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Abstract. This report is meant to serve as a new version of our previous work [35] and
contains all the proofs and analysis done there. We introduce a new subfamily of the ca–
semantics and the acyclic grounded semantics. We also introduce a number of new proper-
ties and complete the analysis of the relation between labeling–based and extension–based
semantics. Finally, we correct various minor issues and clarify some explanations.
One of the most prominent tools for abstract argumentation is the Dung’s framework, AF
for short. Although powerful, AFs have their shortcomings, which led to development of
numerous enrichments. Among the most general ones are the abstract dialectical frame-
works, also known as the ADFs. They make use of the so–called acceptance conditions to
represent arbitrary relations. This level of abstraction brings not only new challenges, but
also requires addressing existing problems in the field. One of the most controversial issues,
recognized not only in argumentation, concerns the support or positive dependency cycles.
In this paper we introduce a new method to ensure acyclicity of arguments and present a
family of extension–based semantics built on it, along with their classification w.r.t. cycles.
We provide ADF versions of the properties known from the Dung setting, provide suffi-
cient requirements for the semantics to coincide and compare them with the labeling–based
semantics.
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1 Introduction
This report is meant to serve as a new version of our previous work [35–37] and contains all the
proofs and analysis done there. We introduce a new subfamily of the ca–semantics and the acyclic
grounded semantics. We also prove a number of new properties and complete the analysis of the
relation between labeling–based and extension–based semantics. Finally, we correct various minor
issues and clarify some explanations.

Over the last years, argumentation has become an influential subfield of artificial intelli-
gence, with applications ranging from legal reasoning [8] or dialogues and persuasion [29, 40]
to medicine [26, 27] or eGovernment [2]. Till today, various formalisms and classifications of
types of argumentation have been created [41]. One of them is abstract argumentation, which has
become especially popular thanks to the research of Phan Minh Dung [23]. Although the frame-
work he has developed is quite powerful, it has certain shortcomings, which inspired a search for
more general models. Throughout the years, many different argumentation frameworks were cre-
ated, ranging from the ones employing various measures of arguments or relations strengths and
preferences [1, 7, 22, 30] to ones that focus on researching new types of interactions between the
framework elements [4, 18, 31, 32, 34]. An overview of available structures can be found in [12].
One of the most general enrichments of the latter type are the abstract dialectical frameworks,
ADFs for short [13]. Instead of extending the Dung’s frameworks with elements representing new
types of relations each time it is needed, they make use of so–called acceptance conditions to ex-
press arbitrary interactions between the arguments. However, a framework cannot be considered a
suitable argumentation tool without properly developed semantics.

The semantics of a framework are meant to represent what is considered rational. We may re-
quire the chosen opinion to be e.g. consistent, defensible, providing counterarguments for what we
cannot accept and so on. Given many of the advanced semantics, such as grounded or complete, we
can observe that they return the same results when faced with simple, tree–like frameworks [23].
The differences between them become more visible when we work with the more complicated
cases.On various occasions examples were found for which none of the available semantics re-
turned satisfactory answers. This gave rise to new approaches, each trying to tackle this issue. For
example, for handling indirect attacks and defenses we have prudent and careful semantics [20,21];
for the problem of even and odd attack cycles we can resort to some of the SCC–recursive seman-
tics [6]; while for treatment of self attackers, sustainable and tolerant semantics were developed [9].
Introducing a new type of relation adds to these issues, but also creates complications of its own.

The support relation raises a number of questions, however, the most controversial problem
concerns the support cycles and is handled differently from formalism to formalism. Among the
best known structures are the Bipolar Argumentation Frameworks (BAFs) [18], Argumentation
Frameworks with Necessities (AFNs) [32] and Evidential Argumentation Systems (EASs) [34].
While the latter two discard support cycles, BAFs do not make such restrictions and in general,
neither do ADFs [11,13]. This variety is not an error in any of the structures. First of all, in a more
advanced setting, a standard Dung semantics can be extended in several ways. Moreover, since
one can find arguments both for and against any of the cycle treatments, lack of consensus as to
what approach is the best should not be surprising.
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Many properties of the available semantics can be seen as “inside” ones, i.e. “what can I
consider rational?”. On the other hand, some can be understood as on the “outside”, e.g. “what
can be considered a valid attacker, what should I defend from?”. Various examples of such behavior
exist even in the Dung setting. An admissible extension defends against all possible attacks in the
framework. We can then restrict this by saying that self–attackers are not rational, and thus limit
the set of arguments we have to defend the extension from. If we now add support, we can again
define admissibility in the basic manner. However, one often demands that the extensions are free
from support cycles and that we only defend from arguments not taking part in them. From this
perspective semantics can be seen as a two–person discussion, describing what “I can claim” and
“what my opponent can claim”. This is also the point of view that we follow in this paper and it
will serve as a basis for the classification of our semantics. Please note that this sort of dialogue
perspective can already be found in argumentation [24,28], although it is used in a slightly different
context.

Various extension–based semantics for ADFs have already been proposed in the original pa-
per [13]. Unfortunately, some of them were defined only for a particular ADF subclass called
bipolar and were suitable for certain types of situations. Therefore, only three of them – conflict–
free, model and grounded – remain. The research in [11, 42] resulted in establishing a family of
semantics we can qualify as labeling–based. Although they resolve the problems of the initial
formulations, they have their own drawbacks. They are described in terms of e.g. fixpoints of a
three–valued characteristic operator, which is based on the consensus of acceptance conditions. In
this formulation, it is not always visible at the first glance how defense and other notions known
from the Dung setting behave in ADFs. Moreover, verifying an existing interpretation rather than
constructing one from some initial data can result in an argument affecting his own status in face
of self–dependencies, which is not always a desirable property when a framework can express
support. Finally, shifting from two–valued to three–valued setting is more than just a structural
change. While in the extension–based semantics we often aim to accept as many arguments as
the rationality allows, in labeling setting knowing that something is true is equally important to
knowing it is false. Thus, one makes use of information maximality rather than subset maximality,
which in a bipolar setting creates differences not present in AFs. Although we find this method to
be suitable for the labeling intuitions, we are missing semantics that would still let us focus on the
argument’s acceptance.

The aim of this paper is to introduce a family of extension–based semantics and to specialize
them to handle the problem of support cycles, as it seems to be the biggest difference between
the approaches of the current frameworks that allow positive relations. Consequently, we present
methods for ensuring acyclicity in ADFs. Furthermore, a classification of our sub–semantics in
the inside–outside fashion that we have described before is introduced. We also recall our previous
research on admissibility in [39] and show how it fits into our system. Our results also include
which known properties, such as Fundamental Lemma, carry over from the Dung framework. Fur-
thermore, we introduce a subclass of ADFs for which our system collapses, i.e. all sub–semantics
of a given type produce the same answers. Finally we provide an analysis of the similarities and
differences between the extension and labeling–based semantics.

The report is structured as follows. In Section 2, we provide a short recap on AFs, BAFs, AFNs,
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EASs and ADFs. Section 3 will focus on the basic concepts underlying the semantics of ADFs. We
will then recall the labeling–based semantics in Section 4 and introduce the new extension–based
ones in Section 5, including an analysis of their properties in Section 6. We close the paper with a
comparison of both of the approaches.

2 Argumentation Frameworks

2.1 Dung’s Argumentation Frameworks
Let us start from the basics: the abstract argumentation framework by Dung [23].

Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair (A,R),
where A is a set of arguments and R ⊆ A× A represents the attack relation.

AFs can be simply represented as directed graphs. We will now briefly recall the available
semantics, for more details we refer the reader to [3].

Definition 2.2. Let F = (A,R) be a Dung’s framework. An argument a ∈ A is defended by a set
E in F 1, if for each b ∈ A s.t. (b, a) ∈ R, there exists c ∈ E s.t. (c, b) ∈ R. A set E ⊆ A is:

• conflict–free in F iff for each a, b ∈ E , (a, b) /∈ R.

• naive in F iff it is maximal w.r.t. set inclusion conflict–free in F .

• admissible in F iff it is conflict–free in F and defends all of its members.

• preferred in F iff it is maximal w.r.t. set inclusion admissible in F .

• complete in F iff it is admissible in F and all arguments defended by it are contained in it.

• stable in F iff it is conflict–free in F and for each a ∈ A \E there exists an argument b ∈ E
s.t. (b, a) ∈ R.

The stable semantics is somewhat different than the rest in the sense that depending on the given
framework, it might not produce any extensions. This problem is addressed with maximizing the
amount of arguments covered by the extension [15]:

Definition 2.3. Let F = (A,R) be a Dung’s framework and E ⊆ A a set of arguments. The set
of arguments attacked by E is E+ = {a | ∃b ∈ E s.t. (b, a) ∈ R}. The set E+ ∪ E is the range
of E . A conflict–free set E ⊆ A is stable in F iff E+ = A \ E . A complete extension E ⊆ A is
semi–stable in F iff its range is maximal w.r.t. set inclusion.

We close the list with the grounded semantics. It basically represents the knowledge that we
can only build from the initial (i.e. unattacked) arguments, i.e. starting with an empty set we first
include the initial arguments, then add all elements defended by the set and continue until nothing
more is added. The formal definition is given by the means of the characteristic function of AF :

1Defense is often substituted with acceptability: say that a is acceptable w.r.t. E if E defends a.
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Definition 2.4. Let F = (A,R) be a Dung’s framework. The characteristic function FF : 2A →
2A of F is defined as: FF (E ) = {a | a is defended by E in F}. The grounded extension of F is
the least fixed point of FF .

Furthermore, other semantics can also be described in terms of the characteristic function; for
example, a conflict–free set E is admissible iff E ⊆ FF (E ) and complete iff E = FF (E ).

Please note there is also an alternative way to compute the grounded extension:

Proposition 2.5. Let F = (A,R) be a Dung’s framework. The unique grounded extension of F
is defined as the outcome E of the following “algorithm”. Let us start with E = ∅:

1. put each argument a ∈ A which is not attacked in F into E ; if no such argument exists,
return E .

2. remove from F all (new) arguments in E and all arguments attacked by them (together with
all adjacent attacks) and continue with Step 1.

What we have described above forms a family of so–called extension–based semantics. We
now continue with the labeling–based ones, which are thoroughly explained in [14].

Definition 2.6. Let F = (A,R) be a Dung’s framework. A three–valued labeling is a total function
Lab : A→ {in, out, undec}2. An in–labeled argument is legally in iff all its attackers are labeled
out. An out–labeled argument is legally out iff at least one its attacker is labeled in. An undec–
labeled argument is legally undec iff not all of its attackers are labeled out and it does not have an
attacker that is labelled in.

By in(Lab), out(Lab) and undec(Lab) we will denote the arguments mapped respectively to
in, out and undec by Lab. We will also write a labeling as a triple (I, O, U), where I = in(Lab),
O = out(Lab) and U = undec(Lab).

Definition 2.7. Let F = (A,R) be a Dung’s framework and Lab a three–valued labeling on A.
Lab is:

• admissible in F iff each in–labeled argument is legally in and each out–labeled argument
is legally out.

• complete in F if it is admissible and every undec–labeled argument is legally undec.

• preferred in F if it is complete and the set of arguments labeled in is maximal w.r.t. set
inclusion.

• grounded in F if it is complete and the set of arguments labeled in is minimal w.r.t. set
inclusion.

2Sometimes the t, f and u notation is also used.
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• semi–stable in F if it is complete and the set of elements mapped to undec is minimal w.r.t.
set inclusion.

• stable in F if it is complete and the set of elements mapped to undec is empty.

The correspondence between the labeling–based and extension–based has already been studied
in [3, 14].

Theorem 2.8. Let F = (A,R) be a Dung’s framework and E ⊆ A be a σ–extension of F , where
σ ∈ {admissible, complete, grounded, preferred, stable, semi–stable}. Then (E ,E+, A\ (E ∪E+)
is a σ–labeling of F .

Let Lab be a σ–labeling of F , where σ ∈ {admissible, complete, grounded, preferred, stable,
semi–stable }. Then in(Lab) is a σ–extension of F .

Remark. Depending on the semantics, there can be more than one labeling corresponding to a
given extension. Let E− be the set of arguments that attack E . Obviously, E defends its members
iff E− ⊆ E+. Therefore, for a labeling to be admissible it suffices that the set of out arguments
contains E−; on the other hand, due to legality it cannot map more than E+. This gives us a certain
freedom in assignments. On the other hand, for example stable semantics possesses a one to one
correspondence between the labelings and extensions.

Finally, we would like to recall several important lemmas and theorems from the original paper
on AFs [23]. The so–called Fundamental Lemma is as follows:

Lemma 2.9. Dung’s Fundamental Lemma Let F = (A,R) be a Dung’s framework, E an ad-
missible extension of F and a, b ∈ A arguments that are defended by E in F . Then the set
E ′ = E ∪ {a} is admissible in F and b is defended by E ′ in F .

We can now recall some relations between the existing semantics.

Theorem 2.10. Let F = (A,R) be a Dung’s framework. Every stable extension of F is a preferred
extension, but not vice versa.

Theorem 2.11. Let F = (A,R) be a Dung’s framework. The following holds:

1. The set of all admissible sets of F form a complete partial order w.r.t. set inclusion.

2. For each admissible set E of F , there exists a preferred extension E ′ of F s.t. E ⊆ E ′.

3. F possesses at least one preferred extension.

Theorem 2.12. Let F = (A,R) be a Dung’s framework. The following holds:

1. Every preferred extension of F is a complete extension, but not vice versa.

2. The grounded extension of F is the least w.r.t. set inclusion complete extension.
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3. The complete extensions of F form a complete semilattice w.r.t. set inclusion. 3

Example 1. Consider the Dung framework F = (A,R) with A = {a, b, c, d, e} and the attack
relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted in Figure 1. It has eight
conflict–free extensions in total, namely {a, c},{a, d}, {b, d}, {a}, {b}, {c}, {d} and ∅. As b
is attacked by an unattacked argument, it cannot be defended against it and will not be in any
admissible extension. From this {a, c}, {a, d} and {a} are complete. We end up with two preferred
extensions, {a, c} and {a, d}. However, only {a, d} is stable, and {a} is the grounded extension.

a b c d e

Figure 1: Sample Dung framework

2.2 Argumentation Frameworks with Support
Although the Dung’s framework is a powerful tool, it has its shortcomings. Having only a binary
attack at hand limits what can be modeled naturally, and what requires additional modifications
which can make the representation of a problem and verifying the answer more complicated. Not
surprisingly, this framework has been generalized in various ways in order to address its deficien-
cies (an overview can be found in [19]). In the context of this report, the enrichments that permit
new types of relations are the most interesting.

Although many studies focused on developing the attack relation, with time it was acknowl-
edged that a positive interaction between arguments beyond defense also needs to be expressed.
Initially, there was hope that since Dung’s framework has one abstract attack, one type of support
would be sufficient [16]. However, various arguments and examples against this claim have been
given, and more specialized forms of support have been researched. Currently the most recog-
nized frameworks following the Dung representation are the Bipolar Argumentation Framework
BAF [18], Argumentation Framework with Necessities AFN [32] and Evidential Argumentation
System EAS [34]. The approaches towards modeling support can be classified in two ways. First
of all we have the BAF style, more in line with meta–argumentation, where we can create coalition
arguments or, depending on the type of positive relation that is used, we derive advanced conflicts
and evaluate the resulting framework in a Dung manner. Although this study does not discuss
certain problems of a bipolar setting such as support cycles, it provides a valuable insight into the
consequences of using positive relations. The other approach, more visible in AFNs and EASs,
treats support as a fully valued interaction and adapts semantics in an appropriate manner, rather
than trying to translate the structure back into the Dung setting. We will briefly recall these frame-
works and although their translation into ADFs is a matter of ongoing work and not a topic we
want to discuss in this report, the differences between the frameworks will further exemplify the
directions of the semantics we have taken in ADFs.

3A partial order (A,≤) is a complete semilattice iff each nonempty subset of A has a glb and each increasing
sequence of A has a lub.
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2.2.1 Bipolar Argumentation Frameworks

The original bipolar argumentation framework BAF [16] studied a relation we will refer to as
abstract support:

Definition 2.13. A bipolar argumentation framework is a tuple (A,R, S), where A is a set of
arguments, R ⊆ A × A represents the attack relation and S ⊆ A × A the support. It is also
assumed that R ∩ S = ∅4.

The biggest difference between this abstract relation and any other interpretation of support,
or even conflict, is the fact that it did not affect the acceptability of an argument. By this, we
understand that an argument did not require any form of support and was able to stand “on its
own”. The positive interaction was used to derive additional indirect forms of conflict, which
were later used to enhance the semantics from the Dung setting. The first developed type was the
“supported attack”. Later, in [17] the secondary attack was also introduced (first referred to as
diverted).

Definition 2.14. Let BF = (A,R, S) be a BAF. An argument a ∈ A support attacks argument
b ∈ A, if there exists some argument c ∈ A s.t. there is a sequence of supports from a to c (i.e.
aS...Sc) and cRb. a secondary attacks b if there is some argument c s.t. cS...Sb and aRc.

These additional notions are now used to form stronger version of known semantics. Please
note that the definition of defense is the same as in the Dung setting (i.e. requires direct attack).

Definition 2.15. Let (A,R, S) be a BAF. A set of arguments E ⊆ A is +conflict–free iff @a, b ∈ E
s.t. a (directly or indirectly) attacks b. E is safe iff @b ∈ A s.t. b is at the same time (directly or
indirectly) attacked by E and either there is a sequence of supports from an element of E to b, or
b ∈ E . E is closed under S iff ∀b ∈ E , a ∈ A, if bSa then a ∈ E . Then E is:

• d–admissible in BF iff it is +conflict–free and defends all its elements

• s–admissible in BF iff it is safe and defends all its elements

• c–admissible in BF iff it is +conflict–free, closed for S and defends all its elements

• d–/s–/c–preferred in BF iff it is maximal w.r.t. set inclusion d–/s–/c–admissible

• stable in BF iff it is +conflict–free and ∀b /∈ E , b is (directly or indirectly) attacked by E .

The weak dependency between an argument and its supporter led to the development of more
specific interpretations, most notably the deductive, necessary and evidential support. The first one
remained in the BAF setting, while the latter two were developed in different frameworks. We say
that an argument a deductively supports b if acceptance of a implies the acceptance of b [10] and
not acceptance of b implies non acceptance of a. Although originally used rather for coalitions
and meta–argumentation purposes, it is also studied in a standard setting in [18]. The deductive
behavior of support in BAFs is achieved by introducing another type of indirect conflict, namely
the mediated attack. Further study also motivated the super–mediated attack.

4This requirement is dropped in later works [18].
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Definition 2.16. LetBF = (A,R, S) be a Dung’s framework and a, b, c ∈ A. There is a mediated
attack from a to b iff there is some argument c s.t. there is a sequence of supports from b to c and
aRc. There is a super–mediated attack from a to b iff there is some argument c s.t. a direct or
supported attacks c and b supports c.

Finally, it is easy to see that BAFs do not make any special acyclicity assumptions as to the
support relation5. Thus, cyclic arguments are considered valid attackers that can be used both by
us and by the opponent.

Example 2. Let ({a, b, c, d, e, f}, {(b, a), (c, d)}, {(b, c), (c, b), (d, f), (e, d)}) be the BAF depicted
in Figure 2. We use normal arrow to denote attack, dashed for support and red ones for indirect
attacks. We have in total four supported attacks in our framework. First of all, since c supports
b which attacks a, c support attacks a. In a similar manner, b support attacks d. However, as
both c and b are indirectly self–supporters, technically speaking (b, a) and (c, d) are also support
attacks. We have one supported attack (c, f) and a single mediated one (c, e). Finally, there are
two super–mediated attacks. Since the definition subsumes mediated attacks, the first one is again
(c, e), though obtained in two ways; first due to direct attack, the other due to the supported one
(c, d). As b support attacks d, we have that b super–mediated attacks e.

We can observe that {b, d} is +conflict–free, safe and closed under support. Moreover, since
none of its elements is attacked, it follows easily that the set is d–/s–/c–admissible. Sets {b} and
{c} are also +conflict–free and safe, however, they are not closed under support. Consequently,
they will be d– and s–admissible, but not c–admissible. Set {f} is also d–/s–/c–admissible. It is
+conflict–free, safe and closed for support. Moreover, since defense only considers direct attacks,
there is no argument f should defend from. Similarly, {e} is d– and s–admissible. Since it is not
closed for support, it cannot be c–admissible. Finally, {d, e} is not admissible at all, as it cannot
defend d from c.

a b c d
e

f

Figure 2: Sample BAF

2.2.2 Argumentation Frameworks with Necessities

The necessary support in its binary form was first developed in [33]. We say that an argument a
necessary supports b if we need to assume a in order to accept b. The developed semantics were

5Only in the case of stable semantics the framework is assumed to be acyclic
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built around the supported and secondary attacks and discarded any support cycles. However,
they not always returned intended results. Therefore, we would like to focus on the more recent
formulation that was presented in [32], this time with a set form of support.

Definition 2.17. An argumentation framework with necessities is a tuple (A,R,N), where A
is the set of arguments, R ⊆ A × A represents (binary) attacks, and N ⊆ (2A \ ∅) × A is the
necessity relation.

