DBAI
[rdd

TECHNICAL

REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universitat Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

=

EENENACIALED

DERCLICRREELE

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Hyperequivalence of Logic Programs
with Respect to Supported Models

DBAI-TR-2008-58

Mirostaw Truszczyhski Stefan Woltran

DBAI TECHNICAL REPORT
2008

TU

TECHNISCHE UNIVERSITAT WIEN




DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2008-58, 2008

Hyperequivalence of Logic Programs with Respect to
Supported Models

Mirostaw Truszczyhskit Stefan Woltran?

Abstract. Recent research in nonmonotonic logic programming hassigton program

equivalence relevant for program optimization and modpfagramming. So far, most re-
sults concern the stable-model semantics. However, o#meastics for logic programs are
also of interest, especially the semantics of supportedetsadhich, when properly gener-
alized, is closely related to the autoepistemic logic of k&odn this paper, we consider a
framework of equivalence notions for logic programs unterdupported (minimal) model-
semantics and provide characterizations for this framkwomodel-theoretic terms. We
use these characterizations to derive complexity resoltearning testing hyperequiva-
lence of logic programs with respect to supported (minimadpels.

IDepartment of Computer Science, University of Kentuckyihgton, KY 40506-0046, USA. E-mail:
mirek@cs.uky.edu

2|nstitute for Information Systems 184/2, Technische Ursitat Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: woltran@dbai.tuwien.ac.at

Acknowledgements The authors acknowledge partial support by the NSF gr&0825063, the
KSEF grant KSEF-1036-RDE-008, and by the Austrian SciencelKFWF) under grant P18019.

This is an extended version of a paper published in the Pdaoug® of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-08).

Copyright(C) 2008 by the authors



1 Introduction

The problem of the equivalence of logic programs with respethe stable-model semantics has
received substantial attention in the answer-set progtiaginesearch community in the past sev-
eral years [19, 21, 29, 5, 14,9, 11, 7, 25, 22, 24, 31, 32, 1I2¢. groblem can be stated as follows.
Given a clasg of logic programs (we will refer to them @®ntext¥, we say that programB and

(@ areequivalent relative t@ if for every programk € C, P U R and@ U R have the samstable
models Clearly, for every clas§, the equivalence relative tbimplies the standard nonmonotonic
equivalence of programs, where two prografand( arenonmonotonically equivalerit they
have the same stable models. Therefore, we will refer toetsa®nger versions of equivalence
collectively ashyperequivalence

Understanding hyperequivalence is fundamental for theldement of modular answer-set
programs and knowledge bases. The problem is non-triveataithe nonmonotonic nature of the
stable-model semantics. $fis a module within a larger prograi, replacingS with S’ results in
the progran?” = (7'\ S) U S’, which must have the same meaning (the same stable mod#ls) as
The nonmonotonic equivalence §fand.S’ does not guarantee it. The hyperequivalencg ahd
S’ relative to the class of all programs does. However, thedatiay be a too restrictive approach
in certain application scenarios, in particular if propestof possible realizations fd@r are known
in advance.

Thus, several interesting notions of hyperequivalencgosing restrictions on the context
classC, have been studied. dfis unrestricted, that is, any program is a possible contextbtain
strongequivalence [19]. I€ is the collection of all sets of facts, we obtainiformequivalence [7].
Another direction is to restrict the alphabet over whichteats are given. The resulting notions of
hyperequivalence are calleglativized(with respect to the context alphabet), and can be combined
with strong and uniform equivalence [7]. Even more gengrale can specify different alphabets
for bodies and heads of rules in contexts. This gives risect;mamon view on strong and uniform
equivalence [31]. A yet different approach to hyperequmak is to compare only some dedicated
projected output atoms rather than entire stable modeR5[R4].

All those results concern the stable-model semahtiesthis paper, we address the problem
of the hyperequivalence of programs with respect to therattegor semantics, that of supported
models [4]. We define several concepts of hyperequivaledemgending on the class of programs
allowed as contexts. We obtain characterizations of hypgvalence with respect to supported
models in terms of semantic objects, similar to SE-mode® {2 UE-models [7], that one can
attribute to programs.

Since the minimality property is fundamental from the pertjve of knowledge representa-
tion, we also consider in the paper the semantics of supportelels that are minimal (as models).
While it seems to have received little attention in the afdagic programming, it has been studied
extensively in a more general setting of modal nonmonottogics, first under the name of the
semantics ofmoderately grounded expansidias autoepistemic logic [16, 17] and then, under the
name ofgroundS-expansions, for an arbitrary nonmonotonic modal Iagifd5, 27]. The com-
plexity of reasoning with moderately grounded expansios @sablished in [8] to be complete for

There is little work on other semantics, with [3] being a fid¢zexception.
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classes at the third level of the polynomial hierarchy.

Here, we study this semantics in the form tailored to logiegoamming. By refining tech-
niques we develop for the case of supported models, we dearmecthe concept of hyperequiva-
lence with respect to supported minimal models relativeet@gal classes of contexts.

The characterizations allow us to derive results on the d¢exitg of problems to decide
whether two programs are hyperequivalent with respect ppaded (minimal) models. They
are especially useful in establishing upper bounds whigbically, are easy to derive but in the
context of hyperequivalence are not obvious. Our resuits padetailed picture of the complexity
landscape for relativized hyperequivalence with respestupported (minimal) models.

2 Preliminaries

We fix a countable setit of atoms (possibly infinite). All programs we consider heoasist of
rulesof the form

ap|...lag < by,... by, notcy, ..., notcy,

whereq;, b; andc; are atoms iM¢, ‘|’ stands for the disjunction, ‘,’ stands for the conjunctiand
not is thedefaultnegation. Ifk = 0, the rule is aonstraint If £ < 1, the rule isnormal

For a ruler of the form given above, we call the sfi,, ..., a;} the head of- and denote
it by hd(r). Similarly, we call the conjunction,, ..., b,,, notci,..., notc, the body ofr and
denote it bybd(r). We will also usebd™ (r) = {by,...,bn, } @andbd~(r) = {ci,...,c,}, as well
asbd®(r) = bd™(r) U bd~ (r) to denote the set of all atoms occurring in the body.dfloreover,
for a programp, let hd(P) = |J,.p hd(r), andbd™(P) = J,p bd*(r).

An interpretation)/ C At is amodelof a ruler, written M = r, if whenever)M satisfies every
literal in bd(r), written M = bd(r), we have thatd(r) N M # 0, written M = hd(r).

An interpretationV/ C At is amodelof a programP, written M = P, if M = r for every
r € P. If, in addition, M is a minimal hitting set of hd(r) | » € P and M |= bd(r)}, then) is
asupportednodel of P [2, 13].

Foraruler = ay|...|a; < bd, wherek > 1, ashiftof r is a normal program rule of the form

a; < bd,notay,...,nota;,_1,nota;yq,...,nota,

wherei; = 1,..., k. If r is a constraint, the onlghift of » is r itself. A program consisting of all
shifts of rules in a progran® is theshift of P. We denote it bysh(P). It is evident that a set’
of atoms is a (minimal) model aP if and only if Y is a (minimal) model ofh(P). It is easy to
check that” is a supported model @? if and only if it is a supported model 6f.(P).

Supported models of mormallogic programP have a useful characterization in terms of the
(partial) one-step provability operatdi- [30], defined as follows. Fonl C At, if there is a
constraint- € P such thatV/ = bd(r) (thatis,M [~ r), thenTr(M) is undefined. Otherwise,

Tp(M) = {hd(r) | r € P and M = bd(r)}.



Whenever we usé&p (M) in a relation such as (proper) inclusion, equality or indityjave always
implicitly assume thaf s (M) is defined.

It is well known that) is a model ofP if and only if (M) C M (thatis,Tp is defined for
M and satisfied' (M) C M). Similarly, M is asupportedmodel of P if Tp(M) = M (that is,
Tp is defined forM and satisfied’s (M) = M) [1].

It follows that M is a model of a disjunctive prograrR if and only if T, py (M) C M.
Moreover, M is a supported model @? if and only if T, py (M) = M.

3 Hyperequivalence with respect to supported models

Disjunctive programs® and() aresupp-equivalentelative to a clas€ of disjunctive programs if
foreveryR € C, P U R and@ U R have the same supported models.

Supp-equivalence is a non-trivial concept, different tegnivalence with respect to models,
stable models, and hyperequivalence with respect to stabdkels.

Example 3.1 Let P, = {a < a} andQ; = (. Clearly, P, and@Q; have the same models and the
same stable models. Moreover, for every progl&@mP; U R and (); U R have the same stable
models, that isP; and ), are strongly (and so, also uniformly) equivalent with reste stable
models. However?, and (), have different supported models. Thus, they are not supjwaent
relative toanyclass of programs.

Next, letP, = {a <+ a;a « not a} and@, = {a}. One can check that for every prograi
P,URand@,U R have the same supported models, thaPisand (), are supp-equivalent relative
to anyclass of programs. They are also equivalent with respeclasstcal models. However,
and (), do not have the same stable models and so, they are not egpiiwveith respect to stable
models nor hyperequivalent with respect to stable modésive toanyclass of programs.

Finally, let P; = {«— b} U P, and@3; = Q2. Then,P; andQ; are neither hyperequivalent with
respect to stable models relative to any class of program®quoivalent with respect to classical
models. StillP; and(@5; have the same supported models, and for any progkasuch thab does
not appear in rule heads ak, P U R and ;3 U R have the same supported models, thats,
and (@5 are supp-equivalent with respect to this class of programeswill verify this claim later).
As we will see, supp-equivalence with respedlt@rograms implies equivalence with respect to
models and so, it is not a coincidence that in the last examplased a restricted class of contexts.
To see that’; and ()3 are not supp-equivalence with respect to the class of all programs,can
considerR = {b}. Then{a, b} is a supported model @; U R, but not of P; U R.

We observe that supp-equivalence relative’tonplies supp-equivalence relative to agy
such thatC’ C C (in particular, forC’ = {0}, this implies standard equivalence with respect to
supported models), but the converse is not true in genertiissated by program$ and(Q)s.

In this section we characterize supp-equivalence relaiciasses of programs defined in terms
of atoms that can appear in the heads and in the bodies of ig¢sl, B C At. By HB(A, B)
we denote the class of all disjunctive prografhsuch thatid(P) C A (atoms in the heads of rules
in P must be fromA) andbd*(P) C B (atoms in the bodies of rules iR must be fromB). We
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denote byHB" (A, B) the class of all normal programs #3%( A, B) (possibly with constraints).
These classes of programs were considered in the conteypefdqguivalence of programs with
respect to the stable-model semantics in [31].

We start with an observation implied by the fact that modeld supported models are pre-
served under shifting.

