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1 Introduction

The problem of the equivalence of logic programs with respect to the stable-model semantics has
received substantial attention in the answer-set programming research community in the past sev-
eral years [19, 21, 29, 5, 14, 9, 11, 7, 25, 22, 24, 31, 32, 12]. The problem can be stated as follows.
Given a classC of logic programs (we will refer to them ascontexts), we say that programsP and
Q areequivalent relative toC if for every programR ∈ C, P ∪R andQ ∪R have the samestable
models. Clearly, for every classC, the equivalence relative toC implies the standard nonmonotonic
equivalence of programs, where two programsP andQ arenonmonotonically equivalentif they
have the same stable models. Therefore, we will refer to these stronger versions of equivalence
collectively ashyperequivalence.

Understanding hyperequivalence is fundamental for the development of modular answer-set
programs and knowledge bases. The problem is non-trivial due to the nonmonotonic nature of the
stable-model semantics. IfS is a module within a larger programT , replacingS with S ′ results in
the programT ′ = (T \S)∪S ′, which must have the same meaning (the same stable models) asT .
The nonmonotonic equivalence ofS andS ′ does not guarantee it. The hyperequivalence ofS and
S ′ relative to the class of all programs does. However, the latter may be a too restrictive approach
in certain application scenarios, in particular if properties of possible realizations forT are known
in advance.

Thus, several interesting notions of hyperequivalence, imposing restrictions on the context
classC, have been studied. IfC is unrestricted, that is, any program is a possible context,we obtain
strongequivalence [19]. IfC is the collection of all sets of facts, we obtainuniformequivalence [7].
Another direction is to restrict the alphabet over which contexts are given. The resulting notions of
hyperequivalence are calledrelativized(with respect to the context alphabet), and can be combined
with strong and uniform equivalence [7]. Even more generally, we can specify different alphabets
for bodies and heads of rules in contexts. This gives rise to acommon view on strong and uniform
equivalence [31]. A yet different approach to hyperequivalence is to compare only some dedicated
projected output atoms rather than entire stable models [9,25, 24].

All those results concern the stable-model semantics1. In this paper, we address the problem
of the hyperequivalence of programs with respect to the other major semantics, that of supported
models [4]. We define several concepts of hyperequivalence,depending on the class of programs
allowed as contexts. We obtain characterizations of hyperequivalence with respect to supported
models in terms of semantic objects, similar to SE-models [29] or UE-models [7], that one can
attribute to programs.

Since the minimality property is fundamental from the perspective of knowledge representa-
tion, we also consider in the paper the semantics of supported models that are minimal (as models).
While it seems to have received little attention in the area of logic programming, it has been studied
extensively in a more general setting of modal nonmonotoniclogics, first under the name of the
semantics ofmoderately grounded expansionsfor autoepistemic logic [16, 17] and then, under the
name ofgroundS-expansions, for an arbitrary nonmonotonic modal logicS [15, 27]. The com-
plexity of reasoning with moderately grounded expansion was established in [8] to be complete for

1There is little work on other semantics, with [3] being a notable exception.
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classes at the third level of the polynomial hierarchy.
Here, we study this semantics in the form tailored to logic programming. By refining tech-

niques we develop for the case of supported models, we characterize the concept of hyperequiva-
lence with respect to supported minimal models relative to several classes of contexts.

The characterizations allow us to derive results on the complexity of problems to decide
whether two programs are hyperequivalent with respect to supported (minimal) models. They
are especially useful in establishing upper bounds which, typically, are easy to derive but in the
context of hyperequivalence are not obvious. Our results paint a detailed picture of the complexity
landscape for relativized hyperequivalence with respect to supported (minimal) models.

2 Preliminaries

We fix a countable setAt of atoms (possibly infinite). All programs we consider here consist of
rulesof the form

a1| . . . |ak ← b1, . . . , bm, not c1, . . . , not cn,

whereai, bi andci are atoms inAt , ‘|’ stands for the disjunction, ‘,’ stands for the conjunction, and
not is thedefaultnegation. Ifk = 0, the rule is aconstraint. If k ≤ 1, the rule isnormal.

For a ruler of the form given above, we call the set{a1, . . . , ak} the head ofr and denote
it by hd(r). Similarly, we call the conjunctionb1, . . . , bm, not c1, . . . , not cn the body ofr and
denote it bybd(r). We will also usebd+(r) = {b1, . . . , bm, } andbd

−(r) = {c1, . . . , cn}, as well
asbd

±(r) = bd
+(r) ∪ bd

−(r) to denote the set of all atoms occurring in the body ofr. Moreover,
for a programP , let hd(P ) =

⋃
r∈P hd(r), andbd

±(P ) =
⋃

r∈P bd
±(r).

An interpretationM ⊆ At is amodelof a ruler, writtenM |= r, if wheneverM satisfies every
literal in bd(r), writtenM |= bd(r), we have thathd(r) ∩M 6= ∅, writtenM |= hd(r).

An interpretationM ⊆ At is amodelof a programP , written M |= P , if M |= r for every
r ∈ P . If, in addition,M is a minimal hitting set of{hd(r) | r ∈ P and M |= bd(r)}, thenM is
asupportedmodel ofP [2, 13].

For a ruler = a1| . . . |ak ← bd , wherek ≥ 1, ashift of r is a normal program rule of the form

ai ← bd , not a1, . . . , not ai−1, not ai+1, . . . , not ak,

wherei = 1, . . . , k. If r is a constraint, the onlyshift of r is r itself. A program consisting of all
shifts of rules in a programP is theshift of P . We denote it bysh(P ). It is evident that a setY
of atoms is a (minimal) model ofP if and only if Y is a (minimal) model ofsh(P ). It is easy to
check thatY is a supported model ofP if and only if it is a supported model ofsh(P ).

Supported models of anormal logic programP have a useful characterization in terms of the
(partial) one-step provability operatorTP [30], defined as follows. ForM ⊆ At , if there is a
constraintr ∈ P such thatM |= bd(r) (that is,M 6|= r), thenTP (M) is undefined. Otherwise,

TP (M) = {hd(r) | r ∈ P and M |= bd(r)}.
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Whenever we useTP (M) in a relation such as (proper) inclusion, equality or inequality, we always
implicitly assume thatTP (M) is defined.

It is well known thatM is a model ofP if and only if TP (M) ⊆ M (that is,TP is defined for
M and satisfiesTP (M) ⊆ M). Similarly, M is asupportedmodel ofP if TP (M) = M (that is,
TP is defined forM and satisfiesTP (M) = M) [1].

It follows that M is a model of a disjunctive programP if and only if Tsh(P )(M) ⊆ M .
Moreover,M is a supported model ofP if and only if Tsh(P )(M) = M .

3 Hyperequivalence with respect to supported models

Disjunctive programsP andQ aresupp-equivalentrelative to a classC of disjunctive programs if
for everyR ∈ C, P ∪R andQ ∪ R have the same supported models.

Supp-equivalence is a non-trivial concept, different thanequivalence with respect to models,
stable models, and hyperequivalence with respect to stablemodels.

Example 3.1 Let P1 = {a ← a} andQ1 = ∅. Clearly,P1 andQ1 have the same models and the
same stable models. Moreover, for every programR, P1 ∪ R andQ1 ∪ R have the same stable
models, that is,P1 andQ1 are strongly (and so, also uniformly) equivalent with respect to stable
models. However,P1 andQ1 have different supported models. Thus, they are not supp-equivalent
relative toanyclass of programs.

Next, letP2 = {a ← a; a ← not a} andQ2 = {a}. One can check that for every programR,
P2∪R andQ2∪R have the same supported models, that is,P2 andQ2 are supp-equivalent relative
to anyclass of programs. They are also equivalent with respect to classical models. However,P2

andQ2 do not have the same stable models and so, they are not equivalent with respect to stable
models nor hyperequivalent with respect to stable models relative toanyclass of programs.

Finally, letP3 = {← b} ∪P2 andQ3 = Q2. Then,P3 andQ3 are neither hyperequivalent with
respect to stable models relative to any class of programs nor equivalent with respect to classical
models. StillP3 andQ3 have the same supported models, and for any programR, such thatb does
not appear in rule heads ofR, P3 ∪ R andQ3 ∪ R have the same supported models, that is,P3

andQ3 are supp-equivalent with respect to this class of programs (we will verify this claim later).
As we will see, supp-equivalence with respect toall programs implies equivalence with respect to
models and so, it is not a coincidence that in the last examplewe used a restricted class of contexts.
To see thatP3 andQ3 are not supp-equivalence with respect to the class of all programs,one can
considerR = {b}. Then,{a, b} is a supported model ofQ3 ∪ R, but not ofP3 ∪ R.

We observe that supp-equivalence relative toC implies supp-equivalence relative to anyC′,
such thatC′ ⊆ C (in particular, forC′ = {∅}, this implies standard equivalence with respect to
supported models), but the converse is not true in general asillustrated by programsP3 andQ3.

In this section we characterize supp-equivalence relativeto classes of programs defined in terms
of atoms that can appear in the heads and in the bodies of rules. Let A, B ⊆ At . By HBd(A, B)
we denote the class of all disjunctive programsP such thathd(P ) ⊆ A (atoms in the heads of rules
in P must be fromA) andbd

±(P ) ⊆ B (atoms in the bodies of rules inP must be fromB). We
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denote byHBn(A, B) the class of all normal programs inHBd(A, B) (possibly with constraints).
These classes of programs were considered in the context of hyperequivalence of programs with
respect to the stable-model semantics in [31].

We start with an observation implied by the fact that models and supported models are pre-
served under shifting.

Theorem 3.2 Let P and Q be disjunctive logic programs, and letA, B ⊆ At . The following
conditions are equivalent

1. P andQ are supp-equivalent relative toHBd(A, B)

2. P andQ are supp-equivalent relative toHBn(A, B)

3. sh(P ) andsh(Q) are supp-equivalent relative toHBn(A, B).

Proof. The assertion follows directly from the fact that models andsupported models of programs
are preserved under shifting. 2

Theorem 3.2 allows us to focus on normal programs and normal contexts and, then, obtain
characterizations of the general disjunctive case as corollaries. It is important, as in the normal
program case, we can take advantage of the one-step provability operator.

Given a normal programP , and a setA ⊆ At , we define

ModA(P ) = {Y ⊆ At | Y |= P andY \ TP (Y ) ⊆ A}.

An interpretationY ∈ ModA(P ) can be understood as acandidatefor becoming a supported
model of an extensionP ∪R, whereR ∈ HBn(A, B). Indeed, such a candidate has to be classical
model ofP (otherwise it cannot be a supported model, no matter howP is extended). Moreover,
the elements fromY \ TP (Y ) have to be contained inA. Otherwise programs fromHBn(A, B)
cannot close this gap.

This leads us to the following characterization of the supp-equivalence relative toHBn(A, B).

Theorem 3.3 Let P andQ be normal programs,A ⊆ At , andC a class of programs such that
HBn(A, ∅) ⊆ C ⊆ HBn(A,At). Then,P andQ are supp-equivalent relative toC if and only if
ModA(P ) = ModA(Q) and for everyY ∈ ModA(P ), TP (Y ) = TQ(Y ).

Proof. (⇒) SinceHBn(A, ∅) ⊆ C, P andQ are supp-equivalent relative toHBn(A, ∅).
LetY ∈ ModA(P ). It follows thatY |= P andY \TP (Y ) ⊆ A. Let us considerP∪(Y \TP (Y ))

Then

TP∪(Y \TP (Y ))(Y ) = TP (Y ) ∪ (Y \ TP (Y )).