Given a set E ⊆ A and an argument a, ENa should be read as “at least one element of E
needs to be present in order to accept a”. Thus, we can consider an arbitrary set of arguments to
sufficiently support a iff every set supporting a through N has at least one element in common
with it. The AFN semantics are built around the notions of coherence:

Definition 2.18. Let FN = (A,R,N) be an AFN and E ⊆ A a set of arguments. E is coherent
iff every b ∈ E is powerful, i.e. there exists a sequence a0, .., an of distinct elements of E s.t
an = b, there is no C ⊆ A s.t. CNa0, and finally for 1 ≤ i ≤ n it holds that for every set C ⊆ A
if CNai, then C ∩ {a0, ..., ai−1} 6= ∅. A coherent set E is strongly coherent iff it is conflict–free.

Although it may look a bit complicated at first, the definition of coherence grasps the intuition
that we need to provide sufficient acyclic support for the arguments we want to accept. Defense in
AFNs is understood as the ability to provide support and to counter the attacks from any coherent
set. Using these notions, the AFN semantics are built in a way corresponding to Dung semantics.

Definition 2.19. Let FN = (A,R,N) be an AFN. A set of arguments E ⊆ A defends a, if
E ∪ {a} is coherent and for every c ∈ A, if cRa then for every coherent set C ⊆ A containing c,
ERC. The set of arguments deactivated by E is defined as E+ = {a |ERA or there is B ⊆
A s.t. BNa and B ∩ E = ∅}. The set E is:

• admissible in FN iff it is strongly coherent and defends all of its arguments.

• preferred in FN iff it is maximal w.r.t. set inclusion admissible.

• complete in FN iff it is admissible and contains any argument it defends.

• stable in FN iff it is complete and E+ = A \ E .

It is easy to see that, through the notion of coherency, AFNs discard cyclic arguments both on
the “inside” and the “outside”. This means we cannot accept them in an extension and they are not
considered as valid attackers.

Example 3. Consider an AFN ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c), (f, d)}, {({b, c}, a), ({f}, f)})
depicted in Figure 3. The coherent sets include ∅, {a, b}, {a, c}, {b}, {c}, {d}, {e} and any of
their combinations. We can observe that f does not appear in any of them - it does not possess
a powerful sequence in the framework. The strongly coherent sets are ∅, {b}, {c}, {d}, {e},
{a, b}, {a, c}, {b, c}, {b, e}, {c, d}, {d, e}, {a, b, c} and {a, c, d}. ∅ is trivially admissible. So is
{d}, due to the fact that its only attacker does not posses a coherent set. However, {e} is not
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admissible; it does not attack one of the coherent sets of a, namely {a, b}. On the other {d, e} is
already admissible. Due to the fact that no coherent argument can attack d, no strongly coherent
set containing b will be admissible. The two final extensions are {a, c} and {a, c, d}; although c is
supporting a and a attacks e, the indirect conflict between c and a is not enough to consider c as
defending itself in the AFN terms. The sets {d}, {d, e} and {a, c, d} are our complete extensions,
with the first one being grounded and the latter two being preferred. In this case, both {d, e} and
{a, c, d} are stable.

a

b cd e

f

Figure 3: Sample AFN

2.2.3 Evidential Argumentation Systems

The last type of support we will consider here is the the evidential support [34]. It distinguishes
between the standard and prima facie arguments. The latter are the only ones that are valid without
any support. Every other argument that we want to accept needs to be supported by at least one
prima facie argument, be it directly or not. While the acyclicity in the necessary support required
us to trace back to either an attacker or an initial argument, the evidential support restricts this even
further by allowing us to go back to only a subgroup of the initial arguments, marked as prima
facie.

Definition 2.20. An evidential argumentation system (EAS) is a tuple (A,R,E) where A is
a set of arguments, R ⊆ (2A \ ∅) × A is the attack relation, and E ⊆ (2A \ ∅) × A is the
evidential support. We assume that @x ∈ 2A, y ∈ A s.t. xRy and xEy. The prima facie arguments
are represented with a single one η ∈ A referred to as environment or evidence. Consequently,
@(x, y) ∈ R where η ∈ x; and @x where (x, η) ∈ R or (x, η) ∈ E.

Although both EAS and AFN use group support, the way the E and N relations are read is not
the same. In the AFN case, a set of arguments sufficiently supported an argument a ∈ A if every
set supporting a through N had at least one element in common with it. In the EAS case, its quite
the opposite – we would say that the set sufficiently supported a if it fully contained at least one
set supporting a through E. The idea that the valid arguments (and attackers) need to trace back
to the environment is captured with the notions of e–support and e–supported attack, which can be
formulated in the recursive or sequence–based manner [38].

Definition 2.21. Let ES = (A,R,E) be an EAS. An argument a ∈ A has evidential support
(e–support) from a set X ⊆ A iff:

1. a = η; or
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2. There is a non-empty T ⊆ X such that TEa and ∀x ∈ T , x has evidential support from
X\{a}

An argument a is minimally evidentially supported by (or has minimal evidential support from) a
set X if there is no set X ′ such that X ′ ⊂ X and a is evidentially supported by X ′.

Remark. Note that by this definition η has evidential support from any set.

Definition 2.22. Let ES = (A,R,E) be an EAS. Given a set of arguments X ⊆ A, an evidential
sequence for an argument a ∈ X is a sequence of distinct elements of X (a0, .., an) s.t. an = a,
a0 = η, and if n > 0, then ∀ni=1 there exists a nonempty T ⊆ {a0, ..., ai−1} s.t. TEai.

Theorem 2.23. Let ES = (A,R,E) be an EAS, X ⊆ A be a set of arguments and a ∈ A. a is
e–supported by X iff there exists an evidential sequence for a on X ∪ {a}.

Definition 2.24. Let ES = (A,R,E) be an EAS. A setX ⊆ A carries out an evidence supported
attack (e–supported attack) on an argument a ∈ A iff (X ′, a) ∈ R where X ′ ⊆ X , and for all
x ∈ X ′, x has evidential support from X .

We can now continue with EAS semantics.

Definition 2.25. Let ES = (A,R,E) be an EAS. An argument a ∈ A is acceptable with respect
to a set of arguments X ⊆ A iff

• a is evidentially supported by X; and

• given a minimal e–supported attack by a set T ⊆ A against a, it is the case that X carries
out an e–supported attack against a member of T .

Definition 2.26. Let ES = (A,R,E) be an EAS. A set of arguments X ⊆ A is:

• self–supporting in ES iff all arguments in X are e–supported by X .

• conflict–free in ES iff there is no a ∈ X and X ′ ⊆ X such that X ′Ra.

• admissible in ES iff it is conflict–free and all elements of X are acceptable w.r.t. X .

• preferred in ES iff it is maximal w.r.t. set inclusion admissible.

• complete in ES iff it is admissible and all arguments acceptable w.r.t. X are in X .

• stable inES iff it is conflict–free, self–supporting, and for any argument a e–supported byA
where a /∈ X ,X e–support attacks either a or every set of arguments minimally e–supporting
a.

Definition 2.27. LetES = (A,R,E) be a finitiary EAS. The characteristic function FES : 2A →
2A of ES is defined as: FES(X) = {a | a is acceptable w.r.t. X in ES}. The grounded extension
of a ES is the least fixed point of FES .
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From the fact that every valid argument needs to be grounded in the environment it clearly
results that EAS semantics are acyclic both on the inside and outside. In a certain sense this
requirement is even stronger than in AFNs, as one is allowed to come back to only a single special
argument rather than any initial one.

Example 4. Let ({η, a, b, c, d, e, f}, {({b}, a), ({b}, c), ({c}, b), ({c}, d), ({d}, f), ({f}, f)},
{({η}, b), ({η}, c), ({η}, d), ({η}, f), ({d}, e)}) be the EAS depicted in Figure 4. The admissi-
ble extensions are ∅, {η}, {η, b}, {η, c}, {η, b, d} and {η, b, d, e}, with {η}, {η, c} and {η, b, d, e}
being the complete ones. Obviously, the latter two are preferred. However, only {η, b, d, e} is
stable. Since a is not a valid argument (it is not e–supported in the framework), we do not have to
attack it. Although {η, c} attacks b and d (and by this, also e), it is not in any way in conflict with
f . The grounded extension is just {η}.

a b c d e

fη

Figure 4: Sample EAS

2.3 Abstract Dialectical Frameworks
Abstract dialectical frameworks have been defined in [13] and till today various results as to their
semantics, instantiation and complexity have already been published in [11, 39, 42–44]. The main
goal of ADFs is to be able to express arbitrary relations and avoid the need of extending AFs by
a new relation sets each time they are needed. This is achieved by the means of the so–called
acceptance conditions. They define what sets of arguments related to a given argument should be
present for it to be accepted or rejected.

Definition 2.28. An abstract dialectical framework (ADF) as a tuple (A,L,C), where A is a set
of abstract arguments (nodes, statements), L ⊆ S × S is a set of links (edges) and C = {Cs}s∈S
is a set of acceptance conditions, one condition per each argument.

Originally, the acceptance conditions were defined in terms of functions:

Definition 2.29. Let par(s) denote the set of parents of an argument s; it consists of those p ∈ A
for which (p,s) ∈ L. Then an acceptance condition is given by a total function Cs : 2par(s) →
{in, out}.

Within ADFs, we distinguish a particular subclass called bipolar. It is particularly valuable
due to the fact bipolar ADFs, BADFs for short, appear to be of lower complexity than general
ones [44]. We will recall them in order to motivate some of our naming choices in this paper.
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Definition 2.30. Let D = (A,L,C) be an ADF. A link (r, s) ∈ L is:

• supporting iff for no R ⊆ par(s) we have that Cs(R) = in and Cs(R ∪ {r}) = out

• attacking iff for no R ⊆ par(s) we have that Cs(R) = out and Cs(R ∪ {r}) = in

An ADF is bipolar iff it contains only links that are supporting or attacking.

Remark. Please note that links can be both attacking and supporting (in which they are also often
called redundant), or neither – ADFs are able to express more than attack and support.

Alternatively, one can also represent the acceptance conditions by propositional formulas over
arguments instead of “boolean” functions [25]. Please note that links represent just connections
between arguments, the burden of saying what is the nature of this connection falls to the accep-
tance conditions. Moreover, the parents of an argument can be easily extracted from the conditions
and since we will not need BADFs through the rest of the paper, from now on we will use the
shortened notation D = (A,C). In order to introduce our new semantics, we need to explain some
basic notions first.

3 Building Blocks of ADF Semantics
In this section we will introduce the concepts on which the semantics of ADFs are built. While the
recap on interpretations will be relevant both to extension and labeling–based semantics, further
sections will be required mostly for the former and for understanding the relation between the two
approaches.

3.1 Interpretations
Interpretations will be equally important both in labeling and extension–based semantics. While
in the first case interpretations will be returned instead of sets of arguments, in the latter they will
be used to store accepted and rejected arguments in order to determine their acceptability.

A two (three–valued) interpretation is simply a mapping that assigns truth values (respectively
{t, f} and {t, f ,u}) to arguments. We will be making use both of partial (i.e. defined only for a
subset of A) and full ones. The truth values can be compared with respect to truth ordering, i.e.
f ≤t u ≤t t, or precision (information) ordering: u ≤i t and u ≤i f . The latter will be used in the
context of labeling semantics. The pair ({t, f,u},≤i) forms a complete meet–semilattice with the
meet operation u assigning values in the following way: t u t = t, f u f = f and u in all other
cases. It can naturally be extended to interpretations: given two interpretations v and v′ on A, we
say that v′ contains more information, denoted v ≤i v

′, iff ∀s∈A v(s) ≤i v
′(s). Similar follows for

the meet operation. In case v is three and v′ two–valued, we say that v′ extends v. This means
that elements mapped originally to u are now assigned either t or f . The set of all two–valued
interpretations extending v is denoted [v]2.
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Example 5. Let v = {a : t, b : t, c : f , d : u) be a three–valued interpretation. We have two
extending interpretations, namely v′ = {a : t, b : t, c : f , d : t) and v′′ = {a : t, b : t, c : f , d : f).
Clearly, it holds that v ≤i v

′ and v ≤i v
′′. However, v′ and v′′ are incomparable w.r.t. ≤i.

Let now w = {a : f , b : f , c : f , d : t) be another three–valued interpretation. The meet of v
and w gives us a new interpretation w′ = {a : u, b : u, c : f , d : u): as the assignments of a, b and
d differ between v and w, the resulting value is u. On the other hand, c is in both cases f and thus
retains its value.

We will use vx to denote a set of arguments mapped to x by v, where x a given truth–value.

3.2 Decisiveness
The notion of decisiveness is a key concept in our extension–based semantics for abstract dialec-
tical frameworks. It can also be used to describe the behavior of the operator of labeling–based
semantics, which will become more apparent when comparing the two approaches (see Section 7).
While our idea uses interpretations, please note that the set form of decisiveness was also present
in the original paper [13] in order to define the grounded semantics. We will compare the two
versions at the end of this section.

Let us assume an ADF D = (A,C). Given an acceptance condition Cs for some argument s ∈
A and an interpretation v, we define a shorthand v(Cs) asCs(v

t∩par(s)). For a given propositional
formula ϕ and an interpretation v defined over all of the atoms of the formula, v(ϕ) will just stand
for the value of the formula under v. However, apart from knowing the “current” value of an
acceptance condition for some interpretation, we would also like to know if this interpretation
is “final”. By this we understand that no new information will cause the value to change. For
example, given a condition ϕs = a ∧ ¬b for some argument s dependent on a and b, knowing that
b is true is enough to map ϕs to out in a way that no matter the value of a, it will always stay out.
In order to verify whether our interpretation is decisive for some argument, we will explore how
the interpretations “filling in” the missing values evaluate the argument’s condition. We will refer
to them as completions:

Definition 3.1. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and v a two–valued
interpretation defined on E . A completion of v to a set Z where E ⊆ Z, is an interpretation v′

defined on Z in a way that ∀a ∈ E v(a) = v′(a). v′ is a t/f completion of v iff all arguments in
Z \ E are mapped respectively to t/f .

Remark. We would like to draw the attention to the similarity between the concepts of comple-
tion and extending interpretation. Basically, given a three–valued interpretation v defined over
A, the set [v]2 corresponds precisely to the set of completions to A of the two–valued part of v.
However, if we used the notion of an extension instead of a completion in a two–valued setting, it
could be easily mistaken for the extension understood as set of arguments, not as an interpretation.
Therefore, we will use our notation to avoid such collisions.

Definition 3.2. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and v a two–valued
interpretation defined on E . v is decisive for an argument s ∈ A iff for any two completions vpar(s)
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and v′par(s) of v to E ∪ par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs). s is decisively out/in w.r.t. v
if v is decisive and all of its completions evaluate Cs to respectively out, in.

a b cd
b→ d a ∧ c ⊥d

Figure 5: Sample ADF

Example 6. Let ({a, b, c, d}, {Ca : b → d, Cb : a ∧ c, Cc : ⊥, Cd : d}) be the ADF depicted
in Figure 5. Example of a decisively in interpretation for a is v = {b : f}. It simply means
that knowing that b is false, no matter the value of d, the implication is always true and thus the
acceptance condition is satisfied. From the more technical side, it is the same as checking that both
completions of v to {b, d}, namely {b : f , d : t} and {b : f , d : f}, satisfy the condition. Example
of a decisively out interpretation for b is v′ = {c : f}. Again, it suffices to falsify one element of a
conjunction to know that the whole formula will evaluate to false.

Remark. Please note that the existence of an interpretation that satisfies the acceptance condition
of an argument a (i.e. there is a set of parents s.t. condition is in) implies the existence of a
decisively in interpretation for a and vice versa. Moreover, if an argument is decisively out/in
w.r.t. an interpretation, it holds that its acceptance condition is out/in. It basically results from the
definition of a completion and decisiveness. Finally, if an argument is decisively in/out w.r.t. some
interpretation, then it is decisively out w.r.t. any of its completions, not necessarily the ones that
are defined for all parents.

Please note that although decisiveness in the interpretation form is more convenient for our
purposes, the set version of this idea was already developed in the original paper [13] for the
grounded semantics. Thus, one can choose between the representations depending on which one
is more suitable. The set of arguments that were decisively in w.r.t. some set of accepted (G)
and rejected (B) arguments was retrieved via the acc function. Similarly, reb produced a set of
decisively out elements:

Definition 3.3. Let D = (A,C) be an ADF and G,B ⊆ A sets of arguments. Then acc(G,B) =
{r ∈ A | G ⊆ A′ ⊆ (A\B) → Cr(A

′ ∩ par(s)) = in} and reb(G,B) = {r ∈ A | G ⊆ A′ ⊆
(A\B)→ Cr(A

′ ∩ par(s)) = out}.

We will now show that the set and interpretation approaches represent the same concept. Since
we are interested in extensions, i.e. single status assignments to arguments, we can assume that
G ∩ B = ∅. Then we have that an argument r ∈ A is in acc(G,B), if for all possible subsets of
arguments that contain the accepted ones (G) and not including any of the rejected ones (thus they
can only be from A\B) the acceptance condition is met. This is precisely checking if an argument
is decisively in w.r.t. an interpretation v, where vt = G and vf = B. Clearly, reb(G,B) is just
finding arguments that are decisively out w.r.t. v. We will come back to this representation when
recalling the ADF grounded semantics.
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3.3 Evaluations
Acceptance conditions tell us on what other arguments a given argument depends. We can see
if they need to be accepted or rejected for the condition to be in our out and derive a range of
decisively in interpretation based on it. We can then focus on the arguments in the condition and
investigate them in a similar manner and continue this process until we have a full picture telling
us when, how, and if at all, the arguments can be accepted or rejected, if they can be derived from
initial arguments, include cyclic dependencies and so on. To this end, we introduce the notions of
positive dependency functions and evaluations.

Let us assume an ADF (A,C). Given an argument s ∈ A and x ∈ {in, out}, by min dec(x, s)
we will the denote the set of minimal two–valued interpretations that are decisively x for s. By
minimal we understand that both vt and vf are minimal w.r.t. set inclusion.

Definition 3.4. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. A positive de-
pendency function on E is a function pd assigning every argument a ∈ E an interpretation
v ∈ min dec(in, a) s.t. vt ⊆ E orN for null iff no such interpretation can be found. The function
is sound iff no argument is mapped toN . pd is maximally sound on E iff it is a sound function on
E ′ ⊆ E and there is no sound positive dependency function pd′ on E ′′, where E ′ ⊂ E ′′ ⊆ E , s.t.
∀a ∈ E ′, pd(a) = pd′(a).

Definition 3.5. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound positive depen-
dency function of X defined over E ⊆ X . A standard positive dependency evaluation for an
argument e ∈ E in D based on pdDE is a pair (F,B), where F ⊆ E is a set of arguments s.t. e ∈ F ,
and ∀a ∈ F, pdDE (a)t ⊆ F , and B =

⋃
a∈F pd

D
E (a)f .

We will refer to F as the pd–set of the evaluation and toB as the blocking set of the evaluation.

Example 7. Let ({a, b, c, d, e}, {Ca : ⊥, Cb : a ∧ c, Cc : d ∧ ¬e, Cd : d, Ce : >}) be the ADF
depicted in Figure 6. The argument a has no standard evaluation, as it possesses no decisively in
interpretation to start with. Although the argument b has a decisively in interpretation {a : t, c : t},
it depends on a and thus there does not exist a sound pd–function from which we could construct
an evaluation for b. For d we have a simple evaluation ({d}, ∅), and based on it an evaluation
({c, d}, {e}) for c. Finally, e as an initial argument has a trivial evaluation ({e}, ∅).

a b c d e
⊥ a ∧ c d ∧ ¬e d >

Figure 6: Sample ADF

While standard evaluations are already quite useful, we will also be interested in the more
specialized types, dealing with the issue of so–called support cycles. In our case we will refer to
them as positive dependency cycles, in order not to confuse them with certain definitions of support
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(evidential, necessary etc.) studied in other generalizations of the Dung’s framework or with the
support and attack links of bipolar abstract dialectical frameworks (see Section 2).

The informal understanding of a cycle is simply whether acceptance of an argument depends
on this argument. A natural way to analyze this situation would be to “track” the evaluation of a
given argument, e.g. in order to accept awe need to accept b, to accept bwe need to accept c and so
on. This simple case becomes more complicated when disjunction is introduced. We then receive
a number of such “paths”, some of them ending with cycles, some not. Moreover, they might be
conflicting with each other, and we can have a situation where all acyclic evaluations are attacked
and a cycle is forced. Our idea is to “unwind” the arguments and construct their evaluation paths,
while still keeping in mind the arguments that they are in conflict with.

First of all, we will consider the partially acyclic evaluations. They can be seen as refinement
of the standard ones, where the arguments are separated in to two groups; one that can be ordered
into a sequence s.t. each argument depends only on the predecessors, and the other for which it is
not possible, thus serving as a container for the cycles.

Definition 3.6. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound positive depen-
dency function of X defined over E ⊆ X .

A partially acyclic positive dependency evaluation based on pdDE for an argument x ∈ E is a
triple (F, (a0, ..., an), B), where F ∩{a0, ..., an} = ∅, (a0, ..., an) is a sequence of distinct elements
of E satisfying the requirements:

• if the sequence is non–empty, then an = x; otherwise, x ∈ F

• ∀ni=1, pd
D
E (ai)

t ⊆ F ∪ {a0, ..., ai−1}, pdDE (a0)
t ⊆ F

• ∀a ∈ F, pdDE (a)t ⊆ F

• ∀a ∈ F, ∃b ∈ F s.t. a ∈ pdDE (b)

Finally, B =
⋃

a∈F pd
D
E (a)f ∪

⋃n
i=0 pd

D
E (ai)

f , The sequence part of the evaluation will be referred
to as the pd–sequence.