Theorem 3.2 Let P and (Q be disjunctive logic programs, and let, B C At¢. The following
conditions are equivalent

1. P and( are supp-equivalent relative 3% (A, B)
2. P and@ are supp-equivalent relative 5" (A, B)
3. sh(P) andsh(()) are supp-equivalent relative 5" (A, B).

Proof. The assertion follows directly from the fact that models angdported models of programs
are preserved under shifting. O

Theorem 3.2 allows us to focus on normal programs and nororgegts and, then, obtain
characterizations of the general disjunctive case as leoes. It is important, as in the normal
program case, we can take advantage of the one-step piliovapgrator.

Given a normal progran?, and a sed C At, we define

ModA(P)={Y C At| Y = PandY \ Tp(Y) C A}.

An interpretationY” € Mod4(P) can be understood ascandidatefor becoming a supported
model of an extensio® U R, whereR € HB"(A, B). Indeed, such a candidate has to be classical
model of P (otherwise it cannot be a supported model, no matter Rag/extended). Moreover,
the elements fromY” \ 7p(Y") have to be contained id. Otherwise programs fro5" (A, B)
cannot close this gap.

This leads us to the following characterization of the seppivalence relative t&{5" (A, B).

Theorem 3.3 Let P and () be normal programsA C At, andC a class of programs such that
HB"(A,0) C C C HB"(A, At). Then,P and( are supp-equivalent relative © if and only if
Mod 4(P) = Mod 4(Q) and for everyy” € Mod 4(P), Tp(Y) = Tp(Y).

Proof. (=) SinceHB" (A, D) C C, P and(Q are supp-equivalent relative 105" (A, 0).
LetY € Mod,(P). ItfollowsthatY = PandY\Tp(Y) C A. Letus considePU(Y\Tp(Y))
Then

Trootevn(Y) =Tp(Y) U (Y \ Tp(Y)).

SinceY |= P, Tp(Y) C Y. HenceTpyny\rpn(v))(Y) = Y. It follows thatY” is a supported model
of PU(Y \Tp(Y)). SinceY \ Tp(Y) C A, Y\ Tp(Y) € HB"(A, D). Thus,Y is a supported
model ofQ U (Y \ Tp(Y')) and, consequently,

Y = Touapony (V) = To(Y) U (Y \ Tp(Y)).
5



It follows that 7 (Y) C Y andTp(Y) C Tp(Y). Thus,Y \ Tp(Y) C Y\ Tp(Y) C A and
s0,Y € Mod4(Q). The converse inclusion follows by the symmetry argument sm we have
MOdA(P) = MOdA(Q)

Next, letY € Mod4(P) (and soY € Mod (@), too). We have seen thdi-(Y) C Tph(Y).
By the symmetry/,(Y) C Tp(Y). Thus,Tp(Y) = Tp(Y).
(<) Let R be a logic program fron€ andY be a supported model d? U R. It follows that
Y = Tpup(Y) = Tp(Y) U Tx(Y). Thus,Tp(Y) C Y (thatis,Y = P)andY \ Tp(Y) C A
(becausend(R) C A). We obtainY € Moda(P) and, by the assumptiofly(Y) = Tp(Y).
HenceY =To(Y)UTr(Y) = Tour(Y). Thatis,Y is a supported model @ U R. O

We note that our characterization for supp-equivalencativel to H5" (A, B) does not de-
pend on the body-alphabdt® of the context. Thus, Theorem 3.3 applies, in particular, to
C = HB"(At, () andC = HB"(At, At). Consequently, it characterizes strong and uniform supp-
equivalence of normal programs. It also has several coretl@oncerned with special cases for
The first one deals with the case whén= At, in which the characterizing condition simplifies.

Corollary 3.4 Let P and @ be normal programs and’ a class of programs such that
HB"(At,0) C C C HB"(At, At). Then,P and( are supp-equivalent relative ©if and only if
P and( have the same models and for every madef P, Tp(Y) = T (Y).

Proof. WhenA = At, Mod 4(P) andMod () consist of models oP and@), respectively. Thus,
the result follows directly from Theorem 3.3. O

At the other extreme, we have the case= (). In that case, all context programs consist of
constraints (rules with the empty head) only. For the case (), we have the following result.

Corollary 3.5 Let P and@ be normal programs and a class of programs such thatB3" ((), ) C
C C HB"(0, At). The following conditions are equivalent:

1. P and( are supp-equivalent relative
2. P and(@ have the same supported models
3. Mody(P) = Mody(Q).

Proof. [(1)implies (2)]: Since) € HB" (D, )), the assertion is obvious.

[(2) implies (3)]: LetY € Mody(P). Then,Y |= P, thatis,7p(Y) C Y, andY \ Tp(Y) = 0.
Thus,Y = Tp(Y) and, consequently,” is a supported model dP. By the assumptiony” is a
supported model of), that isY = T (Y"). It follows thatY € Mody(Q). The converse inclusion
follows by the symmetry argument.

[(3) implies (1)]: LetR € C and letY be a supported model @ U R. ThenY = PUR
andY = Tpur(Y) = Tp(Y) U TR(Y) = Tp(Y) (indeed, ag” = R and every rule ink is a
constraint,7z(Y) = (). ThusY € Mody(P) and so, als@” € Mody(Q). From the latter we
obtainy = T (Y). SinceTg(Y) =0,Y =To(Y)UTr(Y) = Tour(Y), thatis,Y is a supported
model of@ U R. Again, the other implication follows by the symmetry argemh O
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We will now apply our results to some pairs of programs disedsn Example 3.1.

Example 3.6 First, we note that?, and ); have the same models. In particulés} is a model
of both programs. Howevefp, ({a}) = {a} andTy, ({a}) = 0. Thus,Tp, ({a}) # Ty, ({a}) and
so, P, and(@, are not supp-equivalent relative #85" (At, () (by Corollary 3.4).

On the other handP, and (), have the same models and for ev&ryin particular, for every
modelY of P, andQ-), Tp,(Y) = {a} = Ty, (Y). Thus,P, and (), are supp-equivalent relative
to HB" (At, At).

Finally, Y € Mod a0y (P3) ifand only ifY = Py andY \ Tp,(Y) C At )\ {b}. Clearly,
if Y = P, thenTp,(Y) is defined and ¢ Y. Thus,Y \ Tp(Y) C At \ {b}. It follows that
Y € Mod gy (Ps) if and only ifY = Ps, that is, if and only ifa € Y andb ¢ Y. One can
check that this condition also characterizésc Mod ay 15y (Q3). Indeed,Y |= Qs if and only if
acYandY \ Tg,(Y) C At \ {b} ifand only ifb ¢ Y. Thus,Mod 44 53 (P3) = Mod ap 11 (Q3).
Moreover, ifY € Mod ap 5y (Ps) (e € Y andb & V), Tp,(Y) = {a} = Ty, (Y'). Consequently’;
and@; are supp-equivalent relative 5" (At \ {b}, At).

The last corollary concerns the case of disjunctive program

Corollary 3.7 Let P and(@ be disjunctive programsi C At, andC a class of programs such that
HB"(A,0) C C C HBYA, At). Then,P andQ are supp-equivalent relative @ if and only if
Mod 4(sh(P)) = Mod (sh(Q)) and for everyy” € Mod 4(sh(P)), Tsnp)(Y) = Tn)(Y).

Proof. The result follows from Theorems 3.3 and 3.2. 0

Corollary 3.7 applies, in particular, to the cases wlikis any of the following classes:
HBY(A, At), HB" (A, At), HBY(A, (), andHB"(A, D). It also implies an observation, already
noted above, that the alphabet allowed for the bodies oezbptrograms plays no role in the case
of supp-equivalence, unlike in the case of hyperequivaemith respect to stable models [31].
In particular, for the semantics of supported models, themo difference between strong and
uniform equivalence (even for disjunctive programs).

Finally, we note that Theorem 3.3 also implies a charaa#&dr of uniform hyperequivalence
with respect to stable models foght logic programs [10], as for such programs stable and sup-
ported models coincide (we refer to [18] for a more detailegwssion of tight disjunctive logic
programs and relevant results).

Corollary 3.8 Let P and @) be tight disjunctive programsd C At, andC a class of programs
such thatiB"(A, ) C C C HB(A, ). Then,P andQ are uniformly equivalent (with respect
to the stable-model semantics) relativectdf and only if Mod 4(sh(P)) = Mod 4(sh(Q)) and for
everyyY e MOdA<Sh<P)), Tsh(P) (Y) = Tsh(Q)<Y).

Proof. Let R € HB%(A, ). SinceR consists of rules with the empty body, bd?u R andQ U R
are tight. Thus, they have the same stable models if and btihey have the same supported
models. The assertion follows now from Corollary 3.7. O

The characterization given by Corollary 3.8 provides agraktive to the characterization given
in[12].



4 Hyperequivalence with respect to supported minimal moded

A set M of atoms is asupported minimal modésuppminmodel, for short) of a logic program®
if it is a supported model o and a minimal model of.

Disjunctive programg’ and() aresuppmin-equivalerrelative to a clas€ of disjunctive pro-
grams if for everyk € C, PU R and@ U R have the same suppmin models. Suppmin-equivalence
is a different concept than other types of equivalence wsidened.

Example 4.1 The programs?, and (), from Example 3.1 are suppmin-equivalent with respect to
any class of programs, as for every progrdtnprogramspP, U R and(, U R have the same models
and the same supported models. However, as we pointed digredrey are not equivalent with
respect to stable models nor hyperequivalent with resymestable models relative tanyclass of
programs.

ProgramsP, = P, and@Q, = {a < nota} have the same models, stable models, and are
hyperequivalent with respect to stable models relativentarbitrary class of programs. However,
P, and @, are not suppmin-equivalent (they have different suppmidats.

Next, one can show that for every gebf atoms programsP; U U and(@; U U have the same
suppmin models, but the programs themselves have diffemppbrted models. Thu®; and Q)
are suppmin-equivalent relative to the class of all progsaronsisting of atom$H{B" (At, ())) but
they are not supp-equivalent relative to the same class. MéethatP; and (), are notsuppmin-
equivalent relative tG{B" (At, At), as witnessed by the conteXt= {«— not a}.

Finally, Ps = {a < b; b < b; < nota,notb} and@s = {a < b; b «— a; «— nota, not b}
have the same supported models but different suppmin mddels is the only supported model
of P; and(s, and a suppmin model f@p; but not for P5). Thus, the programs are supp-equivalent
relative toHB"((, 0) (which contains the empty program only) but not suppminivedent with
respect to that class.

Our examples distinguishing between supp- and suppmiiv@guce refer to restricted
classes of contexts. As we show later, it is not coincidentale two types of equivalence are
the same if all programs are allowed as contexts.

