
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Characteristics of Multiple Viewpoints in
Abstract Argumentation

DBAI-TR-2015-89

Paul E. Dunne Wolfgang Dvořák
Thomas Linsbichler Stefan Woltran

DBAI TECHNICAL REPORT

2015

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2015-89, 2015

Characteristics of Multiple Viewpoints in Abstract
Argumentation

Paul E. Dunne 1 Wolfgang Dvořák 2 Thomas Linsbichler 3

Stefan Woltran 4

Abstract.The study of extension-based semantics within the seminal abstract argumenta-
tion model of Dung has largely focused on definitional, algorithmic and complexity issues.
In contrast, matters relating to comparisons of representational limits, in particular, the ex-
tent to which given collections of extensions are expressible within the formalism, have
been under-developed. As such, little is known concerning conditions under which a can-
didate set of subsets of arguments are “realistic” in the sense that they correspond to the
extensions of some argumentation framework AF for a semantics of interest. In this paper
we present a formal basis for examining extension-based semantics in terms of the sets of
extensions that these may express within a single AF. We provide a number of charac-
terization theorems which guarantee the existence of AFs whose set of extensions satisfy
specific conditions and derive complexity results for decision problems that require such
characterizations.

1University of Liverpool, UK. P.E.Dunne@liverpool.ac.uk
2University of Vienna, Austria. wolfgang.dvorak@univie.ac.at
3Vienna University of Technology, Austria. linsbich@dbai.tuwien.ac.at
4Vienna University of Technology, Austria. woltran@dbai.tuwien.ac.at

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF)
through projects I1102, P25518, and P25521.

Copyright c© 2015 by the authors

1 Introduction
The last 15 years have seen an enormous effort to design, compare, and implement different se-
mantics for Dung’s abstract argumentation frameworks [18], AFs for short. As a result of this
extensive study argumentation is now a significant topic within AI research [10, 28]. Surprisingly,
systematic comparison of AF capabilities respecting multiple extensions, and thus their power in
modelling multiple viewpoints within a single framework has, so far, been neglected. Neverthe-
less, an understanding of which extensions can, in principle, coexist when a framework is evaluated
with respect to a semantics of interest not only clarifies the “strength” of that semantics but also is
a crucial issue in several applications.

In this work, we address this issue by studying the signatures of argumentation semantics. A
semantics σ maps each argumentation framework F to a set of extensions (i.e. a set of sets of
arguments). The signature of σ is defined by

Σσ = {σ(F) | F is an AF},

and gives the collection of all possible sets of extensions an AF can possess under semantics σ. We
shall focus on several important semantics namely naive, preferred, semi-stable, stage, stable, and
complete semantics [18, 29, 13] and aim at finding simple criteria to decide whether a set of exten-
sions S is contained in Σσ. For instance, we will show that each S ∈ Σpref satisfies the condition
that for each pair of distinct setsA andB from S there is at least one a ∈ A and one b ∈ B such that
a and b do not occur together in any set in S. Thus, for instance, S = {{a, b}, {c, d}, {a, c}, {b, d}}
is part of the signature Σpref (the argumentation framework consisting of arguments a, b, c, and d
and symmetric attacks between a and d, and b and c, respectively, has S as its preferred extensions)
while neither S∪{{a, d}} nor S∪{{b, c}} are. This fact can be exploited in a search procedure for
enumerating preferred extensions: assume for a given AF F , the extensions from S have already
been calculated as preferred extensions of F . The procedure can now restrict the search space to
find further extensions of F (if they exist) to sets with at least one argument different from a, b, c,
and d.

The problem we study here is also essential in many other aspects.
First, our results are important for constructing AFs. Indeed, knowing whether a set S is con-

tained in Σσ is a necessary condition which should be checked before actually looking for an AF

F which realizes S under σ, i.e. σ(F) = S. This is of high importance when dynamic aspects
of argumentation are considered [27]. As an example, suppose a framework F possesses as its
σ-extensions a set S and one asks for an adaptation of the framework F such that its σ-extensions
are given by S∪{E}, i.e. one extension is to be added. The addition of E to S may, for instance, be
desired by some agent on the grounds that E contains some subset of arguments which it wishes to
be collectively accepted by other agents: no extension in S, however, provides support for the sub-
set of interest to be considered justifiable. Furthermore the agent wishing to add E is reluctant to
jeopardize the chance of this happening if the modified AF is such that some existing element of S
ceases to be an extension: such an outcome being likely to prejudice other agents against agreeing
to changes which admit E. Before considering the adapted framework’s structure, it is obviously
crucial to know whether an appropriate framework exists at all, i.e. whether S ∪ {E} ∈ Σσ. In

2

a recent paper on revision of AFs [16], the authors circumvent this issue by allowing revision to
result not only in a single AF, but in a set of AFs such that the union of their extensions yields the
desired outcome. Our results provide exact conditions under which their approach admits a single
AF as an outcome of a given revision.

Second, our work adds to the comparison of semantics (see, e.g., [3]) by means of different
properties. So far such properties have largely focused on aspects of single extensions S ∈ S rather
than on sets of such. An obvious exception being incomparability (the sets in S are not proper
subsets of each other; this property is also known as I-maximality); as we will see, however, all of
the standard semantics impose additional (yet distinct) requirements on S in order for containment
in the signature to hold. Furthermore, our results add to the growing body of work considering
generic treatments of argumentation semantics, that is with respect to shared properties rather than
from the perspective of distinguishing features. For instance, we show that most semantics σ are
closed under intersection of extensions (more formally, for all AFs F1, F2, there exists an AF F
such that σ(F) = σ(F1) ∩ σ(F2), whenever σ(F1) ∩ σ(F2) 6= ∅).

Previous examinations of abstract argumentation semantics have focused on “principle-based
evaluation” methods as proposed by Baroni and Giacomin [3] and the characterization of seman-
tics by means of equations by Besnard and Doutre [11]. The former paper introduces several
properties for argumentation semantics and gives a systematic investigation which of the proper-
ties are satisfied by a given semantics, no matter which AF is given. The latter paper focuses on
alternative and uniform characterizations for the extensions of a given AF, whereas in our work
we shall characterize the set of all possible sets of extensions a semantics is capable to express,
thus abstracting away from concrete AFs. Related work also includes studies on enforcing [6, 7]
certain outcomes, where the task is to modify AFs in such a way that desired arguments become
acceptable. However, the issue of multiple extensions is not covered. In fact, the work which is
closest to our investigations are studies of intertranslatability issues [23, 25], where signatures of
semantics are put in relation to each other. More precisely, if there is an exact translation such that
θ-extensions of the transformed AF coincide with the σ-extensions of the original AF, then θ is at
least as expressive as σ, that is Σσ ⊆ Σθ in our terms. These results, however, tell us little about
the contents of Σσ and Σθ, but only relate Σσ to Σθ.
To summarize, the main contributions of our work are:

• We first identify necessary conditions any set of extensions under a given semantics σ satis-
fies, i.e. we identify sets of extensions Σ+

σ with Σσ ⊆ Σ+
σ . This not only informs the exact

characteristics for the signature of σ, but also determines those sets of extensions that are
impossible to be jointly expressed with one AF.

• Then, we provide sufficient conditions for a set of extensions to be realizable under a given
semantics σ. For any such set S, we present constructions of canonical frameworks having S
as their σ-extensions. In other words we identify sets of extensions Σ−σ with Σ−σ ⊆ Σσ. For
all semantics σ under consideration (with the exception of complete extensions) our results
hold with Σ+

σ = Σ−σ . We, thus, obtain exact characterizations of the signatures Σσ.

• We apply our results to study the aforementioned property of closure under intersection (of
extension-sets). Moreover, we identify limits of disagreement the different semantics face.

3

While the capabilities of semantics differ in cases involving more than two extensions, it
turns out that the maximal number of extensions (over n arguments) that can be captured is
equal for many semantics.

• One particular application of our results is the problem of recasting, i.e. to decide if the σ-
extensions of a given AF can be expressed via another semantics θ. The relevance of this
problem is, for instance, given if θ is semantics for which we have faster systems available.
It is important to note that such gains, if achieved, are likely to be with respect to average-
case performance. As confirmed by our preliminary complexity results of the recasting
problem there can be significant complexity barriers – extending up to ΠP

2 -completeness –
in exploiting the approach. In contrast, we show that the problem of checking if S ∈ Σσ for
a given S is decidable in polynomial time for all exactly characterized semantics. Finally,
we also give results for the case where S is not given explicitly but by the models of a
propositional formula.

A preliminary version of this article has been published as [21].

2 Preliminaries
In what follows, we briefly recall the necessary background on abstract argumentation. For an
excellent recent overview, we refer to [1].

Throughout the paper, we assume a countably infinite domain A of arguments.

Definition 2.1 An argumentation framework (AF) is a pair F = (A,R) where A ⊆ A is finite, and
R ⊆ A× A is the attack relation. The collection of all AFs over A is given as AFA.

We write a 7→R b for (a, b) ∈ R and S 7→R a (resp. a 7→R S) if ∃s ∈ S such that s 7→R a
(resp. a 7→R s). We drop subscript R in 7→R if there is no ambiguity. For S ⊆ A, the range of S
(w.r.t. R), denoted S+

R , is the set S ∪ {b | S 7→R b}.

Definition 2.2 Given F = (A,R), an argument a ∈ A is defended (in F) by a set S ⊆ A if for
each b ∈ A, such that b 7→R a, also S 7→R b. A set T of arguments is defended (in F) by S if each
a ∈ T is defended by S (in F).

The following result is in the spirit of Dung’s fundamental lemma and is used later.

Lemma 2.3 Given an AF F = (A,R) and two sets of arguments S, T ⊆ A. If S defends itself in
F and T defends itself in F , then S ∪ T defends itself in F .

Proof. To the contrary assume that S ∪ T does not defend itself in F . Then there exists a b ∈ A
with b 7→ (S ∪ T) such that (S ∪ T) 7→ b does not hold. Consider b 7→ S. Since (S ∪ T) 7→ b does
not hold also S 7→ b does not hold. Therefore S does not defend itself in F which is a contradiction
to the assumption. The case where b 7→ T behaves symmetrically. 2

4

Next, we introduce the semantics we study in this work. These are the naive, stable, preferred,
complete, grounded, stage, and semi-stable semantics, which we will abbreviate by naive, stb,
pref, com, grd, stage, and sem, respectively. For a given semantics σ we denote σ(F) as the set of
extensions of F under σ.

Definition 2.4 Given an AF F = (A,R), a set S ⊆ A is conflict-free (in F), if there are no
arguments a, b ∈ S, such that (a, b) ∈ R. We denote the set of all conflict-free sets in F as cf(F).
S ∈ cf(F) is called admissible (in F) if S defends itself. We denote the set of admissible sets in F
as adm(F).

For a conflict-free set S ∈ cf(F), we say that

• S ∈ naive(F), if there is no T ∈ cf(F) with T ⊃ S,

• S ∈ stb(F), if S 7→ a for all a ∈ A \ S,

• S ∈ pref(F), if S ∈ adm(F) and @T ∈ adm(F) s.t. T ⊃ S,

• S ∈ com(F), if S ∈ adm(F) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(F), if S =
⋂
T∈com(F) T ,

• S ∈ stage(F), if @T ∈ cf(F) with T+
R ⊃ S+

R , and

• S ∈ sem(F), if S ∈ adm(F) and @T ∈ adm(F) s.t. T+
R ⊃ S+

R .

The objects of our interest are the signatures of semantics.

Definition 2.5 The signature Σσ of a semantics σ is defined as

Σσ = {σ(F) | F ∈ AFA} .

For characterizing the signatures of the semantics of our interest we will make frequent use of
the following concepts.

Definition 2.6 Given S ⊆ 2A, we use

• ArgsS to denote
⋃
S∈S S, and

• PairsS to denote {(a, b) | ∃S ∈ S : {a, b} ⊆ S}.

S is called an extension-set (over A) if ArgsS is finite. While |S| denotes the number of extensions
in S, ‖S‖ stands for |ArgsS|.

Observe that for any a ∈ ArgsS, (a, a) ∈ PairsS holds for all extension-sets S; also note that
for all considered semantics σ each element S ∈ Σσ is an extension-set (since we are dealing with
finite AFs).

5

3 Properties of Argumentation Semantics
Our ultimate goal is to characterize the signatures of the semantics under consideration. In this
section, we provide necessary conditions for an extension-set S to be in the signature Σσ. To this
end, we have to find common properties for σ(F) which hold for any AF F . We do so by abstracting
away from the syntactical structure of a given framework and focus on the sets of extensions.

Some properties are rather easy to see: cf(F) satisfies the property that for any S ∈ cf(F), also
S ′ ∈ cf(F) for any S ′ ⊆ S. Likewise, for all σ ∈ {naive, stb, stage, pref, sem} it obviously holds
that σ(F) is incomparable for any AF. We define these two properties formally.

Definition 3.1 Let S ⊆ 2A. The downward-closure, dcl(S), of S is given by {S ′ ⊆ S | S ∈ S}. We
call S

• downward-closed if S = dcl(S) and

• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S, S ′ ∈ S,
S ⊆ S ′ implies S = S ′.

However, extension-sets of all considered semantics σ enjoy additional properties. The follow-
ing example indicates this fact.

Example 3.2 Consider the incomparable extension-set S = {{a, b}, {a, c}, {b, c}}. and a seman-
tics σ that preserves conflict-freeness, i.e. σ(F) ⊆ cf(F) for any AF F . Now suppose there exists an
AF F with σ(F) = S. Then F must not contain attacks between a and b, a and c, and respectively
b and c. But then σ(F) typically contains {a, b, c}.

There are several ways to define the required property which excludes sets like S from above.
To characterize stable, stage and naive extensions, we start with a rather strong restriction making
use of the concept of PairsS (in Section 6, we will discuss an alternative yet equivalent definition in
terms of a ternary operator on S). For the other semantics, we will use a strictly weaker criterion.

Definition 3.3 An extension-set S ⊆ 2A is tight if for all S ∈ S and a ∈ ArgsS it holds that if
S ∪ {a} /∈ S then there exists an s ∈ S such that (a, s) /∈ PairsS.