SinceY |= P , TP (Y ) ⊆ Y . Hence,TP∪(Y \TP (Y ))(Y ) = Y . It follows thatY is a supported model
of P ∪ (Y \ TP (Y )). SinceY \ TP (Y ) ⊆ A, Y \ TP (Y ) ∈ HBn(A, ∅). Thus,Y is a supported
model ofQ ∪ (Y \ TP (Y )) and, consequently,

Y = TQ∪(Y \TP (Y ))(Y ) = TQ(Y ) ∪ (Y \ TP (Y )).
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It follows that TQ(Y ) ⊆ Y andTP (Y ) ⊆ TQ(Y ). Thus,Y \ TQ(Y ) ⊆ Y \ TP (Y ) ⊆ A and
so,Y ∈ ModA(Q). The converse inclusion follows by the symmetry argument and so, we have
ModA(P ) = ModA(Q)

Next, letY ∈ ModA(P ) (and so,Y ∈ ModA(Q), too). We have seen thatTP (Y ) ⊆ TQ(Y ).
By the symmetry,TQ(Y ) ⊆ TP (Y ). Thus,TP (Y ) = TQ(Y ).

(⇐) Let R be a logic program fromC andY be a supported model ofP ∪ R. It follows that
Y = TP∪R(Y ) = TP (Y ) ∪ TR(Y ). Thus,TP (Y ) ⊆ Y (that is,Y |= P ) andY \ TP (Y ) ⊆ A
(becausehd(R) ⊆ A). We obtainY ∈ ModA(P ) and, by the assumption,TQ(Y ) = TP (Y ).
Hence,Y = TQ(Y ) ∪ TR(Y ) = TQ∪R(Y ). That is,Y is a supported model ofQ ∪R. 2

We note that our characterization for supp-equivalence relative toHBn(A, B) does not de-
pend on the body-alphabetB of the context. Thus, Theorem 3.3 applies, in particular, to
C = HBn(At , ∅) andC = HBn(At ,At). Consequently, it characterizes strong and uniform supp-
equivalence of normal programs. It also has several corollaries concerned with special cases forA.
The first one deals with the case whenA = At , in which the characterizing condition simplifies.

Corollary 3.4 Let P and Q be normal programs andC a class of programs such that
HBn(At , ∅) ⊆ C ⊆ HBn(At ,At). Then,P andQ are supp-equivalent relative toC if and only if
P andQ have the same models and for every modelY of P , TP (Y ) = TQ(Y ).

Proof. WhenA = At , ModA(P ) andModA(Q) consist of models ofP andQ, respectively. Thus,
the result follows directly from Theorem 3.3. 2

At the other extreme, we have the caseA = ∅. In that case, all context programs consist of
constraints (rules with the empty head) only. For the caseA = ∅, we have the following result.

Corollary 3.5 LetP andQ be normal programs andC a class of programs such thatHBn(∅, ∅) ⊆
C ⊆ HBn(∅,At). The following conditions are equivalent:

1. P andQ are supp-equivalent relative toC

2. P andQ have the same supported models

3. Mod∅(P ) = Mod∅(Q).

Proof. [(1)implies (2)]: Since∅ ∈ HBn(∅, ∅), the assertion is obvious.

[(2) implies (3)]: LetY ∈ Mod ∅(P ). Then,Y |= P , that is,TP (Y ) ⊆ Y , andY \ TP (Y ) = ∅.
Thus,Y = TP (Y ) and, consequently,Y is a supported model ofP . By the assumption,Y is a
supported model ofQ, that isY = TQ(Y ). It follows thatY ∈ Mod ∅(Q). The converse inclusion
follows by the symmetry argument.

[(3) implies (1)]: LetR ∈ C and letY be a supported model ofP ∪ R. ThenY |= P ∪ R
andY = TP∪R(Y ) = TP (Y ) ∪ TR(Y ) = TP (Y ) (indeed, asY |= R and every rule inR is a
constraint,TR(Y ) = ∅). ThusY ∈ Mod∅(P ) and so, alsoY ∈ Mod∅(Q). From the latter we
obtainY = TQ(Y ). SinceTR(Y ) = ∅, Y = TQ(Y )∪ TR(Y ) = TQ∪R(Y ), that is,Y is a supported
model ofQ ∪ R. Again, the other implication follows by the symmetry argument. 2
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We will now apply our results to some pairs of programs discussed in Example 3.1.

Example 3.6 First, we note thatP1 andQ1 have the same models. In particular,{a} is a model
of both programs. However,TP1

({a}) = {a} andTQ1
({a}) = ∅. Thus,TP1

({a}) 6= TQ1
({a}) and

so,P1 andQ1 are not supp-equivalent relative toHBn(At , ∅) (by Corollary 3.4).
On the other hand,P2 andQ2 have the same models and for everyY (in particular, for every

modelY of P2 andQ2), TP2
(Y ) = {a} = TQ2

(Y ). Thus,P2 andQ2 are supp-equivalent relative
toHBn(At ,At).

Finally, Y ∈ ModAt\{b}(P3) if and only if Y |= P3 and Y \ TP3
(Y ) ⊆ At \ {b}. Clearly,

if Y |= P3, thenTP3
(Y ) is defined andb /∈ Y . Thus,Y \ TP3

(Y ) ⊆ At \ {b}. It follows that
Y ∈ ModAt\{b}(P3) if and only if Y |= P3, that is, if and only ifa ∈ Y and b /∈ Y . One can
check that this condition also characterizesY ∈ ModAt\{b}(Q3). Indeed,Y |= Q3 if and only if
a ∈ Y andY \ TQ3

(Y ) ⊆ At \ {b} if and only ifb /∈ Y . Thus,ModAt\{b}(P3) = ModAt\{b}(Q3).
Moreover, ifY ∈ ModAt\{b}(P3) (a ∈ Y andb /∈ Y ), TP3

(Y ) = {a} = TQ3
(Y ). Consequently,P3

andQ3 are supp-equivalent relative toHBn(At \ {b},At).

The last corollary concerns the case of disjunctive programs.

Corollary 3.7 LetP andQ be disjunctive programs,A ⊆ At , andC a class of programs such that
HBn(A, ∅) ⊆ C ⊆ HBd(A,At). Then,P andQ are supp-equivalent relative toC if and only if
ModA(sh(P )) = ModA(sh(Q)) and for everyY ∈ ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Proof. The result follows from Theorems 3.3 and 3.2. 2

Corollary 3.7 applies, in particular, to the cases whenC is any of the following classes:
HBd(A,At), HBn(A,At), HBd(A, ∅), andHBn(A, ∅). It also implies an observation, already
noted above, that the alphabet allowed for the bodies of context programs plays no role in the case
of supp-equivalence, unlike in the case of hyperequivalence with respect to stable models [31].
In particular, for the semantics of supported models, thereis no difference between strong and
uniform equivalence (even for disjunctive programs).

Finally, we note that Theorem 3.3 also implies a characterization of uniform hyperequivalence
with respect to stable models fortight logic programs [10], as for such programs stable and sup-
ported models coincide (we refer to [18] for a more detailed discussion of tight disjunctive logic
programs and relevant results).

Corollary 3.8 Let P and Q be tight disjunctive programs,A ⊆ At , andC a class of programs
such thatHBn(A, ∅) ⊆ C ⊆ HBd(A, ∅). Then,P andQ are uniformly equivalent (with respect
to the stable-model semantics) relative toC if and only ifModA(sh(P )) = ModA(sh(Q)) and for
everyY ∈ ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Proof. Let R ∈ HBd(A, ∅). SinceR consists of rules with the empty body, bothP ∪R andQ∪R
are tight. Thus, they have the same stable models if and only if they have the same supported
models. The assertion follows now from Corollary 3.7. 2

The characterization given by Corollary 3.8 provides an alternative to the characterization given
in [12].
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4 Hyperequivalence with respect to supported minimal models

A setM of atoms is asupported minimal model(suppminmodel, for short) of a logic programP
if it is a supported model ofP and a minimal model ofP .

Disjunctive programsP andQ aresuppmin-equivalentrelative to a classC of disjunctive pro-
grams if for everyR ∈ C, P ∪R andQ∪R have the same suppmin models. Suppmin-equivalence
is a different concept than other types of equivalence we considered.

Example 4.1 The programsP2 andQ2 from Example 3.1 are suppmin-equivalent with respect to
any class of programs, as for every programR, programsP2∪R andQ2∪R have the same models
and the same supported models. However, as we pointed out earlier, they are not equivalent with
respect to stable models nor hyperequivalent with respect to stable models relative toanyclass of
programs.

ProgramsP4 = P2 and Q4 = {a ← not a} have the same models, stable models, and are
hyperequivalent with respect to stable models relative to an arbitrary class of programs. However,
P4 andQ4 are not suppmin-equivalent (they have different suppmin models).

Next, one can show that for every setU of atoms, programsP1 ∪U andQ1 ∪U have the same
suppmin models, but the programs themselves have differentsupported models. Thus,P1 andQ1

are suppmin-equivalent relative to the class of all programs consisting of atoms (HBn(At , ∅)) but
they are not supp-equivalent relative to the same class. We note thatP1 andQ1 are not suppmin-
equivalent relative toHBn(At ,At), as witnessed by the contextR = {← not a}.

Finally, P5 = {a ← b; b ← b; ← not a, not b} andQ5 = {a ← b; b ← a; ← not a, not b}
have the same supported models but different suppmin models({a, b} is the only supported model
of P5 andQ5, and a suppmin model forQ5 but not forP5). Thus, the programs are supp-equivalent
relative toHBn(∅, ∅) (which contains the empty program only) but not suppmin-equivalent with
respect to that class.

Our examples distinguishing between supp- and suppmin-equivalence refer to restricted
classes of contexts. As we show later, it is not coincidental. The two types of equivalence are
the same if all programs are allowed as contexts.

A refinement of the method used in the previous section provides a characterization of suppmin-
equivalence relative to contexts fromHBn(A, B) andHBd(A, B), whereA, B ⊆ At . Compared
to supp-equivalence the second alphabet,B, has now to be taken into consideration!

We start by observing that, as before, it suffices to focus on the case of normal programs.

Theorem 4.2 Let P and Q be disjunctive programs, andA, B ⊆ At . The following conditions
are equivalent

1. P andQ are suppmin-equivalent relative toHBd(A, B)

2. P andQ are suppmin-equivalent relative toHBn(A, B)

3. sh(P ) andsh(Q) are suppmin-equivalent relative toHBn(A, B).

8



Proof. Since models are preserved under shifting, minimal models are preserved under shifting,
too. We already noted in the proof of Theorem 3.2 that shifting preserves supported models. Thus,
the result follows. 2

To characterize suppmin-equivalence fornormalprogramsP andQ, we defineMod
B
A(P ) to

be the set of all pairs(X, Y ) such that

1. Y ∈ ModA(P )

2. X ⊆ Y |A∪B

3. for eachZ ⊂ Y such thatZ|A∪B = Y |A∪B, Z 6|= P

4. for eachZ ⊂ Y such thatZ|B = X|B andZ|A ⊇ X|A, Z 6|= P

5. if X|B = Y |B, thenY \ TP (Y ) ⊆ X.

The characterization is much more involved than the one for supp-equivalence. While the
intuition for elements inModA(P ) is the same as before, we now need an additional handle to
ensure that minimality affects the two programs under comparison in the same way. Loosely
speaking, for eachY ∈ ModA(P ), we have to keep track of those smaller modelsX ⊂ Y which
can be “influenced” differently by programs fromHBn(A, B). This is the task of items (2)-(4)
in the definition above. The final condition, informally speaking again, states that such smaller
models are of “no danger”, as long as they cannot fill the gap for making Y supported. The
forthcoming proof makes this intuition more concrete.

Formally, suppmin-equivalence of normal logic programsP andQ depends on setsMod
B
A(P )

andMod
B
A(Q) as follows.

