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Bounded treewidth and monadic second-order (MSO) logic have proved to be key concepts in
establishing fixed-parameter tractability results. Indeed, by Courcelle’s Theorem we know that
any property of finite structures, which is expressible by an MSO sentence, can be decided in linear
time (data complexity) if the structures have bounded treewidth. In principle, Courcelle’s Theorem
can be applied directly to construct concrete algorithms by transforming the MSO evaluation
problem into a tree language recognition problem. The latter can then be solved via a finite tree
automaton (FTA). However, this approach has turned out to be problematical, since even relatively
simple MSO formulae may lead to a “state explosion” of the FTA.

In this work we propose monadic datalog (i.e., datalog where all intentional predicate symbols
are unary) as an alternative method to tackle this class of fixed-parameter tractable problems. We
show that if some property of finite structures is expressible in MSO then this property can also
be expressed by means of a monadic datalog program over the decomposed structure: we mean by
this that the original structure is augmented with new elements and new relations that encode
one of its tree decompositions. In the first place, we thus compare the expressive power of two
query languages. However, we also show that the resulting fragment of datalog can be evaluated
in linear time (both with respect to the program size and with respect to the data size). Hence,
our transformation of an MSO query into a monadic datalog program yields an alternative proof
of Courcelle’s Theorem. In order to actually construct efficient algorithms for problems whose
tractability is due to Courcelle’s Theorem, we propose to use a fragment of full (i.e., not necessarily
monadic) datalog which allows for a succinct representation of the corresponding monadic datalog

This is an extended and enhanced version of results published in Gottlob et al. [2007].
The work was supported by the Austrian Science Fund (FWF), project P20704-N18.
Authors’ addresses: G. Gottlob, Computing Laboratory, Oxford University, Oxford OX1 3QD,
U.K.; email: Georg.gottlob@comlab.ox.ac.uk; R. Pichler, Institut für Informationssysteme, Technis-
che Universität Wien, A-1040 Vienna, Austria; email: pichler@dbai.tuwien.ac.at; F. Wei, Institut
für Informatik, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg i. Br., Germany; email:
fwei@informatik.uni-freiburg.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1529-3785/2010/10-ART3 $10.00
DOI 10.1145/1838552.1838555 http://doi.acm.org/10.1145/1838552.1838555

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 3, Publication date: October 2010.



3:2 • G. Gottlob

programs and for an efficient execution. This new approach is put to work by devising datalog
programs for the 3-Colorability problem of graphs and for the PRIMALITY problem of relational
schemas (i.e., testing if some attribute in a relational schema is part of a key). We also report on
experimental results with a prototype implementation.
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1. INTRODUCTION

Over the past decade, parameterized complexity has evolved as an important
subdiscipline in the field of computational complexity (see Downey and Fellows
[1999]; Flum and Grohe [2006]). In particular, it has been shown that many
hard problems become tractable if some problem parameter is fixed or bounded
by a constant. In the arena of graphs and, more generally, of finite structures,
the treewidth is one such parameter which has served as the key to many
fixed-parameter tractability (FPT) results. The most prominent method for
establishing the FPT in case of bounded treewidth is via Courcelle’s Theorem
(see Courcelle [1990a, 1990b]): any property of finite structures, which is
expressible by a monadic second-order (MSO) sentence, can be decided in linear
time (data complexity) if the treewidth of the structures is bounded by a fixed
constant.