We can now introduce the last type of evaluations: the acyclic ones, being a subclass of partially
acyclic.

Definition 3.7. Let D = (A,C) be an ADF, X ⊆ A and pdDE a maximally sound positive depen-
dency function of X defined over E ⊆ X . A partially acyclic evaluation (F, (a0, ..., an), B) for an
argument x ∈ E is an acyclic positive dependency evaluation for x iff F = ∅.

Example 8. Let us come back to the framework ({a, b, c, d, e}, {Ca : ⊥, Cb : a∧c, Cc : d∧¬e, Cd :
d, Ce : >}) from Example 7 and Figure 6. The standard evaluation for e was ({e}, ∅). Since e does
not depend on any other argument, it can be easily moved into the pd–sequence and the partially
acyclic representation of the standard evaluation is (∅, (e), ∅). This evaluation also happens to be
acyclic. Although the evaluation for d looks similar, we can observe that the argument depends
on itself, and thus the pd–sequence will be empty. The partial representation is thus ({d}, (), ∅).

20



a b c d e
> ¬a ∨ c b ¬c ∧ ¬e ¬d

Figure 7: Sample ADF

Finally, let us look at the evaluation for c. The evaluation ({c, d}, (), ∅) would not satisfy the
partially acyclic requirements, since no argument in the pd–set depends on c. Consequently, we
can “push” c into the sequence and obtain the evaluation ({d}, (c), {e}), which clearly shows where
the actual cycle occurs. Neither c nor d possess acyclic evaluations.

We will use the shortened notation ((a0, ..., an), B) in order to denote the acyclic evaluations.
We will say a standard evaluation (F,B) based on pdDE can be made acyclic for an argument

e ∈ F and w.r.t. pdDE iff there exists a way to order the elements of F into a sequence satisfying
the pd–sequence requirements. It is also easy to see that any evaluation can be transformed into a
standard one by joining the pd–set and the pd–sequence into a single pd–set.

We will say that an argument a is pd–acyclic on some set of arguments E iff there exist a
pd–function on E and a corresponding acyclic pd–evaluation for a. Furthermore, we will simply
write that an argument has an acyclic pd–evaluation on E if there is some pd–function on E from
which we can produce the evaluation.

There are two ways we can “attack” an evaluation. Either we accept an argument that needs
to be rejected in order for the evaluation to hold (i.e. it is in the blocking set), or we are able to
discard an argument from the pd–sequence or the pd–set. This leads to the following, more abstract
formulation: 6

Definition 3.8. Let D = (A,C) be an ADF and (F, (a0, ..., an), B) a partially acyclic evaluation
on a set E ⊆ A for an argument a ∈ E . A two–valued interpretation v defined on a subset of A
blocks (F, (a0, ..., an), B) iff ∃b ∈ B s.t. v(b) = t or ∃x ∈ {a0, ..., an} ∪ F s.t. v(x) = f .

Remark. An evaluation can be self–blocking, i.e. some members of the pd–sequence or the pd–
set are present in the blocking set. Although an evaluation like that will never be accepted in an
extension, it can make a difference in what we consider a valid attacker.

The idea of a pd–evaluation, especially an acyclic one, is strongly related to the concept of
powerful and evidential sequences from AFNs and EASs (see Sections 2.2.2 and 2.2.3). The dif-
ference lies in the fact that in these frameworks, blocking an evaluation and attacking an argument
are in precise correspondence. Since ADFs can also handle relations beyond attack and support,
blocking a sequence might not always break conflict–freeness, and hence the blocking set needs to
be stored. Let us now show this on an example:

6Since every standard evaluation can be made partially acyclic and every acyclic evaluation is also a partial one,
we will only present the most general definition.
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Example 9. Let ({a, b, c, d, e}, {Ca : >, Cb : ¬a ∨ c, Cc : b, Cd : ¬c ∧ ¬e, Ce : ¬d}) be the ADF
in Figure 7. For argument b there exist two minimal decisively in interpretations: v1 = {a : f}
and v2 = {c : t}. The interpretations for a and c are respectively w1 = {} and z1 = {b : t}.
Therefore, on {a, b, c} we have two pd–functions, namely pd1 = {a : w1, b : v1, c : z1} and
pd2 = {a : w1, b : v2, c : z1}. They result in one acyclic evaluation for a: ((a), ∅), one for
b: ((b), {a}) and one for c: ((b, c), {a}). Let us analyze the set E = {a, b, c}. We can see that
accepting a “forces” a cycle between b and c. The acceptance conditions of all arguments are
satisfied, thus this simple check is not enough to verify if a cycle occurs. If we checked only if the
members of the pd–sequences are accepted, we would also get the wrong answer. Only looking at
the whole evaluations shows us that b and c are both blocked by a. Although b and c are technically
pd–acyclic in E , we see that their evaluations are in fact blocked and this type of conflict needs to
be taken into account by the semantics.

We will close this section with a discussion on minimal interpretations and evaluations. First
of all, the usage of only minimal decisively in interpretations in the construction of evaluations is
purely our design choice. Allowing every type of interpretation would not affect our semantics;
our interest lies in whether an evaluation of a given type exists or if all are blocked. Consequently,
from an existing one we can always “remove” unnecessary elements from the blocking set in order
to trim it to minimal interpretations. And if all evaluations are blocked, then so are the ones
constructed with the minimal interpretations. Our choice to consider only minimal interpretations
was motivated by practical and aesthetic reasons. Removing the minimality constraint caused an
increase in the number of evaluations that could not be managed by our simple implementation
used for testing. Moreover, we wanted the interpretations to reflect actual dependencies in the
framework, which without minimality was not possible – an interpretation can, for example, be
mapped for more arguments than just parents of a given argument.

In what follows we will also introduce the concept of minimal evaluations. This comes from
the fact that not every evaluation may be of interest to us. For example, it may contain redundant
elements on which the argument of interest does not really depend, or they may unnecessarily long.
Let us consider an example.

Example 10. Let ({a, b, c, d}, {Ca : b ∨ c, Cb : c, Cc : >, Cd : ¬b ∨ c}) be the ADF depicted in
Figure 8. Let us focus on argument a and the following three acyclic evaluations for it: ((c, a), ∅),
((c, b, a), ∅) and ((d, c, a), {b}). We can observe that a depends on c, but it can be reached either
directly or though b. Although the “longer” part is perfectly fine, it can be seen as somewhat
redundant due to the presence of the direct one. On the other hand, the ((d, c, a), {b}) evaluation
contains data useless for a – it includes the analysis of argument d, which is not related to a at all.

Let us now consider argument d and its evaluations. It possesses an acyclic one ((d), {b}),
which can also be changed into standard, and a purely standard one ({d}, ∅). While the first one
is created with the decisively in interpretation {b : f}, the other with {d : t}. If we were to
consider minimal evaluations based only on subset relations between pd–sets and blocking sets,
we can observe that the standard evaluation corresponding to ((d), {b}) would have been “lost”.
Thus, in this approach a minimal evaluation of one type may not necessarily be a minimal one
of another type. While it does not create problems if we are trying to answer the question if all
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Figure 8: Sample ADF

standard evaluations of an argument are blocked, it can make a difference if we distinguish between
types of evaluations. Consequently, a safe approach to minimality should take the pd–function into
account.

We close this section by introducing the concept of minimal evaluations.

Definition 3.9. Let D = (A,C) be an ADF and pdDE a positive dependency function on a set
E ⊆ A. Let a ∈ E and (F,B) a standard evaluation for a ∈ E . (F,B) is a minimal standard
evaluation for a w.r.t. pdDE if there is no other standard evaluation (F ′, B′) for a based on pdDE s.t.
F ′ ⊆ F and B′ ⊆ B.

Let (G,B) be a pd–acyclic evaluation for a ∈ E based on pdDE . (G,B) is a minimal pd–acyclic
evaluation for a w.r.t. pdDE if there is no other pd–acyclic evaluation (G′, B′) for a based on pdDE
s.t. B′ ⊆ B and G′ is a subsequence of G.

Let (F,G,B) be a partially pd–acyclic evaluation for a ∈ E based on pdDE . (F,G,B) is a
partially minimal pd–acyclic evaluation for a w.r.t. pdDE if there is no other partially pd–acyclic
evaluation (F ′, G′, B′) for a based on pdDE s.t. B′ ⊆ B, F ′ ⊆ F and G′ is a subsequence of G.

3.4 Range
Just like in the Dung’s framework, the concept of range and the E+ set also appears in ADFs.
The original definition from [35] required the notion of conflict–freeness. We will recall it here
and later show that with the use of evaluations, we can drop the conflict–freeness assumption. For
more explanations and examples concerning this semantics, please refer to Section 5.2.

Definition 3.10. Let D = (A,C) be an ADF. A set of arguments E ⊆ A is a conflict–free
extension of D if for all s ∈ E we have Cs(E ∩ par(s)) = in. E is a pd–acyclic conflict–free
extension of D iff for every argument a ∈ E , there exists an unblocked pd–acyclic evaluation on
E w.r.t. vE .

3.4.1 Standard Range

The basic concept of range is based on decisive outing. We start with arguments we can accept
and then look for ones that are decisively outed by our choice. Since discarding one argument can
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also discard another that depends on it via a chain reaction, we repeat this search until no further
arguments can be found.

Definition 3.11. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and vE a
partial two–valued interpretation built as follows:

1. let M = E and for every a ∈ E set vE (a) = t;

2. for every argument b ∈ A \M that is decisively out w.r.t. vE , set vE (b) = f and add b to M ;

3. now repeat the previous step until there are no new elements added to M .

By E+ we understand the set of arguments vfE and we will refer to it as the discarded set. vE now
forms a range interpretation of E , where the usual range is denoted as ER and equals E ∪E+7.

We can also redefine this notion by the use of standard evaluations, which limits the algorithm
to a single iteration. Moreover, it allows us to find arguments decisively outed by a set of arguments
without the conflict–freeness assumption.

Lemma 3.12. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈ A |
for every standard dependency evaluation (F,B) for a in D, B ∩ E 6= ∅}. If E is conflict–free,

then X = E+.

Proof. First of all, let us notice that if E is conflict–free, then E ∩X = ∅. Since E is conflict–free,
then for every argument a ∈ E we can create a trivial decisively in interpretation which maps
E ∩ par(a) to t and par(a) \ E to f . Thus, it is easy to see that the false part of the interpretation
does not contain arguments appearing in E and that the positive part is fully in E . We can thus
trivially construct an evaluation for any argument in the set with a blocking set disjoint from E .
Consequently, no a ∈ E will appear in X and we can produce an interpretation vX s.t. elements of
E are mapped to t and elements from X are mapped to f .

Let us now assume that there is an argument which is in X , but not in E+. This means that
although every evaluation of an argument is blocked through the blocking set by E , the argument
is not decisively out w.r.t. vE . If an argument a ∈ A is not decisively out, then there exists a
completion v of vE s.t. Ca(v

t ∩ par(a)) = in). It is easy to see that we can construct a trivial
decisively in interpretation for a by mapping to f all arguments that are not yet assigned a value by
v. Thus, a minimal one vmin also exists and is not “prevented” by vE . Moreover, elements from
vtmin are not falsified by vE and thus they could not have been decisively out w.r.t. it. As a result, we
can find completions of vE that satisfy their conditions and construct possible minimal decisively
in interpretations for them, or use the ones we have already at hand in case given arguments have
already been considered before or are contained in E . We can continue in this manner until our
collection of interpretations produces a standard dependency evaluation which by construction has
a blocking set disjoint with E . We reach a contradiction and a could not have been inX . Therefore,
if an argument is in X , it is in E+.

7It can be equivalently seen as vtE ∪ vfE or simply as the set of arguments for which vE is defined.
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Let us now assume that there is an argument a ∈ A which is in E+, but not in X . This
means that even though a is decisively out w.r.t. vE , there is an evaluation (F,B) s.t. a ∈ F and
E ∩ B = ∅. Let us go through the range interpretation construction from Definition 3.11 and start
with an interpretation v mapping and only elements of E to t. Assume that a is already decisively
out w.r.t. v. This means that either a possesses no set of arguments for which its condition is in, or
there exists a minimal subset E ′ ⊆ E ∩ par(a) s.t. ∀E ′′ ⊆ par(a),E ′ ⊆ E ′′, Ca(E

′′) = out. If the
first scenario is true, then obviously there is no decisively in interpretation for a and no evaluation.
We thus reach a contradiction. If it is the latter, then every minimally decisively in interpretation
for a has to falsify at least one argument in E ′′; otherwise, we can create its completion that will
out the condition of a. Thus, any standard evaluation for a will have at least one member of its
blocking set that is also in E . We reach a contradiction.

Let us thus assume that a was not decisively outed in the first iteration and let us continue with
the second one. We have the interpretation v which maps to true members of E and for every
argument mapped to false, either it does not possess a decisively in interpretation or every such
interpretation has an argument mapped to f which is in E . Assume that a is decisively outed in
this step. Since it did not happen in the first one, it means that there existed at least one completion
of the initial v that evaluated the condition of a to in. Thus, we can still create at least one minimal
decisively in interpretation for a related to these completions. Since no member mapped to false
by any of these interpretations was contained in E , then it must have been the case that the v
updated after the first iteration maps to f arguments that were assigned t by these decisively in
interpretations. However, from this follows that a standard evaluation built for a with any of these
interpretations contains arguments that we have outed in the previous step, whose false parts of the
interpretations were not disjoint from E . Consequently, the blocking set of the evaluation would
also not be disjoint with E . We reach a contradiction.

We can repeat this procedure until we reach the point in iteration that decisively outs a and
come to the conclusion that a could not have possessed an evaluation (F,B) s.t. B∩E = ∅. Thus,
whatever argument is in E+, it is also in X .

2

Example 11. Let us consider the framework ({a, b, c, d, e}, {Ca : a ∧ ¬b, Cb : a, Cc : ¬b, Cd :
¬a, Ce : d, Cf : f}) depicted in Figure 9 and focus on the conflict–free set {a}. We will now
compute its standard range. First of all, the interpretation v = {a : t} decisively outs d. We update
v and now have {a : t, d : f}. Our new interpretation now decisively outs e and we can extend it
to {a : t, d : f , e : f}. No further arguments can be falsified, as for both b and c the conditions are
in w.r.t. {a} and even though the condition of f is for now out, a completion of v mapping f to t
can make it in. Let us now compute the standard range in the evaluation manner. For b we have an
evaluation ({a, b}, {b}), for c ({c}, {b}), for d ({d}, {a}), ({d, e}, {a}) for e and finally ({f}, ∅)
for f . We can observe that only the evaluations for d and e are blocked by {a}.

3.4.2 Acyclic Range

The notions of the discarded set and the range are quite strong in the sense that they require an
explicit “attack” on arguments that take part in dependency cycles. This is not always a desirable
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Figure 9: Sample ADF

property. Depending on the approach we might not treat cyclic arguments as valid and hence want
them “out of the way”.

Definition 3.13. Deprecated Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D
and vaE a partial two–valued interpretation built as follows:

1. Let M = E . For every a ∈M set vaE (a) = t.

2. For every argument b ∈ A \M s.t. every acyclic pd–evaluation of b in A is blocked by vaE ,
set vaE (b) = f and add b to M .

3. Repeat the previous step until there are no new elements added to M .

By E a+ we understand the set of arguments mapped to f by vaE and refer to it as acyclic discarded
set. We refer to vaE as acyclic range interpretation of E .

Lemma 3.14. Let D = (A,C) be an ADF, E ⊆ A be a pd–acyclic conflict–free extension of
D, vaE its acyclic range interpretation and a ∈ A an argument s.t. it has at least one pd–acyclic
evaluation ((a0, ..., an), B) on A. The interpretation vaE blocks the evaluation iff E ∩B 6= ∅.

Proof. If E ∩ B 6= ∅, then the evaluation ((a0, ..., an), B) for a is blocked by the definition. Let
us thus focus on the other way around. Assume that vaE blocks ((a0, ..., an), B), but E ∩ B = ∅.
This means that the blocking can occur only by falsifying a member of the pd–sequence. Let aj be
the first member of the pd–sequence falsified by the vaE and let v and v′ be the stages of building
the range interpretation before and after aj is falsified. Assume that j = 0. By the pd–sequence
requirements, the decisively in interpretation v0 with which a0 entered the evaluation consists only
of false assignments. Thus, a0 possesses a trivial pd–acyclic evaluation ((a0), v

f
0). For v′ to map

a0 to false, v has to block all of its evaluation, including the trivial one. Since v does not map
a0 to false, it has to be the case that vf0 ∩ vt 6= ∅. This contradicts our assumption and thus it
cannot be the case that j = 0. Let us continue with j = 1. The interpretation v1 with which it
entered the evaluation has a positive part consisting of at most a0. We can create an evaluation
((a0, a1), v

f
0 ∪ vf1) for a1. Since a0 is not falsified by vaE and a1 is not yet falsified by v, it cannot be

the case that v′ falsified v1 without a member of the blocking set being accepted. Again we reach a
contradiction and conclude that it cannot be the case that j = 1. We can continue reasoning in this
way until we reach an and we can thus conclude it could not have been falsified by the vaE unless
a member of the blocking set was accepted. Thus, if an argument possessing an acyclic evaluation
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is falsified by range, then it cannot be the case that the range does not map to true at least one
member of the blocking set. 2

The analysis above brings us to a conclusion that the algorithm from the original definition of
the acyclic range in fact terminates after first iteration. Consequently, we can rephrase it in the
following way, similar to Lemma 3.12:

Lemma 3.15. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and X = {a ∈
A | for every pd–acyclic dependency evaluation (F,B) for a, B ∩ E 6= ∅}. If E is pd–acyclic
conflict–free, then X ∩ E = ∅. If E is conflict–free, then X \ E = E+.

Proof. If E is pd–acyclic conflict–free, then every argument a ∈ E will have a pd–acyclic evalua-
tion on E s.t. E ∩B = ∅. Consequently, no such a will qualify for X and X ∩ E = ∅.

The equality between X \ E and E+ follows easily from Lemma 3.14.
2

Example 12. Let us come back to the framework ({a, b, c, d, e}, {Ca : a∧¬b, Cb : a, Cc : ¬b, Cd :
¬a, Ce : d, Cf : f}) depicted in Figure 9 and described in Example 11. The standard range of
set {a} was v = {a : t, d : f , e : f}. The evaluations for e and d can be made acyclic, and as
their blocking sets contain a, it is easy to see that both of the arguments will also be falsified in the
acyclic range. Since f possesses no acyclic evaluation, it will also be in the discarded set. Finally,
the evaluation ({a, b}, {b}) for b cannot be made acyclic and the argument will be falsified for the
same reason as f .

3.4.3 Partially Acyclic Range

The last type of range we will consider, the partially acyclic one, will be used in one family of our
semantics. It can be seen as a certain middle ground between the standard and acyclic range. We
discard the arguments if we block all of its pd–acyclic evaluations, unless it is based on a “cycle”
that we are ready to accept. The value of this approach will become more apparent in Section
5.5.4.

Definition 3.16. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. The partially acyclic
discarded set of E is E p+ = {a ∈ A | for every pd–acyclic evaluation (F,B) for a, B ∩ E 6=
∅ and there is no partially acyclic evaluation (F ′, G′, B′) for a s.t. F ′ ⊆ E and B′ ∩ E = ∅}.

Lemma 3.17. Let D = (A,C) be an ADF, E ⊆ A a set of arguments and E p+ its partially acyclic
discarded set. If E is conflict–free in D, then E ∩ E p+ = ∅.

Proof. Let a be an arbitrary argument in E . Since a ∈ E and E is conflict–free, it is easy to see
that we can construct a standard evaluation (F,B) for a on E s.t. F ⊆ E and B ∩ E = ∅. We
can transform this evaluation into a partially acyclic one (F ′, G′, B), where F ′ ∪G′ = F . Clearly,
F ′ ⊆ E and B ∩E = ∅. Consequently, a could not have been in the partially acyclic discarded set
and it follows that E ∩ E p+ = ∅. 2
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Definition 3.18. Let D = (A,C) be an ADF, E ⊆ A a conflict–free extension of D and E p+ its
partially acyclic discarded set. The partially acyclic range of E in the interpretation vpE mapping
to t all and only arguments in E and mapping to f all and only arguments in E p+.

Example 13. Let us come back to the framework ({a, b, c, d, e}, {Ca : a∧¬b, Cb : a, Cc : ¬b, Cd :
¬a, Ce : d, Cf : f}) depicted in Figure 9 and described in Examples 11 and 12 The standard range
of set {a} was v = {a : t, d : f , e : f}, while the acyclic one was w = {a : t, b : f , d : f , e : f , f :
f}. In the partially acyclic case, the arguments d, e and f will also be mapped to f by the range.
However, even though argument b does not possess an acyclic evaluation, the partial representation
({a}, (b), {b}) of the standard one ({a, b}, {b}) has its pd–set contained in {a}. Consequently, the
argument does not meet the partially acyclic range requirements.

4 Labeling–Based Semantics of ADFs
The two approaches towards labeling–based semantics of ADFs were developed in [11, 42]. They
are based on the notion of a characteristic operator. While in the Dung setting the operator worked
with sets, here three valued interpretations are used.