Arefinement of the method used in the previous section peswactharacterization of suppmin-
equivalence relative to contexts fromi3" (A, B) andHB%(A, B), whereA, B C At. Compared
to supp-equivalence the second alphabBethas now to be taken into consideration!

We start by observing that, as before, it suffices to focuhercase of normal programs.

Theorem 4.2 Let P and (Q be disjunctive programs, and, B C At. The following conditions
are equivalent

1. P andQ are suppmin-equivalent relative f83%(A, B)
2. P and( are suppmin-equivalent relative #653" (A, B)

3. sh(P) andsh(()) are suppmin-equivalent relative 65" (A, B).



Proof. Since models are preserved under shifting, minimal modelpeeserved under shifting,
too. We already noted in the proof of Theorem 3.2 that shyffireserves supported models. Thus,
the result follows. O

To characterize suppmin-equivalence farmal programsP andQ, we defineMod”(P) to
be the set of all pair6X, V') such that

1. Y € Mod (P)

2. X CY\aus

3. foreachZ C Y such thatZ| 4,5 = Y|aup, Z = P

4. foreachZ C Y suchthatZ|pz = X|gandZ|s 2 X|a, Z £ P
5. ifX|p=Y

B thenY \ TP(Y) cC X.

The characterization is much more involved than the one dppsquivalence. While the
intuition for elements inMod 4(P) is the same as before, we now need an additional handle to
ensure that minimality affects the two programs under coimspa in the same way. Loosely
speaking, for eacl” € Mod o(P), we have to keep track of those smaller mod€ls_ Y which
can be “influenced” differently by programs frokd3" (A, B). This is the task of items (2)-(4)
in the definition above. The final condition, informally sk again, states that such smaller
models are of “no danger”, as long as they cannot fill the gaprfakingY supported. The
forthcoming proof makes this intuition more concrete.

Formally, suppmin-equivalence of normal logic prografhand@ depends on set¥/od’ (P)
and Mod% (Q) as follows.

Theorem 4.3 Let A, B C At and let P, ) be normal programs. The following conditions are
equivalent

1. P and( are suppmin-equivalent relative 65" (A, B)
2. Mod%(P) = Mod%5(Q) and for every(X,Y) € Mod5(P), Tp(Y)|s = To(Y)|s

3. Mod%(P) = Mod%(Q) and for every(X,Y) € Mod5(P), Tp(Y) \ (A\ B) = Tp(Y) \
(A\ B).

Proof. [(1) implies (2)]: Let(X,Y) € Mod%(P). By the definition, X C Y |45 and s0,X |z C
Y|p. If X|p=Y|p, we set

R =Y \Tp(Y))lp U X|a\p-
Otherwise, we fix an elemente Y|z \ X|p and define
R={y—t|lye Y\Tp(Y))UY|ap}U{z — nott|ze X|a}.
9



Finally, we set
R=R U{«+notz| v € X|pfU{—u,notz|u,ze€Y|p\ X|a}

We note thatR € HB"(A, B). Indeed, sincéX,Y) € Mod5(P), Y € Mod(P). Thus,
Y\Tp(Y) C A.

It is easy to see that bofti and X satisfy the constraint rules iR. In addition, it is evident
thatY = R'. Thus,Y = R. If X|p = Y|, Y \Tp(Y))|s C Y| C X and, consequently,
X ER.If X|pCYlp thenX R, ast ¢ X. Thus, X = R, as well.

Moreover, for eachZ C Y with Z|p = X|gandZ|4 2 X|4, Z E R holds. Indeed,
each sucty satisfies the constrains &. In addition, if X|z = Y|, thenZ|z = Y|z and so,
Z = (Y \Tp(Y))|s. Also, sinceX|4 C Z|a, Z = X|ap. Thus,Z |= R'. If X|p C Y|, then
Z = R by the fact that ¢ Z (sincet ¢ X|p,t ¢ Z|g and, ag € B,t ¢ Z follows).

Next, we show that” is a supported model dP U R. SinceY € Mod 4(P) (it follows from
the fact that X, Y) € Mod5(P)), Y = P. We already proved that |= R. Thus,Y = P U R,
that iS,TpuR(Y) cY.

To prove the converse inclusion, we consider two casesX |f C Y|g, Tr(Y) = (Y \
TP(Y)) U Y|A\B- Hence)Y C TP(Y) U TR(Y) = TpuR(Y). If X|B =Y|g, we haVéI‘R(Y) =
(Y\Tp(Y))|pUX|an. Lety € Y\ Tp(Y). It follows thaty € X (condition (5) of the definition
of Mod%}(P)) andy € A (by the fact tha’ € Mod(P)). If y ¢ B, theny € X|4 5 and so,
yeTr(Y). Ify € B, theny € (Y \ Tp(Y))|s. Thus,y € Tr(Y) in this case, too. It follows that
if y € Ytheny € Tp(Y)UTx(Y) and consequently, C Tp(Y) U Tr(Y) = Trur(Y).

We will now show that” is a minimal model of? U R. To this end, let us consider C Y such
thatZ = P U R. Itfollows thatZ|z C Y|g. SinceZ = { < notz | = € X|g}, X|p C Z|5.
Thus, sinceZ = {« u,not z | u,z € Y|p \ X|g}, we obtainthatZ|z = Y'|p or Z|z = X|3.

Let us assume thaX'|z = Y|p. SinceZ = R, X|ap C Z. If y € X|anp, theny € X|p
andy € Y|g. Thus,y € Z|. It follows that X |4 C Z and, consequently¥ |, C Z| 4. Moreover,
X|p = Y| implies thatZ|p = X|p. SinceZ = P, by the definition ofMod%(P) (condition
3),Z=Y.

Thus, let us assume that|z C Y|p. First, we consider the cas€z = Y. SinceZ R,
we haveY|4\p C Z (thanks to the ruleg < ¢, y € Y|\, in R). it follows thatY'|,up C Z
and, consequently/ | 4o € Z|aup. On the other hand C Y and s0,Z|aup C Y|aus. Thus,
Y|aus = Z|aus. SinceZ = P, the definition ofMod% (P) impliesY = Z. Next, we consider
the case”Z|p = X|p. We haveX |, C Z (thanks to the rules < nott, x € X|4, in R). Thus, as
before,Z =Y follows.

In each of the possible cas&s,= Z. Thus,Y is a minimal model ofP U R.

Since P and () are suppmin-equivalent relative 85" (A, B) andR € HB"(A,B), Y is a
supported minimal model @ U R. It follows thatY” is a model of@. In particular,7,(Y) C Y.
Moreover, sinc&? € HB"(A, B), andY =Tour(Y) =To(Y)UTR(Y),Y \To(Y) C A. Thus,
Y € Mod 4(Q), that is, the condition (1) fofX,Y) € Mod%(Q) holds. The condition (2) holds
simply becaus¢X,Y) € Mod%(P).

SinceY = RandR € HB"(A, B), for everyZ C Y such thatZ| 45 = Y|aus, Z = R and
s0,Z [~ @ (otherwise, we would hav& = @ U R, contrary to the minimality ot"). If Z C Y,
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Z|lp = X|pandZ|4, O X|4 then, according to our earlier observatiéh,= R. Thus, for the
same reason as befolg,l~ @ holds in this case, too. It follows that the conditions (3)l &) for
(X,Y) € Mod%(Q) hold.

Finally, let us assume thaf|z = Y'|z. We recall thallz(Y) = (Y \ Tp(Y))|p U X|a 5. We
also haveY” = To(Y) U Tg(Y). Lety € Y\ To(Y). Theny € (Y \ Tp(Y))|p ory € X|a\5.
In the first casey € X, by the condition (5) fof X, Y") € Mod%(P). In the second casg,c X
is evident. Thus, the condition (5) f0X,Y) € Mod’(Q) holds, too. ConsequentlyX,Y) €
Mod%(Q) and Mod5 (P) € Mod%5(Q).

We show nextl’»(Y) \ (A\ B) CTp(Y) \ (A\ B). To this end, let us considgre Tp(Y) \
(A\ B). Clearly,y ¢ (A\ B) and it suffices to show that € T;,(Y). SinceY is a supported
model of @ U R, we haveY = T, (Y) UTr(Y). Let us assume that € Tx(Y). It follows that
y € A. Sincey ¢ (A\ B),y € B.

If X‘B = Y|B, thenTR(Y) = (Y \ TP(Y))‘B U X‘A\B- Sincey € B,y ¢ X|A\B- Thus,
y e (Y \Tp(Y))|s, and consequently, ¢ Tp(Y)|s. We recall thayy € B and soy ¢ Tp(Y), a
contradiction. It follows thatX'|z C Y|5. Then, we hav@R(Y) = (Y \ Tp(Y)) U Y|4\ 5. Since
ye B,yeY\Tp(Y),and soy ¢ Tp(Y), a contradiction again. Thug,¢ Tx(Y). It follows
thaty € TH(Y), as needed.

We have shown that/od % (P) € Mod%(Q), andTp(Y)\ (A\ B) C To(Y)\ (A\ B). By the
symmetry argumenty/od’(Q) C Mod”(P) holds, as well asly (Y)\ (A\ B) C Tr(Y)\ (A\ B).
Thus, (2) follows.

[(2) implies (3)]: Lety € Tp(Y)|s. Theny € Bandsoy ¢ A\ B. Sincey € Tp(Y), y €
Tp(Y)\ (A\ B). Itfollows thaty € Tp(Y) \ (A\ B). In particulary € Ty (Y') and, consequently,
y € Tp(Y)| 5. The equalityl’»(Y)| s = T(Y)| s follows by the symmetry argument.

[(3) implies (1)]: LetR be a logic program fromi5" (A, B), and letY” be a supported minimal
model of P U R. Next, letX = Tx(Y) U Y|s. We note that sinc& = R, Tr(Y) C Y. Thus,
X|B = Y|B

We will show that(X,Y) € Mod%(P). SinceY is a suppmin model oP U R, it follows that
YEPY E R, andY = Tp(Y)UTr(Y). We haveR € HB"(A, B). Thus, the latter identity
shows that” \ Tp(Y) C A. SinceY | P, we obtain thal” € Mod 4(P), that is, the condition
(1) for (X,Y) € Mod%(P) holds.

SinceTr(Y) C Y andTr(Y) C A (werecall that?R € HB"(A, B)), Tr(Y) C Y|4 C Y|aus-
Clearly, Y| C Y|aup. Thus,X C Y|aup. This proves that the condition (2) f@X,Y) €
Mod% (P) holds.

We also havdz(Y') C X (by the definition ofX). SinceY' \Tp(Y) C Tr(Y), Y\Tp(Y) C X
follows. Consequently, the condition (5) fK, Y) € Mod% (P) holds, too.

