conclusion

In this work we investigated how the treewidth of grounded ASP programs is affected by
different modeling constructs in the non-ground program. We first performed experiments
with several problems and, for each problem, various modeling alternatives. As expected,
certain language constructs lead to a significant increase in the treewidth of the grounding,
when compared to the treewidth of the input graph. Interestingly, we observed that low
treewidth of the grounding often correlates with low running time of state-of-the-art ASP
solvers. We then showed that splitting non-ground rules up using a recently proposed rule
decomposition technique may reduce not only the size of the groundings but also their
treewidth.

Next, we turned to a theoretical analysis. As our experiments showed, different non-
ground modeling variants lead to groundings of quite different treewidths and subsequent
solver running times. It is therefore interesting which features of non-ground ASP encodings
guarantee that the treewidth of the groundings is not significantly higher than the treewidth
of the input. To clarify this, we introduced a syntactically restricted class of non-ground ASP
called structure-restricted programs, and we showed that the treewidth of the grounding of
a structure-restricted program together with some input depends only on the degree and
treewidth (in fact even clique-width) of the input but not on its size.
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Further research on the effect of the treewidth of a ground program on ASP solver running
time is still needed to obtain a clear picture. Besides more experiments in this direction,
a theoretical analysis of the solving process of CDCL-based solvers should be performed.
Our experiments suggest that CDCL-based solving often implicitly takes advantage of low
treewidth of the program. Another subject of future work is the incorporation of rule de-
composition into ASP grounders. This allows us to avoid those auxiliary domain rules which
increase the treewidth. Finally, we plan to study restrictions on non-ground programs other
than structure-restrictedness to find other program classes that preserve bounded treewidth
as well but may be employed in different situations.
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