Theorem 4.3 Let A, B ⊆ At and letP, Q be normal programs. The following conditions are
equivalent

1. P andQ are suppmin-equivalent relative toHBn(A, B)

2. Mod
B
A(P ) = Mod

B
A(Q) and for every(X, Y ) ∈ Mod

B
A(P ), TP (Y )|B = TQ(Y )|B

3. Mod
B
A(P ) = Mod

B
A(Q) and for every(X, Y ) ∈ Mod

B
A(P ), TP (Y ) \ (A \ B) = TQ(Y ) \

(A \B).

Proof. [(1) implies (2)]: Let(X, Y ) ∈ Mod
B
A(P ). By the definition,X ⊆ Y |A∪B and so,X|B ⊆

Y |B. If X|B = Y |B, we set

R′ = (Y \ TP (Y ))|B ∪X|A\B.

Otherwise, we fix an elementt ∈ Y |B \X|B and define

R′ = {y ← t | y ∈ (Y \ TP (Y )) ∪ Y |A\B} ∪ {x← not t | x ∈ X|A}.
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Finally, we set

R = R′ ∪ { ← not x | x ∈ X|B} ∪ {← u, not z | u, z ∈ Y |B \X|B}.

We note thatR ∈ HBn(A, B). Indeed, since(X, Y ) ∈ Mod
B
A(P ), Y ∈ ModA(P ). Thus,

Y \ TP (Y ) ⊆ A.
It is easy to see that bothY andX satisfy the constraint rules inR. In addition, it is evident

that Y |= R′. Thus,Y |= R. If X|B = Y |B, (Y \ TP (Y ))|B ⊆ Y |B ⊆ X and, consequently,
X |= R′. If X|B ⊂ Y |B, thenX |= R′, ast /∈ X. Thus,X |= R, as well.

Moreover, for eachZ ⊆ Y with Z|B = X|B and Z|A ⊇ X|A, Z |= R holds. Indeed,
each suchZ satisfies the constrains ofR. In addition, ifX|B = Y |B, thenZ|B = Y |B and so,
Z |= (Y \ TP (Y ))|B. Also, sinceX|A ⊆ Z|A, Z |= X|A\B. Thus,Z |= R′. If X|B ⊂ Y |B, then
Z |= R′ by the fact thatt /∈ Z (sincet /∈ X|B, t /∈ Z|B and, ast ∈ B, t /∈ Z follows).

Next, we show thatY is a supported model ofP ∪ R. SinceY ∈ ModA(P ) (it follows from
the fact that(X, Y ) ∈ Mod

B
A(P )), Y |= P . We already proved thatY |= R. Thus,Y |= P ∪ R,

that is,TP∪R(Y ) ⊆ Y .
To prove the converse inclusion, we consider two cases. IfX|B ⊂ Y |B, TR(Y ) = (Y \

TP (Y )) ∪ Y |A\B. Hence,Y ⊆ TP (Y ) ∪ TR(Y ) = TP∪R(Y ). If X|B = Y |B, we haveTR(Y ) =
(Y \TP (Y ))|B ∪X|A\B. Let y ∈ Y \TP (Y ). It follows thaty ∈ X (condition (5) of the definition
of Mod

B
A(P )) andy ∈ A (by the fact thatY ∈ ModA(P )). If y /∈ B, theny ∈ X|A\B and so,

y ∈ TR(Y ). If y ∈ B, theny ∈ (Y \ TP (Y ))|B. Thus,y ∈ TR(Y ) in this case, too. It follows that
if y ∈ Y theny ∈ TP (Y ) ∪ TR(Y ) and consequently,Y ⊆ TP (Y ) ∪ TR(Y ) = TP∪R(Y ).

We will now show thatY is a minimal model ofP ∪R. To this end, let us considerZ ⊆ Y such
thatZ |= P ∪ R. It follows thatZ|B ⊆ Y |B. SinceZ |= { ← not x | x ∈ X|B}, X|B ⊆ Z|B.
Thus, sinceZ |= {← u, not z | u, z ∈ Y |B \X|B}, we obtain thatZ|B = Y |B or Z|B = X|B.

Let us assume thatX|B = Y |B. SinceZ |= R′, X|A\B ⊆ Z. If y ∈ X|A∩B, theny ∈ X|B
andy ∈ Y |B. Thus,y ∈ Z|B. It follows thatX|A ⊆ Z and, consequently,X|A ⊆ Z|A. Moreover,
X|B = Y |B implies thatZ|B = X|B. SinceZ |= P , by the definition ofMod

B
A(P ) (condition

(3)), Z = Y .
Thus, let us assume thatX|B ⊂ Y |B. First, we consider the caseZ|B = Y |B. SinceZ |= R,

we haveY |A\B ⊆ Z (thanks to the rulesy ← t, y ∈ Y |A\B, in R). it follows thatY |A∪B ⊆ Z
and, consequently,Y |A∪B ⊆ Z|A∪B. On the other handZ ⊆ Y and so,Z|A∪B ⊆ Y |A∪B. Thus,
Y |A∪B = Z|A∪B. SinceZ |= P , the definition ofMod

B
A(P ) impliesY = Z. Next, we consider

the caseZ|B = X|B. We haveX|A ⊆ Z (thanks to the rulesx← not t, x ∈ X|A, in R). Thus, as
before,Z = Y follows.

In each of the possible cases,Y = Z. Thus,Y is a minimal model ofP ∪ R.
SinceP andQ are suppmin-equivalent relative toHBn(A, B) andR ∈ HBn(A, B), Y is a

supported minimal model ofQ ∪ R. It follows thatY is a model ofQ. In particular,TQ(Y ) ⊆ Y .
Moreover, sinceR ∈ HBn(A, B), andY = TQ∪R(Y ) = TQ(Y ) ∪ TR(Y ), Y \ TQ(Y ) ⊆ A. Thus,
Y ∈ ModA(Q), that is, the condition (1) for(X, Y ) ∈ Mod

B
A(Q) holds. The condition (2) holds

simply because(X, Y ) ∈ Mod
B
A(P ).

SinceY |= R andR ∈ HBn(A, B), for everyZ ⊂ Y such thatZ|A∪B = Y |A∪B, Z |= R and
so,Z 6|= Q (otherwise, we would haveZ |= Q ∪ R, contrary to the minimality ofY ). If Z ⊂ Y ,
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Z|B = X|B andZ|A ⊇ X|A then, according to our earlier observation,Z |= R. Thus, for the
same reason as before,Z 6|= Q holds in this case, too. It follows that the conditions (3) and (4) for
(X, Y ) ∈ Mod

B
A(Q) hold.

Finally, let us assume thatX|B = Y |B. We recall thatTR(Y ) = (Y \ TP (Y ))|B ∪X|A\B. We
also haveY = TQ(Y ) ∪ TR(Y ). Let y ∈ Y \ TQ(Y ). Theny ∈ (Y \ TP (Y ))|B or y ∈ X|A\B.
In the first case,y ∈ X, by the condition (5) for(X, Y ) ∈ Mod

B
A(P ). In the second case,y ∈ X

is evident. Thus, the condition (5) for(X, Y ) ∈ Mod
B
A(Q) holds, too. Consequently,(X, Y ) ∈

Mod
B
A(Q) andMod

B
A(P ) ⊆ Mod

B
A(Q).

We show nextTP (Y ) \ (A \B) ⊆ TQ(Y ) \ (A \B). To this end, let us considery ∈ TP (Y ) \
(A \ B). Clearly,y /∈ (A \ B) and it suffices to show thaty ∈ TQ(Y ). SinceY is a supported
model ofQ ∪ R, we haveY = TQ(Y ) ∪ TR(Y ). Let us assume thaty ∈ TR(Y ). It follows that
y ∈ A. Sincey /∈ (A \B), y ∈ B.

If X|B = Y |B, thenTR(Y ) = (Y \ TP (Y ))|B ∪ X|A\B. Sincey ∈ B, y /∈ X|A\B. Thus,
y ∈ (Y \ TP (Y ))|B, and consequently,y /∈ TP (Y )|B. We recall thaty ∈ B and so,y /∈ TP (Y ), a
contradiction. It follows thatX|B ⊂ Y |B. Then, we haveTR(Y ) = (Y \ TP (Y )) ∪ Y |A\B. Since
y ∈ B, y ∈ Y \ TP (Y ), and so,y /∈ TP (Y ), a contradiction again. Thus,y /∈ TR(Y ). It follows
thaty ∈ TQ(Y ), as needed.

We have shown thatMod
B
A(P ) ⊆ Mod

B
A(Q), andTP (Y ) \ (A \B) ⊆ TQ(Y ) \ (A \B). By the

symmetry argument,Mod
B
A(Q) ⊆ Mod

B
A(P ) holds, as well as,TQ(Y )\(A\B) ⊆ TP (Y )\(A\B).

Thus, (2) follows.

[(2) implies (3)]: Lety ∈ TP (Y )|B. Theny ∈ B and so,y /∈ A \ B. Sincey ∈ TP (Y ), y ∈
TP (Y )\ (A\B). It follows thaty ∈ TQ(Y )\ (A\B). In particular,y ∈ TQ(Y ) and, consequently,
y ∈ TQ(Y )|B. The equalityTP (Y )|B = TQ(Y )|B follows by the symmetry argument.

[(3) implies (1)]: LetR be a logic program fromHBn(A, B), and letY be a supported minimal
model ofP ∪ R. Next, letX = TR(Y ) ∪ Y |B. We note that sinceY |= R, TR(Y ) ⊆ Y . Thus,
X|B = Y |B.

We will show that(X, Y ) ∈ Mod
B
A(P ). SinceY is a suppmin model ofP ∪ R, it follows that

Y |= P , Y |= R, andY = TP (Y ) ∪ TR(Y ). We haveR ∈ HBn(A, B). Thus, the latter identity
shows thatY \ TP (Y ) ⊆ A. SinceY |= P , we obtain thatY ∈ ModA(P ), that is, the condition
(1) for (X, Y ) ∈ Mod

B
A(P ) holds.

SinceTR(Y ) ⊆ Y andTR(Y ) ⊆ A (we recall thatR ∈ HBn(A, B)), TR(Y ) ⊆ Y |A ⊆ Y |A∪B.
Clearly, Y |B ⊆ Y |A∪B. Thus,X ⊆ Y |A∪B. This proves that the condition (2) for(X, Y ) ∈
Mod

B
A(P ) holds.

We also haveTR(Y ) ⊆ X (by the definition ofX). SinceY \TP (Y ) ⊆ TR(Y ), Y \TP (Y ) ⊆ X
follows. Consequently, the condition (5) for(X, Y ) ∈ Mod

B
A(P ) holds, too.

Next, letZ ⊂ Y andZ|A∪B = Y |A∪B. SinceR ∈ HBn(A, B) andY |= R, Z |= R. We
have thatY is a minimal model ofP ∪ R. Thus,Z 6|= P and, consequently, the condition (3) for
(X, Y ) ∈ Mod

B
A(P ) follows.

Finally, let Z ⊂ Y , Z|B = X|B andZ|A ⊇ X|A. SinceX|B = Y |B, Z|B = Y |B. We
haveR ∈ HBn(A, B). Thus,TR(Z) = TR(Y ) ⊆ X (the inclusion holds by the definition ofX).
Moreover,TR(Y ) ⊆ A and so,TR(Z) ⊆ X|A ⊆ Z|A ⊆ Z. Consequently,Z |= R in this case,
too. As before, we obtain thatZ 6|= P . This shows the condition (4) for(X, Y ) ∈ Mod

B
A(P ).
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Thus, we have established that(X, Y ) ∈ Mod
B
A(P ). By the assumption,(X, Y ) ∈ Mod

B
A(Q)

and alsoTP (Y )|B = TQ(Y )|B. We will now show thatY = TQ(Y ) ∪ TR(Y ), that is, thatY is a
supported model ofQ ∪ R. SinceY ∈ ModA(Q), Y |= Q. Hence,Y |= Q ∪ R (we recall that
Y |= R) and so,TQ(Y ) ∪ TR(Y ) ⊆ Y .