Next, letZ C Y andZ|aup = Y|aus. SinceR € HB"(A,B) andY = R, Z = R. We
have thatt” is a minimal model ofP? U R. Thus,Z [~ P and, consequently, the condition (3) for
(X,Y) € Mod%(P) follows.

Finally, letZ C Y, Z|p = X|pandZ|4 O X|a. SinceX|p =Yg, Z|p = Y|p. We
haveR € HB"(A, B). Thus,Tg(Z) = Tr(Y) € X (the inclusion holds by the definition of).
Moreover,Tr(Y) C Aand soTr(Z) C X|a C Z|4 C Z. ConsequentlyZ = R in this case,
too. As before, we obtain that [~ P. This shows the condition (4) fdiX,Y) € Mod%(P).
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Thus, we have established thaf,Y') € Mod%(P). By the assumption,.X,Y) € Mod5(Q)
and alsdl’s(Y)|p = To(Y)|s. We will now show thatt” = T, (Y) U Tx(Y), that is, thay” is a
supported model of) U R. SinceY € Moda(Q), Y = Q. Hence)Y = Q U R (we recall that
Y ER)yandsoIh(Y)UTR(Y) CY.

To showY C TH(Y) U TR(Y), lety € Y. We recall thatlz(Y') C A. We distinguish three
cases:

() y ¢ A: Since(X,Y) € Mod5(Q), Y € ModA(Q) and so,Y \ To(Y) C A. Thus,
y € To(Y) follows.

(i) y € B: If y € Tr(Y') we are done; otherwise (sinde= Tp(Y) U Tg(Y)), we obtainy €
Tp(Y). Itfollows thaty € Tp(Y)|s. Thus,y € To(Y)|5 and, consequently, € T (Y).

(i) y e A\ B: If y € X, theny € Tr(Y) (we recall thatX = TR(Y) U Y|p); if y ¢ X, then
y ¢ Y \To(Y) (indeed, sincéX,Y) € Mod5(Q)andX|z = Y|z, Y \ To(Y) C X), and
thus,y € To(Y).

It follows thatY = T, (Y') U Tr(Y), that is,Y" is a supported model @ U R.

It remains to show thal” is a minimal model of) U R. LetY’ C Y be a model of) U R.
SinceY’ = Q, (Y'|aus,Y) ¢ Mod5(Q) (it violates condition (4) of the definition a¥/od” (Q)).
By the assumption(Y’|aup,Y) ¢ Mod5(P). Since(X,Y) € Mod%(P), (Y'|aup,Y) satisfies
condition (1) of the definition oModﬁ(P). Moreover,Y’ C Y impliesY’|4aup C Y|aup. Thus,
condition (2) holds, too.

LetY|B = (Y/‘AUB)‘B- Then,Y|B = Y"B. SinceY”’ ’: RandR € HB”(A, B), TR(Y/) cY’
andTg(Y') = Tgr(Y). Thus,Tx(Y) C Y’ and, consequentlyX C Y’. We proved above that
Y\ Tp(Y) € X. Consequently, condition (5) fd”|4u5,Y) € Mod%(P) holds, as well. It
follows that at least one of the conditions (3) and (4) isatetl. That is, there i§ C Y/, such
thatU |= P, and eithelU|4up = Y|aup OrU|p = Y'|p andU|4 2 Y'|4. Since bothY” = R and
Y’ = R, U [= R (we recall here thak € HB"(A, B)). Thus,U = PU R andY is not a minimal
model of P U R, a contradiction. It follows that there is i C Y such that” = Q U R. That
is, Y is a supported minimal model 6 U R. O

We have several corollaries for some special choiced ahd B. The first one concerns the
case wherB = (), that is, the case of relativized uniform suppmin-equinaé Since the condition
Tp(Y)|s = To(Y)|s is now trivially satisfied, Theorem 4.3 implies the followiresult.

Corollary 4.4 Let A C At. Normal programsP and ) are suppmin-equivalent relative to
HB"(A, ) if and only if Mod®, (P) = Mod"(Q).

Proof. The result follows by the equivalence of the conditions (ig é3) in Theorem 4.3. O

Moreover, the description af/od (P), whenB = () simplifies. In fact,(X,Y) € Mod’(P)
if and only if

1. Y € Mod(P)
12



2. X CY|4
3. foreachZwithX CZCY,Z P

4. Y\ Tp(Y) C X.

We will discuss additional special-cases for instant@tifiod (P) as part of our complexity
analysis in Lemma 6.1.

When A = B = At (strong suppmin-equivalence), it turns out that suppiegence and
suppmin-equivalence coincide (cf. comments at the end afipte 4.1).

Corollary 4.5 Normal programs” and() are suppmin-equivalent relative t@B" (At, At) if and
only if P and( are supp-equivalent relative 85" (At, At).

Proof. We note that X,Y) € Mod*4!(P) if and only if Y € Mod ,(P), and eitherX =Y, or
X Cc YandX £ P. Thus,Mody:(P) = Mod’!(Q) if and only if Mod ,(P) = Mod 4,(Q).
Moreover, (Y,Y) € Mod4!(P) if and only if Y € Mod 4,(P). Thus, the result follows from
Corollary 3.4 and Theorem 4.3. O

We will now use our results to resolve the issue of suppmimvedence of programs discussed
earlier.

Example 4.6 If P is a program such that every set of atoms is a modé? athen Mod’,(P) =
{(Y,Y) | Y C At}. This observation applies both # and @;. Thus, by Corollary 4.4p,
and @ are suppmin-equivalent relative f@5" (At, (). We note thaf’, and (@), are not suppmin-
equivalent relative tdHB" (At, At). Indeed, they are not supp-equivalent (cf. Example 3.6) and
S0, not suppmin-equivalent (by Corollary 4.5).

Next, we consider programg and()s. We note that for every program, Mod%(P) consists
of pairs (,Y), whereY is a suppmin model oP. Thus, Mod)(P;) = 0 and Mod}(Qs) =
{(0,{a,b})}. By Corollary 4.4,P; and Q5 are not suppmin-equivalent relative 08" ((), 0).

Thanks to Theorem 4.2, all results concerning normal progrit to the disjunctive case. To
illustrate it, we give two such results below.

Corollary 4.7 Let A, B C At. The following conditions are equivalent.

1. Disjunctive program# and( are suppmin-equivalent relative t1653%(A, B)

2. Mod%(sh(P)) = Mod%(sh(Q)) and for every(X,Y) € Mod’(sh(P)), Tsupy(Y) \ (A\
B) =T (Y) \ (A\ B)

3. Mod5(sh(P)) = Mod’(sh(Q)) and for every(X,Y) € Mod%(sh(P)), Tsnr)(Y)|p =
T (Y)|5-

Proof. This result follows by Theorem 4.2 from Theorem 4.3. O

Corollary 4.8 Disjunctive programs? andQ are suppmin-equivalent relative f@B%(At, At) if
and only ifP andQ are supp-equivalent relative tB4( At, At).

Proof. This result follows by Theorems 4.2 and 3.2, and Corollaby 4. O
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5 Complexity of Supp-Equivalence

We focus entirely on the case of normal programs and nornrdegts. As we noted, it is not an
essential restriction, and all results we obtain hold wittib We will study deciding hyperequiv-
alence relative to class@sB" (A, B). Specifically, we will consider the following problems:

1. supPP given programsP, () (over At) and A, B C At, decide whetheP and(@ are supp-
equivalent relative t&{B" (A, B)

2. SUPP4: given programsP, () (over At) and B C At, decide whetheP and () are supp-
equivalent relative tG15" (A, B)

3. supF’: given programsP, Q (over At) and A C At, decide whetheP and (@ are supp-
equivalent relative t15" (A, B)

4. supP;: given programs’, Q) (over At), decide whetheP and@ are supp-equivalent relative
to HB" (A, B).

We emphasize the changing roles of the sétand B. In some cases, they are used to specify
a problem ¢ in supF; andsupPry); in others, they belong to the specification of an instante (
in supP? andsupPP. In the first role, they can be finite or infinite. For instanserp,, denotes
the problem to decide, given progrars() (over At) and B C At, whetherP and(@ are supp-
equivalent relative t@18" (At, B). In the second role, they need to have finite representations
To establish the complexity of a problem, we derive an uppdraalower bound (membership
and hardness). We start by pointing out that establishingpger bound is not entirely straight-
forward. A natural witness against supp-equivalence isa(paY’), whereR is a finite program
in C andY is finite set of atoms such that is a supported model of exactly one BfU R and
@ U R. The problem is that the size of such a progrBmight not be bounded by a polynomial
in the size ofP, (), and possibly alsal and B, depending on the problem. Thus, the most direct
attempt to prove the membership of the problem in the clali$dails. The bound can, however,
be derived from our characterization theorem for seveeassgs of context programs.

Theorem 5.1 The following problems are in the class coNP:
1. supp
2. SUPP4, for every finited C At
3. SUPPAB, for every finiteA C At, and for everyB C At
4. supP?, for everyB C At

5. supP;,, for everyB C At.
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Proof. (1) Theorem 3.3 implies that the complement of the problein ihe class NP. Indeed,
given two programs® and @) and setsA, B C At, if there is a sefy” such thatY” belongs to
exactly one ofMod 4(P) and Mod 4(Q), or Y € Mod4(P) N Moda(Q) andTpr(Y) # Tp(Y),
thenY \ Tp(Y) C AorY \ Tp(Y) C A. Itfollows thatY C A¢(P U Q) U A. Since for sucl’
verifying the membership iffod 4 (P) andMod 4((Q)), and testingd »(Y') # T (Y') can be done in
polynomial time in the size ofit(P U Q) U A, our claim and, consequently, the assertion, follows.

(2) Each of these problems reduces to the problem (1) (exemustance of a problem in (2) with
A, the set that defines the problem, to specify an instanceegpitbblem (1)). Thus, the bound
follows.

(3) and (4) Each of these problems is equivalent to the prolléh B = () and so, can be reduced
to the problem (1).

(5) Corollary 3.4 implies that the complement of the problenm the class NP. Indeed, given two
normal programg” and @, if there is a set” such that (a)" is a model of exactly one aP and
@, or (b)Y is a model of bothP? and @, and7»(Y) # Tp(Y), then there i C At(P U Q)
with the same property. Since verifying conditions (a) anddr Y’ C At(P U Q) can be done in
polynomial time in the size oP U @, our claim and, consequently, the assertion, follows. O

In problems (3) - (5) we do not need any explicit or implicipresentation of3, as the supp-
equivalence relative ta{3" (A, B) depends o only.