Definition 4.1. Let VS be the set of all three–valued interpretations defined on S, s an argument
in S and v an interpretation in VS . The three–valued characteristic operator of D is a function
ΓD : VS → VS s.t. ΓD(v) = v′ with v′(s) =

d
w∈[v]2 Cs(par(s) ∩ wt).

Remark. This operator working on three–valued interpretations is a more sophisticated version of
the operator introduced in the original paper [13] and recalled in Section 5.4. This will become
more visible when we describe the behavior of ΓD in terms of decisiveness in Section 7.

Recall that verifying the value of an acceptance condition under a set of extensions of a three–
valued interpretation [v]2 is just like testing its value against the completions of the two–valued
part of v. Thus, an argument that is assigned t by the ΓD(v) is decisively in w.r.t. the two–valued
sub–interpretation of v. Similarly, one that is mapped to f is decisively out.

Remark. It is easy to see that in a certain sense this operator allows self–justification and self–
falsification. Take for example a self–supporter; if we generate an interpretation in which it is false
then, obviously, it will remain false. Same follows if we assume it to be true. This results from the
fact that the operator functions on interpretations defined on all arguments, thus allowing a self–
dependent argument to affect its status. The same is true if we consider bigger positive dependency
cycles.

The labeling–based semantics are now as follows:

Definition 4.2. Let v be a three–valued interpretation for D and ΓD its characteristic operator. We
say that v is:

• three–valued model iff for all s ∈ S we have that v(s) 6= u implies that v(s) = v(ϕs);

• admissible iff v ≤i ΓD(v);
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• complete iff v = ΓD(v);

• preferred iff it is ≤i–maximal admissible; and

• grounded iff it is the least fixpoint of ΓD.

The stable semantics is a slightly different case. Although formally we receive a set, not an
interpretation, this makes no difference for stability. As nothing is left undecided, there is a one–
to–one correspondence between the extensions and labelings. The current state of the art definition,
presented in [11, 42] is based on the grounded semantics:

Definition 4.3. Let M be a model of D and DM = (M,LM , CM) a reduct of D, where LM =
L ∩ (M ×M) and for m ∈ M we set CM

m = ϕm[b/f : b /∈ M ]. Let gv be the grounded model of
DM . Model M is stable iff M = gvt.

Finally, the labeling based semantics preserve the properties known from the Dung’s framework
[11]:

Theorem 4.4. Let D = (A,C) be an ADF. The following holds:

• Each preferred labeling is a complete labeling, but not vice versa.

• The grounded model is the ≤i–least complete labeling.

• The complete labelings of D form a complete meet–semilattice w.r.t. ≤i.

Example 14. We will now show the extensions of all of the semantics and their sub–semantics on
an example. Let ({a, b, c, d}, {Ca : ¬b, Cb : ¬a, Cc : b ∧ ¬d, Cd : d}) be an ADF, as depicted in
Figure 10. Its possible labelings are visible in Table 1. As there are over twenty possible three–
valued models, we will not list them.

a b c d
¬b ¬a b ∧ ¬d d

Figure 10: Sample ADF

5 Extension–Based Semantics of Abstract Dialectical Frame-
works

In this section we will recall the existing extension–based ADF semantics and introduce new ones.
Although various semantics for ADFs have already been defined in the original paper [13], only

29



Table 1: Labelings of the ADF from Figure 10.

ADM

{a : f , b : t, c : u, d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : f},
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : u, d : u},
{a : u, b : u, c : u, d : t}, {a : t, b : f , c : f , d : t}, {a : t, b : f , c : f , d : f},
{a : f , b : t, c : u, d : u}, {a : t, b : f , c : u, d : t}, {a : f , b : t, c : u, d : f},
{a : t, b : f , c : f , d : u}, {a : t, b : f , c : u, d : f}, {a : u, b : u, c : u, d : u}

COMP
{a : t, b : f , c : f , d : f}, {a : f , b : t, c : u, d : u}, {a : f , b : t, c : f , d : t},
{a : t, b : f , c : f , d : u}, {a : u, b : u, c : u, d : f}, {a : f , b : t, c : t, d : f},
{a : t, b : f , c : f , d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : u}

PREF
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : f , d : f},
{a : t, b : f , c : f , d : t}

STB {a : t, b : f , c : f , d : f}, {a : f , b : t, c : t, d : f}
GRD {a : u, b : u, c : u, d : u}

three of them – conflict–free, model and grounded (initially referred to as well–founded) – are still
used (issues with the other formulations can be found in [11, 39, 42]). Moreover, the treatment
of cycles and their handling by the semantics was not sufficiently developed. In this section we
will address all of those issues. Before we continue, let us first motivate our choice on how to
treat cycles. As we have shown in Section 2.2, the opinions on support cycles differ between the
available frameworks. There is no consensus as to how they should be treated, as we can find
examples both for and against their validity. Therefore, we would like to explore the possible
approaches in the context of ADFs by developing appropriate semantics. In the next subsection,
we will explain our classification system. We will then proceed with describing the surviving
semantics and their new, acyclic versions. Afterwards we will introduce the families of admissible,
preferred and complete semantics. The analysis of their properties and how the existing semantics
fit into our system will be given in Section 6.

5.1 Classification
The classification of the sub–semantics that we will adopt in this paper is as follows. Bearing
in mind the intuition we have presented in the introduction, appropriate semantics will receive
an xy− prefix, where x, y ∈ {a, c}. It will denote whether we demand acyclicity - a - or not
- c - on the “inside” (x) and on the “outside” (y). As the conflict–free (and naive) semantics
focus only on what we can accept, we will drop the prefixing in this case. Although the model,
stable and grounded ones fit into our classification (more details can be found in Section 6), they
have a sufficiently unique naming and further annotations are not necessary. We are thus left
with admissible, preferred and complete. The BAF approach follows the idea that we can accept
arguments that are not acyclic in our opinion and we allow our opponent to do the same. The ADF
semantics we have developed in [39] also shares this view. Therefore, they will receive the cc−
prefix. On the other hand, AFN and EAS semantics do not permit cycles both in extensions and
attackers. Consequently, the semantics following this line of reasoning will be prefixed with aa−.
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We believe that also a non–uniform approach can be suitable in certain situations. By “non–
uniform” we mean not accepting cyclic arguments, but still treating them as valid attackers and
so on (i.e. ca− and ac−). Imagine a case with a suspect, prosecutor and a jury. The suspect
can utter a self–supporting argument such as “I’m telling the truth!”, which expressed properly
can convince the jury and raise doubt. The prosecutor has to disprove the suspects claim with
sufficient evidence and a clear, acyclic chain of reasoning. Depending on whom we identify with,
the requirements shift and hence we can have semantics that allow cycles on the “inside”, but not
on the “outside”, and vice versa. Following this line of thought we introduce both uniform and
non–uniform sub–semantics when required.

Remark. Please note that such non–uniform approaches can also be found in logic programming,
one can for example compare the supported and stable models.

5.2 Conflict–free and Naive Semantics
In the Dung setting, conflict–freeness meant that the elements of an extension could not attack one
another. This is also the common interpretation in various other AF generalizations, including the
bipolar ones such as AFNs and EASs [32, 34]. Providing an argument with the required support
is then a separate condition. In ADFs, where we lose the set representation of relations in favor
of abstraction, not including “attackers” and accepting “supporters” is combined into one notion.
This represents the intuition of “arguments that can stand together” presented in [5].

Definition 5.1. LetD = (A,C) be an ADF. A set of arguments E ⊆ A is a conflict–free extension
of D if for all s ∈ E , Cs(E ∩ par(s)) = in.

The acyclic version of conflict–freeness is a bit more than just a pd–acyclic set; we have to
make sure that the evaluation is unblocked.

Definition 5.2. LetD = (A,C) be an ADF. A conflict–free extension E ⊆ A ofD is a pd–acyclic
conflict–free extension of D iff for every argument a ∈ E , there exists an unblocked pd–acyclic
evaluation on E w.r.t. vE .

Remark. As we are dealing with a conflict– free extension, all the arguments of a given pd–
sequence are naturally t both in vE and vaE . Therefore, in order to ensure that an evaluation is
unblocked it suffices to check whether E ∩ B = ∅. Consequently, in this case it does not matter
w.r.t. which version of range we are verifying the evaluations.

Definition 5.3. Let D = (A,C) be an ADF. The naive and pd–acyclic naive extensions of D are
respectively maximal w.r.t. set inclusion conflict–free and pd–acyclic conflict–free extensions of
D.

Example 15. Let us now look at the ADF ({a, b, c}, {Ca : ¬c∨b, Cb : a, Cc : c}) depicted in Figure
11. The conflict–free extensions are ∅, {a}, {c}, {a, b} and {a, b, c}. Since there exists no acyclic
evaluation for c, it cannot appear in any pd–acyclic conflict–free extension. Thus, only ∅, {a} and
{a, b} qualify for acyclic type. The naive and pd–acyclic naive extensions are respectively {a, b, c}
and {a, b}.
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ab c
¬c ∨ ba c

Figure 11: Sample ADF

5.3 Model and Stable Semantics
The concept of a model basically follows the intuition that if something can be accepted, it should
be accepted:

Definition 5.4. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is a model of
D if ∀ s ∈ A, Cs(E ∩ par(s)) = in implies s ∈ E .

Although this definition is simple, several of its properties should be explained. First of all,
verifying whether a condition of an argument s is met does not check the effect of accepting s on
E, thus it can happen thatE is conflict–free, butE∪{s} is not. Let ({a, b}, {Ca : ¬a, Cb : ¬a}) be
a simple ADF in which a is attacking both a and b. The set {b} is conflict–free and the condition
of a w.r.t. {b} is in. Thus, {b} is not a model. However, the set {a, b} is no longer conflict–free;
the conditions of both arguments evaluate to out. Since {a} is trivially not conflict–free and the
conditions of a and b are in w.r.t. ∅, we obtain no model for this framework. Consequently, we can
see that model semantics is not universally defined.

On the other hand, a condition of an argument may be out not just due to the presence of
undesired argument, but also due to the absence of needed ones. Consequently, an argument may
be out w.r.t. a set of arguments E , but in w.r.t. E ′ s.t. E ⊂ E ′. Thus, especially in the presence of
positive dependency cycles, model extensions might be comparable w.r.t. ⊆.

Finally, we would like to make a note concerning the arguments that are not included in a
model. Informally speaking, there might be three reasons for them to be out. They are either
inconsistent (i.e. the condition never mapped any set to in), are “attacked” by the set, or they
cannot be accepted as at least one argument necessary for their acceptance was missing. The last
case is especially is interesting; lack of support means two things – either we were able to trace
back to an inconsistent or attacked argument, or we reached a positive dependency cycle. Looking
at the model semantics from the “defense” perspective, we are either able to attack (or cut off
the support of) our attacker, or the attacker is not valid due to a positive dependency cycle. This
description clearly follows the idea of ca− semantics; as we will show in Lemma 6.14 in Section
6, this is indeed the case.

The model semantics was used as a mean to obtain the stable models. The main idea was to
make sure that the model is “acyclic”. Unfortunately, the used reduction method was not adequate,
as shown and fixed in [11]. The new method used the grounded reduct to ensure acyclicity. How-
ever, we will show that we can get the same result by enforcing pd–acyclic conflict–freeness of the
models.
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Theorem 5.5. Let D = (A,C) be an ADF and E ⊆ A a set of arguments. E is pd–acyclic
conflict–free in D iff it is the grounded extension of the reduct DE = (E , CE ) of D w.r.t. E .

Proof. Let us first show that if E is pd–acyclic conflict–free inD, then it is grounded inDE . Let E ′

the grounded extension ofDE and let a be an argument in E . Since E is pd–acyclic conflict–free in
D, then E possesses a pd–acyclic evaluation ((a0, ..., an), B) on E s.t. B ∩E = ∅. The decisively
in interpretation va0 with which a0 entered the evaluation consists only of false mappings. Thus,
Ca0(∅) = in and for any set of arguments X ⊆ par(a0) s.t. Ca0(B) = out, ∃b ∈ B s.t. va0(b) = f .
As {a0, ..., an} ⊆ E and E ∩ B = ∅, it follows that arguments from B (and thus from vfa0) do not
appear in DE . By the definition of the reduct it thus follows that for every subset X of parents of
a0 in DE , CE

a0
(X) = in. Consequently, a0 will be mapped to t in the first iteration of the grounded

algorithm from Proposition 5.9 and will appear in the grounded extension E ′ of DE . Let us now
focus on a1 and its decisively in interpretation va1 with which it entered the evaluation. By the
pd–sequence requirements, vta1 ⊆ {a0}. If it is empty, we can repeat the analysis from a0 and
conclude it has to be contained in E ′. If it is not, then by a similar construction it follows that
for any subset X of parents of a1 in DE , if a0 ∈ X then CE

a1
(X) = in. Consequently, a1 will be

mapped to t in the second iteration of the grounded algorithm from Proposition 5.9 and thus will
appear in the grounded extension E ′ of DE . We can repeat this procedure till we reach an and do
it for any pd–acyclic evaluation on E for which the blocking set is disjoint from E . Thus, E ⊆ E ′

and as E ′ ⊆ E by the definition of DE , the first direction of our proof is done.
Let us now show that if E is grounded in DE , then it is pd–acyclic conflict–free in D. Let a be

an argument in E . By the construction of the reduct, it follows that if CE
a (E ∩par(a)) = in inDE ,

thenCa(E∩par(a)) = in inD. Thus, E is conflict–free inD. Let ((a0, ..., an), B) be a pd–acyclic
evaluation for a on E in DE s.t. E ∩ B = ∅. By the analysis above and the construction of the
reduct it we can observe that if vi is the decisively in interpretation with which an argument ai in
the pd–sequence entered the evaluation in DE , then ai possesses a decisively in interpretation v′i in
D s.t. vi

′t = vti and vfi ⊆ vi
′f . Since the false mappings present in v′i but not in vi only concern

the arguments not present in DE , the interpretation does not falsify any arguments in E . Thus,
the original evaluation ((a0, ..., an), B) for a on E in DE can be transformed into an evaluation
((a0, ..., an), B′) for a on E in D s.t. B ⊆ B′ and B′ ∩ E = ∅. Hence, there exists an unblocked
evaluation on E in D for an arbitrary a ∈ E and E is conflict–free in D. We can thus conclude
that E is pd–acyclic conflict–free in D. 2

Straightforwardly from the above follows the redefinition of stability with pd–acyclicity:

Theorem 5.6. Let D = (A,C) be an ADF. A model E ⊆ A of D is a stable extension of D iff it is
pd–acyclic conflict–free.

Finally, we can also obtain stable extensions in a manner similar to Dung’s:

Lemma 5.7. A set E ⊆ A is stable iff it is a pd–acyclic conflict–free extension s.t. E a+ = A \ E .

Proof. The fact that if E is stable extension, then it is pd–acyclic conflict–free and E a+ = A \ E
follows from the definition of stability and Lemma 6.3. Let us now assume that E is pd–acyclic
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conflict–free and E a+ = A \ E . In order to show that it is stable, we need to prove it is E is also a
model. By Proposition 6.1, we know that every a ∈ E a+ is decisively out w.r.t. vaE . Consequently,
Ca(E ∩ par(a)) = out. Thus, model requirements are satisfied and E is stable. 2

Example 16. Let us come back to the ADF ({a, b, c}, {Ca : ¬c ∨ b, Cb : a, Cc : c}) depicted
in Figure 11 and described in Example 15. The conflict–free extensions were ∅, {a}, {c}, {a, b}
and {a, b, c}. The first two are not models: in the first case Ca(∅) = in, while in the latter
Cb({a}) = in. Hence, the model condition is not satisfied. We can also observe that the models
{c} and {a, b} are subsets of {a, b, c}. Thus, model extension are not necessarily incomparable
w.r.t. ⊆. Recall that ∅, {a} and {a, b} were the pd–acyclic conflict–free extensions. The only one
that is also a model is {a, b} and thus we obtain our single stable extension.

5.4 Grounded and Acyclic Grounded Semantics
The basic grounded semantics was already introduced in the original paper on ADFs [13]. Just like
in the Dung setting, it preserves the unique–status property and is defined in the terms of a special
operator:

Definition 5.8. Let D = (A,C) be an ADF. Let Γ′D(G,B) = (acc(G,B), reb(G,B)), where
acc(G,B) = {r ∈ A | G ⊆ A′ ⊆ (A\B) → Cr(A

′ ∩ par(s)) = in} and reb(G,B) = {r ∈ A |
G ⊆ A′ ⊆ (A\B)→ Cr(A

′ ∩ par(s)) = out}. Then E is the grounded model of D iff for some
E ′ ⊆ A, (E ,E ′) is the least fix–point of Γ′D.

As we have explained in Section 3, acc and reb are nothing more than the means of retrieving
decisively in and out arguments via a set representation. We are now interested in the least fixpoint
of the operator, which as noted in [13] can be reached by iterating Γ′D starting with (G,B) = (∅, ∅).
It is easy to see that at all steps G ∩ B = ∅: as the sets are initially disjoint, we can see it as an
interpretation, and clearly no argument can be at the same time decisively in and out w.r.t. this
interpretation. Therefore, we propose an alternative way to compute the grounded extension, in
line with Proposition 2.5:

Proposition 5.9. Let D = (A,C) be an ADF and v an empty interpretation. For every argument
a ∈ A that is decisively in w.r.t. v, set v(a) = t and for every argument b ∈ A that is decisively
out w.r.t. v, set v(b) = f . Repeat the procedure until no further assignments can be done. The
grounded extension of D is then vt.

We can observe that when it comes to “inside”, the grounded semantics follows the acyclic
approach. The arguments that are accepted first clearly have a decisively in interpretation without
t mappings and every new iteration accepts arguments that positively depend at most on them.
Thus, we can easily construct pd–acyclic evaluations that are “defended” by the interpretation. On
the other hand, rejecting arguments follows the standard approach, thus grounded semantics can
be classified as a member of the ac–family.

However, this is not the only way to look at the grounded semantics. Although the accepted
arguments will always be acyclic, the rejection may not necessarily be standard. The semantics
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of frameworks such as AFNs and EASs (see Section 2) clearly point to the aa–approach. Conse-
quently, we will introduce the acyclic grounded semantics, where the acyclicity in the name points
to the “outside” restrictions:

Definition 5.10. Let D = (A,C) be an ADF and v an empty interpretation. For every argument
a ∈ A that is decisively in w.r.t. v, set v(a) = t. For every argument b ∈ A s.t. all of its pd–acyclic
evaluations are blocked by v, set v(b) = f . Repeat the procedure until no further assignments can
be done. The acyclic grounded extension of D is then vt.

We will now show possible grounded extensions on an example.

Example 17. Let us come back again to the ADF ({a, b, c}, {Ca : ¬c∨ b, Cb : a, Cc : c}) depicted
in Figure 11. We will now try to find its grounded extension. Let v be an empty interpretation.
The only argument that has a satisfied acceptance condition, and thus the chance to be decisively
in, is a. However, it is easy to see that if we accept c, the condition is outed. Hence, we obtain
no decisiveness in this case. Since b and c are both out, we can check if they have a chance to be
decisively out. Again, condition of b can be met if we accept a, and condition of c if we accept c;
as v does not define the status of a and c, we obtain no decisiveness again. Thus, ∅ is the grounded
extension. Let us now try to find the acyclic grounded extension for this framework. Let v be an
empty interpretation. As c does not possess any pd–acyclic evaluations, it is trivially mapped to
f . Falsifying c allows us to accept a, and based on a we can assume b. Consequently, our acyclic
grounded extension will be {a, b}, not ∅ like in the standard case.

e

a

b

c

d

e

d ∨ (c ∧ e)

¬e

>a ∧ b

Figure 12: Sample ADF

Let us now look at the ADF ({a, b, c, d, e}, {Ca : e, Cb : d∨(c∧e), Cc : ¬e, Cd : >, Ce : a∧b})
depicted in Figure 12. Assume an empty interpretation v. It is easy to see that only d is decisively in
w.r.t. v and that there are no decisively out arguments. However, now that we have d : t assignment,
b can be also decisively assumed. Again, no decisive outing occurs, and next round returns us no
new assignments. Thus, the grounded extension is {b, d}. When it comes to acyclic case, we can
again trivially accept d. However, since a and e have no pd–acyclic evaluations, they are mapped
to f . By accepting d we can assume b, and from the rejection of e follows c. Consequently, our
acyclic grounded extension will be {b, d, c} and contains the standard one {b, d}.
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5.5 Admissible, Preferred and Complete Semantics
In this section we will focus on admissible, preferred and complete semantics. We will describe
them family after family. What is important to understand is the fact that even though there are
significant differences between the approaches, the core concept remains the same – admissibility
representing a defensible stand, preferred extensions being maximal admissible, and complete
accepting whatever they defend. By replacing defense with decisiveness w.r.t. range, we basically
obtain the ADF semantics. The differences lie in which range should be chosen, and if acyclicity
of the extension is also desired.