For incomparable S, the premiss of the condition, S ∪ {a} /∈ S, is always fulfilled. Therefore
the definition of S being tight reduces in that case to check whether for all S ∈ S and a ∈ ArgsS \S
there is an s ∈ S such that (a, s) /∈ PairsS. The idea behind the notion of being tight is that if an
argument a does not occur in some extension S there must be a reason for that. The most simple
reason one can think of is that there is a conflict between a and some s ∈ S, i.e. a and s do not
occur jointly in any extension-set of S or, in other words, (a, s) /∈ PairsS. In a way, this limits the
multitude of incomparable elements of an extension-set.

Example 3.4 The extension-set S = {{a, b}, {a, c}, {b, c}} from Example 3.2 is not tight, since
there is no reason to, for instance, exclude c from extension {a, b} ((a, c) and (b, c) are both con-
tained in PairsS). On the other hand, the set {{a, b}, {a, c}, {b, d}, {c, d}} is easily checked to be
tight.

6

Before stating our first results, we examine certain properties of tight sets which we exploit
later.

Lemma 3.5 For a tight extension-set S ⊆ 2A it holds that

1. the ⊆-maximal elements in S form a tight set, and

2. if S is incomparable then each S′ ⊆ S is tight.

Proof. Consider some tight extension-set S. (1) Let S′ be the set of ⊆-maximal elements in S.
Note that PairsS = PairsS′ , ArgsS = ArgsS′ and S′ ⊆ S. For each S ∈ S′ and a ∈ ArgsS it
holds that if S ∪ {a} /∈ S′ then also S ∪ {a} /∈ S. Therefore we know, from S being tight, that
∃s ∈ S : (a, s) /∈ PairsS, hence S′ is tight too. (2) Let S be incomparable, and consider some
S′ ⊆ S. Then PairsS′ ⊆ PairsS and, as S is incomparable, S ∪ {a} /∈ S iff S ∪ {a} /∈ S′ for all
S ∈ S, a ∈ ArgsS. Thus, since S is tight by the hypothesis, S′ is tight. 2

Proposition 3.6 For each AF F = (A,R),

1. cf(F) is non-empty, downward-closed and tight;

2. naive(F) is non-empty, incomparable and its downward-closure is tight;

3. stage(F) is non-empty, incomparable and tight;

4. stb(F) is incomparable and tight.

Proof. The properties of being non-empty and incomparable are clear. Likewise, it is easy to see
that cf(F) = dcl(cf(F)), i.e. cf(F) is downward-closed, since each subset of a conflict-free set is
conflict-free too. To show that cf(F) is tight, let S ∈ cf(F) and a ∈ Argscf(F), such that S ∪ {a} /∈
cf(F). It follows that S 6= ∅ (otherwise, {a} /∈ cf(F) and since we know cf(F) = dcl(cf(F)),
this would yield a /∈ Argscf(F)). Moreover there exists an argument s ∈ S such that s 7→ a or
a 7→ s. Then {a, s} /∈ cf(F) and since cf(F) = dcl(cf(F)), {a, s} 6⊆ T for any T ∈ cf(F). It
follows that (a, s) /∈ Pairscf(F). Since this applies to all S, a with S ∈ cf(F) and a /∈ S, tightness
of cf(F) follows. Next, observe that dcl(naive(F)) = cf(F), by definition of the semantics. Thus
dcl(naive(F)) is tight, and by Lemma 3.5, naive(F) is tight. With the same lemma, we get that
every S ⊆ naive(F) is tight. By the well-known fact that stb(F) ⊆ stage(F) ⊆ naive(F), it
follows that stb(F) as well as stage(F) is tight. 2

Lemma 3.5 implies that if the downward-closure of an incomparable extension-set S is tight,
then S itself is tight too. Therefore Proposition 3.6 assigns stricter conditions to naive extension-
sets than to stable and stage extension-sets, respectively.

Example 3.7 For the AF F in Figure 1, we have S = stb(F) = stage(F) =
{{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}} and naive(F) = S ∪ {{b1, b2, b3}}. One can check that
S is indeed tight. Take, for instance, E = {a1, b2, b3}; then for each argument t not in E (i.e. b1,

7

a1 a2 a3

b1 b2 b3

Figure 1: Argumentation framework F used in Example 3.7.

a2, a3) there is an argument s ∈ E such (s, t) /∈ PairsS. In this particular case a1 plays this role for
each t, since neither (a1, b1), (a1, a2), nor (a1, a3) is contained in PairsS. The other two extensions
behave in a symmetric way. However, dcl(S) is not tight. In fact, {b2, b3} ∈ dcl(S) and now for b1,
{b1, b2, b3} /∈ dcl(S) but (b1, b2) and (b1, b3) are contained in Pairsdcl(S) = PairsS. Proposition 3.6
now gives evidence that an AF G with naive(G) = S cannot exist.

Turning to the semantics based on admissibility, we introduce another, weaker, property of
extension-sets. It will turn out to be a very general property, which is fulfilled by extension-sets of
every “reasonable” semantics for abstract argumentation.

Definition 3.8 A set S ⊆ 2A is called conflict-sensitive1 if for each A,B ∈ S such that A ∪B /∈ S
it holds that ∃a, b ∈ A ∪B : (a, b) /∈ PairsS.

As the name suggests, the property checks whether the absence of the union of any pair of
extensions in an extension-set S is justified by a conflict indicated by S.

Note that for a, b ∈ A (likewise a, b ∈ B), (a, b) ∈ PairsS holds by definition. Thus the
property of conflict-sensitivity is determined by arguments a ∈ A \B, b ∈ B \ A, for A,B ∈ S.

We next show that tight sets are also conflict-sensitive.

Lemma 3.9 Every tight extension-set is also conflict-sensitive.

Proof. Consider some tight extension-set S and let A,B ∈ S. We need to show that in case
(a, b) ∈ PairsS for each a, b ∈ A ∪ B, then also A ∪ B ∈ S. Let B = {b1, . . . , bn}. As S is tight
and (a, b1) ∈ PairsS for all a ∈ A, A ∪ {b1} = A1 ∈ S must hold. We can do this for each bi ∈ B
and get An−1 ∪ {bn} = (A ∪B) ∈ S. 2

Observe that for incomparable S the property of being conflict-sensitive reduces to check for
each A,B ∈ S (A 6= B), whether there exist a, b ∈ A ∪B such that (a, b) 6∈ PairsS.

We can give results analogous to those of Lemma 3.5.

Lemma 3.10 For a conflict-sensitive extension-set S ⊆ 2A,

1. the ⊆-maximal elements in S form a conflict-sensitive set,

1 An equivalent property was called adm-closed in [21]. In the interest of adequacy to its content we stick to the
term conflict-sensitive.

8

a′

b′

a

b d

c

f e

Figure 2: Argumentation framework F used in Example 3.12.

2. if S is incomparable then each S′ ⊆ S is conflict-sensitive, and

3. S ∪ {∅} is conflict-sensitive.

Proof. (1) basically follows from the fact that PairsS = PairsS′ where S′ is the set of ⊆-maximal
elements in S. For (2) recall that for incomparable S, checking conflict-sensitivity reduces to check
for each A,B ∈ S with A 6= B, whether there exist a, b ∈ A ∪ B such that (a, b) 6∈ PairsS. It is
easy to see that this property still holds for S′ ⊆ S (since then, PairsS′ ⊆ PairsS). (3) holds, since
S ∪ ∅ ∈ S for each S ∈ S ensures that S ∪ {∅} is conflict-sensitive by definition. 2

The following proposition finally shows the role the property of being conflict-sensitive plays
in terms of admissible, preferred and semi-stable semantics.

Proposition 3.11 For each AF F = (A,R),

1. adm(F) is conflict-sensitive and contains ∅;

2. pref(F) is non-empty, incomparable and conflict-sensitive;

3. sem(F) is non-empty, incomparable and conflict-sensitive.

Proof. (1) By definition, ∅ is always admissible. We show that adm(F) is conflict-sensitive.
Towards a contradiction, assume B,C ∈ adm(F) such that B ∪ C /∈ adm(F), but for all b, c ∈
B ∪ C, (b, c) ∈ Pairsadm(F). From Lemma 2.3 we know that B ∪ C defends itself in F . So for
B ∪ C /∈ adm(F) there must be a conflict in B ∪ C, i.e. there is an attack (b, c) ∈ R such that
{b, c} ⊆ B ∪ C. But then, for all D ∈ adm(F), {b, c} 6⊆ D. Hence, (b, c) /∈ Pairsadm(F), a
contradiction.

(2) By definition, the preferred semantics yields at least one extension and for any S, S ′ ∈
σ(F), S ⊆ S ′ implies S = S ′. By Lemma 3.10.1 and definition of preferred extensions, the
fact that pref(F) is conflict-sensitive for every AF F follows from the already shown property of
adm(F) being conflict-sensitive.

(3) Again, semi-stable extensions are non-empty and incomparable by definition. Since
sem(F) ⊆ pref(F) holds for all AFs F , Lemma 3.10.2 shows that sem(F) is conflict-sensitive,
as well. 2

9

Example 3.12 Consider the framework F in Figure 2 and let A = {a, b}, B = {a, d, e}, C =
{b, c, e}, and S = {A,B,C}. We have pref(F) = sem(F) = S. S is conflict-sensitive, since for
each pair of extensions, there exists a pair of arguments not contained in PairsS: b, d ∈ A∪B and
(b, d) /∈ PairsS; a, c ∈ A ∪ C and (a, c) /∈ PairsS; c, d ∈ B ∪ C and (c, d) /∈ PairsS. However,
we also observe that S is not tight, since A ∪ {e} /∈ S but both (a, e) and (b, e) are contained in
PairsS. This shows that the reverse of Lemma 3.9 does not hold, i.e. that conflict-sensitivity is a
strictly weaker condition than tightness.

All semantics considered so far, i.e. the naive, stable, stage, preferred and semi-stable seman-
tics, share a common property, which is implicit in their definitions. That is, given an arbitrary
AF F , between any two extensions of F there must be at least one conflict. If there was not, their
union would be an extension instead. This property can be seen as a principle in the spirit of [3]
which should be fulfilled by every reasonable semantics for abstract argumentation. The following
proposition shows that extension-sets under such semantics are always conflict-sensitive.

Proposition 3.13 Consider an arbitrary semantics σ : AFA → 22A such that for any F =
(A,R) ∈ AFA it holds that σ(F) ⊆ cf(F) and for all S1, S2 ∈ σ(F) (S1 6= S2) there exist
a, b ∈ S1 ∪ S2 with (a, b) ∈ R. Then for each AF F , σ(F) is conflict-sensitive.

Proof. Let F = (A,R) ∈ AFA and S1, S2 ∈ σ(F). By assumption there exist w.l.o.g. a ∈ S1 and
b ∈ S2 with (a, b) ∈ R. Now since σ(F) ⊆ cf(F), there is no T ∈ σ(F) with T ⊇ {a, b}, hence
(a, b) /∈ Pairsσ(F). Therefore σ(F) is conflict-sensitive. 2

Finally, we turn to the complete semantics. Compared to being conflict-sensitive, we need a
further relaxation.

Definition 3.14 Given an extension-set S ⊆ 2A and E ⊆ A. We define the completion-sets CS(E)
of E in S as the set of ⊆-minimal sets S ∈ S with E ⊆ S.

In words, completion-sets just give the “next” (in terms of supersets) elements contained in S.

Definition 3.15 A set S ⊆ 2A is called com-closed if for each T ⊆ S the following holds: if (a, b) ∈
PairsS for each a, b ∈ ArgsT, then ArgsT has a unique completion-set in S, i.e. |CS(ArgsT)| = 1.
For a com-closed extension-set S ⊆ 2A and E ⊆ ArgsS, we denote the unique element of CS(E) by
CS(E).

The intuitive meaning of com-closed is the following. Consider an extension-set S and el-
ements T thereof. Now assume S gives no evidence of a conflict between arguments in ArgsT.
Then, in contrast to the case when S is conflict-sensitive, not ArgsT has to be in S, but S has to
contain a unique superset of ArgsT, the completion-set.

Lemma 3.16 Each conflict-sensitive extension-set is com-closed.

Proof. Consider a conflict-sensitive extension-set S and T ⊆ S. Then (a, b) ∈ PairsS for each
a, b ∈ ArgsT implies ArgsT ∈ S, i.e. CS(ArgsT) = {ArgsT}. 2

10

a

b

a′

b′
c

Figure 3: Argumentation framework F used in Example 3.18.

In case of incomparable sets, the notions conflict-sensitive and com-closed coincide. In antic-
ipation of the following result, this coincidence reflects the fact that all preferred extensions are
complete.

Proposition 3.17 For each AF F , com(F) is a non-empty, com-closed extension-set with
(
⋂
S∈ com(F) S) ∈ com(F).

Proof. First note that there is always at least one complete extension, namely the grounded ex-
tension. Moreover the grounded extension is the unique ⊆-minimal complete extension and hence
(
⋂
S∈com(F) S) ∈ com(F). Finally consider a set of complete extensions E ⊆ com(F) such that

(a, b) ∈ Pairscom(F) for each a, b ∈ ArgsE. By Lemma 2.3, ArgsE is an admissible set and thus
can be extended to a unique complete extension E ′ ⊇ ArgsE by iteratively adding all defended
arguments. Therefore com(F) is com-closed. 2

Example 3.18 Consider the AF F in Figure 3. We have com(F) = {∅, {a}, {b}, {a, b, c}}, which
is com-closed, in particular, as Ccom(F)({a} ∪ {b}) = {{a, b, c}}. Observe that since {a, b} /∈
com(F), but (a, b) ∈ Pairscom(F), com(F) is not conflict-sensitive. This also shows that the reverse
direction of Lemma 3.16 does not hold.

4 Realizability
In the previous section we have given necessary characteristics for the extension-sets S ∈ Σσ,
where σ ∈ {cf, adm, naive, stb, stage, pref, sem, com}. Except for the complete semantics, we will
now show that these characteristics are also sufficient.

To this end, we need the concept of realizability: an extension-set S ⊆ 2A is realizable under σ
(or just σ-realizable) if there is an AF F ∈ AFA, such that σ(F) = S. We start with the following
concept of a canonical argumentation framework, which will underlie all subsequent results on
realizability.