Recipes as to how one can devise concrete algorithms based on Courcelle’s
Theorem can be found in the literature (see Flum et al. [2002], which is based
upon earlier work like Arnborg et al. [1991]). The idea is to first translate
the MSO evaluation problem over finite structures into an equivalent MSO
evaluation problem over rooted, colored binary trees. This problem can then
be solved via the correspondence between MSO over terms and finite tree au-
tomata (FTA) (see Thatcher and Wright [1968]; Doner [1970]; Thomas [1997])
(note that labeled, rooted trees of bounded degree can be seen as terms). In
theory, this generic method of turning an MSO description into a concrete al-
gorithm looks very appealing. However, in practice, it has turned out that even
relatively simple MSO formulae may lead to a “state explosion” of the FTA (see
Frick and Grohe [2004]; Maryns [2006]). Consequently, it was already noted in
Grohe [1999] that the algorithms derived via Courcelle’s Theorem are useless
for practical applications. The main benefit of Courcelle’s Theorem is that it
provides a simple way to recognize a property as being linear time computable.
In other words, proving the FPT of some problem by showing that it is MSO
expressible is the starting point (rather than the end point) of the search for
an efficient algorithm.
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In this work we investigate the potential of monadic datalog (i.e., datalog
where all intensional predicate symbols are unary) for devising efficient algo-
rithms in situations where the FPT has been shown via Courcelle’s Theorem.
Above all, we prove that if some property of finite structures is expressible in
MSO then this property can also be expressed by means of a monadic data-
log program over the decomposed structure: we mean by this that the original
structure is augmented with new elements and new relations that encode one
of its tree decompositions. Hence, in the first place, we prove an expressivity
result rather than a mere complexity result. However, we also show that the
resulting fragment of datalog can be evaluated in linear time (both with re-
spect to the program size and with respect to the data size). We thus get the
corresponding complexity result (i.e., Courcelle’s Theorem) as a corollary of this
MSO-to-datalog transformation.

Our MSO-to-datalog transformation for finite structures of bounded
treewidth generalizes a result from Gottlob and Koch [2004], where it was
shown that MSO on trees has the same expressive power as monadic datalog
on trees. Note that the connection between logic programming (with functions)
and tree automata has already been studied much earlier (see, e.g., Marque-
Pucheu [1983]; Filé [1985]). Several obstacles had to be overcome to prove our
generalization.

—First of all, we no longer have to deal with a single universe, namely, the uni-
verse of trees whose domain consists of the tree nodes. Instead, we now have
to deal with—and constantly switch between—two universes, namely, the
relational structure (with its own signature and its own domain), on the one
hand, and the tree decomposition (with appropriate predicates expressing the
tree structure and with the tree nodes as a separate domain), on the other.

—Of course, not only the MSO-to-datalog transformation itself had to be lifted
to the case of two universes. Also important prerequisites of the results in
Gottlob and Koch [2004] (notably several results on MSO-equivalences of
tree structures shown in Neven and Schwentick [2002]) had to be extended
to this new situation.

—Apart from switching between the two universes, it is ultimately necessary
to integrate both universes into the monadic datalog program. For this
purpose, both the signature and the domain of the finite structure have to
be appropriately extended.

—It has turned out that previous notions of standard or normal forms of tree
decompositions (see Downey and Fellows [1999]; Flum et al. [2002]) are not
suitable for our purposes. We therefore have to introduce a modified version
of “normalized tree decompositions,” which is then further refined as we
present new algorithms based on the monadic datalog approach.

In the second part of this article, we show how the monadic datalog approach
can be used to devise efficient algorithms. To this end, we use a fragment of
full (i.e., not necessarily monadic) datalog which allows for a succinct repre-
sentation of the corresponding monadic datalog programs and for an efficient
execution. We put this approach to work by presenting datalog programs for
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the 3-Colorability problem of graphs and for the PRIMALITY problem of rela-
tional schemas (i.e., testing if some attribute in a relational schema is part of
a key). Both problems are well known to be intractable (see Beeri and Bern-
stein [1979]; Mannila and Räihä [1992] for PRIMALITY). It is folklore that the
3-Colorability problem can be expressed by an MSO sentence. In Gottlob et al.
[2006b], it was shown that PRIMALITY is MSO expressible. Hence, in the case
of bounded treewidth, both problems become tractable. However, two attempts
to tackle these problems via the standard MSO-to-FTA approach turned out
to be very problematical: we experimented with a prototype implementation
using MONA (see Klarlund et al. [2002]) for the MSO model checking, but we
ended up with “out-of-memory” errors already for really small input data (see
Section 6). Alternatively, we made an attempt to directly implement the MSO-
to-FTA mapping proposed in Flum et al. [2002]. However, the “state explosion”
of the resulting FTA—which tends to occur already for comparatively simple
formulae (cf. Maryns [2006])—led to failure before we were able to feed any
input data to the program.