5.5.1 CC Family

The basic admissible semantics was developed in [39]. It basically followed the intuition that we
need to be able to discard any counterarguments of our opponent and made no acyclicity assump-
tions:

Definition 5.11. Deprecated: Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A is
admissible in D iff for any nonempty F ⊆ A \ E , if there exists an a ∈ E s.t. Ce(par(e) ∩ (F ∪
E )) = out then F ∩ E+ 6= ∅.8

The new simplified version of the previous formulation, taking into account our classification,
is now as follows:

Definition 5.12. Let D = (A,C) be an ADF. A conflict–extension E ⊆ A is cc–admissible in D
iff every argument in E is decisively in w.r.t. to the standard range interpretation vE .

Definition 5.13. Let D = (A,C) be an ADF. A cc–admissible extension E ⊆ A is cc–complete
in D iff every argument in E that is decisively in w.r.t. the range interpretation vE is in E .

Definition 5.14. Let D = (A,C) be an ADF. A set of arguments is a cc–preferred extension of
D iff it is a maximal w.r.t. set inclusion cc–admissible extension of D.

Example 18. Let us assume an ADF ({a, b, c, d}, {Ca : >, Cb : c ∨ ¬a, Cc : b ∨ ¬d, Cd : d}),
as depicted in Figure 13. We can observe that even though the set {c} is conflict–free, it is not
cc–admissible. Its discarded set is empty and accepting d clearly outs the condition of c. However,
{b, c} is cc–admissible; although both a and d are not discarded, they do not affect the conditions
of b and c further. Further cc–admissible sets include ∅, {a}, {d}, {a, d}, {a, b, c}, {b, c, d} and
{a, b, c, d}. The last one is clearly cc–preferred. The cc–complete extensions are {a}, {a, d},
{a, b, c} and {a, b, c, d}.

8The new formulation is equivalent to this one and we see it as more elegant. However, we would like to recall this
version to avoid confusion for readers familiar with our previous works.
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a b c d
> c ∨ ¬a b ∨ ¬d d

Figure 13: Sample ADF

5.5.2 AA Family

Let us now consider the opposite of cc–semantics, namely the aa–family. Although the pd–
acyclicity and the usage of acyclic range are rather natural, recall that with semantics acyclic on
the inside we had to deal with the “second” level of conflict visible in the blocking sets of acyclic
evaluations. This gives rise to another level of “defense”, where not only we check if arguments
are decisively in w.r.t. range, but also need to protect their evaluations. Please consult Example 19
to see that decisiveness alone is not sufficient.

Definition 5.15. Let D = (A,C) be an ADF. A pd–acyclic conflict–free extension E ⊆ A of D is
aa–admissible in D iff every argument in E is decisively in w.r.t. acyclic range interpretation vaE
and for every member of the extension there exists an acyclic pd–evaluation ((a0, ..., an), B) on E
s.t. all members of B are mapped to f vaE .

Remark. We have recalled the definition as it was originally given in [35]. However, please note
that there is a certain redundancy in it. It is true that it is not the case that if an argument in an
extension is decisively in w.r.t. range, then its acyclic evaluation is “protected” by the range. On
the other hand, a protected evaluation does imply decisiveness. This comes from the fact that
evaluations are built with decisively in interpretations. Consequently, since their t mapping are
contained in the extension and the f ones are in the discarded set, then the range is a completion
for these interpretations, which obviously means that the arguments are decisively in w.r.t. it.

Definition 5.16. Let D = (A,C) be an ADF. An aa–admissible extension E ⊆ A of D is aa–
complete in D iff every argument in A that is decisively in w.r.t. the acyclic range interpretation
vaE is in E 9.

Definition 5.17. Let D = (A,C) be an ADF. A set of arguments is aa–preferred in D iff it is a
maximal w.r.t. set inclusion aa–admissible extension of D.

The following example shows that decisiveness encapsulates defense of an argument, but not
necessarily of its evaluation:

Example 19. Let us recall the framework ({a, b, c, d}, {Ca : >, Cb : c ∨ ¬a, Cc : b ∨ ¬d, Cd : d})
from Figure 13 and Example 18. Argument a has a trivial acyclic evaluations ((a), ∅), while d only
a standard one ({d}, ∅). As for b and c, we have a standard evaluation ({b, c}, ∅) that cannot be
made acyclic, and the acyclic ones ((b), {a}), ((c), {d}), ((b, c), {a}) and ((c, b), {d}).

9Please consult Lemma 6.7 to see that no further “defense” of acyclicity is required.
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We can observe that {c} is a pd–acyclic conflict–free extension. Its acyclic range interpreta-
tion is v = {c : t, d : f}, since d does not possess any acyclic evaluations to start with. c is
decisively in w.r.t. v and its acyclic evaluation ((c), {d}) is protected by the range. Thus, it is an
aa–admissible extension, even though it was not cc–admissible. Further aa–admissible extensions
include ∅, {a}, {a, c}, {b, c} and {a, b, c}. However, due to the fact that d is any acyclic discarded
set, only {a, b, c} is aa–complete. It is also the only aa–preferred extension.

Let us now assume a slightly modified ADF ({a, b, c, d}, {Ca : >, Cb : c∨¬a, Cc : b∨¬d, Cd :
>}). The evaluations are just like before, with the exception of d, which now has a trivial acyclic
one ((d), ∅). We can observe that {c} is a pd–acyclic conflict–free extension. This time its range
interpretation is v = {c : t} (both standard and acyclic) and we can observe that c is not decisively
in w.r.t. v; a completion v′ = {b : f , c : t, d : t} falsifies the acceptance condition. Thus, {c}
cannot be aa–admissible. Let us now look at the set {b, c}. Again, it is pd–acyclic conflict–free;
its range is simply v = {b : t, c : t}. Both arguments are decisively in w.r.t. v; whether we utter a,
d or both, it will not change the outcomes of the acceptance conditions. However, if our opponent
uses {a, d}, the arguments are still able to stand only due to a cyclic dependency expressed by
the standard evaluation ({b, c}, ∅). In other words, all of their acyclic evaluations are blocked by
v. Consequently, {b, c} is not aa–admissible and in this case only ∅, {a}, {d} and {a, d} are our
aa–admissible extensions, again with the last one being aa–complete and aa–preferred.

5.5.3 AC Family

Definition 5.18. Let D = (A,C) be an ADF. A pd–acyclic conflict–free extension E ⊆ A of D is
ac–admissible in D iff every argument in E is decisively in w.r.t. standard range interpretation vE
and for every member of the extension there exists an acyclic pd–evaluation ((a0, ..., an), B) on E
s.t. all members of B are mapped to f by vE .

Definition 5.19. Let D = (A,C) be an ADF. A ac–admissible extension E ⊆ A of D is ac–
complete in D iff every argument in A that is decisively in w.r.t. the standard range interpretation
vE is in E 10.

Definition 5.20. Let D = (A,C) be an ADF. A set of arguments is ac–preferred in D iff it is a
maximal w.r.t. set inclusion ac–admissible extension of D.

Let us now look at an example to highlight the differences between the ac and aa–approach.

Example 20. Let us come back to the framework ({a, b, c, d}, {Ca : >, Cb : c∨¬a, Cc : b∨¬d, Cd :
d}) from Examples 18 and 19. Recall that d has a standard evaluation ({d}, ∅) and no acyclic ones.
The acyclic discarded set of {b, c} is {d}, while the standard one remains empty. Consequently,
even though {b, c} is aa–admissible, it is not ac–admissible, as the acyclic evaluations of the ar-
guments are not defended by the standard range. All in all, we have only have two ac–admissible
extensions: ∅ and {a}, with {a} being the ac–complete and ac–preferred one.

10Please consult Lemma 6.7 to see that no further “defense” of acyclicity is required.
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5.5.4 CA Family

Let us come to the last family of semantics, the ca– type, which in many ways is very different
from others. Since acyclicity is required on the “outside”, but not on the “inside”, this is the only
approach in which an argument we can accept may not be considered a valid attacker. This leads
to a loss or weakening of various properties, such as fundamental lemma or semilattice structure of
the complete extensions, as we will see in Section 6. Moreover, this difference between acceptance
and validity causes yet another controversy, namely how should we treat arguments that are in
principle not acyclic, but follow from the arguments we have included in our extension. Let us
look at a very simple example:

Example 21. Consider an ADF ({a, b}, {Ca : a ∧ ¬b, Cb : a}). We can observe that a has no pd–
acyclic evaluations, only a standard one ({a}, {b}). Similar follows for b, it has a single evaluation
({a, b}, {b}), which is also self–blocking. Its partially acyclic representation is ({a}, (b), {b}). We
can observe that the partially acyclic discarded sets of {a} is empty, while the acyclic one is {b}.
Thus, in the first case a would by no means be decisively in w.r.t. the appropriate range of {a}.
However, in the acyclic case it is perfectly fine. We can also observe that even though b is in the
acyclic discarded set, it is not decisively out w.r.t. the acyclic range of {a}. Thus, depending on
whether we discard all cycles or only the ones not coming from the extension, we would get an
answer that {a} is and is not ca–admissible.

a b
a ∧ ¬b a

Figure 14: Sample ADF

Bearing this in mind, we will introduce two ca–subfamilies: the first one ca1 discarding cyclic
arguments independently of their origin, which was already considered in the previous version of
this report [35], and ca2, which makes an exception for those that follow from the arguments in our
extension.

Definition 5.21. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is ca1–
admissible in D iff every argument in E is decisively in w.r.t. the acyclic range interpretation
vaE .

Definition 5.22. Let D = (A,C) be an ADF. A ca1–admissible extension E ⊆ A of D is ca1–
complete in D iff every argument s ∈ A \ E a+ that is decisively in w.r.t. the acyclic range inter-
pretation vaE is in E .

Definition 5.23. Let D = (A,C) be an ADF. A set of arguments is ca1–preferred in D iff it is a
maximal w.r.t. set inclusion ca1–admissible extensions of D.
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Definition 5.24. Let D = (A,C) be an ADF. A conflict–free extension E ⊆ A of D is ca2–
admissible in D iff every argument in E is decisively in w.r.t. the partially acyclic range interpre-
tation vpE .

Definition 5.25. Let D = (A,C) be an ADF. A ca2–admissible extension E ⊆ A of D is ca2–
complete in D iff every argument s ∈ A that is decisively in w.r.t. the partially acyclic range
interpretation vpE is in E .

Definition 5.26. Let D = (A,C) be an ADF. A set of arguments is ca2–preferred in D iff it is a
maximal w.r.t. set inclusion ca2–admissible extension of D.

The most important difference between the ca1 and ca2 approaches lies in the behavior of the
arguments falsified by the range interpretation. In the first case, an argument discarded by the
acyclic range interpretation can be in fact decisively in w.r.t. the interpretation unless the accepted
arguments are acyclic. A case of such behavior was already visible in Example 21. The ca2
approach is free from this problem, as shown in Proposition 6.1.

Example 22. Let us consider a small modification of the framework from Example 21. Let
({a, b, c}, {Ca : a∧¬b, Cb : a, Cc : ¬b}) be the framework depicted in Figure 15. Just like before,
a has no pd–acyclic evaluations, only a standard one ({a}, {b}). b has a single standard evalua-
tion ({a, b}, {b}), which is also self–blocking. Its partially acyclic representation is ({a}, (b), {b}).
Finally, c has an acyclic evaluation ((c), {b}).

The ∅ extension is trivially both ca1 and ca2–admissible. Its partially acyclic and acyclic dis-
carded sets coincide and are just {a, b}. The set {c} has the same discarded set, thus making it
also a ca1 and ca2–admissible extension. When we consider the set {a}, its partially acyclic and
acyclic discarded sets are respectively ∅ and {b}. Thus, while {a} is is ca1–admissible, it is not
ca2–admissible. Similar follows for the set {a, c}. As for the complete extensions, {c} is both ca1
and ca2–complete, while {a, c} is only ca1–complete.

a b c
a ∧ ¬b a ¬b

Figure 15: Sample ADF

Although in this case every ca2–complete extension was also ca1–complete, note this in general
does not have to be the case. Let us consider a slight modification of our framework, in which the
conjunction in the condition of a is replaced with a disjunction: ({a, b, c}, {Ca : a∨¬b, Cb : a, Cc :
¬b}). This makes {a} both ca1 and ca2–admissible, however, the discarded sets differ. The acyclic
one is {b}, while the partial one is empty. This affects the decisiveness of c and as a result {a} is
ca2, but not ca1–complete.

We close this section presenting our new semantics with a final example that compares the
extensions of all the families.
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Example 23. Let us recall the ADF ({a, b, c, d, e}, {Ca : e, Cb : d ∨ (c ∧ e), Cc : ¬e, Cd : >, Ce :
a ∧ b}) depicted in Figure 12. ∅, {c}, {d}, {b, d}, {c, d}, {b, c, d} and {a, b, d, e} are the conflict–
free extensions, with the acyclic ones being ∅, {c}, {d}, {b, d}, {c, d} and {b, c, d}.

The obvious cc–admissible extensions are ∅, {d} and {b, d} (follows from the discussion on
the grounded extension in Example 17). The presence of d makes b acceptable independently of
what happens to c and e, thus we do not have to analyze the conflict between them in this context.
The last cc–admissible extension is {a, b, d, e} and again, since d is present, the conflict can be
disregarded. This is also the only cc–admissible extension that is not ac–admissible.

Let us now move to semantics acyclic on the “outside”, starting with the aa approach. The
cc–admissible extensions ∅, {d} and {b, d} are also aa–admissible. However, we can observe a
cyclic positive dependency between a and b and {a, b, d, e} cannot be aa–admissible. Since we
only have to defend against acyclic attackers, {c}, {b, c, d} and {c, d} are additional aa extensions.
Finally, all of those sets, including {a, b, d, e}, are ca1 and ca2–admissible.

The extension {b, d} will be cc and ac–complete, but not aa, ca1 and ca2–complete as a and
e will be automatically in the acyclic range. On the other hand, {b, c, d} will be aa, ca1 and ca2–
complete, but not cc and ac–complete. Finally, {a, b, d, e} will be ca1, ca2 and cc–complete.

The preferred extensions are {a, b, d, e} for the cc aproach, {b, d} for ac, {b, c, d} for aa and
finally {b, c, d} and {a, b, d, e} for the ca1 and ca2 types.

6 Properties of Extension–Based Semantics
Various properties can be proved for our semantics and sub–semantics, obviously the study we
provide here will not cover all of them. However, we will show how all sub–semantics of a given
type relate one to another as well as recall the lemmas and theorems from the original paper on
AFs [23]. Before we continue, we will make a note on some basic properties of the range interpre-
tations:

Proposition 6.1. Let D = (A,C) be an ADF, E ⊆ A a standard and S ⊆ A a pd–acyclic
conflict–free extension of D, with vE , vpE , vaE , vS , vpS and vaS as their corresponding standard,
partially acyclic and acyclic range interpretations. Let s ∈ A be an argument. The following
holds:

1. If vE (s) = f , then s is decisively out w.r.t. vE . Same holds or vpE , but not for vaE .

2. If vS(s) = f , then s is decisively out w.r.t. vS . Same holds for vpE and vaE .

3. If vE (s) = f , then Cs(E ∩ par(s)) = out. Same holds or vpE , but not for vaE .

4. If vS(s) = f , then Cs(S ∩ par(s)) = out. Same holds for vpE and vaE .

Proof.
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1. The property w.r.t. vE holds by definition. As for the partially acyclic range, let us assume it
is not the case. This means there exists a completion v of vpE to a set E ′, where E ⊆ E ′ ⊆ A,
s.t. Cs(v

t ∩ par(s)) = in. The f completion of v to A is a trivial decisively in interpretation
for s. Consequently, we can also find a subinterpretation of v that is minimal for s. Let a
be an arbitrary argument in vt. Obviously, a is not falsified by vpE and thus a 6= s. Hence,
a either has a pd–acyclic evaluation that is not blocked by vpE , or a partially acyclic one s.t.
its unblocked and the pd–set is in E - from this also follows that none of a′s depends on s.
We can recombine such evaluations for a′s (see the proof of Theorem 5.5 for recombination
approach) and extend them with the minimal interpretation contained in v in order to create
one for s that is unblocked by vpE and is either acyclic, or partially acyclic with a pd–set
in E . Thus, s could not have been falsified by the range in the first place and we reach a
contradiction. Consequently, an argument falsified by the partially acyclic range is decisively
out w.r.t. this range. The fact that it does not hold for the acyclic version can be already noted
in Example 21.

2. Since every pd–acyclic conflict–free extension is also just conflict–free, this property w.r.t.
vE holds by definition and for vpE from the point above. Let us thus focus on vaS . Assume
that vaS(s) = f , but s is not decisively out w.r.t. vaS . This means there exists a completion
v of vaS to a set S ′, where S ⊆ S ′ ⊆ A, s.t. Cs(v

t ∩ par(s)) = in. The f completion
of v to A is a trivial decisively in interpretation for s. Consequently, we can also find a
subinterpretation of v that is minimal for s. Let a be an arbitrary argument in vt. Obviously,
a is not falsified by vaE and thus a 6= s. Hence, a has a pd–acyclic evaluation that is not
blocked by vaE . We can recombine such evaluations for a′s (see the proof of Theorem 5.5 for
recombination approach) and extend them with the minimal interpretation contained in v in
order to create an acyclic evaluation for s that will be unblocked by vpE . Thus, s could not
have been falsified by the range in the first place and we reach a contradiction. Consequently,
an argument falsified by the acyclic range is decisively out w.r.t. this range.

3. Follows easily from the first point and the definition of decisiveness.

4. Follows easily from the second point and the definition of decisiveness.

2

We now know how decisiveness relates to being falsified in the range. In the next two lemmas
we will make the relation between different types of discarded sets clear. We will also show two
cases on which partially acyclic and acyclic discarded sets coincide.

Lemma 6.2. Let D = (A,C) be an ADF and E ⊆ A a conflict–free extension of D. Then
E+ ⊆ E p+ ⊆ E a+. If E is pd–acyclic conflict–free, then E p+ = E a+.

Proof. Let a ∈ E+. By Lemma 3.12 it follows that for every standard evaluation (F,B) for a on
A, B ∩ E 6= ∅. Consequently, also every partially acyclic and acyclic (if exists) evaluation for a
is blocked through the blocking set by E . Thus, whatever is in standard discarded range, is also in
the partially acyclic one and E+ ⊆ E p+.
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Let a ∈ E p+. By definition, this means that every pd–acyclic evaluation of this argument is
blocked through the blocking set and it has no unblocked partially acyclic evaluation with a pd–set
in E . Consequently, by Lemmas 3.15 and 3.17 it follows that a ∈ E a+. Therefore, E p+ ⊆ E a+.

Let us now assume that E is pd–acyclic conflict–free and let a ∈ E a+. Let us assume that a /∈
E p+. Since all acyclic evaluations of a are blocked, it must be the case it has an unblocked partially
acyclic evaluation with a pd–set in E . However, since E is pd–acyclic conflict–free, we can create
another evaluation for a by substituting the pd–set argument interpretation assignment with the
ones that satisfy the E requirements. The resulting evaluation will obviously be unblocked and
acyclic. Consequently, a could not have been in E a+ in the first place and we reach a contradiction.
Thus, since E p+ ⊆ E a+ for conflict–free sets and E a+ ⊆ E p+ for pd–acyclic conflict–free, we can
conclude that for pd–acyclic conflict–free sets E p+ = E a+.

2

Lemma 6.3. Let D = (A,C) be an ADF and E ⊆ A a model. Then E a+ = E p+ = A \ E .

Proof. Let us first focus on the acyclic case, i.e. E a+ = A \ E ; assume the equality does not
hold and there exists an argument a ∈ A \ E that is not in E a+. By Lemma 3.15 this means it
has a pd–acyclic evaluation ((a0, ..., an), B) on A s.t. B ∩ E = ∅. Let us consider a0 and its
associated decisively in interpretation v0. By the pd–sequence requirements, it holds that vt0 = ∅.
Thus, Ca0(∅) = in and since E ∩ vf0 = ∅, we can conclude that Ca0(E ∩ par(a0)) = in. If a0 /∈ E ,
then E is not a model and we reach a contradiction. Let us thus assume a0 ∈ E and focus on a1
and its associated decisively in interpretation v1. By the pd–sequence requirements, it holds that
Ca1({a0} ∩ par(a1)) = in and since E ∩ vf1 = ∅, we can conclude that Ca1(E ∩ par(a1)) = in.
Thus again, if a1 /∈ E , then E is not a model and we reach a contradiction. We can continue in
this manner until we reach an = a and conclude that if E is a model, then it has to be the case that
E a+ = A \ E .

Let us now consider the partially acyclic case. Assume that it does not hold and there is
an argument a ∈ A \ E that is not in E p+. This means a either has a pd–acyclic evaluation
((a0, ..., an), B) on A s.t. B ∩ E = ∅ or a partially acyclic one (F, (a0, ..., an), B) on A s.t.
B ∩ E = ∅ and F ⊆ E . If it is the first case, then we can refer to the proof above and see that E
could not have been a model. If it is the latter, then we can observe that since F ⊆ E , E ∩ vf0 = ∅
and vt0 ⊆ F , it has to be the case that Ca0(E ∩ par(a0)) = in. Thus, either a0 ∈ E or E is not a
model. We can again repeat this procedure until we reach our argument and conclude that if E is
a model, then it has to be the case that E p+ = A \ E . 2

We close this section with the completion property of different types of range interpretations,
which will be useful in a number of proofs.

Lemma 6.4. Let D = (A,C) be an ADF and E and E ′ two conflict–free extensions s.t. E ⊆ E ′.
It follows that vE ′ is a completion of vE to some set A′ ⊆ A.