Definition 4.1 Given an extension-set S, we define the canonical argumentation framework for S
as

F cf
S =

(
ArgsS, (ArgsS × ArgsS) \ PairsS

)
.

11

The idea behind the framework is simple: we draw a relation between two arguments iff they do
not occur jointly in any set S ∈ S. Thus, for any S, F cf

S is symmetric and has no self-attacking argu-
ments (recall that for each a ∈ ArgsS, (a, a) ∈ PairsS). As an example, consider T = {{a1, b2, b3},
{a2, b1, b3}, {a3, b1, b2}, {b1, b2, b3}}. F cf

T has the same structure as the AF from Figure 1, but
with all attacks being symmetric. We obtain stb(F cf

T) = naive(F cf
T) = T. When we consider

S = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}, i.e. S = T \ {{b1, b2, b3}}, we obtain the same frame-
work F cf

S = F cf
T , since ArgsS = ArgsT and PairsS = PairsT. In terms of naive semantics, this is

not problematic, since S (as discussed in Example 3.7) cannot be realized under naive semantics at
all. However, this observation readily suggests that realizing S with, say, stable semantics, requires
additional concepts.

Proposition 4.2 For each extension-set S 6= ∅, which is downward-closed and tight, cf(F cf
S) = S.

Proof. Let S be a downward-closed and tight extension-set and consider F cf
S = (ArgsS, RS).

cf(F cf
S) ⊆ S: Observe that for each E ∈ cf(F cf

S), (a, b) ∈ PairsS for all a, b ∈ E by construc-
tion of RS. Now suppose there exists E ′ ∈ cf(F cf

S) such that E ′ /∈ S. W.l.o.g. let E ′ be ⊆-minimal
with this property. Then E ′ = S ∪ {c} for some S ∈ S. As S is tight there is an s ∈ S such that
(s, c) 6∈ PairsS, a contradiction to the above observation. cf(F cf

S) ⊇ S: Follows immediately by the
fact that ∀(a, b) ∈ PairsS : (a, b) /∈ RS. 2

Proposition 4.3 For each incomparable extension-set S 6= ∅, where dcl(S) is tight, naive(F cf
S) =

S.

Proof. First, note that F cf
dcl(S) = F cf

S , since Argsdcl(S) = ArgsS and Pairsdcl(S) = PairsS. Since dcl(S)

is downward-closed, and by assumption, tight and non-empty, cf(F cf
S) = dcl(S) by Proposition 4.2.

By construction of dcl(S), the ⊆-maximal sets in dcl(S) are given by S and as naive sets are just
⊆-maximal conflict-free, naive(F cf

S) = S follows. 2

We proceed with stable and stage semantics. Stable semantics are the only semantics that
can realize S = ∅. Note that S = ∅ is easily stb-realizable, for instance with the framework
({a}, {(a, a)}). In Proposition 3.6 the only difference between stable and stage semantics was the
case S = ∅. The next result will show that this indeed is the only difference between the signatures
for stable and stage semantics.

The idea of the construction below is to suitably extend the canonical framework from Defini-
tion 4.1 such that undesired sets are excluded. Coming back to our example with S = {{a1, b2, b3},
{a2, b1, b3}, {a3, b1, b2}}, recall that F cf

S had one such undesired naive (and stable) extension,
E = {b1, b2, b3}. To get rid of it we add a new argument which is attacked by all other sets
from S but not by E, see Figure 4 for illustration. The next definition generalizes this idea which
is inspired by a translation in [23].

Definition 4.4 Given an extension-set S and its canonical framework F cf
S = (Acf

S , R
cf
S), let X =

stb(F cf
S) \ S. We define

F st
S = (Acf

S ∪ {Ē | E ∈ X},
Rcf

S ∪ {(Ē, Ē), (a, Ē) | E ∈ X, a ∈ ArgsS \ E}).

12

a1 a2 a3

b1 b2 b3

Ē

Figure 4: Excluding {b1, b2, b3} from stb(F cf
S).

Proposition 4.5 For each non-empty, incomparable and tight extension-set S, stb(F st
S) =

stage(F st
S) = S.

Proof. Since S is non-empty, it is sufficient to show stb(F st
S) = S (for each F with stb(F) 6= ∅,

stb(F) = stage(F) holds).
Moreover, for each incomparable and tight extension-set S, it holds that S ⊆ stb(F cf

S): Towards
a contradiction, assume S ∈ S such that S /∈ stb(F cf

S). By construction of F cf
S , S ∈ cf(F cf

S). Thus
∃a ∈ ArgsS : S 67→ a. But then by construction, (a, s) ∈ PairsS, for all s ∈ S; this contradicts S
being tight.

Now let X = stb(F cf
S) \ S and consider F st

S . We show that stb(F st
S) = S. stb(F st

S) ⊆ S: Let
E ∈ stb(F st

S). Then also E ∈ stb(F cf
S) = X ∪ S. But if E ∈ X, by Definition 4.4, E 67→ Ē and

also Ē /∈ E, thus E /∈ stb(F st
S). Hence, E ∈ S. stb(F st

S) ⊇ S: Let E ∈ S. We already know
that E ∈ stb(F cf

S). Now consider F st
S . E still attacks all arguments in ArgsS \ E. Now consider an

arbitrary argument Ē ′ for E ′ ∈ X. Ē ′ is attacked by all arguments a ∈ ArgsS \E ′ and as E and E ′

are both stable in F cf
S (and thus incomparable) at least one of these arguments must be contained in

E. Hence E ∈ stb(F st
S). 2

Towards a suitable canonical AF for admissibility-based semantics we introduce the following
technical concept.

Definition 4.6 Given an extension-set S, the defense-formula DS
a of an argument a ∈ ArgsS in S is

defined as∨
S∈S s.t. a∈S

∧
s∈S\{a}

s.

DS
a given as (a logically equivalent) CNF is called CNF-defense-formula CDS

a of a in S.

Intuitively,DS
a describes the conditions for the argument a being in an extension. The variables

coincide with the arguments. Each disjunct represents a set of arguments which jointly allows a
to “join” an extension, i.e. represents a collection of arguments defending a. Further note that
DS
a ≡ > (i.e. DS

a is a tautology) if and only if {a} ∈ S.

13

Example 4.7 Consider the extension-set T = {∅, {a}, {b, c}, {a, c, d}}. ThenDT
a = >∨ (c∧d) ≡

>, DT
b = c, DT

c = b ∨ (a ∧ d) and DT
d = a ∧ c. The corresponding CNF-defense-formulas2 are

CDT
a = {}, CDT

b = {{c}}, CDT
c = {{a, b}, {b, d}}, and CDT

d = {{a}, {c}}.

The following lemma shows that the (CNF-)defense-formula for any argument a captures the
intuition of describing which arguments it takes for a in order to join an element of the given
extension-set.

Lemma 4.8 Given an extension-set S and an argument a ∈ ArgsS, then for each S ⊆ ArgsS with
a ∈ S: (S \ {a}) is a model of DS

a (resp. CDS
a) iff there exists an S ′ ⊆ S with a ∈ S ′ such that

S ′ ∈ S.

Proof. The if-direction follows straight forwardly by definition of DS
a, since the conjunction of the

elements of S ′ \ {a} forms a term of DS
a for each S ′ ∈ S with a ∈ S ′.

To show the only-if-direction consider some S ⊆ ArgsS with a ∈ S where S \ {a} is a model
of DS

a. If DS
a ≡ > then it holds that {a} ∈ S. For S \ {a} to be a model of DS

a 6= >, there must
be some term τ ∈ DS

a, whose elements form a subset of S \ {a}. Consider such a term τ ∈ DS
a.

Then by construction of DS
a there is some S ′ ∈ S with a ∈ S ′, where S ′ \ {a} coincides with the

elements of τ . So S ′ ⊆ S. 2

Having at hand a formula for each argument, such that the models coincide with the sets of
arguments that should defend that argument, we can give the following construction.

Definition 4.9 Given an extension-set S, the canonical defense-argumentation-framework F def
S =

(Adef
S , R

def
S) extends the canonical AF F cf

S = (ArgsS, R
cf
S) as follows:

Adef
S =ArgsS ∪

⋃
a∈ArgsS

{αaγ | γ ∈ CDS
a}, and

Rdef
S =Rcf

S ∪
⋃

a∈ArgsS

{(b, αaγ), (αaγ, αaγ), (αaγ, a) | γ ∈ CDS
a, b ∈ γ}.

F def
S consists of all arguments given in the extension-set plus a certain amount of additional

arguments. First of all each of these new arguments attacks itself in order not to be taken into
account when it comes to figuring out the admissible sets of the framework. Further each αaγ
attacks argument a and is attacked by all arguments occurring as literals in clause γ of the CNF-
defense-formula of a. So in F def

S for a to be defended from αaγ it takes at least one argument of
these occurring as atoms in clause γ of CDS

a.

Example 4.10 Again consider extension-set T = {∅, {a}, {b, c}, {a, c, d}}. We have given the
CNF-defense-formulas in Example 4.7. F def

T is given by the AF in Figure 5. Considering, for
instance, argument c, where CDT

c = {{a, b}, {b, d}}, one can see that in F def
T it takes a or b in

order to defend c from αc{a,b}, and b or d in order to defend c from αc{b,d}.

14

a b c d

αb{c} αc{a,b} αc{b,d} αd{a} αd{c}

Figure 5: AF F def
T used in Example 4.10.

Proposition 4.11 For each conflict-sensitive extension-set S where ∅ ∈ S, it holds that
adm(F def

S) = S.

Proof. S ⊆ adm(F def
S): Let S ∈ S. If S = ∅, the assertion trivially holds. If S = {a}, then CDS

a is
the empty set of clauses. By definition of Rdef

S , a is then defended in F def
S and thus S ∈ adm(F def

S).
Thus let S ∈ S contain at least two arguments. By construction, S is conflict-free in F def

S . It
remains to show that each s ∈ S is defended by S in F def

S . Let s ∈ S. First, we know that s
defends itself from all t ∈ ArgsS, since F def

S extends F cf
S , which is symmetric. Moreover, we know

from Lemma 4.8 that S \ {s} is a model of CDS
s . Hence, each clause γ ∈ CDS

s contains at least one
variable tγ ∈ S \ {s}. Thus, by construction of Rdef

S , (S\{s}) 7→ αsγ for each γ ∈ CDS
s , i.e. S

defends s in F def
S .

adm(F def
S) ⊆ S: Let S ∈ adm(F def

S). For S = ∅, S ∈ S by definition. If S = {a}, then a 7→b
whenever some argument b attacks a. Hence, CDS

a = {}, i.e. DS
a ≡ > must hold, therefore S ∈ S.

Now assume S contains at least two arguments. As S is conflict-free in F def
S , the construction of

Rdef
S guarantees that for all a, b ∈ S, (a, b) ∈ PairsS. Let s ∈ S with {s} /∈ adm(F def

S). Then we
have αsγ 7→s for each γ ∈ CDS

s . Since s is defended by S, for each γ ∈ CDS
s , ∃tγ ∈ (S \ {s}) :

tγ 7→αsγ . By definition of F def
S , thus tγ occurs in the clause γ. It follows that T = {tγ | γ ∈ CDS

s}
is a model of CDS

s and DS
s . Then by Lemma 4.8 there is some S ′s ⊆ T ∪ {s} (note that also S ′s ⊆ S

as s ∈ S and for each tγ ∈ T also tγ ∈ S) with s ∈ S ′s such that S ′s ∈ S. Recall also that in
case {s} ∈ adm(F def

S), we know that {s} ∈ S (say S ′s = {s}). Now since (a, b) ∈ PairsS for all
a, b ∈ S and since S is conflict-sensitive, it must hold that S ′s1 ∪ S

′
s2
∈ S for any s1, s2 ∈ S. Hence

S =
(⋃

si∈S S
′
si

)
∈ S. 2

The construction also works for the preferred semantics. In order to realize a non-empty,
incomparable and conflict-sensitive extension-set S under the semi-stable semantics we can also
make use of F def

S , but with an additional self-attacking argument a′ for each argument a in ArgsS
together with an attack from a to a′. For details we refer to the translation from preferred to
semi-stable semantics in [25].

Proposition 4.12 For each non-empty, incomparable and conflict-sensitive extension-set S there
exist F, F ′ with pref(F) = S and sem(F ′) = S.

2In what follows, we write CNF formulas in clause form.

15

Proof. By Proposition 4.11 and Lemma 3.10.3, adm(F def
S) = S ∪ {∅}. Since S is incomparable,

pref(F def
S) = S. Moreover, as shown by Dvořák and Woltran [25], for each AF F there is an AF F ′

such that pref(F) = sem(F ′). 2

Each extension-set S realizable under the admissible semantics, can also be realized under
the complete semantics: extend F def

S for each a ∈ ArgsS by a self-attacking argument with an
attack from and to a. As Example 3.18 already suggests, the complete semantics is however
capable of realizing more diverse extension-sets. However, the property of being com-closed (cf.
Definition 3.15) so far only gives an approximation of the sets which can realized.

Example 4.13 Let S = {∅, {a}, {b}, {c}, {a, b, c}, {a, d, e}, {b, d, f}, {x, c}, {x, d}}. S is com-
closed and and satisfies (

⋂
S∈S S) = ∅ ∈ S. We argue that S is not com-realizable. Towards

a contradiction consider an AF F such that com(F) = S. First as {x, c}, {x, d} ∈ S and no
superset of {x, c, d} is in S, there must be a conflict between c and d. In case (c, d) ∈ R and
(d, c) 6∈ R, (x, d) is not admissible (as (x, c) ∈ PairsS). Similar for (d, c) ∈ R and (c, d) 6∈ R.
Thus (c, d), (d, c) ∈ R. Now consider {a, b} which must be admissible as {a}, {b} are admissible
and (a, b) ∈ PairsS. But as {a, b} 6∈ S it has to defend argument c (CS({a, b}) = {a, b, c}). But we
have (d, c) ∈ R and (a, d), (b, d) ∈ PairsS. Hence {a, b} cannot defend c.

5 Signatures & Limits of Disagreement
We now state our main result, i.e. exact characterizations of the signatures for the semantics dealt
with in this paper.