To showY ⊆ TQ(Y ) ∪ TR(Y ), let y ∈ Y . We recall thatTR(Y ) ⊆ A. We distinguish three
cases:

(i) y /∈ A: Since(X, Y ) ∈ Mod
B
A(Q), Y ∈ ModA(Q) and so,Y \ TQ(Y ) ⊆ A. Thus,

y ∈ TQ(Y ) follows.

(ii) y ∈ B: If y ∈ TR(Y ) we are done; otherwise (sinceY = TP (Y ) ∪ TR(Y )), we obtainy ∈
TP (Y ). It follows thaty ∈ TP (Y )|B. Thus,y ∈ TQ(Y )|B and, consequently,y ∈ TQ(Y ).

(iii) y ∈ A \ B: If y ∈ X, theny ∈ TR(Y ) (we recall thatX = TR(Y ) ∪ Y |B); if y /∈ X, then
y /∈ Y \ TQ(Y ) (indeed, since(X, Y ) ∈ Mod

B
A(Q) andX|B = Y |B, Y \ TQ(Y ) ⊆ X), and

thus,y ∈ TQ(Y ).

It follows thatY = TQ(Y ) ∪ TR(Y ), that is,Y is a supported model ofQ ∪R.
It remains to show thatY is a minimal model ofQ ∪ R. Let Y ′ ⊂ Y be a model ofQ ∪ R.

SinceY ′ |= Q, (Y ′|A∪B, Y ) /∈ Mod
B
A(Q) (it violates condition (4) of the definition ofMod

B
A(Q)).

By the assumption,(Y ′|A∪B, Y ) /∈ Mod
B
A(P ). Since(X, Y ) ∈ Mod

B
A(P ), (Y ′|A∪B, Y ) satisfies

condition (1) of the definition ofMod
B
A(P ). Moreover,Y ′ ⊂ Y impliesY ′|A∪B ⊆ Y |A∪B. Thus,

condition (2) holds, too.
Let Y |B = (Y ′|A∪B)|B. Then,Y |B = Y ′|B. SinceY ′ |= R andR ∈ HBn(A, B), TR(Y ′) ⊆ Y ′

andTR(Y ′) = TR(Y ). Thus,TR(Y ) ⊆ Y ′ and, consequently,X ⊆ Y ′. We proved above that
Y \ TP (Y ) ⊆ X. Consequently, condition (5) for(Y ′|A∪B, Y ) ∈ Mod

B
A(P ) holds, as well. It

follows that at least one of the conditions (3) and (4) is violated. That is, there isU ⊂ Y , such
thatU |= P , and eitherU |A∪B = Y |A∪B or U |B = Y ′|B andU |A ⊇ Y ′|A. Since bothY |= R and
Y ′ |= R, U |= R (we recall here thatR ∈ HBn(A, B)). Thus,U |= P ∪R andY is not a minimal
model ofP ∪ R, a contradiction. It follows that there is noY ′ ⊂ Y such thatY ′ |= Q ∪ R. That
is, Y is a supported minimal model ofQ ∪ R. 2

We have several corollaries for some special choices ofA andB. The first one concerns the
case whenB = ∅, that is, the case of relativized uniform suppmin-equivalence. Since the condition
TP (Y )|B = TQ(Y )|B is now trivially satisfied, Theorem 4.3 implies the following result.

Corollary 4.4 Let A ⊆ At . Normal programsP and Q are suppmin-equivalent relative to
HBn(A, ∅) if and only ifMod

∅
A(P ) = Mod

∅
A(Q).

Proof. The result follows by the equivalence of the conditions (1) and (3) in Theorem 4.3. 2

Moreover, the description ofMod
B
A(P ), whenB = ∅ simplifies. In fact,(X, Y ) ∈ Mod

∅
A(P )

if and only if

1. Y ∈ ModA(P )
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2. X ⊆ Y |A

3. for eachZ with X ⊆ Z ⊂ Y , Z 6|= P

4. Y \ TP (Y ) ⊆ X.

We will discuss additional special-cases for instantiating Mod
B
A(P ) as part of our complexity

analysis in Lemma 6.1.
When A = B = At (strong suppmin-equivalence), it turns out that supp-equivalence and

suppmin-equivalence coincide (cf. comments at the end of Example 4.1).

Corollary 4.5 Normal programsP andQ are suppmin-equivalent relative toHBn(At ,At) if and
only if P andQ are supp-equivalent relative toHBn(At ,At).

Proof. We note that(X, Y ) ∈ Mod
At

At
(P ) if and only if Y ∈ ModAt(P ), and eitherX = Y , or

X ⊂ Y andX 6|= P . Thus,Mod
At

At
(P ) = Mod

At

At
(Q) if and only if ModAt(P ) = ModAt(Q).

Moreover,(Y, Y ) ∈ Mod
At

At(P ) if and only if Y ∈ ModAt(P ). Thus, the result follows from
Corollary 3.4 and Theorem 4.3. 2

We will now use our results to resolve the issue of suppmin-equivalence of programs discussed
earlier.

Example 4.6 If P is a program such that every set of atoms is a model ofP , thenMod
∅
At(P ) =

{(Y, Y ) | Y ⊆ At}. This observation applies both toP1 and Q1. Thus, by Corollary 4.4,P1

andQ1 are suppmin-equivalent relative toHBn(At , ∅). We note thatP1 andQ1 are not suppmin-
equivalent relative toHBn(At ,At). Indeed, they are not supp-equivalent (cf. Example 3.6) and
so, not suppmin-equivalent (by Corollary 4.5).

Next, we consider programsP5 andQ5. We note that for every programP , Mod
∅
∅(P ) consists

of pairs (∅, Y ), whereY is a suppmin model ofP . Thus,Mod
∅
∅(P5) = ∅ and Mod

∅
∅(Q5) =

{(∅, {a, b})}. By Corollary 4.4,P5 andQ5 are not suppmin-equivalent relative toHBn(∅, ∅).

Thanks to Theorem 4.2, all results concerning normal programs lift to the disjunctive case. To
illustrate it, we give two such results below.

Corollary 4.7 LetA, B ⊆ At . The following conditions are equivalent.

1. Disjunctive programsP andQ are suppmin-equivalent relative toHBd(A, B)

2. Mod
B
A(sh(P )) = Mod

B
A(sh(Q)) and for every(X, Y ) ∈ Mod

B
A(sh(P )), Tsh(P )(Y ) \ (A \

B) = Tsh(Q)(Y ) \ (A \B)

3. Mod
B
A(sh(P )) = Mod

B
A(sh(Q)) and for every(X, Y ) ∈ Mod

B
A(sh(P )), Tsh(P )(Y )|B =

Tsh(Q)(Y )|B.

Proof. This result follows by Theorem 4.2 from Theorem 4.3. 2

Corollary 4.8 Disjunctive programsP andQ are suppmin-equivalent relative toHBd(At ,At) if
and only ifP andQ are supp-equivalent relative toHBd(At ,At).

Proof. This result follows by Theorems 4.2 and 3.2, and Corollary 4.5. 2
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5 Complexity of Supp-Equivalence

We focus entirely on the case of normal programs and normal contexts. As we noted, it is not an
essential restriction, and all results we obtain hold without it. We will study deciding hyperequiv-
alence relative to classesHBn(A, B). Specifically, we will consider the following problems:

1. SUPP: given programsP, Q (overAt) andA, B ⊆ At , decide whetherP andQ are supp-
equivalent relative toHBn(A, B)

2. SUPPA: given programsP, Q (overAt) andB ⊆ At , decide whetherP andQ are supp-
equivalent relative toHBn(A, B)

3. SUPPB: given programsP, Q (over At) andA ⊆ At , decide whetherP andQ are supp-
equivalent relative toHBn(A, B)

4. SUPPBA: given programsP, Q (overAt), decide whetherP andQ are supp-equivalent relative
toHBn(A, B).

We emphasize the changing roles of the setsA andB. In some cases, they are used to specify
a problem (A in SUPPB

A andSUPPA); in others, they belong to the specification of an instance (A
in SUPPB andSUPP). In the first role, they can be finite or infinite. For instance, SUPPAt denotes
the problem to decide, given programsP, Q (overAt) andB ⊆ At , whetherP andQ are supp-
equivalent relative toHBn(At , B). In the second role, they need to have finite representations.

To establish the complexity of a problem, we derive an upper and a lower bound (membership
and hardness). We start by pointing out that establishing anupper bound is not entirely straight-
forward. A natural witness against supp-equivalence is a pair (R, Y ), whereR is a finite program
in C andY is finite set of atoms such thatY is a supported model of exactly one ofP ∪ R and
Q ∪ R. The problem is that the size of such a programR might not be bounded by a polynomial
in the size ofP , Q, and possibly alsoA andB, depending on the problem. Thus, the most direct
attempt to prove the membership of the problem in the class coNP fails. The bound can, however,
be derived from our characterization theorem for several classes of context programs.

Theorem 5.1 The following problems are in the class coNP:

1. SUPP

2. SUPPA, for every finiteA ⊆ At

3. SUPPBA, for every finiteA ⊆ At , and for everyB ⊆ At

4. SUPPB, for everyB ⊆ At

5. SUPPB
At

, for everyB ⊆ At .
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Proof. (1) Theorem 3.3 implies that the complement of the problem isin the class NP. Indeed,
given two programsP andQ and setsA, B ⊆ At , if there is a setY such thatY belongs to
exactly one ofModA(P ) andModA(Q), or Y ∈ ModA(P ) ∩ ModA(Q) andTP (Y ) 6= TQ(Y ),
thenY \ TP (Y ) ⊆ A or Y \ TQ(Y ) ⊆ A. It follows thatY ⊆ At(P ∪ Q) ∪ A. Since for suchY
verifying the membership inModA(P ) andModA(Q), and testingTP (Y ) 6= TQ(Y ) can be done in
polynomial time in the size ofAt(P ∪Q)∪A, our claim and, consequently, the assertion, follows.

(2) Each of these problems reduces to the problem (1) (extendan instance of a problem in (2) with
A, the set that defines the problem, to specify an instance of the problem (1)). Thus, the bound
follows.

(3) and (4) Each of these problems is equivalent to the problem with B = ∅ and so, can be reduced
to the problem (1).

(5) Corollary 3.4 implies that the complement of the problemis in the class NP. Indeed, given two
normal programsP andQ, if there is a setY such that (a)Y is a model of exactly one ofP and
Q, or (b) Y is a model of bothP andQ, andTP (Y ) 6= TQ(Y ), then there isY ′ ⊆ At(P ∪ Q)
with the same property. Since verifying conditions (a) and (b) for Y ′ ⊆ At(P ∪Q) can be done in
polynomial time in the size ofP ∪Q, our claim and, consequently, the assertion, follows. 2

In problems (3) - (5) we do not need any explicit or implicit representation ofB, as the supp-
equivalence relative toHBn(A, B) depends onA only.

We move on to the lower bound (hardness). In several proofs inthis and the next sections, we
use the following concepts and notation. We consider a CNF formulaϕ over a set of atomsY , or
a QBF formula∀Y ∃Xϕ, whereϕ is a CNF formula over the set of atomsX ∪ Y . For every such
atomz ∈ Y or z ∈ X ∪ Y , respectively, we denote byz′ a new atom not appearing anywhere
in ϕ, possibly also different from some other atoms that might benamed explicitly, and different
from other “primed” atoms. Given a set of “non-primed” atomsZ, we defineZ ′ = {z′ | z ∈
Z}. Finally, for a clausec = z1 ∨ · · · ∨ zk ∨ ¬zk+1 ∨ · · · ∨ ¬zm, we denote bŷc the sequence
z′1, . . . , z

′
k, zk+1, . . . , zm.