Let E and E ′ be two pd–acyclic conflict–free extensions s.t. E ⊆ E ′. It follows that vaE ′ is a
completion of vaE to some set A′ ⊆ A and that vpE ′ is a completion of vpE to some set A′′ ⊆ A.
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Proof. Let us start with the conflict–free case. Since E ⊆ E ′, then vtE ⊆ vtE ′ . The fact that
vfE ⊆ vfE ′ follows easily from Lemma 3.12. Since E is not disjoint from the blocking set of any
standard evaluation of an argument in vfE , then neither is E ′. It is also easy to see that no argument
in E ′ could have been in the discarded set of E . Thus, vE ′ is a completion of vE .

Let us now focus on the pd–acyclic conflict–free case. The proof for the acyclic range follows
similarly to the one above by the use of Lemma 3.15. Since the acyclic and partially acyclic ranges
coincide for pd–acyclic conflict–free sets by Lemma 6.2, the property carries over. 2

Remark. The completion property does not hold when we consider conflict–free sets and acyclic
or partially acyclic ranges – an argument can land in a discarded set due to having its acyclic and
partially acyclic evaluations blocked, but may still possess a standard evaluation with which it can
enter a different conflict–free set. This is again the ca–misbehavior that we have already discussed
before.

6.1 Admissible and Preferred Semantics
Let us now show the relations between the introduced admissible sub–semantics.

Lemma 6.5. Let D = (A,C) be an ADF. The following holds:

1. Every ac–admissible extension of D is cc–admissible in D

2. Every ac–admissible extension of D is aa–admissible in D

3. Every aa–admissible extension of D is ca2–admissible in D

4. Every cc–admissible extension of D is ca2–admissible in D

5. Every ca2–admissible extension of D is ca1–admissible in D

6. Not every ca1–admissible extension of D is ca2–admissible in D

Proof.

1. Follows from the definition of ac and cc–admissible semantics.

2. Follows from the definition of ac and aa–admissible semantics and Lemma 6.2.

3. By Lemma 6.2, the partially acyclic and acyclic discarded set coincide for pd–acyclic
conflict–free sets. From this and the definitions of the aa and ca2–admissible extensions
the property follows.

4. Follows from the definition of cc and ca2–admissible semantics and Lemma 6.2.

5. Follows from the definition of ca1 and ca2–admissible semantics and Lemma 6.2.
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6. See Example 22.

2

Remark. The restrictions we put on the “inside” and “outside” affect the number of extensions we
receive. The less we have on the inside, the more we can say. The more we have on the outside,
the less our opponent is allowed to utter against us. Thus, not surprisingly, the ac approach can be
seen as the most strict, while ca families admit the most.

However, the is–a relation between the extensions cannot be assumed in the case of the pre-
ferred sub–semantics. Although a given admissible extension can belong to many subsemantics, it
does not mean that their maximal elements are the same. Thus, we can only derive some inclusion
relation, as depicted in Figure 16.

Lemma 6.6. Let D = (A,C) be an ADF. Let xy and x’y’ be two admissible sub–semantics, where
x, x′, y, y′ ∈ {a, c}, s.t. every xy–admissible extension is also x’y’–admissible (see Lemma 6.5).
Then every xy–preferred extension of D is contained in some x’y’–preferred extension of D.

Proof Idea. The reasoning behind it is rather simple;. Given x, x′, y, y′ ∈ {a, c}, if xy–admissible
extensions are x’y’–admissible, then also xy–preferred extensions are x’y’–admissible. Taking the
maximal x’y’–admissible extensions, hence x’y’–preferred ones, ensures that every xy–preferred
one is contained in at least one chosen set.

Before we continue with further analysis, we first have to show that our admissible sub–
semantics satisfy the Fundamental Lemma. However, in the case of ca1–admissibility, we can
only assume a weaker version.

Lemma 6.7. CC/AC/AA Fundamental Lemma: Let D = (A,C) be an ADF, E a cc(ac)–
admissible extension of D, vE its range interpretation and a, b ∈ A two arguments decisively
in w.r.t. vE . Then E ′ = E ∪ {a} is cc(ac)–admissible in D and b is decisively in w.r.t. v′E .

Let E be an aa-admissible extension of D, vaE its acyclic range interpretation and a, b ∈ A two
arguments decisively in w.r.t. vaE . Then E ′ = E ∪ {a} is aa–admissible in D and b is decisively in
w.r.t. v′aE .

Proof. Let us assume that a, b /∈ E – if it is not the case, then the proofs are trivial.
Let us start with the cc case. First of all, it follows from Proposition 6.1 that neither a nor b

could have been mapped to f by vE . Thus, vE ′ is a completion of vE and whatever was decisively
in w.r.t. vE must remain this way w.r.t. vE ′ . Consequently, all arguments in E ′ satisfy the cc–
admissibility criterion. The same follows for b – if it was decisively in w.r.t. vE , then it is also this
way w.r.t. vE ′ .

Let us move on to the ac approach. Again, by Proposition 6.1 we know that neither a nor b
could have been mapped to f by vE . Thus, vE ′ is a completion of vE and whatever was decisively
in w.r.t. vE must remain this way w.r.t. vE ′ . Thus, E ′ is trivially conflict–free and b is decisively in
w.r.t. v′E . Since every argument in E has a pd–acyclic evaluation s.t. the blocking set is falsified
by vE , then it is easy to see that these evaluations hold in E ′ as well. What remains to be shown is

45



that there is a pd–acyclic evaluation for a on E ′ satisfying the ac–admissibility requirements. As
a is decisively in w.r.t. vE , it means that there exists a minimal decisively in interpretation v′ for
a s.t. vE (and thus vE ′) is its completion. The true part of this interpretation will depend only on
arguments in E , and following similar lines of reasoning as in the proof of Theorem 5.5 we can
recombine the pd–acyclic evaluations of these arguments that satisfy the ac–admissibility criterion
into one and extend it with v′. The resulting evaluation will clearly have a blocking set falsified by
vE ′ and satisfy the ac–admissibility requirements. Thus, E ′ is ac–admissible in D.

Finally, we have the aa–admissible case. By Proposition 6.1 we know that neither a nor b could
have been mapped to f by vaE . Thus, vaE ′ is a completion of vaE . Therefore, all arguments in E , a
and b remain decisively in w.r.t. vaE ′ . What remains to be showed is that E ′ preserves its acyclicity
and defends the evaluations, which follows the reasoning we presented above in the ac case. 2

Lemma 6.8. Weak CA1 Fundamental Lemma: Let D = (A,C) be an ADF, E ⊆ A a ca1–
admissible extension, vaE its acyclic range interpretation and a, b ∈ A \ E a+ arguments decisively
in w.r.t. vE . Then E ′ = E ∪ {a} is ca1–admissible in D, b is decisively in w.r.t. vE ′ , but it is not
necessarily in A \ E ′a+.

Proof Sketch. As E may contain cycles, it can be the case that a, b are decisively in w.r.t. vaE and
at the same time vaE (a) = f and vaE (b) = f . Therefore, we only take into account such arguments
a, b that are not discarded. As a result, v′E is a completion of vE and we can use the proof of the cc
part of the Fundamental Lemma (i.e. Lemma 6.7).

Although b will still be decisively in w.r.t. vE ′ , it might be the case that it is in the acyclic
discarded set of E ′. Let us consider an ADF ({a, b, c}, {Ca = a, Cb = a∨ 6= c, Cc = >}). The
set {a} is ca1–admissible and its acyclic discarded set is empty - b still possesses an unblocked
pd–acyclic evaluation ((b), {c}). Both c and b are decisively in w.r.t. our extension, however,
acceptance of c blocks the pd–acyclic evaluation of b. Thus, b is still decisively in w.r.t. {a, c}, but
it is also in the acyclic discarded set.

Lemma 6.9. CA2 Fundamental Lemma Let D = (A,C) be an ADF, E ⊆ A an ca2–admissible
extension of D, vpE its partially acyclic range interpretation and a, b ∈ A two arguments decisively
in w.r.t. vpE . Then E ′ = E ∪ {a} is ca2–admissible in D and b is decisively in w.r.t. v′pE .

Proof. It follows from Proposition 6.1 that neither a nor b could have been mapped to f by vpE .
Thus, vE ′p is a completion of vpE and whatever was decisively in w.r.t. vpE must remain this way
w.r.t. vE ′p . Consequently, all arguments in E ′ are decisively in w.r.t. vE ′p and ca2–admissibility
follows. The same follows for b – if it was decisively in w.r.t. vpE , then it is also this way w.r.t. vE ′p .
2

This leads us to the last result, reflect the Theorem 2.11 from the Dung setting:

Theorem 6.10. Let D = (A,C) be an ADF and x ∈ {cc, ac, aa}. The following holds:

1. The sets of all x–admissible extensions ofD forms a complete partial order w.r.t. set inclusion
11

11There are many definitions of complete partial orders. We will assume that a partial order (A,≤) is a complete iff
it has a least element and each of its directed subsets has a lub.
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2. D possesses at least one x–preferred extension.

3. For each x–admissible set E ofD, there exists an x–preferred extension E ′ ofD s.t. E ⊆ E ′.

Proof.

1. We can observe that cc, ac and aa–admissible extensions form partial orders w.r.t. set inclu-
sion. Let P be the collection of admissible extensions of a given type. Since ∅ is an admis-
sible extension of any type and for any framework, we have a least element. Let L ⊆ P
be a nonempty directed subset of P and let E =

⋃
L denote the union of all extensions in

L. We will show that E is an admissible extension of a given type. By directness of L it
follows that for any two extension E1,E2 ∈ L there exists another one E3 ∈ L s.t. E1 ⊆ E3

and E2 ⊆ E3. By Lemma 6.4 we can thus conclude that it cannot be the case that there is
an argument mapped to t by the range of E1 or E2 and mapped to f by the range of E2 or
E1. Thus, it holds that for no extension E ′ in L there is an argument in E that is mapped
to f by the range of E ′. Since E ′ ⊆ E , an interpretation mapping elements of E to t and
everything else to f is a completion of the range of E ′. Thus, by decisiveness and admis-
sibility of E ′ it follows that all arguments in E ′ have a satisfied acceptance condition w.r.t.
E . Therefore, we can conclude that E is conflict–free. If we focus on the aa and ac case,
we can observe that all arguments in a given extension E ′ had an evaluation whose blocking
set was falsified by the range. Consequently, the blocking set of such an evaluation will be
disjoint from E and as E ′ ⊆ E , we can conclude that all arguments in E have an unblocked
pd–acyclic evaluation on the set. Thus, E is pd–acyclic conflict–free. We can now again use
Lemma 6.4 to show that the range of E is a completion of E ′. Consequently, decisiveness
and “defense” of evaluations carries over and E is an admissible extension of a given type.
Therefore, it is an upper bound for L. Let Z be another upper bound for L and assume it is
not the case that E ⊆ Z. First of all, it cannot be the case that Z ⊂ E ; since E is a union of
all extensions in L, removal of any of its arguments would render it not an upper bound for
L. Let us thus assume that Z and E are incomparable. However, it would again mean that
Z does not contain one argument that E has. Consequently, there is an argument in some
extension in L that is not in Z and Z cannot be an upper bound. We can thus conclude that
E is the least upper bound for L and that P is a complete partial order.

2. Let P be the collection of admissible extensions of a given type. It forms a partial order
w.r.t. set inclusion. In a way similar to the one above, we can show that every chain in P has
a least upper bound – the lack of “collisions” between ranges is the only important thing.
Therefore, by applying Kuratowski-Zorn Lemma, P contains at least one maximal element,
which in our case is a preferred extension of a given type.

3. Let E be an admissible extension of a given type, P the set of all admissible extensions of
this type and L the collection of all admissible extensions E ′′ of this type s.t. E ⊆ E ′′. It
follows that E will be the least element of L. Moreover, L will form a partial order w.r.t.
set inclusion, and by using the reasoning from the points above we can show that it is a
complete partial order and that it contains at least one maximal element F . F will also be
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a maximal element of P . If it were not the case, then there would exist an extension F ′

s.t. F ⊂ F ′, which would obviously also be in L and thus contradicting maximality of F .
Consequently, we have a maximal admissible extension of a given type, which by definition
is also preferred, and that by construction contains E .

2

6.2 Complete and Grounded Semantics
We can now analyze the complete sub–semantics. Not surprisingly, the correspondence between
the extensions depends on the “outside”, i.e. w.r.t. which range interpretation the decisiveness of
arguments is evaluated. In other words, arguments that are decisively in w.r.t. the acyclic range
interpretation might not necessarily be decisively in w.r.t. the standard one. Hence, although
every ac–admissible extension is aa–admissible, not every ac–complete extension is aa–complete.
It can already be observed in Example 23. We can observe similar results in the case of cc and
ca–complete semantics. Thus, we are left only with the following properties, depicted in Figure
16.

Lemma 6.11. Let D = (A,C) be an ADF. It holds that:

1. Every ac–complete extension of D is cc–complete in D

2. Every aa–complete extension of D is ca1–complete in D.

3. Every aa–complete extension of D is ca2–complete in D.

4. Not every ca1–complete extension of D is ca2–complete in D and vice versa.

Proof.

1. Let E be an arbitrary ac–admissible extension. By Lemma 6.5, it is also cc–admissible. If
E is ac–complete, but not cc–complete, it would mean that at the same time all arguments
decisively in w.r.t. vE are in E and there are is an argument decisively in w.r.t. vE but not in
E . We reach a contradiction.

2. Let E be an arbitrary aa–admissible extension. By Lemma 6.5, it is also ca1–admissible. If
all arguments in A that are decisively in w.r.t. vaE are in E , then of course so are the ones
contained in A \ E a+. Thus, the ca1–completeness criterion is satisfied.

3. By Lemma 6.2, the partially acyclic and acyclic discarded sets coincide for pd–acyclic
conflict–free sets. Consequently, every aa–complete extension meets ca2–complete require-
ments.

4. See Example 22.

2
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We can now continue with an ADF version of Theorem 2.12 from the Dung setting. Unfortu-
nately, it will not carry over to all of our semantics:

Theorem 6.12. Let D = (A,C) be an ADF. The following holds:

1. Every xy–preferred extension of D is an xy–complete extension of D for x, y ∈ {a, c}, but
not vice versa.

2. The grounded extension of D is the least w.r.t. set inclusion ac and cc–complete extension of
D.

3. The acyclic grounded extension of D is the least w.r.t. set inclusion aa–complete extension
of D and a minimal ca1 and ca2–complete extension of D.

4. The cc, ac and aa–complete extensions of D form complete meet–semilattices w.r.t. set in-
clusion.

Proof.

1. Let us first show the cc/ac/aa/ca2 case. Assume an xy–preferred extension E ⊆ A of D is
not xy–complete. This means that there exists some argument a ∈ A s.t. a is decisively in
w.r.t. vE /vaE /vpE (depending on the case) but is not in E . By the Fundamental Lemmas 6.7
and 6.9, E ∪{a} is cc/ac/aa/ca2 admissible. Obviously E ⊂ E ∪{a}, which means E could
not have been preferred in the first place. We reach a contradiction. A similar reasoning
follows for the ca1–case, just with a ∈ A \ E a+.

2. Let E ⊆ A be the grounded extension of D. The fact that it is ac–complete follows easily
from the construction presented in Proposition 5.9. It is thus also cc–complete by Lemma
6.11. The fact that it is also the least extension is a result of Lemma 6.4. Let E ′ ⊆ A be
an arbitrary ac/cc–complete extension. It is obviously conflict–free, and so is ∅. Let v be
the standard range of ∅. The range of E ′ is a completion of v by Lemma 6.4 and whatever
is decisively in/out w.r.t. v, is decisively in/out w.r.t. vE ′ . Moreover, it is also decisively
in/out w.r.t. vE by the construction in Proposition 5.9. Let us extend v with the mappings
for the arguments that are decisive w.r.t. it. Obviously, the set represented by the t mappings
is conflict–free. By the fact that E ′ is ac/cc–complete, it has to contain every argument
decisively in w.r.t. its range. Moreover, by definition the range will also map to f every
argument decisively out w.r.t. it. Thus, it has to be the case that vE ′ is again a completion
of v, an by the grounded construction also of vE . We can continue in the same manner until
we cannot extend v further and conclude that vt ⊆ E ′. Since by Proposition 5.9 we have
also recreated the grounded construction, vt = E . Thus, the grounded extension is ac/cc–
complete and is contained in arbitrary ac/cc–complete extensions. Therefore, it is the least
ac/cc–complete extension.
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3. The proof that the acyclic grounded extension is the least aa–complete extension follows
similarly to the proof above by the use of Definition 5.10 and Lemma 6.4. However, in the
case of ca1/ca2–complete extensions it can only be minimal.

Assume that E is not a minimal ca1–complete extension. It means there exists another ca1–
complete extension E ′ s.t. E ′ ⊂ E . Let us iterate through the definition of the acyclic
grounded semantics and start with M = ∅ and its acyclic discarded set Ma+. Obviously,
M ⊆ E ′. What we need to show is that Ma+ ⊆ E ′a+. Since every argument in E ′ is in
E , it means it possesses at least one pd–acyclic evaluation on A with a blocking set disjoint
from E ′. Thus, E ′ ∩Ma+ = ∅ by Lemma 3.15. By the same lemma it is easy to see that
any argument in Ma+ will be in E ′a+. Therefore, at this step vaE ′ is a completion of vaM and
whatever is decisively in w.r.t. the latter, is decisively in w.r.t. the former. Let a ∈ A be an
argument decisively in w.r.t. M . Since at this point M is trivially aa–admissible, then by
the AA Fundamental Lemma 6.7 M ∪ {a} will also be aa–admissible. Thus, a possesses
a pd–acyclic evaluation on A that, due to decisiveness and the range–completion relation,
cannot not blocked by vaE ′ . Hence, it has to be the case that a ∈ E ′. Let us thus add all such
a into M and repeat the procedure. Again, it cannot be the case that an argument in E ′ is in
Ma+, as every argument in E has a pd–acyclic evaluation on A with a blocking set disjoint
from E and M ⊆ E ′. Since any evaluation blocked by vaM will also be blocked by vaE ′ , we
now can conclude that vaE ′ is again a completion of vaM . We can repeat the procedure above
to extend M and show that it still is the case that M ⊆ E ′. We can continue in this manner
until M cannot grow further and conclude that M ⊆ E ′. Since we have also recreated the
acyclic grounded extension this way, it follows that M = E . Therefore, E ⊆ E ′ ⊂ E ,
which is a clear contradiction. Consequently, the acyclic grounded extension is a minimal
ca1–complete extension.

Now, assume that E is not a minimal ca2–complete extension and that there exists a ca2–
complete one E ′ s.t. E ′ ⊂ E . Let us again iterate through the definition of the acyclic
grounded semantics and start with M = ∅ and its acyclic discarded set Ma+. Obviously,
M ⊆ E ′. What we need to show is that Ma+ ⊆ E ′p+. Every argument in E ′ is in E , thus it
possesses a pd–acyclic evaluation onAwith a blocking set disjoint from E ′. Consequently, it
does no qualify forMa+ by Lemma 3.15. Let us now assume that there is an argument a ∈ A
which is in Ma+, but not in E ′p+. This means it has to possess a partially acyclic evaluation
with a blocking set disjoint from E ′ and pd–set in E ′. However, since every argument in E ′

is in E and thus has a pd–acyclic evaluation unblocked by E ′, we can transform the partially
acyclic evaluation into an acyclic one by replacing the pd–set with a recombined pd–acyclic
evaluation. The blocking set of the resulting evaluation will obviously be disjoint from E ′,
and thus from M as well. Consequently, by Lemma 3.15 a could not have been in Ma+ in
the first place. We can thus conclude that Ma+ ⊆ E ′p+ and that vp+E ′ is a completion of vaM .
From this point on we can proceed in a manner similar to the ca1 proof and arrive at the
conclusion that the acyclic grounded extension is a minimal ca2–complete one.

4. We will first focus on the glb property. Let Ccc be the set of all cc–complete extensions and
S ⊆ Ccc a nonempty subset. Let L = {E | E ∈ Ccc and for every E ′ ∈ S, E ⊆ E ′}
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be the set of all cc–complete extensions that are contained by all extensions in S. By the
points above, the grounded extension is obviously in L and the set cannot be empty. Let
M =

⋃
L be the union of all extensions in L. We will show it is cc–complete. By Lemma

6.4 and the fact that all extensions in L have a “bigger” one in S, we can observe that for
no two extensions in L it can be the case that an argument accepted in one is mapped to
f by the range of the other. Thus, a decisively in interpretation for an argument a in some
extension in L that was sufficient for cc–completeness has a t part contained in M and a
f part disjoint from it. Thus, M is conflict–free. Again, by Lemma 6.4 it follows that the
standard range of M is a completion for the standard ranges of extensions in L. From this
also follows straightforwardly that M is cc–admissible. If M is not cc–complete, it means
there is an argument a ∈ A \M that is decisively in w.r.t. its range. By Lemma 6.4 it means
that a is also decisively in w.r.t. the range of all extension in L. Thus, either one of them is
not cc–complete, or it is contained in all of them and by construction it also has to be in M .
Therefore, M is cc–complete. Since for any extension Z ∈ L, Z ⊆M and for any extension
Z ′ ∈ S, M ⊆ Z, it follows that it is the greatest lower bound of S. In a similar way we can
prove that every nonempty subset of ac and aa–complete extensions also has a greatest lower
bound (one can also refer to proof of Theorem 6.10 for further details).