Theorem 5.1 The signatures for the considered semantics are given by the following collections
of extension-sets.

Σcf = {S 6= ∅ | S is downward-closed and tight}
Σnaive = {S 6= ∅ | S is incomparable and dcl(S) is tight}

Σstb = {S | S is incomparable and tight}
Σstage = {S 6= ∅ | S is incomparable and tight}
Σadm = {S 6= ∅ | S is conflict-sensitive and contains ∅}
Σpref = {S 6= ∅ | S is incomparable and conflict-sensitive}
Σsem = {S 6= ∅ | S is incomparable and conflict-sensitive}
Σgrd = {S | |S| = 1}

The characterizations of the theorem are immediate from results in the previous section and
the corresponding characteristics from Propositions 3.6 and 3.11. The result for the grounded
semantics follows directly from the facts that every AF F has |grd(F)| = 1 and every extension-
set S with |S| = 1 is realized by the AF (ArgsS, ∅) under the grounded semantics. Moreover,
Σcom ⊂ {S 6= ∅ | S is com-closed and (

⋂
S∈S S) ∈ S}, cf. Proposition 3.17 and Example 4.13.

16

ΣA

{{∅}} Σnaive

Σstage
=

Σstb\{∅}

Σpref
=

Σsem

ΣcfΣadmΣcom

{∅}

Figure 6: Relations between signatures.

By inspecting the respective properties, we can now immediately put the signatures of different
semantics in relation to each other. For illustration see Figure 6, where ΣA just denotes the set of
all extension-sets over A, and the singleton {∅}, i.e. the extension-set containing no extension,
belongs to Σstb. The right side of Figure 6 shows signatures of these semantics providing only
incomparable extension-sets. The only extension-set they have in common with the signatures of
conflict-free and admissible sets is the one only containing the empty extension. On the other
hand, the intersection with Σcom, which exactly coincides with Σgrd, contains all extension-sets S
with |S| = 1 in addition.

Theorem 5.2 The following relations hold

Σnaive ⊂ Σstage ⊂ Σsem = Σpref, Σstb = Σstage ∪ {∅}
Σcf ⊂ Σadm ⊂ Σcom

{dcl(S) | S ∈ Σnaive} = Σcf, Σadm ⊃ {S ∪ {∅} | S ∈ Σpref}

Proof. In what follows, we make implicit use of the results from Theorem 5.1. First, by
Lemma 3.5.1, Σnaive ⊆ Σstage; Σnaive 6= Σstage is witnessed by Example 3.7, where an extension-set
S /∈ Σnaive is realized under the stage semantics. Relations Σstage ⊆ Σsem and Σcf ⊆ Σadm follow
from Lemma 3.9. Σstage 6= Σsem is by Example 3.12. Σcf 6= Σadm is seen by extension-set {∅, {a, b}}
which is conflict-sensitive but not downward-closed. The fact that adm-realizability implies com-
realizability and Example 3.18 show Σadm ⊂ Σcom. The relations in the last line follow from the
definition of dcl(·) and Lemma 3.10.3 respectively. 2

Let us next compare this landscape of expressiveness illustrated in Figure 6, with those given
by the research on intertranslatability. In [25], only translations that are efficiently computable
are considered and thus the results are hardly comparable to ours (since we have not put any
restrictions on the size of AFs when realizing a set of extensions). Another work [23] studies
translations without computational bounds by considering so-called (weakly) exact translations.
More precisely, a translation is called exact for σ ⇒ θ if the θ-extensions of the transformed
AF coincide with the σ-extensions of the original AF. We have that there is an exact translation

17

for σ ⇒ θ iff Σσ ⊆ Σθ. Thus, the landscape drawn in [23] is almost identical to ours with the
exception of stable semantics.3 However, we recall that the results in [23] do not tell us how the
signatures exactly look like.

The characterization of the signatures of preferred and semi-stable semantics also shows that
they enjoy maximal expressiveness within reasonable semantics as defined in Proposition 3.13.
That is, no semantics which always guarantees a conflict between two different extensions can
express more than preferred and semi-stable semantics, respectively.

Theorem 5.3 Consider an arbitrary semantics σ : AFA → 22A such that for any F = (A,R) ∈
AFA it holds that σ(F) ⊆ cf(F) and for all S1, S2 ∈ σ(F) (S1 6= S2) there exist a, b ∈ S1 ∪ S2

with (a, b) ∈ R. It holds that Σσ ⊆ Σpref and Σσ ⊆ Σsem.

Proof. Follows directly by Proposition 3.13 and Theorem 5.1. 2

With our results on signatures at hand, we now provide some interesting implications. The first
result examines the question whether the intersection of two extension-sets under a given semantics
σ, can always be realized. With the exact characterizations of signatures in Theorem 5.1 at hand
we can answer this question positively for all semantics except complete.

Theorem 5.4 For each σ ∈ {cf, adm, naive, stb, stage, pref, sem} it holds that for any AFs F1, F2

there exists an AF F such that σ(F) = σ(F1) ∩ σ(F2) if σ(F1) ∩ σ(F2) 6= ∅.4

Proof. We have to show that σ(F1) ∩ σ(F2) satisfies the properties according to the signature of
the particular semantics. Existence of an AF F with the desired extensions is then a consequence
of Theorem 5.1.

cf: Let S = cf(F1)∩ cf(F2). It is easy to see that S is downward-closed since cf(F1) and cf(F2)
are downward-closed. So assume S is not tight, i.e. there is some S ∈ S and a ∈ ArgsS with
S ∪ {a} /∈ S but ∀s ∈ S : (a, s) ∈ PairsS. This means that S ∈ cf(F1) and S ∈ cf(F2), but
there is an i ∈ {1, 2} such that S ∪ {a} /∈ cf(Fi). Since Pairscf(Fi) ⊇ PairsS, cf(Fi) is not tight, a
contradiction to Proposition 3.6.

adm: Towards a contradiction, assume S = adm(F1) ∩ adm(F2) is not conflict-sensitive, i.e.
there are A,B ∈ S such that (A ∪ B) /∈ S, but for all a, b ∈ (A ∪ B), (a, b) ∈ PairsS. Then
there is some i ∈ {1, 2}, such that A,B ∈ adm(Fi) but (A ∪ B) /∈ adm(Fi). On the other hand,
Pairsadm(Fi) ⊇ PairsS, hence ∀a, b ∈ (A ∪ B) : (a, b) ∈ Pairsadm(Fi). Therefore adm(Fi) is not
conflict-sensitive, a contradiction to Proposition 3.11.

naive: Let S = naive(F1) ∩ naive(F2) and assume that dcl(S) is not tight, i.e. there is some
S ∈ dcl(S) and a ∈ ArgsS with S ∪ {a} /∈ dcl(S) but ∀s ∈ S : (a, s) ∈ PairsS. This means that

3In fact, stable semantics can be translated to admissible, and stage (and thus also to complete, preferred and semi-
stable) but none of the semantics can be translated to stable. This is for two (technical) reasons: First, the landscape
of expressiveness there is drawn w.r.t. weakly exact translations, which generalize exact translations by allowing to
exclude certain extensions from the transformed AF. Second, in [23] AFs are required to be non-empty and thus there
is no way for stable to realize {∅}.

4 σ(F1) ∩ σ(F2) 6= ∅ is not a necessary condition for σ = stb.

18

a a′

b b′

d1

d2

c c′

Figure 7: AFs F1,F2 with (com(F1) ∩ com(F2)) /∈ Σcom.

there exists an S ′ ⊇ S with S ′ ∈ naive(F1) and S ′ ∈ naive(F2) and therefore S ∈ dcl(naive(F1))
and S ∈ dcl(naive(F2)). Moreover, for some i ∈ {1, 2} it holds that ∀T ⊇ (S ∪ {a}) : T /∈
naive(Fi) and therefore (S∪{a}) /∈ dcl(naive(Fi)). Finally, since Pairsnaive(Fi) ⊇ PairsS, ∀s ∈ S :
(a, s) ∈ Pairsnaive(Fi). These observations sum up to dcl(naive(Fi)) not being tight, a contradiction
to Proposition 3.6.

The result for stb and stage follows from Lemma 3.5.2, just as the result for pref and sem is
immediate by Lemma 3.10.2. 2

Interestingly, the complete semantics turns out to be the only semantics not closed under this
form of intersection. Consider the extension-sets S = {∅, {a}, {b}, {a, b, c, d1}, {a, b, c, d2}},
S1 = S∪{{a, b}}, and S2 = S∪{{a, b, c}}. S1 and S2 are realizable under the complete semantics.
Corresponding AFs are depicted in Figure 7: S1 are the complete extensions of the entire AF, and
S2 the ones of the AF without the dotted part. However, S = S1 ∩ S2 is not com-closed (since
CS({a, b}) = {{a, b, c, d1}, {a, b, c, d2}} does not provide a unique completion-set) and therefore,
by Proposition 3.17, no AF F exists such that com(F) = S.

Our next results concern limits in expressing multiple extensions. Our first result is positive
in a sense that as long as two (maximal) sets of arguments are involved, all semantics satisfying
incomparability of extensions are capable to deliver such extensions. Recall that three sets (e.g.
S = {{a, b}, {a, c}, {b, c}}) are already problematic. Under admissible and complete semantics,
any extension-set containing two arbitrary sets of arguments together with ∅ is realizable.

Proposition 5.5 For any extension-set S with |S| ≤ 2,

1. S ∈ Σσ for σ ∈ {naive, stb, stage, pref, sem} if S is incomparable and S 6= ∅,

2. S ∪ {∅} ∈ Σθ for θ ∈ {adm, com}.

Proof.

1. By Theorem 5.2, it suffices to show the claim for naive semantics. By Theorem 5.1, we
need to show that dcl(S) is tight, which trivially holds for |S| = 1. For S = {S1, S2}, let
S ∈ dcl(S) and a ∈ ArgsS such that S ∪ {a} /∈ dcl(S). W.l.o.g. assume S ⊆ S1. Then,
a ∈ S2 \ S1 and S 6⊆ S2, i.e. there is some s ∈ S \ S2. Since |S| = 2, (a, s) /∈ PairsS.

19

2. We show that T = S ∪ {∅} is conflict-sensitive as long as |S| ≤ 2. This trivially holds for
|S| ≤ 1, since then for all A,B ∈ T, A ∪ B ∈ T. So let S = {S1, S2} with S1 6= S2 and
w.l.o.g. S1, S2 6= ∅. If S1 ⊂ S2 or S2 ⊂ S1 then S1 ∪ S2 ∈ T, hence T is conflict-sensitive.
On the other hand, if S1 and S2 are incomparable there is an a ∈ S1 and a b ∈ S2 such that
(a, b) /∈ PairsT, again showing conflict-sensitivity. Therefore T ∈ Σadm. The result for com
follows from the fact that Σadm ⊂ Σcom (cf. Theorem 5.2).

2

As a final result in this section, we address the question how many extensions can maximally
be achieved by an AF under a semantics σ? Such insights ease checking S ∈ Σσ whenever the
cardinality of S exceeds a certain number.

Research in this direction has recently been initiated by Baumann and Strass [9]. They pro-
posed a function giving the maximal number of stable extensions an AF with n arguments can
have. In accordance to realizability, we are interested in the number of extensions as a function of
a fixed amount of arguments occurring in any extension.

While our results on signatures give insights about the extent of structural diversity a semantics
can express, the maximal number of extensions gives, to some degree, an answer to how much
quantitative disagreement a semantics can express.

Recall that for some extension-set S, we denote the number of extensions in S as |S|, and the
number of arguments occurring in some extension of S as ‖S‖.

Definition 5.6 Given a semantics σ, we define the diversity-function

∆σ(n) = max
F∈AFA,‖σ(F)‖=n

|σ(F)|.

It is easy to see that ∆σ(n) = 2n for σ ∈ {cf, adm, com}. Given an extension-set
S with ‖S‖ = n, the AF (ArgsS, ∅) has 2n conflict-free and admissible sets and the AF

({a, a′ | a ∈ ArgsS}, {(a, a′), (a′, a), (a′, a′) | a ∈ ArgsS}) has 2n complete extensions. For the
other semantics, we first give a technical lemma.

Lemma 5.7 For any AF F , there is a symmetric AF F sym with ‖pref(F)‖ = ‖pref(F sym)‖ and
|pref(F)| ≤ |pref(F sym)|.

Proof. In order to get the symmetric AF F sym we transform F = (A,R) by (1) removing all
arguments a /∈ Argspref(F) together with adjacent attacks, and (2) adding (b, a) to R if (a, b) ∈ R.
Obviously conflict-freeness and defense is preserved, i.e. any set admissible in F is admissible in
F sym. Moreover, as only attacks to and from arguments not occurring in any preferred extension
of F are removed, any conflict between two preferred extensions E1, E2 ∈ pref(F) survives the
translation, therefore there must be two E ′1, E

′
2 ∈ pref(F sym) with E1 ⊆ E ′1 and E2 ⊆ E ′2. Hence

|pref(F)| ≤ |pref(F sym)|. As Argspref(F sym) coincides with the arguments of F sym (by symmetry of
F sym), it follows that ‖pref(F)‖ = ‖pref(F sym)‖. 2

20

Recent results by Baumann and Strass [9] provide a function mapping numbers of arguments
n to the maximal number of stable extensions an AF with n arguments can have. Their main result
is as follows.

Proposition 5.8 For any natural number n, it holds that

max
F=(A,R)∈AFA,|A|=n

|stb(F)| = Λ(n)

with

Λn =

1, if n = 1
3s, if n ≥ 2 ∧ n = 3s
4 · 3s−1, if n ≥ 2 ∧ n = 3s+ 1
2 · 3s, if n ≥ 2 ∧ n = 3s+ 2.

In contrast to ∆σ, Baumann and Strass are interested in the maximal number of stable exten-
sions which can be achieved by an AF with n arguments, no matter how many of these arguments
occur in some extension. The AF giving the maximum number of extension is basically composed
of connected components of size 3 (or 2) with each component being a clique (see [9] for details).
The following result shows that the values of the function Λ carry over to the function ∆σ for
all incomparable semantics σ we consider in this paper. Informally, this means that additional
arguments do not allow for a greater maximal number of extensions.