Theorem 5.2 For every finiteA ⊆ At andA = At , and for everyB ⊆ At , the problemSUPPBA is
coNP-hard.

Proof. Let us consider a CNFϕ and letY be the set of atoms inϕ. We define

P (ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪

{← y, y′ | y ∈ Y } ∪

{← ĉ | c is a clause inϕ}

To simplify the notation, we writeP for P (ϕ). One can check thatϕ has a model if and only if
P has a model. Moreover, for every modelM of P such thatM ⊆ At(P ), M is astablemodel
of P . Thus, each such model ofP is also asupportedmodel ofP and, consequently, satisfies
M = TP (M).

Next, we defineQ to consist of two rules:f and← f . Clearly,Q has no models. By Theorem
3.3, Q is supp-equivalent toP relative toHBn(A, B) if and only if ModA(Q) = ModA(P ) and
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for everyM ∈ ModA(Q), TQ(M) = TP (M). SinceModA(Q) = ∅, we have thatQ is supp-
equivalent toP relative toHBn(A, B) if and only if ModA(P ) = ∅. If M ∈ ModA(P ), then there
is M ′ ⊆ At(P ) such thatM ′ ∈ ModA(P ). Since every modelM ′ of P such thatM ′ ⊆ At(P )
satisfiesM ′ = TP (M ′), it follows thatModA(P ) = ∅ if and only if P has no models.

Thus,ϕ is unsatisfiable if and only ifQ is supp-equivalent toP relative toHBn(A, B), and the
assertion follows. 2

We observe that for the result to hold we do not need to knowB. Putting together Theorems
5.1 and 5.2 we obtain the following result.

Corollary 5.3 The problems listed in Theorem 5.1 are coNP-complete.

Proof. The hardness of problems in Theorem 5.1 follows from Theorem5.2. Thus, the coNP-
completeness follows. 2

Problems we considered so far do not impose restrictions on input programsP andQ. In
particular, they contain instances, in whichModA(P ) 6= ModA(Q), a property exploited by the
proof we presented above. We will now consider the problem todecide whether normal programs
P andQ such thatModA(P ) = ModA(Q) are supp-equivalent relative toHBn(A, B). It turns out
that this additional information is of no help as the complexity does not go down.

We start with an auxiliary result.

Lemma 5.4 Let A ⊆ At be a fixed finite non-empty set orA = At . The following problem is
coNP-complete. Given a normal logic programP , decide whether everyM ∈ ModA(P ) such that
M ⊆ At(P ) is a supported model ofP .

Proof. Let us select and fix an element inA, sayg, and letϕ be a CNF formula overY . Wlog we
may assume thatϕ does not containg. We define

S(ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪

{← y, y′ | y ∈ Y }

{g ← ĉ | c is a clause inϕ}

In the remainder of the proof, we writeS for S(ϕ).
We note that for everyM ⊆ At(S), if M |= S thenTS(M) = M or TS(M) = M \ {g}. In

particular, ifM ⊆ At(S) andM |= S, thenM \ TS(M) ⊆ {g} ⊆ A. Thus, forM ⊆ At(S),
M ∈ ModA(S) if and only if M |= S.

If ϕ is unsatisfiable then, for everyM ⊆ At(S) such thatM |= S, we haveg ∈ M . Conse-
quently, each suchM is a supported model ofS. It follows that for everyM ∈ ModA(S) such that
M ⊆ At(S), M is a supported model ofS.

If ϕ is satisfiable, every model ofϕ gives rise to a supported model, sayX, of S, such that
g /∈ X. It is easy to see thatM = X ∪ {g} is a model ofS but not a supported one. Since
M ⊆ At(S) andM is a model ofS, M ∈ ModA(S).
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Thus,ϕ is unsatisfiable if and only if everyM ∈ ModA(S) such thatM ⊆ At(S) is a supported
model ofS. Consequently, the hardness follows.

The membership part is evident. Indeed, the complementary problem can be decided by the
following algorithm: nondeterministically guessM ⊆ At(S); verify that (1)M ∈ ModA(S) and
that (2)M is not supported model ofS. Clearly both (1) and (2) can be done in polynomial time
(both forA finite and nonempty, and forA = At , where the conditionM \TS(M) ⊆ A trivializes).
Thus, the complementary problem is in NP and the assertion follows. 2

Applying Lemma 5.4 to the caseA = At , we obtain the following result of some interest in its
own right.

Theorem 5.5 The following problem is coNP-complete: given a finite normal logic programP ,
decide whether every modelY of P such thatY ⊆ At(P ) is supported.

However, the primary application of Lemma 5.4 is in determining the complexity of hyper-
equivalence for programsP andQ with ModA(P ) = ModA(Q), the problem we already men-
tioned above.

Theorem 5.6 Let A be a fixed finite non-empty subset ofAt or let A = At . For every setB ⊆
At , the following problem is coNP-complete: given two normal programsP and Q such that
ModA(P ) = ModA(Q), decide whether they are supp-equivalent relativeHBn(A, B).

Proof. We restrict to the caseB = ∅ (we recall that supp-equivalence does not depend onB).
The membership part follows from Theorem 5.1. For the hardness part, letP be a normal

logic program. Let us considerP ′ = P ∪ {g ← g | g ∈ At(P ) ∩ A}. We note that for every
M ⊆ At(P ), TP ′(M) = TP (M) ∪ (M ∩A).

We will first prove thatModA(P ) = ModA(P ′). Let M ∈ ModA(P ). ThenM |= P (and so,
TP (M) ⊆M) andM \ TP (M) ⊆ A. One can verify thatTP ′(M) = M ∩At(P ). Thus,M |= P ′.
Moreover, asTP (M) ⊆ TP ′(M), M \ TP ′(M) ⊆ A. Consequently,M ∈ ModA(P ′). Conversely,
let M ∈ ModA(P ′). It follows thatM |= P . Next, lety ∈ M \ TP (M). If y ∈ M \ TP ′(M), then
y ∈ A (asM \TP ′(M) ⊆ A). Otherwise,y ∈ TP ′(M)\TP (M). It follows thaty ∈ A∩At(P ) and
so,y ∈ A in this case, too. Thus, we obtainM \ TP (M) ⊆ A and, consequently,M ∈ ModA(P ).

Let us assume that for everyM ∈ ModA(P ) such thatM ⊆ At(P ), M is a supported model
for P . Let M ∈ ModA(P ). Then,M ∩ At(P ) ∈ ModA(P ) and, by the assumption,TP (M ∩
At(P )) = M ∩ At(P ). SinceTP (M) = TP (M ∩ At(P )), TP (M) = M ∩ At(P ). We also have
TP ′(M) = TP ′(M ∩ At(P )) = TP (M ∩ At(P )) ∪ [(M ∩ At(P )) ∩ A] = M ∩ At(P ). Thus,
TP (M) = TP ′(M). By Theorem 3.3,P andP ′ are supp-equivalent relative toHBn(A, B).

Conversely, letP andP ′ be supp-equivalent relative toHBn(A, B) and letM ∈ ModA(P ) be
such thatM ⊆ At(P ). We proved earlier that forM ∈ ModA(P ), TP ′(M) = M ∩ At(P ). Since
M ⊆ At(P ), TP ′(M) = M . Thus,M is a supported model ofP ′ and so (as∅ ∈ HBn(A, B)), of
P , too.

It follows that for everyM ∈ ModA(P ) such thatM ⊆ At(P ), M is a supported model forP
if and only if P andP ′ are supp-equivalent relative toHBn(A, B). SinceModA(P ) = ModA(P ′),
the assertion follows from Lemma 5.4. 2
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There seems to be no simple reduction from any problem considered in Corollary 5.3 to the
problem from Theorem 5.6 and so, a direct proof is needed. Therequirement thatA 6= ∅ is
necessary for the complexity result of Theorem 5.6. Indeed,by Corollary 3.5, ifA = ∅, programs
P andQ with ModA(P ) = ModA(Q) are necessarily supp-equivalent.

6 Complexity of Suppmin-Equivalence

We will use here the same notational schema as in the previoussection, but replace supp-
equivalence with suppmin-equivalence and writeSUPPMIN instead ofSUPP. For instance, we
write SUPPMINB (for B fixed and not part of the input) to denote the following problem: given
normal programsP andQ, andA ⊆ At , decide whetherP andQ are suppmin-equivalent relative
toHBn(A, B).

Deciding suppmin-equivalence relative toHBn(A, B), whereA = At or B = At , remains in
the class coNP and turns out to be coNP-complete. To prove that, we first simplify the conditions
for (X, Y ) ∈ Mod

B
A if A = At or B = At .

Lemma 6.1 LetP be a normal logic program andA, B ⊆ At . Then,

1. (X, Y ) ∈ Mod
B
At

(P ) if and only if the following conditions hold:

(a) Y |= P

(b) X ⊆ Y

(c) for everyZ ⊂ Y , such thatZ|B = X|B andZ ⊇ X, Z 6|= P

(d) if X|B = Y |B, thenY \ TP (Y ) ⊆ X.

2. (X, Y ) ∈ Mod
At

A (P ) if and only if the following conditions hold:

(a) Y ∈ ModA(P )

(b) X ⊆ Y

(c) If X ⊂ Y thenX 6|= P .

Proof. If A = At , the condition (1) for(X, Y ) ∈ Mod
B
A(P ) specializes to (1a) asY ∈ ModAt(P )

if and only if Y |= P . AssumingB = At has no effect on the condition (1). Thus, it appears
without any change as the condition (2a).

The condition (2) for(X, Y ) ∈ Mod
B
A(P ) specializes to (1b) or (2b), respectively, sinceA ∪

B = At . For the same reason, the condition (3) for(X, Y ) ∈ Mod
B
A(P ) is trivially true, in both

cases. The conditions (4) and (5) for(X, Y ) ∈ Mod
B
A(P ) specialize to the conditions (1c) and (1d)

in caseA = At . If B = At , the condition (4) for(X, Y ) ∈ Mod
B
A(P ) specializes to (2c). The

condition (5) for(X, Y ) ∈ Mod
B
A(P ) holds true (ifX = Y then, trivially,Y \ TP (Y ) ⊆ Y ) and

can be dropped. 2
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Lemma 6.1 has a corollary that plays a key role in establishing the membership in the class
coNP of the relativized suppmin-equivalence problems for whichA = At or B = At . For the case
A = At we need one more important property.

Corollary 6.2 LetP, Q be normal programs andB ⊆ At . If Mod
B
At

(P ) 6= Mod
B
At

(Q), then there
is Y ⊆ At(P ∪Q) ∪ B such thatY is a model of exactly one ofP andQ, or there isa ∈ Y such
that (Y \ {a}, Y ) belongs to exactly one ofMod

B
At

(P ) andMod
B
At

(Q).

Proof. Let us assume thatP andQ have the same models (otherwise, there isY ⊆ At(P ∪ Q)
that is a model of exactly one ofP andQ, and the assertion follows). Wlog we can assume that
there is(X, Y ) ∈ Mod

B
At

(P ) \Mod
B
At

(Q). Moreover, we can assume thatY ⊆ At(P ∪ Q) ∪ B.
It follows that(X, Y ) satisfies the conditions (1a)-(1d) from Lemma 6.1 for(X, Y ) ∈ Mod

B
At

(P ).
Moreover, sinceP andQ have the same models,(X, Y ) already satisfies conditions (1a)–(1c)
for (X, Y ) ∈ Mod

B
At

(Q). HenceX|B = Y |B andY \ TQ(Y ) 6⊆ X have to hold. Thus, there is
a ∈ (Y \TQ(Y ))\X. We will show that(Y \{a}, Y ) ∈ Mod

B
At(P ) and(Y \{a}, Y ) /∈ Mod

B
At(Q).