We will now focus on the lub property. Let Ccc be the set of all cc–complete extensions
and S an increasing sequence of Ccc. Any two elements of the sequence are comparable
w.r.t. ⊆. Let E be the union of all complete extensions in S. We will prove that E is cc–
admissible in D. First of all, since the sequence is increasing, we can observe by Lemma 6.4
that no argument mapped to f by the range of one extension will be accepted in a different
extension. Thus, E is conflict–free. Moreover, again by Lemma 6.4 we can observe that the
range interpretation of E will be a completion of the range interpretation of any extension
in S. Thus, all arguments in E will be decisively in w.r.t. the range and we can conclude
that E is cc–admissible. By Theorem 6.10, for every cc–admissible extension there exists
at least one cc–preferred extension, and thus a cc–complete one containing it. Therefore,
our sequence will have at least one upper bound. Let U be the collection of all such upper
bounds, i.e. cc–complete extensions that contain all of the sets in S. In a manner similar
to above, we can find a cc–complete extension G that is a glb for U . Moreover, since by
construction G contains all extensions in S and is thus and upper bound for it, and at the
same it is contained by all extension in U , i.e. by all other upper bounds for S, it is a least
upper bound for S. The proof for ac and aa–complete extensions follows similarly.

2

Proposition 6.13. There exists and ADF D = (A,C) s.t. :

1. The grounded extension of D is neither an aa, ca1 nor a ca2–complete extension of D.

2. The ca1 and ca2–complete extensions of D do not form complete meet–semilattices w.r.t. set
inclusion.
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Proof.

1. It is a result of the fact that these sub–semantics do not treat cyclic attackers as valid, while
the grounded semantics does not make this assumption. Let ({a, b}, {Ca : ¬b, Cb : b})
be a simple ADF where a is attacked by a self–supporting argument b. The aa–complete
extension would be {a} and the ca1/ca2–complete ones would be {a} and {b}, while the
grounded one would be simply ∅.

2. Please consider a simple ADF ({a, b}, {Ca : ¬b, Cb : b}). The ca1/ca2–complete exten-
sions are {a} and {b}. The lower bound of {{a}, {b}} is ∅ and it is not a ca1/ca2–complete
extension.

2

6.3 Model and Stable Semantics
The relations between the semantics presented in [23] also carry on to some of the specializations
and are shown in Figure 16. In this section we will focus on how model and stable semantics relate
to various preferred and complete ones.

Lemma 6.14. Let D = (A,C) be an ADF. Every model of D is ca1 and ca2–complete in D, but
not necessarily ca1 or ca2–preferred in D.

Proof. Let E be a model. By Lemma 6.3, we know that vaE/v
p
E is defined for every argument

in A. Hence, it is its own single completion and all accepted arguments are decisively in w.r.t. it.
Consequently, ca1/ca2–admissibility requirements are satisfied. Since by Lemma 6.3, E a+ = A\E ,
there is no argument left to check for decisiveness in the ca1 case and ca1 completeness follows
easily. By the same Lemma E p+ = A\E , and from Proposition 6.1 it follows that every argument
in A \ E is decisively out w.r.t. to the partial acyclic range of E . Thus, no argument not in E can
be decisively in w.r.t. the range and ca2–completeness follows as well.

Since model semantics can produce extensions that are comparable w.r.t. set inclusion, then
it is not surprising that a model might not be a ca1/ca2–preferred extension. It is already visible
in Example 16: models were sets {c}, {a, b} and {a, b, c}, with only the last one being ca1/ca2–
preferred. 2

Lemma 6.15. Let D = (A,C) be an ADF. Every stable extension of D is an aa–preferred in D,
but not vice versa. It is not necessarily a cc, ac, ca1 or ca2–preferred extension.

Proof. Let E be a stable extension of D. First of all, it is by definition a pd–acyclic conflict–free
model. Thus, by Lemma 6.3 E a+ = A \ E . From this it follows easily that all arguments in E
are decisively in w.r.t. vaE . Moreover, by pd–acyclic conflict–freeness every argument a ∈ E has
a pd–acyclic evaluation ((a0, ..., an), B) on E s.t. B ∩ E = ∅. Thus, B ⊆ E a+ and thus every
argument has a pd–acyclic evaluation with a blocking set falsified by the range. Consequently, all
aa–admissibility criterion are satisfied. Since every argument not in the extension is in the acyclic
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discarded set and is by Proposition 6.1 decisively out w.r.t. the acyclic range, aa–completeness fol-
lows easily. Let us assume that E is not aa–preferred. This means there exists another aa–complete
extension E ′ ⊆ A of D s.t. E ⊂ E ′. However, by Lemma 3.15 and the fact that E a+ = A \ E ,
it means that for any argument in E ′ \ E , its every pd–acyclic evaluation ((a0, ..., an), B) on A is
blocked through the blocking set by E . Thus, E ′ cannot possibly satisfy the aa–admissibility cri-
terion in the first place. We reach a contradiction and can thus conclude that every stable extension
of D is aa–preferred in D.

Concerning the other preferred sub–semantics, we will refer to some of the examples we have
already analyzed. Recall the framework ({a, b, c}, {Ca : ¬c ∨ b, Cb : a, Cc : c}) and Example 16.
The stable extension is {a, b}, while {a, b, c} is ca1/ca2–preferred. {a, b} is not even ac–admissible,
let alone ac–preferred. In the Example 23 we considered a framework ({a, b, c, d, e}, {Ca : e, Cb :
d ∨ (c ∧ e), Cc : ¬e, Cd : >, Ce : a ∧ b}). Its cc–preferred extension is {a, b, d, e}, while the stable
is {b, c, d}. 2

CA1–ADM

CA2–ADM

CC–ADM AA–ADM

AC–ADM

CA1–PREF

CA2–PREF

CC–PREF AA–PREF

AC–PREF

⊆
⊆ ⊆

⊆ ⊆

CA2–CMPCA1–CMP

MODEL STABLE

AA–PREF

CA2–CMP CA1–CMP

CC–CMP AA–CMP

AC–CMPGRD

ACY–GRD

Figure 16: The relations between given extension–based sub–semantics. x→ y should be read as
extensions of x are extensions of y. x ⊆ y should be read as any extension of x is contained in
some extension of y.

6.4 Coincidence of Families: the AADF+ Class
Last, but not least, we will describe a subclass of ADFs for which our classification system col-
lapses. By this we understand that all xy–subsemantics of a given semantics coincide, e.g. ev-
ery aa–admissible extension is cc–admissible and so on. We will refer to the frameworks in this
subclass as the positive dependency acyclic abstract dialectical frameworks and denote them as
AADF+s.
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Definition 6.16. Let D = (A,C) be an ADF. D is an AADF+ iff every standard evaluation for
any argument a ∈ A in D can be made acyclic.

Example 24. Recall the framework ({a, b, c}, {Ca : a ∧ ¬b, Cb : a, Cc : ¬b}) depicted in Figure
15 and described in Example 22. The arguments a and b have standard evaluations ({a}, {b}) and
({a, b}, {b}). None of these can be made acyclic. Consequently, the framework is not an AADF+.

Let us now consider the framework ({a, b, c, d, e}, {Ca : >, Cb : ¬a ∨ c, Cc : b, Cd : ¬c ∧
¬e, Ce : ¬d}) from Figure 7 and Example 9. Every argument has an acyclic evaluation. However,
arguments b and c also possess a standard one ({b, c}, ∅), which cannot be made acyclic. Thus,
this framework is again not an AADF+.

Let ({a, b, c, d, e}, {Ca : >, Cb : ¬a ∧ ¬c, Cc : ¬d, Cd : ¬c, Ce : ¬d ∧ ¬e}) be the ADF
representation of the AF from Figure 1 and Example 1. Every argument has a single minimal
decisively in interpretation that maps to f its parents and has no t mappings. Thus, it is easy to
see every standard evaluation in this framework can be made acyclic and we are dealing with a
AADF+.

Theorem 6.17. Let D = (A,C) be an AADF+. The following holds:

1. Every conflict–free extension is pd–acyclic conflict–free

2. Every naive extension is pd–acyclic naive

3. Every model is stable

4. Given a conflict–free set of arguments E ⊆ A, E+ = E p+ = E a+

5. The aa, cc, ac, ca1 and ca2–admissible extensions coincide

6. The aa, cc, ac, ca1 and ca2–complete extensions coincide

7. The aa, cc, ac, ca1 and ca2–preferred extensions coincide

8. Every grounded extension is acyclic grounded and vice versa

Proof.

1. Let E ⊆ A be a conflict–free extension. Every argument in the set has a satisfied acceptance
condition and thus has a trivial decisively in interpretation that maps to t the elements of E
and to f everything else. By extracting such minimal interpretations we can easily construct
an unblocked standard evaluation representing this extension; it will also be an evaluation
for any argument in E . Since every evaluation is pd–acyclic, then every a ∈ E an unblocked
pd–acyclic evaluation on E . Consequently, E is pd–acyclic conflict–free.

2. Since pd–acyclic and standard conflict–free extensions coincide, then naturally so do naive

3. Since every conflict–free extension is pd–acyclic conflict–free, then every model is pd–
acyclic conflict–free and thus stable
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4. By Lemma 6.2 we already know that E+ ⊆ E p+ ⊆ E a+. What remains to be shown is that
E a+ ⊆ E+. Since E is conflict–free, then by the first point it is also pd–acyclic conflict–
free, and by Lemma 3.15 for every pd–acyclic evaluation (F,B) of an argument a ∈ E a+,
B ∩ E 6= ∅. Due the fact that every standard evaluation can be made acyclic, it means that
every standard evaluation of a is blocked through the blocking set by E . Thus, by Lemma
3.12, a is in E+. Therefore, E+ = E p+ = E a+.

5. The coincidence of ca1 and ca2–admissible extensions follows easily from the points above.
Let E be a ca2–admissible extension of D. Since every argument is decisively in w.r.t. vpE ,
then for every argument there is a minimal decisively in interpretation with the t part in E
and f part in E p+. Thus, by a construction similar to the one in the first point, it follows that
every argument in E has a standard evaluation s.t. its blocking set is falsified by the partially
acyclic range. Since E is pd–acyclic conflict–free, every evaluation can be made acyclic
and the discarded sets coincide, it follows that E is pd–acyclic conflict–free, every argument
in E is decisively in w.r.t. standard range and has an acyclic evaluation with a blocking set
falsified by it. Thus, ac–admissibility conditions are met and by Lemma 6.5, aa/cc/ac/ca1
and ca2–admissible extensions coincide.

6. The coincidence of aa/cc/ac/ca2–complete extensions follows easily from the points above.
Let E be a ca1–complete extension. By the first point, it is also pd–acyclic conflict–free.
Thus, by Proposition 6.1 every argument in the acyclic discarded set of E is decisively out
w.r.t. the acyclic range. Consequently, if there is no argument in A \ (E a+ ∪ E ) that is
decisively in w.r.t. the acyclic range of E , then there is none in A \ E either. Thus, the
the discarded set exclusion in the definition of ca1–complete semantics becomes redundant
and the extensions coincide with aa–complete ones. Therefore, all complete subsemantics
produce the same extensions.

7. Since all admissible extensions coincide, so do the preferred.

8. As all complete extensions coincide, then by Lemma 6.12 so do grounded and acyclic
grounded.

2

Since both AADF+s and BADFs (bipolar ADFs) deal, this way or the other, with support, it
is natural to ask if there is any relation between the two subclasses. The answer is, that there are
AADF+s that are not BADFs and vice versa. The subclasses are different, though not disjoint.
There exist frameworks that are both; for example, every Dung–style ADF will be both bipolar
and positive dependency acyclic.

Example 25. Let us go back to the frameworks in Example 24. The first one ({a, b, c}, {Ca :
a ∧ ¬b, Cb : a, Cc : ¬b}) was not an AADF+, however, it is a BADF. The links from a to a
and b are supporting and the ones from b to a and c are attacking. Similar holds for the ADF
({a, b, c, d, e}, {Ca : >, Cb : ¬a ∨ c, Cc : b, Cd : ¬c ∧ ¬e, Ce : ¬d}).
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The Dung–style ADF ({a, b, c, d, e}, {Ca : >, Cb : ¬a ∧ ¬c, Cc : ¬d, Cd : ¬c, Ce : ¬d ∧ ¬e})
considered at the end of the example was an AADF+. Since every link is attacking in the ADF
sense, the framework is also a BADF.

Finally, let us look at a very simple framework ({a, b, c}, {Ca : >, Cb : >, Cc : a ⊕ b}),
where a and b are initial arguments and the condition of c is a xor between the two. a and b have
trivial acyclic evaluations ((a), ∅) and ((b), ∅). For c, there are two main options: ((a, c), {b})
and ((b, c), {a}). These are all the basic evaluations we can get; it is thus easy to see that the
framework is an AADF+. However, it is not a BADF; the links from a and b to c cannot be
described as supporting or attacking, only dependent.

7 Comparison of Extensions and Labelings
In this section we will compare the new extension–based semantics with the existing labeling–
based ones. While, whenever possible, we will show how to construct appropriate extensions or
labelings, let us introduce a very simple notion of correspondence:

Definition 7.1. Let D = (A,C) be an ADF, v a three–valued interpretation over A and E ⊆ A a
set of arguments. v and E correspond iff vt = E .

By the abuse of notation we will also use the notion of a u–completion, which should be
understood as a three–valued interpretation that assigns u to the “missing” mappings of a given
two–valued interpretation.

Although there will be a single set of arguments corresponding to a given interpretation, a set
can have many corresponding interpretations. Moreover, even though every interpretation there
will exist a corresponding set and vice versa, it might not be an extension or labeling under a given
semantics. In this case we will say that there is no corresponding σ–extension or labeling, where
σ is an arbitrary semantics.

We will now introduce analyze two frameworks that will serve us as a proof of lack of certain
relations between some semantics.

Example 26. Let us consider another simple framework ({a, b}, {Ca : a, Cb : b}) depicted in
Figure 17. Its cc,ca1 and ca2–complete extensions are ∅, {a}, {b} and {a, b}, while the aa and ac
one is just ∅. Thus, we obtain one preferred cc,ca1 and ca2–preferred extension {a, b} and a single
aa and ac–preferred one – ∅.

The complete labelings for this framework are {a : u, b : u}, {a : u, b : f}, {a : f , b : u},
{a : f , b : f}, {a : t, b : u}, {a : t, b : f}, {a : u, b : t}, {a : f , b : t} and finally {a : t, b : t}. The
first four correspond to ∅, then both {a} and {b} have two labelings, and finally we receive {a, b}.
In this case, our results in compliance with the cc, ca1 and ca2–complete extensions. The preferred
labelings are {a : f , b : f},{a : t, b : f}, {a : f , b : t} and {a : t, b : t}, again producing the sets ∅,
{a}, {b} and {a, b}. We can observe that {a} and {b} are not preferred extensions of any family.

Example 27. Let us consider a simple framework ({a, b, c, d}, {Ca : ¬c, Cb : ¬d, Cc : c, Cd :
d}) depicted in Figure 18. Its extensions and labelings will be listed in Tables 2 and 3.
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a b

a b

Figure 17: Sample ADF

Although there are many admissible labelings, in the end they produce the following sets:
∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c} and {c, d}. Similar follows for the complete labelings.
The preferred ones correspond to {a, b}, {a, d}, {b, c} and {c, d}.

We can observe that in our example, every admissible labeling will produce a ca1 and ca2–
admissible extension and vice versa. However, even though every aa, cc and ac–admissible exten-
sion will have a corresponding labeling, it does not hold in the other direction. Although every
complete extension of a given type will have a corresponding complete labeling, the sets {a} and
{b} produced by some of the complete labelings are not complete extension in any of the families.
Finally, we can see that the ac–preferred extension ∅ has no corresponding preferred labeling.

a bc d

¬c ¬dc d

Figure 18: Sample ADF

Table 2: Extensions of the ADF from Figure 18.

ADM

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

COMP

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

PREF

CA1,2 ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
CC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AA ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}
AC ∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {c, d}

7.1 Conflict–free Extensions and Three–Valued Models
We will start by relating conflict–freeness and three–valued models. Please note that the intuitions
of two–valued and three–valued models are completely different and should not be confused – it is
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Table 3: Labelings of the ADF from Figure 18.

ADM

{a : u, b : u, c : u, d : u}, {a : u, b : u, c : f , d : u}, {a : u, b : u, c : u, d : f},
{a : u, b : u, c : f , d : f}, {a : u, b : u, c : t, d : u}, {a : u, b : u, c : u, d : t},
{a : u, b : u, c : t, d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : t, d : f},
{a : u, b : f , c : u, d : t}, {a : u, b : f , c : f , d : t}, {a : u, b : f , c : t, d : t},
{a : u, b : t, c : u, d : f}, {a : u, b : t, c : f , d : f}, {a : u, b : t, c : t, d : f},
{a : f , b : u, c : t, d : u}, {a : f , b : u, c : t, d : f}, {a : f , b : u, c : t, d : t},
{a : f , b : f , c : t, d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : u, c : f , d : u},
{a : t, b : u, c : f , d : f}, {a : t, b : u, c : f , d : t}, {a : t, b : f , c : f , d : t},
{a : t, b : t, c : f , d : f}

COMP
{a : u, b : u, c : u, d : u}, {a : f , b : u, c : t, d : u}, {a : u, b : f , c : u, d : t},
{a : u, b : t, c : u, d : f}, {a : t, b : u, c : f , d : u}, {a : t, b : t, c : f , d : f},
{a : t, b : f , c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : f , b : f , c : t, d : t},

PREF
{a : t, b : t, c : f , d : f}, {a : t, b : f , c : f , d : t}, {a : f , b : t, c : t, d : f},
{a : f , b : f , c : t, d : t},

just the naming that is somewhat unfortunate. Let us start with the positive results in the labeling
direction:

Theorem 7.2. Let D = (A,C) be an ADF, E ⊆ A a conflict–free and S ⊆ A a pd–acyclic
conflict–free extension of D. The u–completions of vE , vpE , vS , vpS and vaS to A are three–valued
models of D.

However, not every range produces a three–valued model:

Theorem 7.3. Let D = (A,C) be an ADF, E ⊆ A a conflict–free and vaE its acyclic range
interpretation. The u–completion of vaE might not be a three–valued model of D.

Both of the theorems follow straightforwardly from the definition of conflict–freeness and
Proposition 6.1. The three–valued models will always produce conflict–free extensions; by the
first result it is easy to see that they do not have to be pd–acyclic.

Theorem 7.4. Let D = (A,C) be an ADF and v be a three–valued model of D. Then vt is a
conflict–free extension of D.

Proof. Since v is a three–valued model, then for every s ∈ A mapped to t, v(Cs) = in. Since
v(Cs) = Cs(v

t ∩ par(s)), conflict–freeness follows straightforwardly. 2

7.2 Admissible Semantics
We can now continue with the admissible semantics. Firstly, we will tie the notion of decisiveness
to admissibility, following the comparison of completions and extending interpretations that we
have presented in Section 3.
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Theorem 7.5. LetD = (A,C) be an ADF, v be a three–valued interpretation onA and v′ its (max-
imal) two–valued sub–interpretation. v is admissible iff all arguments mapped to t are decisively
in w.r.t. v′ and all arguments mapped to f are decisively out w.r.t. v′.

Proof. Assume v is admissible, but there exists an argument s ∈ S mapped to t that is not
decisively in w.r.t. v′ or it is mapped to f and is not decisively out w.r.t. v′. This means there exists
a completion v′S of v′ to S s.t. Cs(par(s)∩ v′tS ) is out in the first or in in the latter case. Obviously,
v′S is also an extending interpretation of v, i.e. v′S ∈ [v]2. However, if this interpretation evaluated
the condition of s to out/in, then obviously the operator could not have assigned s t/f and we reach
a contradiction.

Now assume a two–valued interpretation v′ such as all arguments mapped to t/f are decisively
in/out, but its u–completion v is not admissible. This means that v 6≤i ΓD(v). Consequently, there
exists an argument s mapped to t/f by v′ that is assigned respectively f or u/t or u. This means
that all/some extensions of the interpretation evaluate the condition of s to out/in. Obviously, it
means that all/some completions of v′ evaluated the condition of s to out/in. Therefore, the initial
assignment could not have been decisive and we reach a contradiction. 2

However, please note that this theorem does not imply that admissible extensions and labelings
“perfectly” coincide. In labelings, we guess an interpretation, and thus assign initial values to
arguments that we want to verify later. If they are self–dependent, it of course affects the outcome.
In the extension based approaches, we distinguish whether this dependency is permitted. For
example, in the ac–approach the accepted arguments cannot take part in support cycles, thus self–
justification is not permitted. On the other hand, the iteratively built standard discarded set does
not permit self–falsification. Therefore, most of the approaches will have a corresponding labeling,
but the labelings will produce extensions not limited to cc, aa or ac families.