Theorem 5.9 For σ ∈ {naive, stb, stage, pref, sem} and any natural number n, it holds that

∆σ(n) = Λ(n).

Proof. Consider a semantics σ ∈ {naive, stb, stage, pref, sem}, a natural number n and an AF F
with ‖σ(F)‖ = n. Moreover assume that F has maximal diversity, i.e. |σ(F)| = ∆σ(n). Since
Σσ ⊆ Σpref, we can find an AF F ′ with pref(F ′) = σ(F), therefore |σ(F)| = |pref(F ′)| and
‖σ(F)‖ = ‖pref(F ′)‖. Moreover, by Lemma 5.7, we can find a symmetric AF F sym = (Asym, Rsym)
such that ‖pref(F sym)‖ = ‖pref(F ′)‖ and |pref(F sym)| ≥ |pref(F ′)|. In this symmetric AF it holds
that pref(F sym) = σ(F sym) = stb(F sym). Moreover, each argument occurs in at least one σ-
extension, i.e. ‖σ(F sym)‖ = |Asym|. Therefore it follows by Proposition 5.8 that |σ(F sym)| ≤ Λ(n).
Since we assumed F having maximal diversity, it follows that ∆σ(n) ≤ Λ(n).

Finally consider the fact that for all AFs F = (A,R) with |A| = n having |stb(F)| = Λ(n)
according to [9], it holds that each argument occurs in at least one stable extension, i.e. ‖stb(F)‖ =
|A|. Moreover, F is symmetric, hence σ(F) = stb(F). Therefore F is an AF with ‖σ(F)‖ = n
and |σ(F)| = Λ(n), hence ∆σ(n) = Λ(n). 2

6 Complexity
In this section we consider the computational complexity of several decision problems concerning
realizability for semantics σ, σ′. (i) Given an extension-set, deciding whether it can be realized

21

with σ. (ii) Given a propositional formula ϕ, deciding whether the set of models of ϕ can be
realized with σ. (iii) Given an AF F , deciding whether σ′(F) can be realized with a semantics σ.

We assume the reader is familiar with standard complexity concepts, as P, NP and complete-
ness. Nevertheless we briefly recapitulate the concept of NP-oracle machines and the related com-
plexity class ΣP

2 . By an NP-oracle machine we mean a Turing machine which can access an oracle
that decides a given sub-problem from NP (or coNP) within one step. The class ΣP

2 (sometimes
also denoted by NPNP), contains the problems which can be decided in polynomial time by a
nondeterministic NP-oracle machine. The complementary class of ΣP

2 is the class ΠP
2 (sometimes

also denoted by coNPNP). Finally, a problem is in the class DP iff it can be characterized as the
intersection of a problem in NP and a problem in coNP.

6.1 Realizability of an Extension-Set
In this section, we first consider the problem of checking realizability, i.e. given an extension-set S
and a semantics σ, is there an AF F with σ(F) = S. This is equivalent with checking membership
in a signature for semantics σ, so whether S ∈ Σσ holds. For most of the semantics, it is not hard
to see that this can be done in polynomial time in the size of S. For instance, to check that S ∈ Σstb,
it is sufficient to check for incomparability via a double loop over S and for being tight one loops
over all S ∈ S and in each such loop, another loop is required for each a ∈ ArgsS \ S. The only
exception is the naive semantics, since the characterization in Theorem 5.1 makes use of dcl(S)
which is not polynomially bounded in the size of S.

We provide an alternative characterization based on the ternary majority operator maj3 : given
three sets S1, S2, S3 ⊆ A, the majority of these sets is defined as maj3 (S1, S2, S3) = (S1 ∩ S2) ∪
(S2 ∩ S3) ∪ (S1 ∩ S3). That is s ∈ maj3 (S1, S2, S3) iff s appears in at least two of the sets.

Proposition 6.1 For an incomparable extension-set S it holds that dcl(S) is tight iff for all
S1, S2, S3 ∈ S there is an S ∈ S, such that maj3 (S1, S2, S3) ⊆ S.

Proof. First suppose that for all S1, S2, S3 ∈ S there is some S ∈ S such that maj3 (S1, S2, S3) ⊆
S. Towards a contradiction assume that the downward-closure of S is not tight, i.e. there exist
S ′ ∈ dcl(S) and a ∈ ArgsS = Argsdcl(S), such that (S ′ ∪ {a}) /∈ dcl(S) and for all s ∈ S ′,
(a, s) ∈ PairsS = Pairsdcl(S). Assume |S ′| = 1, i.e. S ′ = {s}. As (a, s) ∈ PairsS by assumption,
there is a T ∈ S with {a, s} ⊆ T , a contradiction to S ′ ∪ {a} /∈ dcl(S). Hence |S ′| > 1, i.e.
S ′ = {s1, . . . , sn} with n > 1. By assumption, {s1, . . . , sn, a} /∈ S, but (a, si) ∈ PairsS for each
si ∈ S ′. Hence, for each si ∈ S ′ there is some Si ∈ S with {a, si} ⊆ Si for i = 1 . . . n. Moreover
maj3 (Si, Sj, S

′) ⊇ {si, sj, a} for each i, j ∈ {1, . . . , n} since si ∈ S ′ ∩ Si, sj ∈ S ′ ∩ Sj , and
a ∈ Si∩Sj . Therefore there is some Sij ∈ S with Sij ⊇ {si, sj, a}. Now for some k ∈ {1, . . . , n},
we get Sijk = maj3 (Sij, Sk, S

′) ⊇ {si, sj, sk, a} and Sijk ∈ S. Following this procedure for all
1 . . . n yields a T ∈ S with T ⊇ {s1, . . . , sn, a}, a contradiction to S ′ ∪ {a} /∈ dcl(S).

To show the only-if-direction consider some extension-set S where dcl(S) is tight and as-
sume, towards a contradiction, sets S1, S2, S3 ∈ S such that maj3 (S1, S2, S3) 6⊆ S, for all
S ∈ S. Now, consider the ⊆-maximal S ′ ∈ dcl(S) with S ′ ⊂ maj3 (S1, S2, S3). It holds that
∃a ∈ maj3 (S1, S2, S3) \ S ′ such that S ′ ∪ {a} /∈ dcl(S). As S ′ ∪ {a} ⊆ maj3 (S1, S2, S3), all

22

s ∈ (S ′ ∪ {a}) are also contained in ((S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S1 ∩ S3)). Thus for each s ∈ S ′
there is some Si ∈ {S1, S2, S3} with {s, a} ⊆ Si. Hence, (s, a) ∈ PairsS for each s ∈ S ′, which
is, together with the facts that S ′ ∈ dcl(S) and S ′ ∪{a} /∈ dcl(S), a witness that dcl(S) is not tight,
and therefore a contradiction to the assumption. 2

Testing the majority criterion is done in polynomial time by looping over all triples (S1, S2, S3)
stemming from S. Together with the above observations we obtain the following theorem.

Theorem 6.2 For semantics σ ∈ {cf, naive, stb, stage, adm, pref, sem}, given S, testing S ∈ Σσ

is in polynomial time.

Of course one difficulty with Theorem 6.2 is that one may be concerned with deciding realiz-
ability of collections of sets, S, with such collections having size superpolynomial in |ArgsS|. In
such cases it would be more realistic to encode S in a more compact form. We observe that there
are a number of ways in which such “compact encodings” may be treated:

1. As the models of a given propositional formula.

2. As the extensions of an AF under another argumentation semantics.

To begin with, we consider the former case.

6.2 Realizing Models of Propositional Formulas
Here we study the problem of realizing the set of models of a propositional formula as extension-
set for an argumentation semantics.

Definition 6.3 A propositional formula ϕ over atoms X , denoted ϕ(X), encodes the extension-set
S if ArgsS ⊆ X and S is a model of ϕ iff S ∈ S.5 We denote the extension-set encoded by ϕ(X) as
Sϕ and the propositional function described by ϕ(X) as fϕ.

The next proposition gives complexity results for checking the characteristic properties of sig-
natures, given an extension-set as models of a propositional formula.

Proposition 6.4 Given a propositional formula ϕ(X), it holds that

1. deciding if Sϕ is non-empty is NP-complete,

2. deciding if Sϕ is downward-closed is coNP-complete,

3. deciding if Sϕ is incomparable is coNP-complete,

4. deciding if Sϕ is tight is coNP-complete, and

5 We understand a set of arguments as the interpretation where the atoms with corresponding arguments in the set
are assigned true and all other atoms are assigned false.

23

cf adm stb stage pref sem

ϕ(X) coNP-c coNP-c coNP-c DP-c DP-c DP-c

Table 1: Complexity of the σ-realizability problem for propositional formulas, ϕ(X).

5. deciding if Sϕ is conflict-sensitive is coNP-complete.

Proof Sketch. The proof is based on the following ideas: (1) Deciding whether Sϕ is non-empty is
equivalent to deciding whether ϕ is satisfiable; (2) Concerning Sϕ is downward-closed we have to
test whether the boolean function fϕ is anti-monotone. This can be falsified by finding a model M
and a variable x such that M \ {x} is not a model of ϕ; (3) To falsify incomparability of Sϕ we
can guess two models that are in ⊂-relation; (4) To falsify that Sϕ is tight we need a model S of
ϕ, an argument x such that S ∪ {x} 6∈ Sϕ, and a linear number of Ti ∈ Sϕ such that for each pair
(s, x), s ∈ S there is one Ti with {s, x} ⊆ Ti; (5) To falsify that Sϕ is conflict-sensitive we need
two models S, T of ϕ, such that S ∪ T 6∈ Sϕ, and a linear number of Ti ∈ Sϕ such that for each
pair (s, t), s ∈ S, t ∈ T there is one Ti with {s, t} ⊆ Ti. The full proofs are provided in A.1. 2

With these results at hand, we are able to present upper and lower bounds on the complexity of
deciding whether the models of a given propositional formula ϕ can be realized under the conflict-
free, admissible, stable, stage, preferred and semi-stable semantics. We summarize the results in
Table 1. An entry for column σ gives the complexity of deciding whether ϕ(X) ∈ Σσ and C-c
abbreviates completeness for class C.

Theorem 6.5 The cf-realizability problem in which instances are propositional formulas, ϕ(X),
is coNP-complete.

Proof. Recall that a S is cf-realizable, if S 6= ∅, S is downward-closed, i.e. dcl(S) = S, and S is
tight (cf. Theorem 5.1). The coNP membership is thus immediate from Proposition 6.4. Notice
that we do not have to check S 6= ∅ explicitly. This follows from downward-closure, since for
a downward-closed set S, S 6= ∅ iff ∅ ∈ S. Testing ∅ ∈ Sϕ just additionally requires checking
whether ϕ(〈⊥, . . . ,⊥〉) evaluates to true, which is easy.

To establish coNP-hardness, we use a straightforward reduction from SAT to the complemen-
tary problem. Given an instance ψ(X) of SAT let ϕ(X, y) be the propositional formula

ϕ(X, y) = (y ∧ ψ(X)) ∨
∧

x∈X∪{y}

¬x

where y is a new variable. Without loss of generality we assume that the empty set is not a model
of ψ(X). We claim ψ(X) is satisfiable if and only if Sϕ is not cf-realizable. Suppose that ψ(X) is
satisfied by a model M . Then M ∪ {y} is a model of ϕ(X, y) while M is not. Hence, Sϕ is not
downward closed and thus not cf-realizable. Conversely suppose ψ(X) is unsatisfiable. Then the
empty set is the only model of ϕ(X, y), i.e. Sϕ = {∅}. Thus, Sϕ is downward-closed and tight and
thus cf-realizable.

We deduce that ψ(X) is accepted as an instance of SAT if and only if ϕ(X, y) is not accepted
as an instance of cf-realizability and, hence, the cf-realizability problem is coNP-complete. 2

24

Theorem 6.6 The adm-realizability problem in which instances are propositional formulas, ϕ(X),
is coNP-complete.

Proof. First observe that deciding, given ϕ(X) whether Sϕ is adm-realizable just involves check-
ing, that ϕ(〈⊥, . . . ,⊥〉) evalutates to true and that Sϕ is conflict-sensitive (cf. Theorem 5.1). The
first condition is trivially checked in polynomial time, the second we have shown to be in coNP in
Proposition 6.4.

To prove that adm-realizability is coNP-hard we reduce from deciding conflict-sensitivity,
which we showed to be coNP-hard (cf. Proposition 6.4). Let ψ(X) be an instance of deciding
whether Sψ is conflict-sensitive, and consider the instance, ϕ(X) of the adm-realizability problem
given by,

ϕ(X) = ψ(X) ∨

(∧
x∈X

¬x

)

Then Sϕ = Sψ ∪ {∅}. As the empty set has no effect on conflict-sensitivity of an extension-set
we have that Sϕ is conflict-sensitive iff Sψ conflict-sensitive. Further, as always ∅ ∈ Sϕ, we finally
have that Sϕ is conflict-sensitive iff Sψ is adm-realizable and, hence, the adm-realizability problem
is coNP-complete. 2

Theorem 6.7 The stb-realizability problem in which instances are propositional formulas, ϕ(X),
is coNP-complete.

Proof. The coNP membership is immediate from Proposition 6.4.
To show that deciding whether ϕ(X) is stb-realizable is coNP-hard, we use a reduction from

UNSAT. Given an instance ψ(X) of SAT, form ϕ(X, y, z) as an instance of comparability with

ϕ(X, y, z) = ψ(X) ∧

(∧
x∈X

(x→ (y ∨ z))

)

Here y and z are new variables. We claim ψ(X) is satisfiable if and only if Sϕ is not stb-realizable.
Suppose that ψ(X) is satisfiable using α and let Sα ⊆ X be the corresponding subset of X

indicated by α. Then,

T = Sα ∪ {y} ∈ Sϕ

and

U = Sα ∪ {y, z} ∈ Sϕ

Clearly T ⊂ U so that ϕ(X, y, z) is comparable, and thus Sϕ is not stb-realizable.
Conversely suppose ψ(X) is unsatisfiable. Then also ϕ(X, y, z) is unsatisfiable, i.e. Sϕ = {}.

Hence, Sϕ is stb-realizable.
We deduce that deciding if Sϕ is stb-realizable is coNP-complete. 2

25

Theorem 6.8 The σ-realizability problem in which instances are propositional formulas, ϕ(X), is
in DP for σ ∈ {pref, stage, sem}.