Since(X, Y ) ∈ Mod
B
At

(P ), Y is a model ofP . Next, obviously,Y \ {a} ⊆ Y . Thus, the
conditions (1a) and (1b) of Lemma 6.1 hold. LetZ ⊂ Y be such thatZ ⊇ Y \ {a}. Then
Z = Y \ {a}. We haveY |B = X|B, a ∈ Y , anda /∈ X. Thus,a /∈ B. It follows that
(Y \ {a})|B = X|B andX ⊆ Y \ {a}. Since(X, Y ) ∈ Mod

B
At

(P ), Y \ {a} 6|= P , that is,Z 6|= P .
Thus, the condition (1c) of Lemma 6.1 holds.

Sincea /∈ B, (Y \ {a})|B = Y |B. Thus, we also have to verify the condition (1d) of Lemma
6.1. We haveY \ TP (Y ) ⊆ X (we recall thatY |B = X|B) and so,Y \ TP (Y ) ⊆ Y \ {a}. Hence,
the condition (1d) of Lemma 6.1 holds, forP and, consequently,(Y \ {a}, Y ) ∈ Mod

B
At(P ). On

the other hand,a ∈ Y \ TQ(Y ) anda /∈ Y \ {a}. Thus, the condition (1d) of Lemma 6.1 does not
hold forQ and so,(Y \ {a}, Y ) /∈ Mod

B
At

(Q). 2

We are now ready to show the promised coNP-completeness results.

Theorem 6.3 The following problems are coNP-complete:

1. SUPPMINB
At

, for every finiteB ⊆ At ,

2. SUPPMINAt

A , for every finiteA ⊆ At ,

3. SUPPMINAt , SUPPMINAt , andSUPPMINAt

At
.

Proof. The case ofSUPPMINAt

At
is already clear by Corollary 4.5 and Theorem 5.2.

To establish the other cases, we will show coNP-membership for SUPPMINAt andSUPPMINAt .
From these two results, the membership results forSUPPMINB

At
andSUPPMINAt

A (for finite A, B ⊆
At) follow easily.

Likewise, we will show coNP-hardness forSUPPMINB
At

andSUPPMINAt

A (for finiteA, B ⊆ At).
That implies the corresponding lower bounds forSUPPMINAt andSUPPMINAt .

We start with coNP-membership forSUPPMINAt . The following nondeterministic algorithm
verifies, given programP , Q andB ⊆ At , that P and Q are not suppmin-equivalent relative
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HBn(At , B). We guess a pair(a, Y ), whereY ⊆ At(P ∪ Q) ∪ B, anda ∈ At such that (1)Y
is a model of exactly one ofP andQ; or (2) a ∈ Y and(Y \ {a}, Y ) belongs to exactly one of
Mod

B
At

(P ) andMod
B
At

(Q); or (3)Y is model of bothP andQ andTP (Y )|B 6= TQ(Y )|B.
Such a pair exists if and only ifP andQ are not suppmin-equivalent relativeHBn(At , B).

Indeed, let us assume that such a pair(a, Y ) exists. If (1) holds for(a, Y ), sayY is a model of
P but notQ, then(Y, Y ) ∈ Mod

B
At(P ) \ Mod

B
At(Q) (easy to verify by means of Lemma 6.1).

Thus,Mod
B
At

(P ) 6= Mod
B
At

(Q) and, by Theorem 4.3,P andQ are not suppmin-equivalent relative
HBn(At , B). If (2) holds for (a, Y ), Mod

B
At

(P ) 6= Mod
B
At

(Q) again, and we reason as above.
Finally, if neither (1) nor (2) holds, Corollary 6.2 impliesMod

B
At(P ) = Mod

B
At(Q). In this case,

(3) holds for(a, Y ). SinceY |= P , we have(Y, Y ) ∈ Mod
B
At

(P ). Moreover,TP (Y )|B 6= TQ(Y )|B.
Thus, again by Theorem 4.3,P andQ are not suppmin-equivalent relativeHBn(At , B).

Conversely, ifP andQ are not suppmin-equivalent relativeHBn(At , B), thenMod
B
At

(P ) 6=
Mod

B
At

(Q) or there is(X, Y ) ∈ Mod
B
At

(P ) such thatTP (Y )|B 6= TQ(Y )|B. The former implies (by
Corollary 6.2) that there is(a, Y ), with Y ⊆ At(P ∪Q) ∪B), that satisfies (1) or (2). Thus, let us
assume thatMod

B
At

(P ) = Mod
B
At

(Q) and that there is(X, Y ) ∈ Mod
B
At

(P ) such thatTP (Y )|B 6=
TQ(Y )|B. Since(X, Y ) ∈ Mod

B
At

(Q), too, Y is a model of bothP and Q and TP (Y )|B 6=
TQ(Y )|B. Clearly,Y ′ = Y ∩ (At(P ∪Q) ∪ B) is a model of bothP andQ, too, andTP (Y ′)|B 6=
TQ(Y ′)|B. Picking anya ∈ At yields a pair(a, Y ′), with Y ′ ⊆ At(P ∪ Q) ∪ B), for which (3)
holds.

It follows that the algorithm is correct. Moreover, checking whetherY |= P andY |= Q
can clearly be done in polynomial time in the total size ofP , Q, andB; the same holds for
checkingTP (Y )|B 6= TQ(Y ). Finally, by Lemma 6.1, testing(Y \ {a}, Y ) ∈ Mod

B
At(P ) and

(Y \ {a}, Y ) ∈ Mod
B
At

(Q) are polynomial-time (with respect to the size of the input) tasks, too;
the only problematic condition is (1c) from Lemma 6.1. However, we need to test thatZ 6|= P
there for only oneZ such thatY \ {a} ⊆ Z ⊂ Y , namelyZ = Y \ {a}. Thus, the algorithm runs
in polynomial time. It follows that the complement of our problem is in the class NP and so the
assertion follows.

We continue with coNP-membership forSUPPMINAt . By Theorem 4.3,P andQ are suppmin-
equivalent relative toHBn(A,At) if and only if Mod

At

A (P ) = Mod
At

A (Q) and for every(X, Y ) ∈
Mod

At

A (Y ), TP (Y ) = TQ(Y ). It follows that to decide thatP andQ arenot suppmin-equivalent
relative toHBn(A,At), it suffices to guess a pair(X, Y ), whereX ⊆ Y ⊆ At(P ∪ Q) ∪ A,
and verify that (a)(X, Y ) belongs to exactly one ofMod

At

A (P ) andMod
At

A (P ), or (b) that(X, Y )
belongs to bothMod

At

A (P ) andMod
At

A (P ), andTP (Y ) 6= TQ(Y ). Indeed, if(X, Y ) ∈ Mod
At

A (P )∪
Mod

At

A (Q), thenX ⊆ Y ⊆ At(P ∪ Q) ∪ A (the latter inclusion following from the fact that
Y ∈ ModA(P ) ∪ModA(Q)). By Lemma 6.1, and sinceX ⊆ Y ⊆ At(P ∪Q) ∪A, all these tests
can be executed in polynomial time in the total size ofP , Q andA. Thus, the the complementary
problem is in NP and so, the membership in coNP follows.

We now switch over to the hardness results and start this timewith SUPPMINAt

A . In the proof
of Theorem 5.6, we have shown that for every programP , and any finiteA ⊆ At , ModA(P ) =
ModA(P ′), whereP ′ = P ∪ {g ← g | g ∈ A ∩ At(P )}. Moreover, in the same proof, we
have shown thatP and P ′ are supp-equivalent relative toHBn(A,At) if and only if for each
Y ∈ ModA(P ) with Y ⊆ At(P ), Y is a supported model ofP . Next, we show thatP andP ′ are
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supp-equivalent relative toHBn(A,At), if and only if P andP ′ are suppmin-equivalent relative
toHBn(A,At). The only-if direction follows from the fact thatP andP ′ have the same models.
Indeed, this property implies that for everyR ∈ HBn(A,At), P ∪ R andQ ∪ R have the same
supported models and the same models. Consequently, they have the same supported minimal
models.

For the if-direction, we recall that suppmin-equivalence relative toHBn(A,At) betweenP
and P ′ implies (by Theorem 4.3)Mod

At

A (P ) = Mod
At

A (P ′) and TP (Y ) = TP ′(Y ), for every
(X, Y ) ∈ Mod

At

A (P ). In view of Lemma 6.1, it is easy to see thatModA(P ) = ModA(P ′)
follows. Moreover, by the same lemma, ifY ∈ ModA(P ) then (Y, Y ) ∈ Mod

At

A (P ). Thus,
TP (Y ) = TP ′(Y ), for everyY ∈ ModA(P ). By Theorem 3.3,P andP ′ are supp-equivalent
relative toHBn(A,At).

It follows that for everyY ∈ ModA(P ) with Y ⊆ At(P ), Y is a supported model forP if and
only if P andP ′ are suppmin-equivalent relative toHBn(A,At). Thus, the assertion follows from
Lemma 5.4.

To prove the coNP-hardness ofSUPPMINB
At

, we proceed as follows. Letϕ be a CNF formula, and
let Y be the set of atoms inϕ. We defineP andQ as in the proof of Theorem 5.2. SinceQ has no
models,Mod

B
At(Q) = ∅.

Let Y be a model ofP . Clearly, (Y, Y ) satisfies the conditions (1a)-(1d) from Lemma 6.1.
Thus,Mod

B
At

(P ) 6= ∅. Conversely, ifMod
B
At

(P ) 6= ∅, then there is(X, Y ) ∈ Mod
B
At

(P ). By
Lemma 6.1(1a),Y is a model ofP .

Thus,P has models if and only ifMod
B
At

(P ) 6= ∅. By Theorem 4.3,P has models if and only
if P andQ are not suppmin-equivalent.

In the proof of Theorem 5.2, we already showed thatP has models if and only ifϕ has models.
Thus,ϕ has models if and only ifP andQ are not suppmin-equivalent. Consequently, the claim
follows. 2

We will now establish the complexity of deciding relativized suppmin-equivalence whenA and
B are finite (fixed as part of the problem specification, or givenas part of instance specification).
We start with an auxiliary result needed to derive upper bounds for the complexity.

Lemma 6.4 The following problem is in coNP: given a normal logic program P and sets
X, Y, A, B ⊆ At , decide whether(X, Y ) ∈ Mod

B
A(P ).

Proof. We already established earlier that deciding whetherY /∈ ModA(P ) (condition (1)) can be
done in polynomial time in the size ofP , Y andA. The same is evident for decidingX 6⊆ Y |A∪B

(condition (2)) andY \ TP (Y ) 6⊆ X, in case,X|B = Y |B (condition (5)).
The remaining two conditions defining(X, Y ) ∈ Mod

B
A(P ), that is, (3) and (4), can be checked

for violation as follows. We guessZ ⊂ Y such that eitherZ|A∪B = Y |A∪B, or jointly Z|B = X|B
andZ|A ⊇ X|A. Then, we check whetherZ |= P . Thus, deciding whether(X, Y ) /∈ Mod

B
A(P ),

for given setsX, Y, A, B ⊆ At , is in the class NP. Consequently, deciding whether(X, Y ) ∈
Mod

B
A(P ), for given setsX, Y, A, B ⊆ At , is in the class coNP. 2

With this result in hand,ΠP
2 -membership ofSUPPMIN can be shown by suitably guessing pairs

(X, Y ) in Mod
B
A(P ) andMod

B
A(P ), respectively.

21



Theorem 6.5 The problemSUPPMIN is in ΠP
2 .