We move on to the lower bound (hardness). In several prodfssrand the next sections, we
use the following concepts and notation. We consider a CMfdta ¢ over a set of atom¥’, or
a QBF formulavY 3.X ¢, wherey is a CNF formula over the set of atomSU Y. For every such
atomz € Y orz € X UY, respectively, we denote by a new atom not appearing anywhere
in o, possibly also different from some other atoms that mighhé@ed explicitly, and different
from other “primed” atoms. Given a set of “non-primed” atoiswe defineZ’ = {2/ | z €
Z}. Finally, for aclause: = z; V -+ V 2z, V =251 V - -+ V 7z, We denote by the sequence
ZUy ey 2y 2l - s Zme

Theorem 5.2 For every finiteA C At and A = At, and for everyB C At, the problensuprF; is
coNP-hard.

Proof. Let us consider a CNE and letY” be the set of atoms ip. We define

P(p) = {ynoty’ y < mnoty|yeY}U
{—vy|yeY}u
{« ¢ |cisaclausein}

To simplify the notation, we writé® for P(¢). One can check that has a model if and only if
P has a model. Moreover, for every model of P such thatM C At(P), M is astablemodel
of P. Thus, each such model éf is also asupportedmodel of P and, consequently, satisfies
M = Tp(M).

Next, we defing) to consist of two rulesf and« f. Clearly,Q has no models. By Theorem
3.3, Q is supp-equivalent t@ relative toHB" (A, B) if and only if Mod 4(Q) = Mod4(P) and
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for every M € Moda(Q), To(M) = Tp(M). SinceMod4(Q) = (), we have that) is supp-
equivalent taP relative toHB" (A, B) if and only if Mod o(P) = 0. If M € Mod 4(P), then there
is M" C At(P) such thatM’ € Mod o(P). Since every model!’ of P such thatM’ C At(P)
satisfiesM’ = Tp(M’), it follows that Mod 4(P) = ( if and only if P has no models.

Thus,p is unsatisfiable if and only if) is supp-equivalent t& relative toH5" (A, B), and the
assertion follows. O

We observe that for the result to hold we do not need to kabwPutting together Theorems
5.1 and 5.2 we obtain the following result.

Corollary 5.3 The problems listed in Theorem 5.1 are coNP-complete.

Proof. The hardness of problems in Theorem 5.1 follows from ThedseZn Thus, the coNP-
completeness follows. O

Problems we considered so far do not impose restrictionsipatiprogramsP and @. In
particular, they contain instances, in whigfod 4(P) # Mod 4(Q), a property exploited by the
proof we presented above. We will now consider the probledetode whether normal programs
P and(@ such thatMod o(P) = Mod 4(Q) are supp-equivalent relative 105" (A, B). It turns out
that this additional information is of no help as the comfiledoes not go down.

We start with an auxiliary result.

Lemmab.4 Let A C At be a fixed finite non-empty set dr = At¢. The following problem is
coNP-complete. Given a normal logic prograMmdecide whether evedy/ € Mod 4(P) such that
M C At(P) is a supported model a?.

Proof. Let us select and fix an element.ih sayg, and lety be a CNF formula oveY'. Wlog we
may assume that does not contaig. We define

Sle) = {y—noty; y —noty|yeY}U

{—vy | yeY}
{g — ¢| cisaclause inp}

In the remainder of the proof, we writefor S(y).

We note that for every/ C At(S), if M = SthenTg(M) = M orTs(M) = M \ {g}. In
particular, if M C At(S) andM = S, thenM \ Ts(M) C {g} C A. Thus, forM C At(S),
M € Mod4(S)ifand only if M |= S.

If © is unsatisfiable then, for evefyy C At(S) such thatV/ |= S, we havegy € M. Conse-
quently, each such/ is a supported model ¢f. It follows that for everyM € Mod 4(.S) such that
M C At(S), M is a supported model df.

If o is satisfiable, every model @f gives rise to a supported model, s&y of S, such that
g ¢ X. Itis easy to see that/ = X U {g} is a model ofS but not a supported one. Since
M C At(S) andM is a model ofS, M € Mod 4(S).
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Thus,p is unsatisfiable if and only if every/ € Mod 4(S) suchthat\f C A¢(S) is a supported
model ofS. Consequently, the hardness follows.

The membership part is evident. Indeed, the complementatyigm can be decided by the
following algorithm: nondeterministically guedg C At(S); verify that (1)M € Mod 4(S) and
that (2) M is not supported model &f. Clearly both (1) and (2) can be done in polynomial time
(both for A finite and nonempty, and fot = At, where the conditiod/ \ Ts(M) C A trivializes).
Thus, the complementary problem is in NP and the assertimwi®. O

Applying Lemma 5.4 to the casé = At, we obtain the following result of some interest in its
own right.

Theorem 5.5 The following problem is coNP-complete: given a finite ndriogic program P,
decide whether every modglof P such thaty” C A¢(P) is supported.

However, the primary application of Lemma 5.4 is in detelimgnthe complexity of hyper-
equivalence for programB and @ with Mod 4(P) = Mod 4(Q), the problem we already men-
tioned above.

Theorem 5.6 Let A be a fixed finite non-empty subset4for let A = At. For every setB C
At, the following problem is coNP-complete: given two normagoams P and () such that
Mod 4(P) = Mod 4(Q), decide whether they are supp-equivalent relatig" (A, B).

Proof. We restrict to the casB = () (we recall that supp-equivalence does not depen)n

The membership part follows from Theorem 5.1. For the hasdrmpart, letP be a normal
logic program. Let us considé?’ = PU {g <« g | g € At(P) N A}. We note that for every
M C At(P), Tp/(M) =Tp(M)U (M N A).

We will first prove thatMod o(P) = Mod(P'). Let M € Mod(P). ThenM = P (and so,
Tp(M) C M)andM \ Tp(M) C A. One can verify thal’p (M) = M N At(P). Thus,M = P'.
Moreover, asl’p(M) C Tp/(M), M\ Tp:/(M) C A. Consequently) € Mod o(P’). Conversely,
let M € Mod,(P’). Itfollows thatM = P. Next, lety € M\ Tp(M). If y € M \ Tp:/ (M), then
ye A@SM\Tp (M) C A). Otherwisey € Tp/(M)\Tp(M). Itfollows thaty € AN At(P)and
S0,y € Ain this case, too. Thus, we obtald \ Tp(M) C A and, consequentiW/ € Mod 4(P).

Let us assume that for evety € Mod o(P) such that\/ C At(P), M is a supported model
for P. Let M € Mod4(P). Then,M N At(P) € Mod4(P) and, by the assumptiofi}z(M N
At(P)) = M N At(P). SinceTp(M) = Tp(M N At(P)), Tp(M) = M N At(P). We also have
Tp/(M) = Tp/(M N At(P)) = Tp(M N At(P)) U [(M N At(P)) N A] = M N At(P). Thus,
Tp(M) = Tp(M). By Theorem 3.3P and P’ are supp-equivalent relative 185" (A, B).

Conversely, let” and P’ be supp-equivalent relative 85" (A, B) and letM] € Mod 4(P) be
such thatV/ C At(P). We proved earlier that fak/ € Mod 4(P), Tp/(M) = M N At(P). Since
M C At(P), Tp/(M) = M. Thus,M is a supported model d’ and so (a$ € HB"(A, B)), of
P, too.

It follows that for everyM € Mod 4(P) such thatV C At(P), M is a supported model faP
if and only if P and P’ are supp-equivalent relative 165" (A, B). SinceMod 4(P) = Mod 4(P’),
the assertion follows from Lemma 5.4. O
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There seems to be no simple reduction from any problem cereidn Corollary 5.3 to the
problem from Theorem 5.6 and so, a direct proof is needed. régairement thatd # () is
necessary for the complexity result of Theorem 5.6. IndbgdCorollary 3.5, ifA = (), programs
P and@ with Mod 4(P) = Mod 4(Q)) are necessarily supp-equivalent.

6 Complexity of Suppmin-Equivalence

We will use here the same notational schema as in the prewecson, but replace supp-
equivalence with suppmin-equivalence and wstePPMIN instead ofsuPr  For instance, we
write suPPMIN? (for B fixed and not part of the input) to denote the following praoiiegiven
normal programg’ and@, andA C At, decide whetheP and() are suppmin-equivalent relative
to HB" (A, B).

Deciding suppmin-equivalence relatived3" (A, B), whereA = At or B = At, remains in
the class coNP and turns out to be coNP-complete. To provewkdirst simplify the conditions
for (X,Y) € Mod% if A= At or B = At.

Lemma 6.1 Let P be a normal logic program and, B C At. Then,
1. (X,Y) € Mod%,(P) if and only if the following conditions hold:

@YEP

b) X CY

(c) foreveryZ C Y,suchthat/|p = X|gandZ O X, Z %= P
(d) if X|p =Yg, thenY \ Tp(Y) C X.

2. (X,Y) € Mod4!(P) if and only if the following conditions hold:

(@) Y € ModA(P)
(b) X CY
(c) If X C YthenX [~ P.

Proof. If A = At, the condition (1) fo(X,Y) € Mod%(P) specializes to (1a) & € Mod 4,(P)
if and only if Y = P. AssumingB = At has no effect on the condition (1). Thus, it appears
without any change as the condition (2a).

The condition (2) for(X,Y) € Mod5(P) specializes to (1b) or (2b), respectively, sinte’
B = At. For the same reason, the condition (3) f@F,Y) € Mod%(P) is trivially true, in both
cases. The conditions (4) and (5) fof,Y) € Mod% (P) specialize to the conditions (1c) and (1d)
in caseA = At. If B = At, the condition (4) fof X,Y) € Mod%(P) specializes to (2c). The
condition (5) for(X,Y) € Mod%(P) holds true (ifX = Y then, trivially,Y \ T»(Y) C Y) and
can be dropped. O
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Lemma 6.1 has a corollary that plays a key role in establgtiie membership in the class
coNP of the relativized suppmin-equivalence problems foictvA = At or B = At. For the case
A = At we need one more important property.

Corollary 6.2 Let P, Q be normal programs and C At. If Mod%,(P) # Mod"%,(Q), then there
isY C At(P U Q) U B such thatY” is a model of exactly one &f and@, or there isa € Y such
that (Y \ {a},Y) belongs to exactly one dfod%,(P) and Mod%,(Q).

Proof. Let us assume tha? and(@ have the same models (otherwise, ther¥is. At(P U Q)

that is a model of exactly one @t and(, and the assertion follows). Wlog we can assume that
there is(X,Y) € Mod%,(P)\ Mod%,(Q). Moreover, we can assume thatC At(P U Q) U B.