Proof. For σ ∈ {pref, stage, sem} we have, with the exception of Sσ 6= ∅, shown that the relevant
characterizing conditions can be decided in coNP. Letting χ(σ) denote these, e.g. χ(pref) =
{conflict-sensitive, incomparable}, we see that, Sϕ ∈ Σσ if and only if

ϕ(X) ∈ { ψ(X) : ψ(X) is satisfiable} ∩ { ψ(X) : Sψ satisfies χ(σ) }

So that σ-realizability is in DP for these three cases. 2

There are also matching lower bounds for preferred, stage, and semi-stable semantics, given in
the next theorem.

Theorem 6.9 The σ-realizability problem in which instances are propositional formulas, ϕ(X), is
DP-hard σ ∈ {pref, stage, sem}.

Proof Sketch. The proof roughly proceeds as follows (a full proof is given in A.2). First we show
that σ-realizability is coNP-hard. Second we show that σ-realizability is NP-hard. Finally we show
that σ-realizability has the property AND2, i.e. the problem of deciding whether two instances of
the σ-realizability problem are both true can be reduced to a single instance, and then apply a result
from Chang and Kadin [15] to deduce DP-hardness. 2

Notice that for naive semantics, for which dcl(S) being tight is a condition for naive realizabil-
ity we have the following easy result.

Lemma 6.10 Let dcl-member be the following decision problem. Given 〈S, ϕ(X)〉 with S ⊆ X ,
decide whether S ∈ dcl(Sϕ) holds. dcl-member is NP-complete.

Proof. To see that dcl-member is in NP, given an instance 〈S, ϕ(X)〉 it suffices to guess T ⊆ X
and verify (S ⊆ T) ∧ (ϕ(αT) = >), where αT is the interpretation corresponding to T .

For NP-hardness, we use a reduction from SAT. Given an instance ψ(X) of SAT simply form
the instance 〈∅, ψ〉 of dcl-member. If ψ(X) is satisfied by α, then Sα (the corresponding subset
of X) is in Sψ and, trivially, ∅ ∈ dcl(Sψ) so 〈∅, ψ〉 is accepted as an instance of dcl-member.
Conversely, if ∅ ∈ dcl(Sψ), then there is some T ⊆ X for which T ∈ Sψ, so that ψ(αT) = >, i.e.
ψ is satisfiable. 2

6.3 Recasting Argumentation Semantics
Turning to the second compact encoding of a collection of subsets mentioned earlier, i.e. S is
presented as the σ-extensions of a given AF, we introduce the problem of recasting: given an
AF F1 ∈ AFA and two semantics σ1, σ2, decide whether there exists an F2 ∈ AFA, such that
σ1(F1) = σ2(F2). By the very nature of signatures, this is equivalent to test σ1(F1) ∈ Σσ2 . If there
is an exact translation in the sense of [23], i.e. a function Tr such that σ1(F1) = σ2(Tr(F)) for

26

cf adm com

cf - trivial trivial

adm coNP-c - trivial

com coNP-c coNP-c -

Table 2: Complexity of the recasting problem (simple semantics).

each AF F , (or equivalently Σσ1 ⊆ Σσ2) the answer is trivially yes. Here we are interested in com-
binations of semantics σ1, σ2 where no such universal translation exists and we ask whether there
is a “translation” for a concrete AF. Table 2 and Table 3 summarize our results. Note that recasting
only makes sense between semantics which are (resp. are not) I-maximal (i.e. the extensions are
(resp. are not) incomparable); thus we separated the semantics under consideration. An entry for
row σ1 and column σ2 gives the complexity of deciding whether σ1(F) ∈ Σσ2 . C-h abbreviates
hardness for class C; C-c abbreviates completeness for class C; ”trivial“ means that each instance is
a “Yes”-instance. For both tables, these “trivial” entries are immediate from the relations between
the signatures given in Theorem 5.2.

Theorem 6.11 The complexity results depicted in Table 2 hold.

Proof. The “trivial” results are immediate by the fact that Σcf ⊂ Σadm ⊂ Σcom (cf. Theorem 5.2).
For coNP-membership (of the non-trivial problems) we provide non-deterministic algorithms dis-
proving, given an AF F , σ(F) ∈ Σσ′ .

(a) Recasting from σ1 ∈ {adm, com} to cf semantics. If σ1(F) is not cf-realizable then either
(i) σ1(F) is not downward-closed or (ii) σ1(F) is not tight (cf. Theorem 5.1). To check (i) we just
have to guess two sets B,C such that B ⊂ C, C ∈ σ1(F) and B 6∈ σ1(F). To check (ii) we have
to guess a set E, an argument a and sets Ss for each s ∈ E such that E ∈ σ1(F), E ∪{a} 6∈ σ1(F)
and {a, s} ⊆ Ss for each s. As verifying that a set is in σ1(F) is in polynomial time this gives
coNP-procedures for testing whether σ1(F) is cf-realizable.

(b) Recasting from com to adm semantics. Here, we check (i) ∅ /∈ com(F) or (ii) com(F) is
not conflict-sensitive. Clearly (i) can be done in polynomial time. For (ii) notice that if com(F) is
not conflict-sensitive then there exist sets A,B ∈ com(F) such that A ∪ B ∈ cf(F) but A ∪ B 6∈
com(F). But then there exists a set C with A ∪ B ⊂ C ∈ com(F). So to disprove com(F) being
conflict-sensitive we guess sets A,B,C and test whether A,B,C ∈ com(F), A ∪ B ⊂ C but
A ∪B 6∈ com(F), which is a coNP-procedure for testing whether com(F) is adm-realizable.

For coNP-hardness, we first give the result for σ1 ∈ {adm, com} and σ2 = cf. We use a
standard reduction from CNF formulas ϕ(X) =

∧
c∈C c with each clause c ∈ C a disjunction of

literals from X to the AF Fϕ = (Aϕ, Rϕ) given as

Aϕ = {ϕ, ϕ̄} ∪ C ∪X ∪ X̄
Rϕ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(ϕ, ϕ̄), (ϕ̄, ϕ̄)} ∪ {(ϕ̄, x), (ϕ̄, x̄) | x ∈ X}.

27

a

b

a′

b′
c

ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

ϕ̄

Figure 8: Fϕ (without dotted part) and F ′ϕ (including dotted part) for the CNF-formula ϕ = (x1 ∨
x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

We illustrate the framework Fϕ (ignore the dashed part for the moment) for the CNF-formula
ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4) in Figure 8.

It holds that ϕ is satisfiable iff there is an S 6= ∅ in σ1(Fϕ) iff there is an S ∈ σ1(Fϕ) with
ϕ ∈ S (see [17]). Now if adm(Fϕ) = com(Fϕ) = {∅} then σ1(Fϕ) is clearly cf-realizable. On the
other hand {ϕ} /∈ adm(F) (and thus {ϕ} /∈ com(F)). So if there is an S ∈ σ1(Fϕ) with ϕ ∈ S
then σ1(Fϕ) is not downward-closed and thus not cf-realizable (cf. Theorem 5.1). Thus we obtain
that ϕ is satisfiable iff σ1(Fϕ) is not cf-realizable.

The result for σ1 = com and σ2 = adm can be shown via an extension of above reduction to
F ′ϕ = (A′ϕ, R

′
ϕ) with

A′ϕ = Aϕ ∪ {a, a′, b, b′, c}
R′ϕ = Rϕ ∪ {(a, a′), (a′, a), (a′, a′), (a′, c)}∪

{(b, b′), (b′, b), (b′, b′), (b′, c)} ∪ {(ϕ̄, a), (ϕ̄, b)}.

The AF F ′ϕ for the example CNF is illustrated in Figure 8 including the dashed part. Clearly if
ϕ is not accepted then none of the new arguments is accepted. So if ϕ is unsatisfiable we again
have com(F ′ϕ) = {∅} and thus the extension-set is adm-realizable. Otherwise, for each model
M of ϕ we have three complete extensions M ∪ X \M ∪ {ϕ, a}, M ∪ X \M ∪ {ϕ, b} and
M ∪X \M ∪ {ϕ, a, b, c}. Thus, every pair of arguments of the union of the first two extensions
M ∪ X \M ∪ {ϕ, a, b} is contained in Pairscom(F ′

ϕ), but M ∪ X \M ∪ {ϕ, a, b} /∈ com(F ′ϕ).
This violates conflict-sensitivity of com(F ′ϕ). We get that ϕ is satisfiable iff com(F ′ϕ) is not adm-
realizable (cf. Theorem 5.1). 2

Theorem 6.12 The complexity results depicted in Table 3 hold.

The “trivial” results are immediate by the relations between the signatures given in Theorem 5.2
and the remaining entries are by the following lemmas.

Lemma 6.13 Recasting from stb to σ ∈ {stage, pref, sem} is NP-complete.

28

naive stb stage pref sem

naive - trivial trivial trivial trivial

stb coNP-h - NP-c NP-c NP-c

stage coNP-h trivial - trivial trivial

pref coNP-h ΠP
2 -c ΠP

2 -c - trivial

sem coNP-h ΠP
2 -c ΠP

2 -c trivial -

Table 3: Complexity of the recasting problem (I-maximal semantics).

a1 a2 a3

b1 b2 b3

ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

ϕ̄

Figure 9: F ∗ϕ for the CNF-formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

Proof. For the complexity of recasting stable to σ ∈ {stage, pref, sem} we use Σstb = Σstage ∪ {∅},
Σstage ⊂ Σsem = Σpref from Theorem 5.2. Thus, stb(F) ∈ Σσ iff stb(F) 6= ∅. Deciding whether an
AF has a stable extension is well-known to be NP-complete [17]. 2

Lemma 6.14 Recasting from σ ∈ {stb, stage, pref, sem} to naive is coNP-hard.

Proof. We show coNP-hardness of recasting to naive semantics by a reduction from unsatisfiability
of CNF formulas. Starting from a formula ϕ(X) =

∧
c∈C c with each clause c ∈ C a disjunction

of literals from X , we extend Fϕ from the proof of Theorem 6.11 and define F ∗ϕ = (A∗ϕ, R
∗
ϕ) using

an additional gadget (borrowed from Figure 1) via

A∗ϕ =Aϕ ∪ {a1, a2, a3, b1, b2, b3}, and

R∗ϕ =
(
Rϕ \ {(ϕ̄, ϕ̄)}

)
∪ {(ϕ̄, ai), (ϕ̄, bi) | 1 ≤ i ≤ 3} ∪ {(ϕ̄, ϕ)}∪

{(ai, aj), (ai, bi) | 1 ≤ i, j ≤ 3, i 6= j}.

In Figure 9 we illustrate the framework F ∗ϕ for the CNF-formula ϕ = (x1 ∨ x2 ∨ x3)∧ (x2 ∨¬x3 ∨
¬x4) ∧ (x2 ∨ x3 ∨ x4).

It is known that ϕ is satisfiable iff {ϕ̄} ∪ C is not the unique preferred extension of F ∗ϕ [19]
(the additional part in the AF does not affect the claim due to directionality of preferred semantics
[3]). As first {ϕ̄}∪C is also a stable extension and second the preferred extensions corresponding

29

to the models of ϕ are also stable extensions this result extends to stb, sem and stage semantics.
Let σ ∈ {stb, pref, sem, stage}. If ϕ is unsatisfiable then {ϕ̄} ∪ C is the only S ∈ σ(F ∗ϕ), hence
σ(F ∗ϕ) ∈ Σnaive. Otherwise, for each model M of ϕ, there exist S1, S2, S3 ∈ σ(F ∗ϕ), such that
maj3 (S1, S2, S3) = M ∪X \M ∪ {ϕ, b1, b2, b3}. That are:

• S1 = M ∪X \M ∪ {ϕ, a1, b2, b3}

• S2 = M ∪X \M ∪ {ϕ, a2, b1, b3}

• S3 = M ∪X \M ∪ {ϕ, a3, b1, b2}

The set maj3 (S1, S2, S3) is neither admissible (b1, b2, b3 are not defended against attacks from
a1, a2, a3) nor having full range (missing a1, a2 and a3) and thus is not in σ(F ∗ϕ). Moreover, any
set S ′ ⊃ maj3 (S1, S2, S3) is not conflict-free in F ∗ϕ, hence also S ′ /∈ σ(F ∗ϕ). By Proposition 6.1
and Theorem 5.1, σ(F ∗ϕ) /∈ Σnaive. Hence ϕ is satisfiable iff σ(F ∗ϕ) is not naive-realizable. 2

Lemma 6.15 Recasting from σ1 ∈ {pref, sem} to σ2 ∈ {stb, stage} is ΠP
2 -complete.

Proof. Since σ1(F) 6= ∅ for any AF F , and Σstb = Σstage ∪ {∅}, we can stick to σ2 = stb.
Membership is by an algorithm that, given an F = (A,R), disproves σ1(F) ∈ Σstb, that is it looks
for counter examples (violating tightness) from σ1(F) as follows: guess sets S ⊆ A, {As ⊆ A |
s ∈ S} and a ∈ A \ S; check S ∈ σ1(F) and S ∪ {a} 6∈ σ1(F), and for all s ∈ S check
As ∈ σ1(F) and {a, s} ⊆ As (for all checks, an NP-oracle is sufficient [20, 24]). For sets passing
all the checks we have that S and a contradict tightness as S ∪ {a} 6∈ σ1(F) but for each s ∈ S,
(a, s) ∈ Pairsσ1(F). By Theorem 5.1, σ1(F) /∈ Σstb.

We show ΠP
2 -hardness for σ1 = pref (pref semantics can be efficiently reduced to sem seman-

tics [25], the result for σ1 = sem thus follows): Given QBF Φ = ∀Y ∃Zϕ(Y, Z), where ϕ is a CNF∧
c∈C c with each c a disjunction of literals from X = Y ∪ Z, let FΦ = (AΦ, RΦ) with

AΦ = {ϕ, g} ∪ C ∪X ∪ X̄ ∪ {a, b, c, d, e, f}, and
RΦ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X}∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}∪
{(ϕ, g), (g, g)} ∪ {(g, z), (g, z̄) | z ∈ Z}∪
{(a, d), (d, a), (b, c), (c, b), (c, d), (d, c), (c, f),

(d, f), (f, e), (f, f), (ϕ, f)}

We illustrate FΦ for the QBF Φ = ∀y1, y2∃z3, z4

(
(y1∨ y2∨ z3)∧ (y2∨¬z3∨¬z4)∧ (y2∨ z3∨ z4)

)
in Figure 10. In fact, FΦ links the reduction from [20] with an AF similar to Figure 2.