Proof. The complementary problem can be decided in non-deterministic polynomial time with an
access to an NP-oracle. Indeed, we note that if(X, Y ) ∈ Mod

B
A(P ), thenY ⊆ At(P )∪A. Thus, if

there exists(X, Y ) that belongs to exactly one ofMod
B
A(P ) andMod

B
A(Q), then there is(X ′, Y ′)

with that property and such thatY ′ ⊆ At(P ∪ Q) ∪ A. Moreover, ifMod
B
A(P ) = Mod

B
A(Q) and

there is(X, Y ) ∈ Mod
B
A(P ) such thatTP (Y )|B 6= TQ(Y )|B, then there is(X ′, Y ′) ∈ Mod

B
A(P )

such thatY ′ ⊆ At(P ∪ Q) ∪ A andTP (Y ′)|B 6= TQ(Y ′)|B. Thus, to decide the complemen-
tary problem, it suffices to guess setsX, Y ⊆ At(P ∪ Q) ∪ A and check that(X, Y ) is in ex-
actly one ofMod

B
A(P ) and inMod

B
A(Q), or that(X, Y ) is in bothMod

B
A(P ) andMod

B
A(Q), and

TP (Y )|B 6= TQ(Y )|B. By Lemma 6.4, the tests for the membership inMod
B
A(P ) andMod

B
A(Q)

can be accomplished by an NP-oracle and all other tasks are evidently in the class P. 2

We show the matching lower bound for the more specialized problemSUPPMINA
B.

Theorem 6.6 The problemSUPPMINA
B is ΠP

2 -hard, for every finiteA, B ⊆ At .

Proof. Let ∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula overX ∪ Y . We can assume that
(A ∪ B) ∩ X = ∅ (if not, variables inX can be renamed). Next, we can assume thatA, B ⊆ Y .
Indeed,ϕ+ obtained by expandingϕ with clausesz ∨ ¬z, for eachz ∈ A ∪ B, has the property
that∀Y ∃Xϕ is true if and only if∀Y +∃Xϕ+ is true, whereY + = Y ∪ A ∪ B.

We will construct programsP (ϕ) andQ(ϕ) so that∀Y ∃Xϕ is true if and only ifP (ϕ) and
Q(ϕ) are suppmin-equivalent relative toHBn(A, B). Since the problem to decide whether a given
QBF∀Y ∃Xϕ is true isΠP

2 -complete, the assertion will follow.
We use priming and̂c as discussed above and define the following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← z, z′ | z ∈ X ∪ Y } ∪

{← ĉ | c is a clause inϕ}.

To simplify notation, from now on we writeP for P (ϕ) andQ for Q(ϕ). We observe thatAt(P ) =
At(Q) = W , whereW = X ∪X ′ ∪ Y ∪ Y ′.

One can check that the models ofQ contained inW are sets

I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, (1)

whereJ ⊆ X, I ⊆ Y andI ∪ J |= ϕ. Each model ofQ is also a model ofP butP has additional
models contained inW . They are of the form:

I ∪ (Y \ I)′ ∪X ∪X ′, (2)
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for eachI ⊆ Y . Clearly, for each modelM of Q such thatM ⊆ W , TQ(M) = M . Similarly, for
each modelM of P such thatM ⊆W , TP (M) = M .

From these comments, it follows that for every modelM of Q (resp.P ), TQ(M) = M ∩W
(resp.TP (M) = M ∩W ). SinceB ⊆W , for every modelM of bothP andQ, TQ(M)|B = M ∩
W ∩B = TP (M)|B. Thus,P andQ are suppmin-equivalent if and only ifMod

B
A(P ) = Mod

B
A(Q)

(indeed, we recall that if(N, M) ∈ Mod
B
A(R) thenM is a model ofR).

Let us assume that∀Y ∃Xϕ is false. Hence, there exists an assignmentI ⊆ Y to atomsY
such that for everyJ ⊆ X, I ∪ J 6|= ϕ. Let N = I ∪ (Y \ I)′ ∪ X ∪ X ′. We will show that
(N |A∪B, N) ∈ Mod

B
A(P ).

SinceN is a supported model ofP , N ∈ ModA(P ). The requirement (2) for(N |A∪B, N) ∈
Mod

B
A(P ) is evident. The requirement (5) holds, sinceN \ TP (N) = ∅. By the property of

I, N is a minimal model ofP . Thus, the requirements (3) and (4) hold, too. It follows that
(N |A∪B, N) ∈ Mod

B
A(P ), as claimed. SinceN is not a model ofQ, (N |A∪B, N) /∈ Mod

B
A(Q).

Let us assume that∀Y ∃Xϕ is true. First, we observe thatMod
B
A(Q) ⊆ Mod

B
A(P ). Indeed, let

(M, N) ∈ Mod
B
A(Q). It follows thatN is a model ofQ and, consequently, ofP . From our earlier

comments, it follows thatTQ(N) = TP (N). SinceN \ TQ(N) ⊆ A, N \ TP (N) ⊆ A. Thus,N ∈
ModA(P ). Moreover, ifM |B = N |B thenN \ TQ(N) ⊆ M and, consequently,N \ TP (N) ⊆M .
Thus, the requirement (5) for(M, N) ∈ Mod

B
A(P ) holds. The conditionM ⊆ N |A∪B is evident

(it holds as(M, N) ∈ Mod
B
A(Q)). SinceN is a model ofQ, N = N ′ ∪ V , whereN ′ is of the

form (1) andV ⊆ At \ W . Thus, every modelZ ⊂ N of P is also a model ofQ. It implies
that the requirements (3) and (4) for(M, N) ∈ Mod

B
A(P ) hold. Hence,(M, N) ∈ Mod

B
A(P ) and,

consequently,Mod
B
A(Q) ⊆ Mod

B
A(P ).

We will now use the assumption that∀Y ∃Xϕ is true to prove the converse inclusion. To this
end, let us consider(M, N) ∈ Mod

B
A(P ). If N = N ′ ∪ V , whereN ′ is of the form (1) and

V ⊆ At \W , then arguing as above, one can show that(M, N) ∈ Mod
B
A(Q). Therefore, let us

assume thatN = N ′ ∪ V , whereN ′ is of the form (2) andV ⊆ At \W . More specifically, let
N ′ = I ∪ (Y \ I)′ ∪ X ∪ X ′. By our assumption, there isJ ⊆ X such thatI ∪ J |= ϕ. That is,
Z = I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′ is a model ofP . Clearly,Z ⊂ N . Moreover, sinceA, B ⊆ Y ,
it follows thatZ|A∪B = N |A∪B. Since(M, N) ∈ Mod

B
A(P ), the requirement (3) implies thatZ is

not a model ofP , a contradiction. Hence, the latter case is impossible andMod
B
A(P ) ⊆ Mod

B
A(Q)

follows.
We proved that∀Y ∃Xϕ is true if and only ifMod

B
A(P ) = Mod

B
A(Q). This completes the proof

of the assertion. 2

Putting together Theorems 6.5 and 6.6 yields the following corollary.

Theorem 6.7 The following problems areΠP
2 -complete:

1. SUPPMIN,

2. SUPPMINB, SUPPMINA, SUPPMINB
A, for every finiteA, B ⊆ At .

Similarly as for supp-equivalence, having additional information that setsMod
B
A(P ) and

Mod
B
A(Q) coincide does not make the problem of deciding suppmin-equivalence easier.
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Theorem 6.8 Let A, B ⊆ At be finite and such thatA ∩ B 6= ∅. The following problem isΠP
2 -

complete: given normal programsP , Q such thatMod
B
A(P ) = Mod

B
A(Q), decide whetherP and

Q are suppmin-equivalent relative toHBn(A, B).

Proof. The problem reduces to the one considered in Theorem 6.5. Thus, it belongs toΠP
2 . To

proveΠP
2 -hardness we proceed as follows. Let∀Y ∃Xϕ be a QBF, whereϕ is a CNF overX ∪ Y .

We can assume that(A∪B)∩ (X ∪ Y ) = ∅ (as we can always rename variables inϕ). Let us also
choose and fix an elementg ∈ A ∩ B.

We use priming and̂c as before, and select an atomx0 ∈ X. We define the following programs
P (ϕ) andQ(ϕ):

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ} ∪

{← not g; g ← x0, not x′
0; g ← x′

0, not x0};

Q(ϕ) = P (ϕ) ∪ {g ← x0, x
′
0};

To simplify notation, from now on we writeP for P (ϕ) andQ for Q(ϕ). We setW = X ∪X ′ ∪
Y ∪ Y ′ ∪ {g}.

Clearly, every model ofP containsg. It follows that P andQ have the same models. To
describe them, we first observe that every model ofP (andQ) contained inW is of one of the
following two types:

1. {g} ∪ I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, for eachI ⊆ Y andJ ⊆ X such thatI ∪ J |= ϕ;

2. {g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′, for eachI ⊆ Y .

Thus, every model ofP (and ofQ) is of the formN ∪ S, whereN ⊆ W is of type 1 or type 2,
above, andS ⊆ At \W . We refer toN as theW -coreof the modelN ∪ S. We refer to a model
of P (andQ) as type 1 or type 2, according to the form of itsW -core.

Next, we observe that for everyN ⊆ At , TP (N) ⊆ TQ(N) andTQ(N) \ TP (N) ⊆ {g}.
Let N ∈ ModA(P ). It follows that N is a model ofP and so, ofQ, too. We also haveN \
TQ(N) ⊆ N \ TP (N) ⊆ A. It follows thatN ∈ ModA(Q). Conversely, letN ∈ ModA(Q). Then,
N |= Q and so,N |= P , Moreover,N \ TP (N) ⊆ (N \ TQ(N)) ∪ {g} ⊆ A ∪ {g} = A. Thus,
N ∈ ModA(P ). It follows thatModA(P ) = ModA(Q).

Let (M, N) ∈ Mod
B
A(P ). ThenN ∈ ModA(P ) and so,N ∈ ModA(Q). We also have

M ⊆ N |A∪B. Thus, the conditions (1) and (2) required for(M, N) ∈ Mod
B
A(Q) hold. The

conditions (3) and (4) for(M, N) ∈ Mod
B
A(Q) hold as they hold forP , andP andQ have the same

models. Finally, the condition (5) for(M, N) ∈ Mod
B
A(Q) holds, too, asN \TQ(N) ⊆ N \TP (N).

Thus,Mod
B
A(P ) ⊆ Mod

B
A(Q).

Conversely, let(M, N) ∈ Mod
B
A(Q). Reasoning as above, we show that the conditions (1)-(4)

for (M, N) ∈ Mod
B
A(P ) hold. To prove the condition (5), let us assume thatN |B = M |B. Since
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N ∈ ModA(Q), N is a model ofQ, and thusg ∈ N . Moreover, sinceg ∈ B, g ∈ M as well.
We haveN \ TQ(N) ⊆ M . Thus,N \ TP (N) ⊆ M follows from our previous observations.
Consequently, the condition (5) for(M, N) ∈ Mod

B
A(P ) holds, and the inclusionMod

B
A(Q) ⊆

Mod
B
A(P ) follows.

SinceMod
B
A(P ) = Mod

B
A(Q), P andQ form a valid instance to the problem we are consider-

ing. We will show that∀Y ∃Xϕ is true if and only ifP andQ are suppmin-equivalent relative to
HBn(A, B).