It follows that (X, Y) satisfies the conditions (1a)-(1d) from Lemma 6.1(t&t Y) € Mod%,(P).
Moreover, sinceP and ) have the same model§X,Y') already satisfies conditions (1a)—(1c)
for (X,Y) € Mod%,(Q). HenceX|z = Y|z andY \ To(Y) € X have to hold. Thus, there is

a € (Y\To(Y))\ X. We will showthat Y\ {a},Y) € Mod5,(P)and(Y\{a},Y) ¢ Mod%,(Q).

Since(X,Y) € Mod%,(P), Y is a model ofP. Next, obviously,Y \ {a} C Y. Thus, the
conditions (1a) and (1b) of Lemma 6.1 hold. LétC Y be such thatZ O Y \ {a}. Then
Z =Y\ {a}. We haveY|p = X|p, a € Y, anda ¢ X. Thus,a ¢ B. It follows that
(Y \{a})|p = X|pandX C Y\ {a}. Since(X,Y) € Mod5,(P),Y \ {a} £ P, thatis,Z [~ P.
Thus, the condition (1c) of Lemma 6.1 holds.

Sincea ¢ B, (Y \ {a})|s = Y|5. Thus, we also have to verify the condition (1d) of Lemma
6.1. We have” \ Tp(Y) C X (we recall thatt’|z = X|g) andsoY \ Tr(Y) C Y \ {a}. Hence,
the condition (1d) of Lemma 6.1 holds, fé*and, consequentlyy \ {a},Y) € Mod%,(P). On
the other handy € Y \ T(Y) anda ¢ Y \ {a}. Thus, the condition (1d) of Lemma 6.1 does not
hold for @ and so(Y \ {a},Y) ¢ Mod%,(Q). O

We are now ready to show the promised coNP-completenedsstesu

Theorem 6.3 The following problems are coNP-complete:
1. supPMING,, for every finiteB C At,
2. SUPPMINY!, for every finited C At,

3. SUPPMIN?!, SUPPMIN,,;, andSUPPMINS!.

Proof. The case obuPPMIN{! is already clear by Corollary 4.5 and Theorem 5.2.

To establish the other cases, we will show coNP-membershigfPPMINA® andSUPPMINy;.
From these two results, the membership resultstorPmiNg, andsupPpming? (for finite A, B C
At) follow easily.

Likewise, we will show coNP-hardness fsuPPMING, andsuPPMINA? (for finite A, B C At).
That implies the corresponding lower boundsg$orPMINA andSUPPMIN,;.

We start with coNP-membership fatuPPMIN,,. The following nondeterministic algorithm
verifies, given progranP, Q and B C At, that P and ) are not suppmin-equivalent relative
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HB"(At, B). We guess a paifa,Y), whereY C At(P U Q) U B, anda € At such that (1)Y
is a model of exactly one aP and@; or (2)a € Y and(Y \ {a},Y) belongs to exactly one of
Mod%,(P) and Mod®,(Q); or (3) Y is model of both? andQ andT»(Y)|s # To(Y)| .

Such a pair exists if and only iP and ) are not suppmin-equivalent relatitéB" (At, B).
Indeed, let us assume that such a pgairt’) exists. If (1) holds for(a,Y"), sayY is a model of
P but not@, then(Y,Y) € Mod%,(P)\ Mod%,(Q) (easy to verify by means of Lemma 6.1).
Thus,Mod%,(P) # Mod%,(Q) and, by Theorem 4.3 and( are not suppmin-equivalent relative
HB"(At, B). If (2) holds for (a,Y), Mod%,(P) # Mod%,(Q) again, and we reason as above.
Finally, if neither (1) nor (2) holds, Corollary 6.2 implidgod”,(P) = Mod%,(Q). In this case,
(3) holds for(a, Y). SinceY = P, we haveY,Y) € Mod%,(P). MoreoverTp(Y)|s # To(Y)| 5.
Thus, again by Theorem 4.B,and( are not suppmin-equivalent relati#e3" (At, B).

Conversely, ifP and@Q are not suppmin-equivalent relati#¢B™ (At, B), then Mod%,(P) #
Mod®%,(Q) orthere i X,Y) € Mod",(P)suchthatllp(Y)|p # To(Y)|s. The former implies (by
Corollary 6.2) that there i&, Y), with Y C A¢(P U Q) U B), that satisfies (1) or (2). Thus, let us
assume thatfod%,(P) = Mod",(Q) and that there i$X,Y) € Mod%,(P) such thatl’s(Y)|5 #
To(Y)|p. Since(X,Y) € Mod5,(Q), too, Y is a model of both? and Q and Tp(Y)|p #
To(Y)|g. Clearly,Y’ =Y N (At(P U Q) U B) is a model of both? and@), too, andl'»(Y”')| s #
To(Y")|p. Picking anya € At yields a pair(a, Y’), with Y’ C At(P U Q) U B), for which (3)
holds.

It follows that the algorithm is correct. Moreover, cheakiwhetherY = P andY | @
can clearly be done in polynomial time in the total sizeaf ), and B; the same holds for
checkingTp(Y)|p # To(Y). Finally, by Lemma 6.1, testingy” \ {a},Y) € Mod%,(P) and
(Y \ {a},Y) € Mod%,(Q) are polynomial-time (with respect to the size of the inpagks, too;
the only problematic condition is (1c) from Lemma 6.1. Hoeewve need to test thét [~ P
there for only oneZ such that” \ {a} C Z C Y, namelyZ =Y \ {a}. Thus, the algorithm runs
in polynomial time. It follows that the complement of our ptem is in the class NP and so the
assertion follows.

We continue with coNP-membership feupPmIN. By Theorem 4.3P and( are suppmin-
equivalent relative t61B8" (A, At) if and only if Mod4'(P) = Mod*4'(Q) and for every(X,Y) €
Mod4'(Y), Tp(Y) = To(Y). It follows that to decide thaP and( arenot suppmin-equivalent
relative toHB" (A, At), it suffices to guess a paftX,Y), whereX C Y C A{(P U Q) U A,
and verify that (a) X, Y") belongs to exactly one dffod*’(P) and Mod*4'(P), or (b) that(X,Y)
belongs to botl/od ! (P) andMod*'(P), andT»(Y) # To(Y). Indeed, if( X, Y) € Mod4'(P)U
Mod4'(Q), thenX C Y C At(P U Q) U A (the latter inclusion following from the fact that
Y € ModA(P)U Mod A(Q)). By Lemma 6.1, and sinc& C Y C At(PUQ) U A, all these tests
can be executed in polynomial time in the total size?ot)) and A. Thus, the the complementary
problem is in NP and so, the membership in coNP follows.

We now switch over to the hardness results and start thiswiitresuPPMINA. In the proof
of Theorem 5.6, we have shown that for every progapand any finiteA C At, Mod4(P) =
Mod A(P"), whereP = PU{g <« ¢g | ¢ € An At(P)}. Moreover, in the same proof, we
have shown thaf” and P’ are supp-equivalent relative ®B" (A, At) if and only if for each
Y € Mod,(P)withY C At(P),Y is a supported model aP. Next, we show thaf> and P’ are
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supp-equivalent relative ti(3" (A, At), if and only if P and P’ are suppmin-equivalent relative
to HB"(A, At). The only-if direction follows from the fact that and P’ have the same models.
Indeed, this property implies that for eveRy € HB"(A, At), P U R and@ U R have the same

supported models and the same models. Consequently, theytha same supported minimal
models.

For the if-direction, we recall that suppmin-equivalenelative toHB" (A, At) betweenP
and P' implies (by Theorem 4.3od4'(P) = Mod4'(P') and Tp(Y) = Tp/(Y), for every
(X,Y) € Mod4'(P). In view of Lemma 6.1, it is easy to see théod ,(P) = Mod(P')
follows. Moreover, by the same lemma,Yf € Mod,(P) then(Y,Y) € Mod4'(P). Thus,
Tp(Y) = Tp/(Y), for everyY € Mod,(P). By Theorem 3.3,P and P’ are supp-equivalent
relative toHB" (A, At).

It follows that for everyY” € Mod 4(P) with Y C At(P), Y is a supported model fa? if and
only if P andP’ are suppmin-equivalent relative 165" (A, At). Thus, the assertion follows from
Lemma 5.4.

To prove the coNP-hardness fiPPMING,, we proceed as follows. Let be a CNF formula, and
letY be the set of atoms ip. We defineP and( as in the proof of Theorem 5.2. Sin€ehas no
models,Mod%,(Q) = 0.

Let Y be a model ofP. Clearly, (Y,Y) satisfies the conditions (1a)-(1d) from Lemma 6.1.
Thus, Mod%,(P) # 0. Conversely, itMod5,(P) # 0, then there iX,Y) € Mod5,(P). By
Lemma 6.1(1a)Y” is a model ofP.

Thus, P has models if and only if/od%,(P) # 0. By Theorem 4.3P has models if and only
if P and@ are not suppmin-equivalent.

In the proof of Theorem 5.2, we already showed thditas models if and only ip has models.
Thus, ¢ has models if and only i and(@ are not suppmin-equivalent. Consequently, the claim
follows. O

We will now establish the complexity of deciding relativizguppmin-equivalence whehand
B are finite (fixed as part of the problem specification, or giaepart of instance specification).
We start with an auxiliary result needed to derive upper kiguor the complexity.

Lemma 6.4 The following problem is in coNP: given a normal logic prograP and sets
X,Y, A, B C At, decide whethefX,Y) € Mod5(P).

Proof. We already established earlier that deciding whethetr Mod 4(P) (condition (1)) can be
done in polynomial time in the size @1, Y and A. The same is evident for deciding Z Y| aup
(condition (2)) and \ Tp(Y) € X, in case X |p = Y| (condition (5)).

The remaining two conditions definifg, Y) € Mod%(P), thatis, (3) and (4), can be checked
for violation as follows. We guesd C Y such that eithe? | 45 = Y| aup, Or jointly Z|z = X|p
andZ|4 D X|4. Then, we check whethef = P. Thus, deciding whethdtX,Y) ¢ Mod%(P),
for given setsX, Y, A, B C At, is in the class NP. Consequently, deciding wheth€érY) €
Mod% (P), for given setsX, Y, A, B C At, is in the class coNP. O

With this result in handlI}’-membership osuPPMIN can be shown by suitably guessing pairs
(X,Y) in Mod5(P) and Mod% (P), respectively.
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Theorem 6.5 The problensuPPMINis in 15

Proof. The complementary problem can be decided in non-detertigipiglynomial time with an
access to an NP-oracle. Indeed, we note thaXify') € Mod i (P), thenY C At(P)UA. Thus, if
there exist§ X, Y) that belongs to exactly one dfod”(P) and Mod% (Q), then there ig X', Y”)
with that property and such that C At(P U Q) U A. Moreover, if Mod (P) = Mod5(Q) and
there is(X,Y) € Mod%(P) such thatl's(Y)|p # To(Y)|s, then there i§ X' Y') € Mod%(P)
such thatt” C At(PU Q) U AandTp(Y')|p # To(Y')|s. Thus, to decide the complemen-
tary problem, it suffices to guess setsY C At#(P U @) U A and check thatX,Y) is in ex-
actly one ofMod% (P) and in Mod% (Q), or that(X,Y") is in both Mod” (P) and Mod5(Q), and
Tp(Y)|p # To(Y)|s. By Lemma 6.4, the tests for the membership\iad’; (P) and Mod”% (Q)
can be accomplished by an NP-oracle and all other tasks atergly in the class P. O

We show the matching lower bound for the more specializeblprosuPPMINS.
Theorem 6.6 The problensupPMmINg is I1X-hard, for every finited, B C At.