We show that Φ is valid iff pref(FΦ) ∈ Σstb. To this end let F ′Φ be FΦ without arguments
{a, b, c, d, e, f} and without attacks involving these arguments (the continuous part in Figure 10).
By [20] we know that ϕ is contained in each E ∈ pref(F ′Φ) iff Φ is valid. Therefore it remains to
show that pref(FΦ) ∈ Σstb iff ϕ is contained in all E ∈ pref(F ′Φ). First recall that since arguments
{a, b, c, d, e, f} do not attack the F ′Φ-part we know from the splitting theorem in [5] that each

30

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

g

a

b c

d e

f

Figure 10: FΦ for the QBF Φ = ∀y1, y2∃z3, z4

(
(y1 ∨ y2 ∨ z3)∧ (y2 ∨¬z3 ∨¬z4)∧ (y2 ∨ z3 ∨ z4)

)
preferred extension of FΦ contains a preferred extension of F ′Φ and each preferred extension of F ′Φ
is contained in some preferred extension of FΦ. Now suppose ϕ is contained in eachE ∈ pref(F ′Φ).
Then E defends e in FΦ and therefore pref(FΦ) = {{a, b, e}∪E, {a, c, e}∪E, {b, d, e}∪E | E ∈
pref(F ′Φ)}. Note that for each E ∈ FΦ, all arguments of FΦ not contained in E are attacked by
E. In other words, pref(FΦ) = stb(FΦ), and thus pref(FΦ) ∈ Σstb. Now let us assume there is a
preferred extension E of F ′Φ such that ϕ /∈ E. Then, the preferred extensions of FΦ containing E
are exactly {a, b} ∪ E (e is neither defended by E nor by {a, b}), {a, c, e} ∪ E, and {b, d, e} ∪ E.
Generalising the argument from Example 3.12, we observe that pref(FΦ) is not tight. In fact, we
haveE∪{a, b, e} /∈ pref(FΦ) but for all s ∈ E∪{a, b}, we have (s, e) ∈ Pairspref(FΦ) (as witnessed
by the extensions {a, c, e} ∪ E and {b, d, e} ∪ E). By Theorem 5.1, pref(FΦ) /∈ Σstb. 2

7 Discussion
In this work, we tackled a novel problem in the area of abstract argumentation. We initiated a study
on the characteristics the sets of extensions w.r.t. a given semantics satisfy. For the semantics naive,
stable, stage, preferred, and semi-stable we have an exact picture fully describing their signatures.
These results also tell about the limits of global disagreement (a notion introduced in [12]) that can
be modelled within AFs, e.g. our results show that preferred and semi-stable semantics are able to
express more disagreement than stage semantics: Σstage ⊂ Σpref = Σsem.

Besides an exact characterization of the signature of complete semantics, future work includes
an investigation of other important semantics, in particular cf2-semantics [4] and resolution-based
grounded (RBG) [2]; for the latter semantics recent results [22] show a quite different behavior.
More specifically, these results show that the signature of RBG is a proper subset of Σpref (and
thus of Σsem) but incomparable to Σstb (resp. to Σstage). Moreover, one can easily show that it
is a proper superset of Σnaive. However, an exact characterization is still open. We also plan an
according extension of our complexity analysis. Furthermore, exact bounds for the some of the
decision problems considered are still missing for the case of naive extensions. Since we have
viewed semantics here only in an extension-based way, it would also be of high interest to extend
our studies to labelling-based semantics [14]. Preliminary work in this direction has recently been
done by Dyrkolbotn [26].

31

Another interesting direction is to restrict the concepts of signatures and realizability in such a
way that no additional arguments are allowed (recall that we made heavy use of such arguments,
for instance in the the canonical defense-argumentation-framework, cf. Definition 4.9). A first step
towards this direction has recently been undertaken in [8]. That paper also presents alternative
characterizations for some of the signatures we have presented here. Finally, we also want to
explore how our results allow for pruning the search space in algorithms for abstract argumentation.

References
[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-

tation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[2] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based family of
abstract argumentation semantics and its grounded instance. Artif. Intell., 175(3-4):791–813,
2011.

[3] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artif. Intell., 171(10-15):675–700, 2007.

[4] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-Recursiveness: A general
schema for argumentation semantics. Artif. Intell., 168(1-2):162–210, 2005.

[5] Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and Wolf-
gang Faber, editors, Proceedings of the 11th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer
Science, pages 40–53. Springer, 2011.

[6] Ringo Baumann. What does it take to enforce an argument? Minimal change in abstract
argumentation. In Luc De Raedt, Christian Bessière, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors, Proceeding of the 20th European
Conference on Artificial Intelligence (ECAI 2012), volume 242 of Frontiers in Artificial In-
telligence and Applications, pages 127–132. IOS Press, 2012.

[7] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforcing
and monotonicity results. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and
Guillermo Ricardo Simari, editors, Proceedings of the 3rd Conference on Computational
Models of Argument (COMMA 2010), volume 216 of Frontiers in Artificial Intelligence and
Applications, pages 75–86. IOS Press, 2010.

[8] Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Hannes Strass, and Stefan Woltran.
Compact argumentation frameworks. In Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan, editors, Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI 2014), volume 263 of Frontiers in Artificial Intelligence and Applications, pages 69–
74. IOS Press, 2014.

32

[9] Ringo Baumann and Hannes Strass. On the maximal and average numbers of stable ex-
tensions. In Proceedings of the 2nd International Workshop on Theory and Applications of
Formal Argumentation (TAFA 2013), volume 8306 of Lecture Notes in Computer Science,
pages 111–126. Springer, 2014.

[10] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artif.
Intell., 171(10-15):619–641, 2007.

[11] Philippe Besnard and Sylvie Doutre. Characterization of semantics for argument systems.
In Didier Dubois, Christopher A. Welty, and Mary-Anne Williams, editors, Proceedings of
the 9th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2004), pages 183–193. AAAI Press, 2004.

[12] Richard Booth, Martin Caminada, Mikolaj Podlaszewski, and Iyad Rahwan. Quantifying
disagreement in argument-based reasoning. In Wiebe van der Hoek, Lin Padgham, Vincent
Conitzer, and Michael Winikoff, editors, Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), pages 493–500. IFAAMAS,
2012.

[13] Martin Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-stable semantics. J.
Log. Comput., 22(5):1207–1254, 2012.

[14] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2):109–145, 2009.

[15] Richard Chang and Jim Kadin. On computing boolean connectives of characteristic functions.
Mathematical Systems Theory, 28(3):173–198, 1995.

[16] Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. On the
revision of argumentation systems: Minimal change of arguments statuses. In Chitta Baral,
Giuseppe De Giacomo, and Thomas Eiter, editors, Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pages
52–61. AAAI Press, 2014.

[17] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science, 170(1-2):209–244, 1996.

[18] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–357, 1995.

[19] Paul E. Dunne. The computational complexity of ideal semantics. Artif. Intell.,
173(18):1559–1591, 2009.

[20] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artif.
Intell., 141(1/2):187–203, 2002.

33

[21] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. In Chitta Baral, Giuseppe De Giacomo,
and Thomas Eiter, editors, Proceedings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2014). AAAI Press, 2014.

[22] Wolfgang Dvořák, Thomas Linsbichler, Emilia Oikarinen, and Stefan Woltran. Resolution-
based grounded semantics revisited. In Simon Parsons, Nir Oren, Chris Reed, and Federico
Cerutti, editors, Proceedings of the 5th Conference on Computational Models of Argument
(COMMA 2014), volume 266 of Frontiers in Artificial Intelligence and Applications, pages
269–280. IOS Press, 2014.

[23] Wolfgang Dvořák and Christof Spanring. Comparing the expressiveness of argumentation
semantics. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Proceedings of the 4th
Conference on Computational Models of Argument (COMMA 2012), volume 245 of Frontiers
in Artificial Intelligence and Applications, pages 261–272. IOS Press, 2012.

[24] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage semantics in
argumentation frameworks. Inf. Process. Lett., 110(11):425–430, 2010.

[25] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of argumentation semantics.
J. Artif. Intell. Res. (JAIR), 41:445–475, 2011.

[26] Sjur Kristoffer Dyrkolbotn. How to argue for anything: Enforcing arbitrary sets of labellings
using AFs. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Proceedings of
the 14th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2014), pages 626–629. AAAI Press, 2014.

[27] Marcelo A. Falappa, Alejandro Javier Garcı́a, Gabriele Kern-Isberner, and Guillermo Ricardo
Simari. On the evolving relation between belief revision and argumentation. Knowledge Eng.
Review, 26(1):35–43, 2011.

[28] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer, 2009.

[29] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumenta-
tion stages. In John-Jules C. Meyer and Linda C. van der Gaag, editors, Proceedings of the
8th Dutch Conference on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

34

A Proofs from Section 6.

A.1 Proof of Proposition 6.4.
The proof of Proposition 6.4 is by the following lemmas.

Lemma A.1 Given a propositional formula ϕ, it holds that deciding if Sϕ is non-empty is NP-
complete.

Proof. Trivial reduction from SAT. Given an instance, ϕ of SAT, if Sϕ = ∅ then fϕ ≡ ⊥, i.e. ϕ(X)
is unsatisfiable. Hence ϕ(X) encodes a non-empty set if and and only if ϕ(X) is satisfiable. 2

Lemma A.2 Given a propositional formula ϕ, it holds that deciding if Sϕ is downward-closed is
coNP-complete.

Proof. Let ϕ(X) be any propositional formula with Sϕ the system of subsets of ArgsS it encodes.
For membership in coNP, note that in order for Sϕ to be downward-closed, fϕ must be anti-
monotone, i.e.

∀ xi and assignments α to 〈x1, x2, . . . , xi−1, xi+1, . . . , xn〉

fϕ(α, xi := >) ≤ fϕ(α, xi := ⊥) (where the ordering ⊥ < > is assumed).6 Thus Sϕ is not
downward-closed system if and only if

∃(α ∈ 〈⊥,>〉n, i) : (ϕ(α//xi := >) ∧ (¬ϕ(α//xi := ⊥))) = >

Here (α//xi := a) denotes the assignment obtained from α by substituting a for the value of xi
and leaving other values unchanged. The test that Sϕ is not downward-closed is easily seen to be
achievable by an NP algorithm, thus verifying that Sϕ is downward-closed can be decided in coNP.

To establish coNP-hardness, we use a straightforward reduction from SAT to the complemen-
tary problem. Given an instance ψ(X) of SAT let ϕ(X, y) be the propositional formula y ∧ ψ(X)
where y is a new variable. We claim ψ(X) is satisfiable if and only if ϕ(X, y) does not define an
anti-monotone function. Suppose that ψ(X) is satisfied by α. Then ϕ(α, y) ≡ y which fails to be
anti-monotone. Conversely suppose ϕ(X, y) is not anti-monotone this being witnessed by some
pair 〈β, i〉. We must have βy = > in such an assignment (otherwise ϕ(β) = ⊥). But then since
ϕ(β//xi := >) = > and βy = > it follows that the projection of β on X yields an assignment, α,
satisfying ψ(X). 2

Lemma A.3 Given a propositional formula ϕ, it holds that deciding if Sϕ is incomparable is
coNP-complete.

6It is well-known that f(X) is an anti-monotone propositional function if and only if it can be represented using a
propositional formula, ϕ(X) over the binary basis {∧,∨} in which only negated literals are used.

35

Proof. Let ϕ(X) be any propositional formula with Sϕ the system of subsets of ArgsS it encodes.
Again we proceed by showing the complementary problem is decidable by an NP algorithm. Given
an assignment, α to X , let Sα ⊆ ArgsS be the set { xi : αi = >}. Similarly, αS denotes the
assignment in which 〈 αi = > : xi ∈ S〉 ∪ 〈αi = ⊥ : xi 6∈ S〉. In order for fϕ(X) to describe a
system containing comparable sets there must be assignments, α and β, for which

ϕ(α) ∧ ϕ(β) ∧ (Sα ⊂ Sβ)

Checking any given pair (α, β) is polynomial time decidable, hence comparability is in NP as
claimed.

To show that deciding comparability of ϕ(X) is NP-hard, we use a reduction from SAT. Given
an instance ψ(X) of SAT, form ϕ(X, y, z) as an instance of comparability with

ϕ(X, y, z) = ψ(X) ∧

(∧
x∈X

(x→ (y ∨ z))

)

Here y and z are new variables.
Suppose that ψ(X) is satisfiable using α and let Sα ⊆ X be the corresponding subset of X

indicated by α. Then,

T = Sα ∪ {y} ∈ Sϕ

and

U = Sα ∪ {y, z} ∈ Sϕ

Clearly T ⊂ U so that ϕ(X, y, z) is comparable.
Conversely suppose ϕ(X, y, z) is comparable and this property is witnessed by sets Sα, Sβ ⊆

X ∪ {y, z} arising from assignments, α and β. Let αX be the projection of α onto X , then from
Sα ∈ Sϕ

ϕ(αX , αy, αz) = ψ(αX) ∧

(
n∧
i=1

(αi → (αy ∨ αz))

)
= >

so that ψ(αX) = >, i.e ψ(X) is satisfiable as witnessed by the assignment αX . We deduce that
deciding if ϕ(X) describes an incomparable function is coNP-complete. 2

Lemma A.4 Given a propositional formula ϕ, it holds that deciding if Sϕ is tight is coNP-
complete.