In contrast, the experimental results with our new datalog approach look
very promising, see Section 6. By the experience gained with these experiments,
the following advantages of datalog compared with MSO became apparent:

—Level of declarativity. MSO as a logic has the highest level of declarativity,
which often allows one very elegant and succinct problem specifications.
However, MSO does not have an operational semantics. In order to turn an
MSO specification into an algorithm, the standard approach is to transform
the MSO evaluation problem into a tree language recognition problem. But
the FTA clearly has a much lower level of declarativity and the intuition of
the original problem is usually lost when an FTA is constructed. In contrast,
the datalog program with its declarative style often reflects both the intuition
of the original problem and of the algorithmic solution. This intuition can be
exploited for defining heuristics which lead to problem-specific optimizations.

—General optimizations. A lot of research has been devoted to generally appli-
cable (i.e., not problem-specific) optimization techniques of datalog (see, e.g.,
Ceri et al. [1990]). In our implementation (see Section 6), we make heavy use
of these optimization techniques, which are not available in the MSO-to-FTA
approach.

—Flexibility. The generic transformation of MSO formulae to monadic datalog
programs (given in Section 4) inevitably leads to programs of exponential
size with respect to the size of the MSO-formula and the treewidth. How-
ever, as our programs for 3-Colorability and PRIMALITY demonstrate, many
relevant properties can be expressed by really short programs if we allow non-
monadic datalog. Moreover, as we will see in Section 5, also datalog provides
us with a certain level of succinctness. In fact, we will be able to express a big
monadic datalog program by a small nonmonadic program, whose size can
be even further reduced by allowing set operations in the datalog programs.

—Required transformations. The problem of a “state explosion” reported in
Maryns [2006] already refers to the transformation of (relatively simple)
MSO formulae on trees to an FTA. If we consider MSO on structures of
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bounded treewidth, the situation gets even worse, since the original (possibly
simple) MSO formula over a finite structure first has to be transformed into
an equivalent MSO formula over trees. This transformation (e.g., by the
algorithm in Flum et al. [2002]) leads to a much more complex formula
(in general, even with additional quantifier alternations) than the original
formula. In contrast, our approach works with monadic datalog programs on
finite structures which need no further transformation. Each program can
be executed as it is.

—Extending the programming language. One more aspect of the flexibility of
datalog is the possibility to define new built-in predicates, which expose an
efficient implementation in some other programming language (typically in
an imperative language) via a logical predicate. This is a standard technique
used by Prolog systems (which typically provide built-in predicates for type
testing, term unification, term comparison, arithmetic, input/output, etc.)
and it is also applicable to datalog. For instance, dlvhex [Eiter et al. 2005,
2006] allows the user to plug in program modules written in an imperative
programming language into a datalog program that is executed by the dlv
system [Leone et al. 2006]. Another example of a useful language extension
is the introduction of generalized quantifiers, which allow us to modularly
add features which are only expressible in higher-order logic. For instance,
Härtig quantifiers (by which we can express equicardinality) can thus be
represented. Likewise, Henkin quantifiers [Herre et al. 1991], which have
interesting applications to linguistics [Sher 1997], fall into this category. For
the theoretical background of generalized quantifiers, see Eiter et al. [1997a,
1997b] and Gottlob [1997].

Some applications require a fast execution which cannot always be guaranteed
by an interpreter. Hence, while we propose a logic programming approach, one
can of course go one step further and implement our algorithms directly in
Java, C++, etc., following the same paradigm.

The article is organized as follows. After recalling some basic notions and
results in Section 2, we present several results on the MSO equivalence of
substructures induced by subtrees of a tree decomposition in Section 3. In
Section 4, it is shown that any MSO formula with one free individual variable
over structures of bounded treewidth can be transformed into an equivalent
monadic datalog program. In Section 5, we put the monadic datalog approach
to work by presenting datalog programs for the 3-Colorability problem and for
the PRIMALITY problem in the case of bounded treewidth. In Section 6, we
report on experimental results with a prototype implementation. A conclusion
is given in Section 7.

2. PRELIMINARIES

2.1 Relational Schemas and Primality

We briefly recall some basic notions and results from database design theory
(for details, see Mannila and Räihä [1992]). In particular, we shall define the
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PRIMALITY problem, which will serve as a running example throughout this
article.