Let us assume that∀Y ∃Xϕ is false. Then, there isI ⊆ Y such that for everyJ ⊆ X,
I ∪ J 6|= ϕ. Let N = {g} ∪ I ∪ (Y \ I)′ ∪ X ∪ X ′. We have thatN |= Q, andTQ(N) = N .
Thus,N \ TQ(N) = ∅ ⊆ A and, consequently,N ∈ ModA(Q). Let M = N |A∪B. By the
definition,M ⊆ N |A∪B. Thus, the conditions (1) and (2) for(M, N) ∈ Mod

B
A(Q) hold. Next, by

the property ofI, N is a minimal model ofQ. It follows that(M, N) satisfies the conditions (3)
and (4) for(M, N) ∈ Mod

B
A(Q). Finally, we haveN \ TQ(N) = ∅ ⊆ M . Thus, the condition (5)

for (M, N) ∈ Mod
B
A(Q) holds and so,(M, N) ∈ Mod

B
A(Q). We observe thatTP (N) = N \ {g}

andTQ(N) = N . Sinceg ∈ B andg ∈ N , , TP (N)|B 6= TQ(N)|B follows. Hence, by Theorem
4.3 (we recall that(M, N) ∈ Mod

B
A(Q) and so,(M, N) ∈ Mod

B
A(p)), P andQ are not suppmin-

equivalent relativeHBn(A, B).
Next, let us assume that∀Y ∃Xϕ is true. Let(M, N) ∈ Mod

B
A(P ). Let us assume thatN is of

the type 2. Let{g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′, whereI ⊆ Y , be theW -core ofN . Since∀Y ∃Xϕ is
true, there isJ ⊆ X such thatI∪J |= ϕ. We defineK = {g}∪I ∪(Y \I)′∪J ∪(Y \J)′. Clearly,
K |= P . We haveK ⊂ N andK|A∪B = {g} = N |A∪B (we recall that(A ∪B) ∩ (W \ {g} = ∅).
Thus, by the condition (3) for(M, N) ∈ Mod

B
A(P ), K 6|= P , a contradiction.

It follows thatN is of type 1. Consequently,TP (N) = TQ(N) and so,TP (N)|B = TQ(N)|B.
By Theorem 4.3,P andQ are suppmin-equivalent relative toHBn(A, B). 2

This theorem cannot be extended to a wider class of finite setsA andB. Let A ∩ B = ∅
andP , Q two normal programs such thatMod

B
A(P ) = Mod

B
A(Q). Let (X, Y ) ∈ Mod

B
A(P ) and

b ∈ TP (Y )|B. Thenb ∈ Y (asTP (Y ) ⊆ Y ) andb /∈ A (as b ∈ B andA ∩ B = ∅). Since
Y ∈ ModA(Q), Y \ TQ(Y ) ⊆ A. It follows that b ∈ TQ(Y ) and, asb ∈ B, b ∈ TQ(Y )|B.
Thus,TP (Y )|B ⊆ TQ(Y )|B and, by symmetry,TP (Y )|B = TQ(Y )|B. Consequently,P andQ are
suppmin-equivalent.

7 Discussion

In this section, we discuss relations between the semanticsof supported models and stable models
in the context of hyperequivalence. We start with a comparison of the characterizations for the most
important cases, strong and uniform equivalence. We then move on to highlight some interesting
differences in the complexity.

First, let us consider characterizations of the notion of strong equivalence, i.e., hyperequiva-
lence relative to the class of all programs,HBd(At ,At). To avoid references tosh(P ) andsh(Q),
we limit our discussion to the case whenP andQ are normal. According to Corollary 3.4, normal
programsP andQ are supp-equivalent in this sense if and only if
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(1) P andQ have the same models, and for every modelY of P , TP (Y ) = TQ(Y ).

We recall that in this case suppmin-equivalence has the samecharacterization (cf. Corollary 4.5).
Let us thus turn to stable equivalence relative toHB(At ,At). As shown in [29], the notion can
be characterized in terms of SE-models, which are defined as follows. A pair of interpretations
(X, Y ) with X ⊆ Y is an SE-model of a programP if Y |= P andX |= P Y . Two programs are
equivalent relative toHBn(At ,At) under the stable-model semantics if and only if they have the
same SE-models. A simple reformulation yields thatP andQ are strongly equivalent in the stable
models setting if and only if

(2) P andQ have the same models, and for every modelY of P , Mod(P [Y ]) = Mod(Q[Y ]),

whereP [Y ] = P Y ∪ {← z | z ∈ At \ Y }, andP Y = {hd(r)← bd
+(r) | r ∈ P, Y |= bd

−(r)} is
the reduct ofP with respect toY . Despite differences, the basic intuition behind strong equivalence
under supported- and stable-model semantics is quite similar for both settings. First, one checks
whether the candidatesY (i.e., interpretations that might become a supported/stable model given
an extension of the respective program) are the same for the two programs under consideration.
Then, one checks whether any such extension has the same effect on both programs. In the case
of the supported-model semantics, this is exactly the case if TP (Y ) = TQ(Y ), while in the case of
the stable-model semantics, the models of the reduct have tocoincide.

Next, we will compare characterizations of uniform equivalence under supported minimal and
stable models (we recall that, by Theorem 3.3, in case of supported models, strong and uni-
form equivalence coincide). Our characterization of suppmin-equivalence uses the definition of
Mod

B
A(P ) as given in Section 4. This definition simplifies for uniform equivalence (i.e., forA = At

andB = ∅) as follows:(X, Y ) ∈ Mod
∅
At(P ) if and only if

1. Y |= P

2. X ⊆ Y

3. for eachZ with X ⊆ Z ⊂ Y , Z 6|= P

4. Y \ TP (Y ) ⊆ X.

By Corollary 4.4, uniform suppmin-equivalence between programsP andQ holds if and only if
Mod

∅
At

(P ) = Mod
∅
At

(Q). To characterize uniform equivalence for the case of stablemodels, [7]
introduced UE-models as special SE-models. A pair(X, Y ) is an UE-model ofP , if

1. Y |= P

2. X ⊆ Y

3. for eachZ with X ⊂ Z ⊂ Y , Z 6|= P Y

4. X |= P Y .
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Hence, in other words, UE-models ofP are all SE-models ofP of the form(Y, Y ) plus SE-models
(X, Y ) of P , whereX is maximal among the proper subsets ofY , which can appear withY in an
SE-model. Finite programsP andQ are uniform equivalent with respect to stable models if and
only if the UE-models ofP andQ coincide [7] (we note that the case of uniform equivalence of
infinite programs has a slightly more elaborate characterization).

We will now compare the two characterizations for finite programs. Again, we observe that
in the suppmin model case,TP (Y ) plays a major role, while in the stable case, this role is taken
over by the reductP Y . However, the remaining parts of the characterization showinteresting
similarities. On the one hand, as already discussed above,Y serves as a candidate to become a
supported/stable model after some program extension. On the other hand, we observe that both
characterizations depend on a very similar set of countermodels (either of the the program itself,
or of the reductP Y ) which are subsets ofY . For infinite programs, direct comparison of uniform
equivalence under the two semantics gets harder since, as wenoted, the UE-model characterization
of uniform equivalence for stable-model semantics does nothold any more (see [7] for details on
this issue).

We now turn to the complexity results, where some interesting differences can be observed
(the complexity results for the stable model semantics we discuss below are from [7, 31]): First,
deciding hyperequivalence with respect to supported models is coNP-complete, no matter how the
contextHB(A, B) is specified, as shown in Section 5. The same complexity classcaptures decid-
ing hyperequivalence under stable models,as long as we restrict to normal programs. However,
for disjunctive logic programs, deciding hyperequivalence in the stable-semantics setting is more
complex for most instantiations ofHB(A, B) (one exception is the case of strong equivalence,
i.e., the caseA = B = At , which remains coNP-complete). On the other hand, for supported
models, disjunctions do not play a major role, and thus deciding hyperequivalence with respect to
supported models remains in coNP even for disjunctive programs.

Changing the semantics to suppmin models has a more substantial effect, as we have shown in
Section 6. Indeed, the complexity of deciding hyperequivalence with respect to suppmin models
goes up toΠP

2 -completeness (already for normal programs). A notable exception is the case when
at least one ofA andB consists of all atoms, for which the corresponding problemsof deciding
hyperequivalence remain in coNP. Interestingly, this is not necessarily so in the stable-semantics
world. As mentioned above, this holds for strong equivalence (A = B = At), but uniform
equivalence (A = At , B = ∅) with respect to stable models remainsΠP

2 -complete for disjunctive
programs, while uniform suppmin-equivalence, as we noted,drops back to coNP.

Table 1 highlights these results in terms of completeness results, comparing the case of normal
and disjunctive programs with respect to the different semantics and different instantiation of the
context class, including strong-, uniform-, and the general case of hyperequivalence.

8 Conclusions

In this paper we extended the concept of hyperequivalence totwo other major semantics of logic
programs: the supported-model semantics and the supportedminimal model semantics. We char-
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normal / disjunctive HB(At ,At) HB(At , ∅) HB(A, B)
supp coNP/coNP coNP/coNP coNP/coNP

suppmin coNP/coNP coNP/coNP ΠP
2 /ΠP

2

stable coNP/coNP coNP/ΠP
2 coNP/ΠP

2

Table 1: Complexity of hyperequivalence for different semantics.

acterized these concepts of hyperequivalence and derived several complexity results.
Our characterizations were mainly based on the (partial) one-step provability operatorTP [30]

and thus, unlike in the case of stable-model semantics, did not require any references to the reduct.
However, some similarities to the case of the stable-model semantics appeared for more com-
plex versions of hyperequivalence we studied, namely relativized supp- and suppmin-equivalence,
which required additional concepts such as setsModA(P ) andMod

B
A(P ).

As concerns the complexity, the picture is uniform in the case of hyperequivalence with respect
to supported models — problems that arise naturally turn outto be coNP-complete. The situation
is different for hyperequivalence with respect to suppmin models. When at least one of the setsA
andB consists of all atoms, the corresponding problems of deciding hyperequivalence are coNP-
complete. As soon as this is not the case, the complexity goesup and the decision problems become
ΠP

2 -complete. The results we presented demonstrate that with problems in which the departure
from A = At andB = At is major:A andB are required to be finite (either as a parameter of the
problem, or a part of the input). However, in some cases a muchless drastic change has the same
effect on the complexity. For instance, one can show that forevery finiteA, B ⊆ At such that
A 6= ∅, the following problem isΠP

2 -complete: given normal programsP andQ, decide whether
P andQ are suppmin-equivalent relative toHBn(At \A, B). Thus, even if just one atom fromAt

is forbidden from appearing in heads of rules in context programs, the complexity jumps one level
up. A detailed analysis of this behavior is the subject of an ongoing work.

While to the best of our knowledge, this is the first paper concerning hyperequivalence for sup-
ported (minimal) semantics, hyperequivalence between programs with respect to other semantics
have been studied extensively. The concept of uniform equivalence appeared first in the area of
databases in the setting of DATALOG. In that setting queriesare (non-ground) programs. Uniform
equivalence of programs was introduced by [26], as a decidable approximation to query equiva-
lence, and thus as a tool for query optimization. Several other equivalence notions in that context
were studied in [23].

In the area of logic programming with the stable-model semantics, the need for stronger (than
ordinary) equivalence was already recognized in [2, 13, 20], before [19] coined the name of strong
equivalence for “equivalence for substitution.” In particular, [2, 20] defined local rule transfor-
mations which retained the semantics of entire program and thus provided first explicit results in
this area. Many successor papers of [19] then dealt with characterizations for strong equivalence
[21, 29, 5], studied other forms of equivalence [14, 9, 25, 24, 31] or were concerned with programs
transformations [7, 6, 22, 32].

We already addressed different realizations for hyperequivalence in this work. Future work thus
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is twofold. On the one hand, since our characterizations andtechniques behind proofs are alge-
braic, generalizations to the language of partial operators on boolean algebras (cf. [28] for algebraic
generalizations of hyperequivalence with respect to stable models) are of interest. Thus, it may be
possible to extend the results on supp- and suppmin-equivalence to other nonmonotonic logics.
One direction is to study hyperequivalence in autoepistemic logic with respect to expansions and
moderately grounded expansions. Indeed, autoepistemic logic with the semantics of (moderately
grounded) expansions, when restricted to theories in whichthe modal operator is applied to atoms,
can be regarded as a modal variant of logic programming with the semantics of supported (mini-
mal) models. The other direction concerns program simplification, for which our characterizations
serve as a natural starting point. Moreover, in combinationwith the aforementioned extensions to
autoepistemic logic, such techniques might also help to study new normal-form translations within
that logic. As well, new investigations on the frontier between logic programs under supported
models and nonmonotonic modal theories might be of interest.
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