Proof. Let VYdX ¢ be a QBF, where is a CNF formula overX U Y. We can assume that
(AU B)N X = 0 (if not, variables inX can be renamed). Next, we can assume thdt C Y.
Indeed,p™ obtained by expanding with clauses: vV —z, for eachz € A U B, has the property
thatVY 3 X ¢ is true if and only ifvY *3X T is true, wher&’t =Y U AU B.

We will construct program#’ () andQ(y) so thatvY 3X ¢ is true if and only if P(p) and
Q(p) are suppmin-equivalent relative 105" (A, B). Since the problem to decide whether a given
QBFVY3X is true islIf’-complete, the assertion will follow.

We use priming and as discussed above and define the following programs:

P(lp) = {z+«mnot; 2 —notz]|z€e XUY} U
{—=vvy|yeY}U
{r —u,u; 2/ —wu,v | z,ue X}U
{r ¢ 2’ —¢|xe X, cisaclause inp};

Qlp) = {z«mnot?; 2 «—notz]2€ XUY}U
{—27]2e XUY}U
{« ¢ | cisaclause inp}.

To simplify notation, from now on we writ& for P(y) and@ for Q(y). We observe thatt(P) =

At(Q) =W, wherelW = X UX'UY UY".
One can check that the models@fcontained Nl are sets

TUY N\ UJU(X\J), 1)

whereJ C X, I C Y and/ U J = ¢. Each model of) is also a model of” but P has additional
models contained ifl/. They are of the form:

TUY\IH)uxux’, (2)
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for eachl C Y. Clearly, for each model/ of Q) such thatV/ C W, To(M) = M. Similarly, for
each modelM of P such that\/ C W, Tp(M) = M.

From these comments, it follows that for every modélof Q) (resp.P), To(M) = M N W
(resp.Tp(M) = M NW). SinceB C W, for every modelM/ of both P andQ, Tp(M)|p = M N
WNB = Tp(M)|. Thus,P andQ are suppmin-equivalent if and onlyifod % (P) = Mod% (Q)
(indeed, we recall that ifN, M) € Mod%(R) thenM is a model ofR).

Let us assume thatY'3X ¢ is false. Hence, there exists an assignment Y to atomsY
such that foreveryy C X, U J [~ ¢. LetN = T U (Y \ 1)U X U X’'. We will show that
(N|aus, N) € Mod%(P).

SinceN is a supported model dP, N € Mod 4(P). The requirement (2) fofN|aup, N) €
Mod% (P) is evident. The requirement (5) holds, sinte\ Tp(N) = (). By the property of
I, N is a minimal model ofP. Thus, the requirements (3) and (4) hold, too. It followsttha
(N|aus, N) € Mod5(P), as claimed. Sincé' is not a model ofy, (N| 4z, N) ¢ Mod%(Q).

Let us assume thafy 3 X ¢ is true. First, we observe thafod’ (Q) C Mod%(P). Indeed, let
(M,N) € Mod%(Q). It follows that N is a model of) and, consequently, d?. From our earlier
comments, it follows thafy (N) = Tp(N). SinceN \ TH(N) C A, N\ Tp(N) C A. Thus,N €
Mod 4(P). Moreover, ifM | = N|g thenN \ T,(N) C M and, consequentlyy \ Tp(N) C M.
Thus, the requirement (5) f¢0/, N) € Mod%(P) holds. The conditiorl/ C N|,p is evident
(it holds as(M, N) € Mod%(Q)). SinceN is a model ofQ, N = N’ UV, whereN’ is of the
form (1) andV C At \ W. Thus, every model C N of P is also a model of). It implies
that the requirements (3) and (4) fgv/, N) € Mod®%(P) hold. Hence( M, N) € Mod%(P) and,
consequentlyMod’ (Q) C Mod% (P).

We will now use the assumption th@t"3.X ¢ is true to prove the converse inclusion. To this
end, let us considefM, N) € Mod%(P). If N = N’ UV, whereN' is of the form (1) and
V C At \ W, then arguing as above, one can show tidt N) € Mod%(Q). Therefore, let us
assume thalv = N’ UV, whereN’ is of the form (2) and” C At \ W. More specifically, let
N =TU (Y \I)UXuUX' Byourassumption, there i C X suchthat/ U J = ¢. Thatis,
Z=ITU(Y\I)UuJU(X\ J)isamodel ofP. Clearly,Z C N. Moreover, sinced,B C Y,
it follows that Z| 4,5 = N|aup. Since(M, N) € Mod%(P), the requirement (3) implies that is
not a model ofP, a contradiction. Hence, the latter case is impossibleldod’ (P) C Mod% (Q)
follows.

We proved that'yY 3X ¢ is true if and only ifMod 5 (P) = Mod%(Q). This completes the proof
of the assertion. O

Putting together Theorems 6.5 and 6.6 yields the followmltary.
Theorem 6.7 The following problems arl’-complete:

1. SUPPMIN,

2. SUPPMIN?, SUPPMIN,4, SUPPMINE, for every finited, B C At.

Similarly as for supp-equivalence, having additional infiation that setsMod(P) and
Mod%(Q) coincide does not make the problem of deciding suppminvedgrice easier.
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Theorem 6.8 Let A, B C At be finite and such that N B # 0. The following problem i$1% -
complete: given normal prograni3, ) such thatMod5(P) = Mod%(Q), decide whetheP and
() are suppmin-equivalent relative t¢5" (A, B).

Proof. The problem reduces to the one considered in Theorem 6.5s, Ttoelongs td 1. To
provell?-hardness we proceed as follows. &t3X ¢ be a QBF, where is a CNF overX UY'.
We can assume thal U B) N (X UY") = () (as we can always rename variables)n Let us also
choose and fix an elemente AN B.

We use priming and as before, and select an atame X. We define the following programs

P(p) andQ(y):

P(lp) = {z+«mnot?; 2 «—notz]|2€ XUY} U
{—=vy|lyeY}u
{r —u,u; 2/ —u,u |z,ue X} U
{x —¢ o' —¢|xe X, cisaclause inp} U
{« not g; g < xg, not xy; g < xy, not xo};
Qlp) = Plp)U{g o, 20};

To simplify notation, from now on we writé for P(¢) and@ for Q(y¢). We seth’ = X U X' U
YUY'U{g}.

Clearly, every model of? containsg. It follows that P and @) have the same models. To
describe them, we first observe that every modePdfand Q) contained inl¥’ is of one of the
following two types:

1. {g}ulu(Y\I)uJu(X\J),foreachl CY andJ C X suchthatl U J = ¢;
2. {g}UTU(Y\I)UXuUXforeachl CY.

Thus, every model oP (and of(Q) is of the formN U S, whereN C W is of type 1 or type 2,
above, ands C At \ W. We refer toN as thell’-core of the modelNV U S. We refer to a model
of P (andQ) as type 1 or type 2, according to the form oflit5-core.

Next, we observe that for every C At, Tp(N) C To(N) andTy(N) \ Tp(N) C {g}.
Let N € Mod(P). It follows that N is a model of P and so, of@, too. We also haveV \
To(N) C N\ Tp(N) C A. Itfollows thatN € Mod4(Q). Conversely, lefV € Mod 4(Q). Then,
N = @ and so,N = P, Moreover,N \ Tp(N) C (N\To(N))U{g} € AU{g} = A. Thus,
N € Mod 4(P). It follows thatMod 4(P) = Mod 4(Q).

Let (M,N) € Mod%(P). ThenN € Mod,(P) and so,N € Mod(Q). We also have
M C N|aup. Thus, the conditions (1) and (2) required fav/, N) € Mod%(Q) hold. The
conditions (3) and (4) fofM, N') € Mod%(Q) hold as they hold foP, andP andQ have the same
models. Finally, the condition (5) f@iZ, N) € Mod%(Q) holds, too, asV\ T, (N) € N\ Tp(N).
Thus,Mod5(P) € Mod5(Q).

Conversely, let M, N) € Mod%(Q). Reasoning as above, we show that the conditions (1)-(4)
for (M, N) € Mod%(P) hold. To prove the condition (5), let us assume tNag = M|. Since
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N € Mods(Q), N is a model ofQ, and thusy € N. Moreover, sincgy € B, g € M as well.
We haveN \ To(N) C M. Thus,N \ Tp(N) C M follows from our previous observations.
Consequently, the condition (5) fon?, N) € Mod%(P) holds, and the inclusionod(Q) C
Mod®% (P) follows.

Since Mod% (P) = Mod%(Q), P and@ form a valid instance to the problem we are consider-
ing. We will show thatvY'3X ¢ is true if and only if P and@ are suppmin-equivalent relative to
HB"(A, B).

Let us assume thatY3X ¢ is false. Then, there i$ C Y such that for every/ C X,
TUJ W LetN = {gtulU (Y \I)UXUX'. We have thatV = @, andTy(N) = N.
Thus, N \ TH(N) = 0 C A and, consequentlyy € Mod4(Q)). Let M = N|sup. By the
definition, M C N|4up. Thus, the conditions (1) and (2) foi/, N) € Mod%(Q) hold. Next, by
the property of/, N is a minimal model ofy. It follows that (M, N) satisfies the conditions (3)
and (4) for(M, N) € Mod%(Q). Finally, we haveN \ T,(N) = () C M. Thus, the condition (5)
for (M, N) € Mod%5(Q) holds and so(M, N) € Mod%(Q). We observe thafp(N) = N\ {g¢}
andTyh(N) = N. Sinceg € Bandg € N, ,Tp(N)|p # To(N)|s follows. Hence, by Theorem
4.3 (we recall that M, N) € Mod%(Q) and so,(M, N) € Mod%(p)), P andQ are not suppmin-
equivalent relativé{B" (A, B).