Theorem 7.6. Let D = (A,C) be an ADF. The following holds:

1. Let E be a cc–admissible extension of D. Then the u–completion of vE is an admissible
labeling of D.

2. Let E be an ac–admissible extension of D. Then the u–completion of vE is an admissible
labeling of D.

3. Let E be an aa–admissible extension of D. Then the u–completion of vaE is an admissible
labeling of D.

4. Let E be a ca2–admissible extension of D. Then the u–completion of vpE is an admissible
labeling of D.

5. Let v be an admissible labeling of D. Then vt is a ca1 and ca2–admissible extension of D.

Proof.
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1. The proof was provided already in [39]. However, it also straightforwardly follows from the
definition of cc–admissibility, Proposition 6.1 and Theorem 7.5.

2. By Proposition 6.1 and the definition of ac–admissibility, everything mapped to t by vE is
decisively in w.r.t. it and everything mapped to f by vE is decisively out w.r.t. it. Hence, by
Theorem 7.5 the u–completion of vE is an admissible labeling of D.

3. By Proposition 6.1 and the definition of aa–admissibility, everything mapped to t by vaE is
decisively in w.r.t. it and everything mapped to f by vaE is decisively out w.r.t. it. Hence, by
Theorem 7.5 the u–completion of vaE is an admissible labeling of D.

4. By Proposition 6.1 and the definition of ca2–admissibility, everything mapped to t by vpE is
decisively in w.r.t. it and everything mapped to f by vpE is decisively out w.r.t. it. Hence, by
Theorem 7.5 the u–completion of vpE is an admissible labeling of D.

5. Let v be an admissible labeling, w its (maximal) two–values subinterpretation and E = vt.
We know that v is a three–valued model; thus, by Theorem 7.4 E is at least conflict–free.
Let us assume it is not ca2–admissible. This means there exists an argument a ∈ E and a
completion v′ of vpE s.t. v′(Ca) = out. Since at the same time a is decisively in w.r.t. w and
wt = vt, then it follows that E p+ ⊂ wf . Let x ∈ wf \ E p+. Since x is not in the discarded
set, it means there exists a pd–acyclic evaluation ((a0, ..., an), B) for x on A s.t. B ∩ E = ∅
or a partially acyclic evaluation (F, (b0, ..., bn), B′) for x on A s.t. B′ ∩ E = ∅ and F ⊆ E .

Let us focus on the first case and consider a0 and its associated decisively in interpretation
v0. Since vt0 = ∅ and vf0 ∩E = ∅, then it follows that Ca0(E ∩ par(a0)) = in. Consequently,
a0 cannot be decisively out w.r.t. neither vpE nor w and thus is not mapped to f in any of
the interpretations due to Proposition 6.1 and Theorem 7.5. Let us now focus on a1 and its
associated decisively in interpretation v1. Since vt1 ⊆ {a0}, vf1∩E = ∅ and a0 is not falsified
by neither vpE nor w, then there is a completion of both that is decisively in for a1 and thus it
could not have been falsified by either of them again. We can continue going up the sequence
until we reach an = x and the conclusion that it could not have been falsified by neither vpE
nor w. We reach a contradiction with the assumption that w(x) = f and conclude that v
could not have been an admissible labeling of D.

Let us now focus on the other case and consider b0 and its associated decisively in interpre-
tation z0. By the evaluation requirements and the fact that F ⊆ E , it holds that zt0 ⊆ E .
As zf0 ∩ E = ∅, then it follows that Cb0(E ∩ par(b0)) = in. Consequently, b0 cannot be
decisively out w.r.t. neither vpE nor w and thus is not mapped to f in any of the interpretations
due to Proposition 6.1 and Theorem 7.5. From this point on we can repeat the procedure
above and arrive at the same conclusion that v could not have been an admissible labeling of
D.

We have thus proved that every admissible labeling has a corresponding ca2–extension.
Since every ca2–admissible extension is ca1 admissible by Lemma 6.5, then every labeling
has also a corresponding ca1–admissible extension.
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2

Remark. Please note that although every admissible labeling has a corresponding ca2–admissible
extension and vice versa, just like in the Dung’s framework it does not need to be a one–to–one
relation. The u–completion of a given range produces only one of many admissible labelings that
have common t mappings.

The only family that produces labelings that might not be admissible is the ca1 family:

Theorem 7.7. Let D = (A,C) be an ADF and E a ca1–admissible extension of D. There might
be no admissible labeling of D corresponding to E .

Proof. Recall the framework in Example 21, where {a} was a ca1–admissible extension. The only
three–valued model that maps a to t is {a : t, b : u} and it is not an admissible labeling. 2

7.3 Preferred Semantics
Let us now consider the preferred semantics. Unfortunately, due to the differences between two–
valued and three–valued approaches and the fact that one follows subset maximality, while the
other information precision, we fail to receive an exact correspondence between the results. By
this we mean that given a framework there can exist an (arbitrary) preferred extension without a la-
beling counterpart and a labeling without an appropriate extension, even though certain inclusions
relation can be derived. Our positive results are thus quite limited:

Theorem 7.8. Let D = (A,C) be an ADF, E ⊆ A a ca2–preferred extension and v a preferred
labeling of D. The u–completion of vpE to A is a preferred labeling of D. The set vt is a ca2–
complete extension, but not necessarily a aa, ac, cc or ca1–complete one. It also might not be an
aa, ac, cc, ca1 or ca2–preferred extension of D.

Proof. We will first analyze the extension case. Let v be the u–completion of vpE . By Theorem
7.6 we know that v is at least an admissible labeling. Let us assume it is not a preferred one. This
means there exists an admissible labeling v′ ofD s.t. v ≤i v

′ and v 6= v′. Consequently, vt ⊂ v′t or
vf ⊂ v′f . If it is the first case, then by Theorem 7.6 it means that v′t is a ca2–admissible extension
and thus E could not have been ca2–preferred. Let us thus assume that vf ⊂ v′f and let w be the
maximal two–valued subinterpretation of v′. This means there exists an argument a ∈ v′f \ vf that
is decisively out w.r.t. w, but has a pd–acyclic evaluation ((a0, ..., an), B) not blocked by vpE or a
partially acyclic one (F, (a0, ..., an), B) s.t. it is not blocked by vpE and F ⊆ E .

Let us focus on the acyclic evaluation and first consider a0 and its corresponding decisively in
interpretation v0 with which it entered the evaluation. We know that vt0 = ∅. Consequently, if a0
were to be decisively out w.r.t. w, it would have to be the case that wt ∩ vf0 6= ∅. Since wt = E
and E ∩ vf0 = ∅ due to the fact that the evaluation is unblocked, it cannot be the case that a0 is
decisively out w.r.t. w and thus it cannot be mapped to false by w. Let us continue with a1 and
its decisively in interpretation v1. We know that vt1 ⊆ {a0}. Since a0 is not mapped to f by w
and no element of vf1 is mapped to t by w by the discussion above, it cannot be the case that a1 is
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decisively out w.r.t. w. Thus, it is not mapped to f by w. We can continue in the same manner until
we reach the conclusion that it cannot be the case that an argument is decisively out w.r.t. w and at
the same time has an acyclic evaluation unblocked by vpE .

Let us focus now on the partially acyclic case. It is is easy to see that F ⊆ wt and it cannot be
the case that any of the arguments in F is decisively out w.r.t. w. Let us thus consider a0 and its
decisively in interpretation v0 with which it entered the evaluation. Since vt0 ⊆ F and vf0 ∩wt = ∅,
then it is easy to see that a0 cannot be decisively out w.r.t. w. Consequently, it cannot be mapped to
f . We can now proceed in a manner similar to the one above and again come to a conclusion and
that a is decisively out w.r.t. w and at the same time has a partially acyclic evaluation unblocked
by vpE and with a pd–set in E . Therefore, we reach a contradiction and can conclude that the v is a
preferred labeling.

We will now analyze the labeling case. Let v be a preferred labeling and w its maximal two–
valued subinterpretation. Let vt = E . Since every preferred labeling is also admissible, then by
Theorem 7.6 E is at least ca2 admissible. Let z be the u–completion of vpE . By the definition
of preferred labelings, it cannot be the case that wf ⊂ zf . We are thus left with cases in which
zf ⊆ wf or where the two sets are not comparable. Let us consider a two–valued interpretation x
where xt = E , xf = zf ∪ wf . Since x is a completion of both z and w, it follows that whatever
is decisively in w.r.t. z or w is decisively in w.r.t. x and whatever is decisively out w.r.t. z or w is
decisively out w.r.t. x. It is thus easy to see that the u–completion of x is an admissible labeling.
If the false mappings of z and w formed incomparable sets, then the u–completion of x would
contain more information than v and thus it could not have been the case that v was a preferred
labeling. Therefore, it can only be the case that zf ⊆ wf and w is a completion of vpE . If E is not
ca2–complete, then there exists an argument a ∈ A \E that is decisively in w.r.t. vpE and thus w.r.t.
w as well. Thus, v could not have been a complete labeling and by Theorem 4.4, not a preferred
one either. We reach a contradiction. Hence, if v is a preferred labeling, then vt is a ca2–complete
extension.

As for counterexamples, please look at Example 26. The produced labelings correspond to sets
∅, {a}, {b} and {a, b}. All of them are ca2–complete, but only ∅ is aa/ac–complete. Furthermore,
only {a, b} and ∅ correspond to the preferred extensions we have obtained. In Example 27 we have
obtained a preferred labeling corresponding to set {a, b}, which was neither cc–complete nor cc–
preferred. Since not every ca1–complete extension is ca2–complete, we can finally conclude that
the preferred labelings might not correspond to extension–based complete and preferred semantics
with the exception of ca2–complete. 2

Theorem 7.9. Let D = (A,C) be an ADF. The following holds:

1. Let E ⊆ A be an aa–preferred extension. There might be no preferred labeling of D corre-
sponding to E .

2. Let E ⊆ A be an ac–preferred extension. There might be no preferred labeling of D corre-
sponding to E .

3. Let E ⊆ A be a cc–preferred extension. There might be no preferred labeling of D corre-
sponding to E .
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4. Let E ⊆ A be a ca1–preferred extension. There might be no preferred labeling of D corre-
sponding to E .

Proof. See Example 19 for examples of extensions without corresponding labelings of a given
type. 2

Example 28. Recall the framework described in Example 21 and visible in Figure 14. The ca1–
preferred extension is {a} and the only preferred labeling is {a : f , b : f}.

Let us now look at ADF1 = ({a, b, c}, {a : ¬a, b : a, c : ¬b ∨ c}), as depicted in Figure 19a.
The only ac and aa–preferred extension is ∅. a and b cannot form a conflict–free extension to start
with, so we are only left with c. However, the attack from b on c can be only overpowered by self–
support, thus it cannot be part of an ac or aa–admissible extension in the first place. The single
preferred labeling solution would be v = {a : u, b : u, c : t} and we obtain no correspondence.
On the other hand, the result is in compliance with the cc, ca1 and ca2–preferred extension {c}.

Finally, we have ADF2 = ({a, b, c}, {a : ¬a ∧ b, b : a, c : ¬b}) depicted in Figure 19b. The
preferred labeling is {a : f , b : f , c : t}. The single cc and ac–preferred extension is ∅ and again, we
receive no correspondence. However, it is compliance with the aa, ca1 and ca2–preferred extension
{c}.

a b c
¬b a ¬b ∨ c

(a) ADF1

a b c
¬a ∧ b a ¬b

(b) ADF2

Figure 19: Sample ADFs

Remark. We have already shown that stable extensions are aa–preferred. It also holds that they are
labeling preferred. This means that although perfect correspondence will not be retrieved, in case
a stable model exists we have at least one “meeting point” between the two preferred approaches.

7.4 Complete Semantics
Let us first explain complete labeling in terms of decisiveness:

Theorem 7.10. Let D = (A,C) be an ADF, v an admissible labeling and v′ its (maximal) two–
valued sub–interpretation. v is complete iff all arguments decisively out w.r.t. v′ are mapped to f
by v and all arguments decisively in w.r.t. v′ are mapped to t by v.

Proof. Assume that v is complete, but there exists an argument s ∈ A that is decisively in/out
w.r.t. v′ and is not mapped to t/f by v′. Since v is a three–valued model, then the outcome of the
condition of a given argument mapped to t must be in and of one mapped to f has to be out. Thus,
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it cannot be the case that a decisively in argument is mapped to f and a decisively out one to t.
Therefore, s has to be mapped to u by v. However, since s is decisively in/out w.r.t. v′ and all
mappings in v′ are already decisively in/out depending on their assignment, then the characteristic
operator applied to v will produce a labeling v′′ where the s assignment is replaced accordingly.
Since v ≤i v

′′, then v could not have been a fixpoint of the operator and thus could not have been
a complete labeling.

Let us now focus on the other way around and assume that even though all decisive arguments
are have according mappings in v, v is not complete. Let v′′ = ΓD(v). Since v is admissible, but
not complete, it means that v ≤i v

′′ but not v = v′′. Thus, there exists at least one argument s ∈ A
s.t. v(s) = u and v′′(s) 6= u. If v′′(s) = f , then by the way characteristic operator works it means
that all completions of v′ evaluated the condition of s to out. This means that s was decisively out
w.r.t. v′, but was not mapped to f by v; we reach a contradiction. If v′′(s) = t, then by a similar
analysis s was decisively in w.r.t. v′ but not mapped to t by v. Again, we reach a contradiction.

2

With the obvious exception of ca1–complete semantics, we have that every cc, ac, aa and ca2–
complete extension has a corresponding complete labeling. However, also the labelings produce
sets that might not be complete extensions of any type.

Theorem 7.11. Let D = (A,C) be an ADF. The following holds:

1. Let E be a cc–complete extension of D. The u–completion of vE is a complete labeling of
D.

2. Let E be a ac–complete extension of D. The u–completion of vE is a complete labeling of
D.

3. Let E be an aa–complete extension of D. The u–completion of vaE is a complete labeling of
D.

4. Let E be a ca2–complete extension of D. The u–completion of vpE is a complete labeling of
D.

5. Let v be a complete labeling ofD. There exists a ca2–complete extension E ofD s.t. vt ⊆ E .

Proof.

1. By the definition of cc–completeness, all arguments that are decisively in w.r.t. vE are already
in E (and thus mapped to t by vE ). By the definition of the discarded set (and standard
range), every argument decisively out w.r.t. vE is mapped to f by vE . Since the u–completion
of vE is an admissible labeling by Theorem 7.5, then by Theorem 7.10 it is also a complete
one.
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2. By the definition of ac–completeness, all arguments that are decisively in w.r.t. vE are already
in E (and thus mapped to t by vE ). By the definition of the discarded set (and standard
range), every argument decisively out w.r.t. vE is mapped to f by vE . Since the u–completion
of vE is an admissible labeling by Theorem 7.5, then by Theorem 7.10 it is also a complete
one.

3. By the definition of aa–completeness, all arguments that are decisively in w.r.t. vaE are already
in E (and thus mapped to t by vaE ). We also know by Proposition 6.1 that all arguments
mapped to f by vaE are decisively out. We now need to show that all arguments decisively out
w.r.t. vaE are mapped to f by vaE , i.e. all decisively out arguments are in E a+. Assume there is
an argument a ∈ A that is decisively out w.r.t. vaE , but not falsified by it. However, if vaE has
the power to decisively out a, then any decisively in interpretation for a has to “prevent” this
interpretation from happening. Thus, vaE conflicts all (minimal) interpretations for which a is
decisively in. Consequently, it has the means to block any acyclic pd–evaluation of a and by
definition of the acyclic range interpretation, a must have already been mapped to f by vaE .
Since the u–completion of vaE is an admissible labeling by Theorem 7.5, then by Theorem
7.10 it is also complete.

4. By the definition of ca2–completeness, all arguments that are decisively in w.r.t. vpE are al-
ready mapped to t by vpE . We also know by Proposition 6.1 that all arguments mapped to f
by vpE are decisively out. By an analysis similar to the one as in aa–case, we can also show
that there is no argument that is decisively out w.r.t. vpE , but is not mapped to f . Since the
u–completion of vpE is an admissible labeling by Theorem 7.5, then by Theorem 7.10 it is
also complete.

5. Every preferred labeling has a corresponding ca2–complete extension by Theorem 7.8. Since
every complete labeling is “contained” in some preferred labeling, it follows that for every
complete labeling there is a ca2–complete extension containing its t mappings.

2

Theorem 7.12. LetD = (A,C) be an ADF, E a ca1–complete extension and v a complete labeling
of D. There might be no complete labeling of D corresponding to E . The set vt might not be a cc,
ac, aa, ca1 or ca2–complete extension of D.

Proof. Recall Example 21, where {a} was a ca1–complete extension. There existed no admissible
labeling corresponding to it, thus no complete one will exist either.

Recall Example 27. The complete labelings corresponded to
∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c} and {c, d}. Only the last four were ca1/ca2–complete,
no set containing a or b was cc–complete, only {a, b} was aa–complete and ∅ ac–complete.

2
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7.5 Grounded Semantics
As the grounded semantics has a very clear meaning, it is no wonder that both available approaches
coincide, as already noted in [11].

Theorem 7.13. Let D = (A,C) be an ADF. The two–valued grounded extension of D and the
grounded labeling of D correspond.

However, in the acyclic grounded case, the best we can get is that it has a complete labeling. It
will of course not be the least one, since that corresponds to the standard grounded semantics.

Theorem 7.14. Let D = (A,C) be an ADF and E its acyclic grounded extension. The u–
completion of the acyclic range of E is a complete labeling of D.

Proof. Follows straightforwardly from Theorems 6.12 and 7.11.
2

7.6 Comparison of Extensions and Labelings on AADF+

In Section 6.4 we have defined a subclass of ADFs for which our xy–classification collapsed. In
this section we will show that AADF+ not only simplify the extension–based semantics, but are
also sufficient for a more precise correspondence between extension and labeling–based ones.

Theorem 7.15. Let D = (A,C) be an AADF+. The following holds:

1. Every admissible labeling of D has a corresponding aa, ac, cc, ca1 and ca2–admissible
extension and vice versa.

2. Every complete labeling of D has a corresponding aa, ac, cc, ca1 and ca2–complete exten-
sion and vice versa.

3. Every preferred labeling of D has a corresponding aa, ac, cc, ca1 and ca2–preferred exten-
sion and vice versa.

Proof.

1. Follows from Theorem 6.17 and 7.6.

2. The fact that for every aa/ac/cc/ca1/ca2–complete extension there exists a corresponding la-
beling follows from Theorems 6.17 and 7.11. Let us now focus on the other way around; let
v be a complete labeling and E = vt its t mappings. By the first point we know that E is
at least cc–admissible. The fact that vfE ⊆ vf follows easily from the iterative definition of
standard range, Theorem 7.10 and the fact that complete labelings are fix–points of the char-
acteristic operator. Thus, v is a completion of vE and whatever is decisively in w.r.t. vE is
decisively in w.r.t. v. Moreover, an argument decisively in w.r.t. vE has a condition satisfied
by E and thus cannot be mapped to f by v. Consequently, if E was not cc–complete, then v
could not have been a complete labeling. Since E is cc–complete, then by Theorem 6.17 it
is also aa/ac/ca1/ca2–complete.
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3. By Theorem 7.8 we know that every ca2–preferred extension has a corresponding preferred
labeling. Since by Theorem 6.17 aa/ac/cc/ca1/ca2–preferred extensions coincide, it follows
that every aa/ac/cc/ca1–preferred extension also has a corresponding preferred labeling.

Let v be a preferred labeling, w its maximal two–valued subinterpretation and vt = E . By
Theorem 7.8 we know that E is at least ca2–complete. Let us assume it is not ca2 preferred.
This means there exists a ca2–complete extension E ′ ⊆ A s.t. E ⊂ E ′. Let z be the u–
completion of vpE ′ . By Theorem 7.11 we know that z is a complete labeling. In order to
show that v could not have been a preferred labeling, we need to prove that z contains more
information than v. We already know that vt ⊂ zt; what remains is to show that vf ⊆ zf .

Let us assume it is not the case; this means that either zf ⊂ vf or the two sets are incompara-
ble, which in any case means that there is an argument a ∈ vf that is decisively out w.r.t. w,
but not w.r.t. vpE ′ . Thus, a has a pd–acyclic evaluation unblocked by v or a partially acyclic
one that is not blocked by v and has a pd–set contained in E ′. We can show it cannot be
the first case by going through the evaluation of a, as we have done in number of different
proofs (for example, see the proof of Theorem 7.8). What is more interesting, is the latter
case. Since E ⊂ E ′, for general ADFs it can in fact be the case that a has an unblocked
partially acyclic evaluation with a pd–set in E ′, but not in E , thus a can be decisively out
w.r.t. w. However, since we are dealing with AADF+, every standard (and thus also partially
acyclic) evaluation can be made acyclic. Consequently, the pd–set of the partial evaluation
for a will be in fact empty. We thus come back to the first case and conclude that it cannot be
the case hat an argument is decisively out w.r.t. w, but not w.r.t. vpE ′ . Therefore, vf ⊆ zf and
if vt is not ca2–preferred, then v cannot be a preferred labeling. Since the classification col-
lapses by Theorem 6.17, the correspondence for other preferred extension–based semantics
follows.

2

8 Concluding Remarks
In this report we have updated and followed up on our previous work in [35], in which we have in-
troduced a family of extension–based semantics, showed a number of their properties and provided
an initial comparison of extension and labeling–based approaches. In this update we introduced
new types of argument evaluations, new subfamily of the ca–semantics and the acyclic grounded
semantics. We also proved a number of new properties and completed the analysis of the rela-
tion between labeling–based and extension–based semantics. Finally, we corrected various minor
issues and clarified some explanations.
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