Proof. Let ϕ(X) be any propositional formula with Sϕ the system of subsets of ArgsS it encodes.
Again we consider the complementary problem, calling S a loose set whenever

∃(S, x) : ((S ∈ S) ∧ (S ∪ {x} 6∈ S))→ (∀ s ∈ S : (x, s) ∈ PairsS)

36

We may rewrite this as,

∃(S, x, T1, T2, . . . , Tn) : (S /∈ S) ∨ (S ∪ {x} ∈ S) ∨

(∧
xi∈S

{x, xi} ∪ Ti ∈ S

)

Corresponding to the polynomial time test on

¬ϕ(αS) ∨ ϕ(αS∪{x}) ∨

(∧
xi∈S

ϕ(αTi∪{x,xi})

)
= >

Hence whether ϕ(X) describes a tight function can be accomplished with coNP.
To show it is also coNP-hard we present a reduction from the following variant of UNSAT

UNSAT+ = { ψ(X) : ∀ α ψ(α) = > ⇒ α = 〈>,>, . . . ,>〉}

By treating an instance, ψ(X) of UNSAT as the instance (¬y) ∧ ψ(X) of UNSAT+ it is easy to see
that UNSAT+ is coNP-complete.

We now give a reduction from UNSAT+ to deciding tightness, showing coNP-completeness of
the latter.

Let ψ(X) be an instance of UNSAT+. Without loss of generality we assume that ψ(X) is such
that |X| ≥ 2.

Consider the instance, ϕ(X, y) of deciding whether Sϕ is tight (in which y is a new variable
not occurring in X) given by,

ϕ(X, y) =

[(∨
x∈X

¬x

)
∧ ψ(X)

]
⊕ y

Here ⊕ is the Boolean exclusive-or operator for which x ⊕ y = > if and only if the values of x
and y differ.7

Suppose that ψ(X) is a positive instance of UNSAT+. In this case,

Sϕ = { {y ∪ T : T ⊆ X} }

That Sϕ is tight is immediate from the fact {y} ∈ Sϕ (the case T = ∅) and

∀ S ∈ Sϕ, x ∈ X S ∪ {x} ∈ Sϕ

Notice that in the event of ψ(〈>, . . . ,>〉) = >, ϕ(〈>, . . .>〉, y) ≡ y. Thus ψ(X) ∈ UNSAT+

implies that ϕ(X, y) describes a tight set Sϕ.

7For |X| = 1, instances of UNSAT+ are either equivalent to constant functions – ⊥ or > (eg. x∨¬x) or one of the
functions {x,¬x}. Thus ϕ(x, y) is one of {y, (¬x)⊕ y}. These respectively give Sϕ as {{y}, {x, y}}, or {∅, {x, y}}.
The first of these is tight and the source cases for ψ(X) – ψ(X) = ⊥, ψ(X) = x – are positive instances of UNSAT+.
The second case, {∅, {x, y}} fails to be tight (neither {x} = ∅ ∪ {x} nor {y} = ∅ ∪ {y} belong to Sϕ), however
neither of the possible sources, ψ(x) = >, ψ(x) = ¬x are positive instances of UNSAT+.

37

For the converse direction suppose that ψ(X) is a negative instance of UNSAT+ and M ⊂ X is
a model of ψ(X). Then M is also a model of ϕ(X, y), i.e. M ∈ Sϕ, and thus M ∪ {y} 6∈ Sϕ. But
as still X ∪ {y} ∈ Sϕ we have that (y, s) ∈ PairsSϕ for each s ∈ M . Hence, M is a loose set for
Sϕ.

We deduce that ψ(X) is accepted as an instance of UNSAT+ if and only if Sϕ is tight and, hence,
deciding tightness of Sϕ is coNP-complete. 2

Lemma A.5 Given a propositional formula ϕ, it holds that deciding if Sϕ is conflict-sensitive is
coNP-complete.

Proof. Let ϕ(X) be any propositional formula with Sϕ the system of subsets of ArgsS it en-
codes. Again dealing with the complementary problem, we call S conflict-insensitive when there
are distinct sets, S and T in S for which S ∪ T /∈ S but every {x, y} ⊆ S ∪ T satisfies
(x, y) ∈ PairsS. Given ϕ(X), the corresponding function, fϕ is conflict-insensitive if there ex-
ist (S, T, U1,2, U1,3, . . . , Un−1,n) for which

ϕ(αS) ∧ ϕ(αT) ∧ ¬ϕ(αS∪T) ∧

∧
xi∈S

∧
xj∈T

ϕ(αUi,j∪{xi,xj})

 = >

The test described being polynomial time computable we deduce that ϕ(X) defining a conflict-
insensitive system is decidable in coNP.

To show it is also coNP-hard we present a reduction from UNSAT+ (cf. proof of Lemma A.4).
Let ψ(X) be an instance of UNSAT+. Without loss of generality we assume that ψ(X) is such that
|X| ≥ 2.

Consider the instance, ϕ(X, y, z) of the problem of deciding whether Sϕ is conflict-sensitive
(in which y, z are new variables not occurring in X) given by,

ϕ(X, y, z) = (ψ(X) ∧ ¬y ∧ z) ∨

(
y ∧ z ∧

∧
x∈X

x

)
∨

(
y ∧ ¬z ∧

∧
x∈X

¬x

)

Suppose that ψ(X) is a positive instance of UNSAT+. In this case either, (i) Sϕ = {X∪{z}, X∪
{y, z}, {y}} if X is model of ψ(X) or (ii) Sϕ = {X ∪ {y, z}, {y}} otherwise. In both cases Sϕ is
conflict-sensitive.

For the converse direction suppose that ψ(X) is a negative instance of UNSAT+ and M ⊂ X is
a model of ψ(X). In this case we have M ∪ {z} ∈ Sϕ, {y} ∈ Sϕ and that (M ∪ {z}) ∪ {y} /∈ Sϕ.
Now as X ∪ {y, z} ∈ Sϕ we also have that (y, s) ∈ PairsSϕ for each s ∈ M ∪ {z}, and thus Sϕ is
not conflict-sensitive.

We deduce that ψ(X) is accepted as an instance of UNSAT+ if and only if Sψ is conflict-
sensitive. Hence, deciding whether the models of a propositional formula are conflict-sensitive is
coNP-complete. 2

38

A.2 Proof of Theorem 6.9
First we rephrase a theorem from Chang and Kadin [15] that will be the basis for the proof.

Theorem A.6 ([15]) A problem A is DP-hard iff all of the following hold:

1. A is NP-hard.

2. A is coNP-hard.

3. A has AND2.

We say a problem A has AND2 if the problem of deciding whether two instances of A are both
true can be reduced to a single instance of A.

This gives the structure for the following proof of Theorem 6.9 (with σ ∈ {pref, stage, sem}. In
Lemma A.7 we show that σ-realizability is coNP-hard (here, we also show the result for σ = naive)
In Lemma A.8 we show that σ-realizability is NP-hard. Finally, in Lemma A.9 we show that σ-
realizability has the property AND2,

Lemma A.7 The σ-realizability problem in which instances are propositional formulas, ϕ(X), is
coNP-hard for σ ∈ {pref, stage, sem, naive}.

Proof. To show that deciding σ-realizability of ϕ(X) is coNP-hard, we use a reduction from
UNSAT. Given an instance ψ(X) of SAT, form ϕ(X, y, z) as an instance of σ-realizability with

ϕ(X, y, z) =

(
ψ(X) ∧

(∧
x∈X

(x→ (y ∨ z))

))
∨ (y ∧ z ∧

∧
x∈X

¬x)

Here y and z are new variables. We claim ψ(X) is satisfiable if and only if Sϕ is not σ-realizable.
Suppose that ψ(X) is satisfiable using α and let Sα ⊆ X be the corresponding subset of X

indicated by α. Then,

T = Sα ∪ {y} ∈ Sϕ

and

U = Sα ∪ {y, z} ∈ Sϕ

Clearly T ⊂ U so that ϕ(X, y, z) is comparable. and thus Sϕ is not σ-realizable.
Conversely suppose ψ(X) is unsatisfiable. Then {y, z} is the only model of ϕ(X, y, z), i.e.

Sϕ = {{y, z}}. Thus, Sϕ is incomparable, tight, conflict-sensitive and also dcl(Sϕ) is tight. Hence,
Sϕ is σ-realizable for each σ ∈ {pref, stage, sem, naive} (cf. Theorem 5.1).

We deduce that deciding if Sϕ is σ-realizable is coNP-hard. 2

39

Lemma A.8 The σ-realizability problem in which instances are propositional formulas, ϕ(X), is
NP-hard for σ ∈ {pref, stage, sem}.

Proof. To show that deciding σ-realizability of ϕ(X) is NP-hard, we use a reduction from SAT.
Given an instance ψ(X) of SAT, form ϕ(X, y, z) as an instance of the σ-realizability problem with

ϕ(X, X̄) = ψ(X) ∧
∧
x∈X

(x⊕ x̄)

Here X̄ is a set of new variables x̄, one for each x ∈ X . We claim ψ(X) is satisfiable if and only
if Sϕ is σ-realizable.

Suppose that ψ(X) is satisfiable. We have to show that Sϕ is (i) incomparable, (ii) tight, and
(iii) conflict-sensitive (cf. Theorem 5.1).

The set Sϕ can be characterized by Sϕ = {M ∪ X \M | M is model of ψ(X)}, that is each
model contains either x or x̄ for each x ∈ X . This implies (i) that all the sets in Sϕ are pairwise
incomparable.

For (ii) notice that x, x̄ never appear together in a model of ϕ and thus (x, x̄) 6∈ PairsSϕ . Hence
whenever we have an S ∈ Sϕ and an x ∈ X (x̄ ∈ X̄) such that S ∪ {x} 6∈ Sϕ (S ∪ {x̄} 6∈ Sϕ) we
have that x̄ ∈ S (x ∈ S) and (x, x̄) 6∈ PairsSϕ . Hence, Sϕ is tight. (iii) Consider M,M ′ ∈ Sϕ,M 6=
M ′. Then w.l.o.g there is an x ∈ M such that x /∈ M ′ but x̄ ∈ M ′. By the above observation
(x, x̄) 6∈ PairsSϕ and thus Sϕ is conflict-sensitive.

We obtain that Sϕ is σ-realizable for σ ∈ {pref, stage, sem}.
Conversely suppose ψ(X) is unsatisfiable. Then ϕ(X, X̄) is also unsatisfiable, i.e. Sϕ = ∅, and

thus Sϕ is not σ-realizable for σ ∈ {pref, stage, sem}.
We deduce that deciding if Sϕ is σ-realizable is NP-hard. 2

Lemma A.9 The σ-realizability problem in which instances are propositional formulas, ϕ(X),
has AND2 for σ ∈ {pref, stage, sem}.

Proof. Consider two instances ψ(X), ψ′(Y) of the σ-realizability and w.l.o.g. assume thatX∩Y =
∅ (otherwise rename variables). Now consider the formula ϕ(X, Y) defined as follows.

ϕ(X, Y) =

(
ψ(X) ∧

∧
y∈Y

¬y

)
∨

(
ψ′(Y) ∧

∧
x∈X

¬x

)
Then we have that Sϕ = Sψ ∪ Sψ′ , where each set S ∈ Sϕ either is as subset of X or an subset

of Y .
We have to show that Sϕ is incomparable (tight, conflict-sensitive) iff both Sψ and Sψ′ are

incomparable (tight, conflict-sensitive).

• Incomparable: Assume Sϕ is comparable, i.e. there are A,B ∈ Sϕ with A ⊂ B. Either both
A,B are subsets of X and thus contained in Sψ or both are subsets of Y and thus contained
in Sψ′ . In the former case Sψ is comparable in the latter Sψ′ is comparable. For the converse
consider that one of Sψ, Sψ′ is comparable. W.l.o.g. assume there are A,B ∈ Sψ such that
A ⊂ B. Then also A,B ∈ Sϕ and thus Sϕ is comparable.

40

• Tight: Assume Sϕ is not tight. That is there an S ∈ Sϕ and an x ∈ X ∪ Y such that
S ∪ {x} 6∈ Sϕ and (x, s) ∈ PairsSϕ for each s ∈ S. W.lo.g. let us assume that S ⊂ X ,
then also x ∈ X as by construction (x, y) 6∈ PairsSϕ for x ∈ X, y ∈ Y . But then also
S ∪ {x} 6∈ Sψ and (x, s) ∈ PairsSψ for each s ∈ S and thus Sψ is not tight. For the converse
consider that one of Sψ, Sψ′ is not tight. W.l.o.g. assume there are S ∈ Sψ and x ∈ X such
that S ∪ {x} 6∈ Sψ and (x, s) ∈ PairsSψ . But then also S ∪ {x} 6∈ Sϕ and (x, s) ∈ PairsSϕ
for each s ∈ S and thus Sϕ is not tight.

• Conflict-sensitive: Assume Sϕ is not conflict-sensitive. That is there are A,B ∈ Sϕ such that
A ∪ B /∈ Sϕ and (a, b) ∈ PairsSϕ for all a ∈ A, b ∈ B. As by construction (x, y) 6∈ PairsSϕ
for x ∈ X, y ∈ Y we have that either A,B ⊆ X or A,B ⊆ Y . W.l.o.g. we assume the
former to hold. Then we have that A,B ∈ Sψ, A ∪ B /∈ Sψ, and (a, b) ∈ PairsSψ for all
a ∈ A, b ∈ B. Hence, Sψ is not conflict-sensitive. For the converse consider that one of Sψ,
Sψ′ is not conflict-sensitive. W.l.o.g. assume there are A,B ∈ Sψ such that A ∪ B /∈ Sψ and
(a, b) ∈ PairsSψ for all a ∈ A, b ∈ B. Then alsoA,B ∈ Sϕ, A∪B 6∈ Sϕ and (a, b) ∈ PairsSϕ
for all a ∈ A, b ∈ B and thus Sϕ is not conflict-sensitive.

Consequently, we have ϕ(X, Y) is σ-realizable iff both ψ(X) and ψ′(Y) are σ-realizable and
therefore the σ-realizability problem has AND2. 2

Finally, by the above lemmas and Theorem A.6, we have that the σ-realizability problem in
which instances are propositional formulas is DP-hard for σ ∈ {pref, stage, sem}.

41

	Introduction
	Preliminaries
	Properties of Argumentation Semantics
	Realizability
	Signatures & Limits of Disagreement
	Complexity
	Realizability of an Extension-Set
	Realizing Models of Propositional Formulas
	Recasting Argumentation Semantics

	Discussion
	Proofs from Section 6.
	Proof of Proposition 6.4.
	Proof of Theorem 6.9