Next, let us assume the 3X o is true. Let(M, N) € Mod%(P). Let us assume tha¥ is of
the type 2. Lef{g} UT U (Y \ I)UX UX', wherel C Y, be thel’-core of N. SincevY3Xp is
true, there is/ C X suchthat UJ = ¢. We defineK = {g}ulU (Y \I)UJU(Y \J). Clearly,
K = P.We haveK C N andK|aup = {9} = N|aus (we recall tha{ AU B) N (W \ {g} = 0).
Thus, by the condition (3) fofM, N) € Mod% (P), K [~ P, a contradiction.

It follows that NV is of type 1. Consequentlf;r(N) = To(N) and s0,Ip(N)|p = To(N)|s.
By Theorem 4.3P and(@ are suppmin-equivalent relative 5" (A, B). O

This theorem cannot be extended to a wider class of finite4etad B. Let AN B = )
and P, Q two normal programs such thafod5(P) = Mod%(Q). Let (X,Y) € Mod%(P) and
b€ Tp(Y)|g. Thenb € Y (asTp(Y) C Y)andb ¢ A (asb € BandA N B = (). Since
Y € Mods(Q), Y \ Tp(Y) C A. It follows thatb € Tp(Y) and, asb € B, b € T(Y)|s.
Thus,Tp(Y)|p C To(Y)|5 and, by symmetry[»(Y)|p = Tp(Y)| 5. ConsequentlyP and( are
suppmin-equivalent.

7 Discussion

In this section, we discuss relations between the semaoftaagoported models and stable models
in the context of hyperequivalence. We start with a compared the characterizations for the most
important cases, strong and uniform equivalence. We thereran to highlight some interesting
differences in the complexity.

First, let us consider characterizations of the notion adrgd equivalence, i.e., hyperequiva-
lence relative to the class of all progrartt&3?( At, At). To avoid references teh(P) andsh(Q),
we limit our discussion to the case wherand(@ are normal. According to Corollary 3.4, normal
programsP and( are supp-equivalent in this sense if and only if
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(1) P and@ have the same models, and for every madeif P, Tp(Y) = Tp(Y).

We recall that in this case suppmin-equivalence has the saaracterization (cf. Corollary 4.5).
Let us thus turn to stable equivalence relativétB8( At, At). As shown in [29], the notion can
be characterized in terms of SE-models, which are definedllsvk. A pair of interpretations
(X,Y) with X C Y is an SE-model of a prograi if Y = P andX = PY. Two programs are
equivalent relative tG{3" (At, At) under the stable-model semantics if and only if they have the
same SE-models. A simple reformulation yields tReand() are strongly equivalent in the stable
models setting if and only if

(2) P and(@ have the same models, and for every madelf P, Mod(P[Y]) = Mod(Q[Y]),

whereP[Y] = PY U{« 2|z € At\ Y},andPY = {hd(r) < bd*(r) | r € P,Y | bd" (1)} is
the reduct of? with respect td”. Despite differences, the basic intuition behind strong\edence
under supported- and stable-model semantics is quiteasifioit both settings. First, one checks
whether the candidatés (i.e., interpretations that might become a supportedistaiodel given
an extension of the respective program) are the same fomi@tograms under consideration.
Then, one checks whether any such extension has the saroeaffboth programs. In the case
of the supported-model semantics, this is exactly the dasg(t”) = T (Y'), while in the case of
the stable-model semantics, the models of the reduct haz@roide.

Next, we will compare characterizations of uniform equavade under supported minimal and
stable models (we recall that, by Theorem 3.3, in case of mtggp models, strong and uni-
form equivalence coincide). Our characterization of suippeguivalence uses the definition of
Mod% (P) as given in Section 4. This definition simplifies for uniforgquévalence (i.e., forl = At
andB = 0) as follows:(X,Y) € Mod",(P) if and only if

1.YEP

2.XCY

3. foreachZ with X CZ CY,ZEP
4. Y\ Tp(Y) C X.

By Corollary 4.4, uniform suppmin-equivalence betweengpamsP and( holds if and only if
Mod®,(P) = Mod",(Q). To characterize uniform equivalence for the case of statadels, [7]
introduced UE-models as special SE-models. A pdirY’) is an UE-model ofP, if

1.YEP

2.XCY

3. foreachZ with X c Z C Y, Z [£ PY
4. X |= P,
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Hence, in other words, UE-models Bfare all SE-models aoP of the form(Y, Y") plus SE-models
(X,Y) of P, whereX is maximal among the proper subsetsgfwhich can appear with” in an
SE-model. Finite programB and( are uniform equivalent with respect to stable models if and
only if the UE-models ofP and(@ coincide [7] (we note that the case of uniform equivalence of
infinite programs has a slightly more elaborate charactgaa).

We will now compare the two characterizations for finite peorgs. Again, we observe that
in the suppmin model cas&p(Y') plays a major role, while in the stable case, this role isriake
over by the reducf’Y. However, the remaining parts of the characterization sharesting
similarities. On the one hand, as already discussed abhowerves as a candidate to become a
supported/stable model after some program extension. ©nottier hand, we observe that both
characterizations depend on a very similar set of countdetsqeither of the the program itself,
or of the reduct”) which are subsets df. For infinite programs, direct comparison of uniform
equivalence under the two semantics gets harder since, astea, the UE-model characterization
of uniform equivalence for stable-model semantics doedalat any more (see [7] for details on
this issue).

We now turn to the complexity results, where some intergstiifferences can be observed
(the complexity results for the stable model semantics weudis below are from [7, 31]): First,
deciding hyperequivalence with respect to supported nsadeloNP-complete, no matter how the
contextHB( A, B) is specified, as shown in Section 5. The same complexity cgssires decid-
ing hyperequivalence under stable modaks]ong as we restrict to normal programslowever,
for disjunctive logic programs, deciding hyperequivakeitthe stable-semantics setting is more
complex for most instantiations G{3(A, B) (one exception is the case of strong equivalence,
i.e., the cased = B = At, which remains coNP-complete). On the other hand, for stpgo
models, disjunctions do not play a major role, and thus diegiblyperequivalence with respect to
supported models remains in coNP even for disjunctive anogr

Changing the semantics to suppmin models has a more subbkédfgct, as we have shown in
Section 6. Indeed, the complexity of deciding hyperegeineé with respect to suppmin models
goes up tdI2-completeness (already for normal programs). A notablegtien is the case when
at least one oA and B consists of all atoms, for which the corresponding problefdeciding
hyperequivalence remain in coNP. Interestingly, this ismexessarily so in the stable-semantics
world. As mentioned above, this holds for strong equivade@@ = B = At), but uniform
equivalence{ = At, B = () with respect to stable models remaiii§-complete for disjunctive
programs, while uniform suppmin-equivalence, as we natsaps back to coNP.

Table 1 highlights these results in terms of completenesgdtee comparing the case of normal
and disjunctive programs with respect to the different sgina and different instantiation of the
context class, including strong-, uniform-, and the gelnease of hyperequivalence.

8 Conclusions

In this paper we extended the concept of hyperequivalenteamther major semantics of logic
programs: the supported-model semantics and the suppuitéchal model semantics. We char-
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normal / disjunctive HB(At, At) HB(At,0) HB(A, B)
supp| coNP/coNP coNP/coNP coNP/coNP

suppmin| coNP/coNP  coNP/coNP I17/T1Y

stable| coNP/coNP  coNRIJ  coNPII}

Table 1: Complexity of hyperequivalence for different setns.

acterized these concepts of hyperequivalence and dervedad complexity results.

Our characterizations were mainly based on the (partiad)siap provability operatdrs [30]
and thus, unlike in the case of stable-model semantics,aicequire any references to the reduct.
However, some similarities to the case of the stable-moelelasitics appeared for more com-
plex versions of hyperequivalence we studied, namelyivétat supp- and suppmin-equivalence,
which required additional concepts such as aétd 4(P) and Mod 5 (P).

As concerns the complexity, the picture is uniform in thesgaishyperequivalence with respect
to supported models — problems that arise naturally turnabe coNP-complete. The situation
is different for hyperequivalence with respect to suppmadeis. When at least one of the sdts
and B consists of all atoms, the corresponding problems of degitlyperequivalence are coNP-
complete. As soon as thisis not the case, the complexitygmasad the decision problems become
I17-complete. The results we presented demonstrate that wethigms in which the departure
from A = At and B = At is major: A and B are required to be finite (either as a parameter of the
problem, or a part of the input). However, in some cases a rfasshdrastic change has the same
effect on the complexity. For instance, one can show thaevery finite A, B C At such that
A # (), the following problem id15-complete: given normal progranisand(, decide whether
P and(@ are suppmin-equivalent relative 658" (At \ A, B). Thus, even if just one atom frout
is forbidden from appearing in heads of rules in context pots, the complexity jumps one level
up. A detailed analysis of this behavior is the subject of mgoang work.

While to the best of our knowledge, this is the first paper eonimg hyperequivalence for sup-
ported (minimal) semantics, hyperequivalence betweegrpros with respect to other semantics
have been studied extensively. The concept of uniform edgmce appeared first in the area of
databases in the setting of DATALOG. In that setting queaire(non-ground) programs. Uniform
equivalence of programs was introduced by [26], as a delgdgtproximation to query equiva-
lence, and thus as a tool for query optimization. Severaratiquivalence notions in that context
were studied in [23].

In the area of logic programming with the stable-model seiogthe need for stronger (than
ordinary) equivalence was already recognized in [2, 13, [28fpre [19] coined the name of strong
equivalence for “equivalence for substitution.” In pautar, [2, 20] defined local rule transfor-
mations which retained the semantics of entire program lansl provided first explicit results in
this area. Many successor papers of [19] then dealt withachenizations for strong equivalence
[21, 29, 5], studied other forms of equivalence [14, 9, 25,324 or were concerned with programs
transformations [7, 6, 22, 32].

We already addressed different realizations for hypexadgmce in this work. Future work thus
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is twofold. On the one hand, since our characterizationstacithiques behind proofs are alge-
braic, generalizations to the language of partial opesainmoolean algebras (cf. [28] for algebraic
generalizations of hyperequivalence with respect to statddels) are of interest. Thus, it may be
possible to extend the results on supp- and suppmin-eguiealto other nonmonotonic logics.
One direction is to study hyperequivalence in autoepistdagic with respect to expansions and
moderately grounded expansions. Indeed, autoepistegic\dth the semantics of (moderately
grounded) expansions, when restricted to theories in wthielmodal operator is applied to atoms,
can be regarded as a modal variant of logic programming Wwetsemantics of supported (mini-
mal) models. The other direction concerns program simptifoc, for which our characterizations
serve as a hatural starting point. Moreover, in combinatiih the aforementioned extensions to
autoepistemic logic, such techniques might also help tystew normal-form translations within
that logic. As well, new investigations on the frontier beem logic programs under supported
models and nonmonotonic modal theories might be of interest
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