A relational schema is denoted as (R, F), where R is the set of attributes,
and F the set of functional dependencies (FDs, for short) over R. Without loss
of generality, we only consider FDs whose right-hand side consists of a single
attribute. Let f ∈ F with f : Y → A. We refer to Y ⊆ R and A ∈ R as lhs( f )
and rhs( f ), respectively. The intended meaning of an FD f : Y → A is that, in
any valid database instance of (R, F), the value of the attribute A is uniquely
determined by the value of the attributes in Y . It is convenient to denote a
set {A1, A2, . . . , An} of attributes as a string A1 A2 . . . An. For instance, we write
f : ab → c rather than f : {a, b} → c.

For any X ⊆ R, we write X+ to denote the closure of X, that is, the set of
all attributes determined by X. An attribute A is contained in X+ if and only if
either A ∈ X or there exists a “derivation sequence” of A from X in F of the form
X → X∪{A1} → X∪{A1, A2} → · · · → X∪{A1, . . . , An}, such that An = Aand for
every i ∈ {1, . . . , n}, there exists an FD fi ∈ F with lhs( f ) ⊆ X ∪ {A1, . . . , Ai−1}
and rhs( f ) = Ai.

If X+ = R then X is called a superkey. If X is minimal with this property,
then X is a key. An attribute A is called prime if it is contained in at least
one key in (R, F). An efficient algorithm for testing the primality of an at-
tribute is crucial in database design since it is an indispensable prerequisite
for testing if a schema is in third normal form. However, given a relational
schema (R, F) and an attribute A ∈ R, it is NP-complete to test if A is prime
(cf. Beeri and Bernstein [1979]; Mannila and Räihä [1992]). Clearly, such com-
putations are independent of the concrete data and are done once and for all
when designing a relational database. Hence, time efficiency is less critical
than in the case of actual data access. Nevertheless, the intractability of cer-
tain computational problems was identified in Beeri and Bernstein [1979] as a
serious obstacle to a good database design. Recognizing primality is one such
problem.

We shall consider two variants of the PRIMALITY problem in this article
(see Sections 5.2 and 5.3, respectively): the decision problem (i.e, given a re-
lational schema (R, F) and an attribute A ∈ R, is A prime in (R, F)?) and the
enumeration problem (i.e, given a relational schema (R, F), compute all prime
attributes in (R, F)).

Example 2.1. Consider the relational schema (R, F) with R = abcdeg and
F = { f1: ab → c, f2: c → b, f3: cd → e, f4: de → g, f5: g → e}. It can be eas-
ily checked that there are two keys for the schema: abd and acd. Thus, the
attributes a, b, c, and d are prime, while e and g are not.

2.2 Finite Structures and Treewidth

All structures and trees considered in this work are assumed to be finite. Let
τ = {R1, . . . , RK} be a set of predicate symbols. A (finite) structure A over τ (a
τ -structure, for short) is given by a finite domain A = dom(A) and relations
RA

i ⊆ Aα, where α denotes the arity of Ri ∈ τ . A structure may also be given
in the form (A, ā) where, in addition to A, we have distinguished elements
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ā = (a0, . . . , aw) from dom(A). Such distinguished elements are required for
interpreting formulae with free variables.

We write |A| to denote the size of (a “reasonable” encoding of) a structure.
Following Flum et al. [2002], a structure can be encoded in the standard RAM
model by first encoding the signature τ and then encoding the domain A and
each realation RA

i . The encoding of RA
i simply consists in specifying all α-tuples

in RA
i , where α denotes the arity of Ri. Hence, for the size |RA

i | of RA
i , we get

|RA
i | = �(α · card(RA

i )), where card(RA
i ) denotes the number of tuples in RA

i .
In total, the size of a τ -structure A is �(|τ | + |A| + ∑

Ri∈τ |RA
i |).

A tree decomposition T of a τ -structure A is defined as a pair 〈T , (At)t∈T 〉
where T is a tree and each At is a subset of A with the following properties:
(1) every a ∈ A is contained in some At. (2) For every Ri ∈ τ and every tuple
(a1, . . . , aα) ∈ RA

i , there exists some node t ∈ T with {a1, . . . , aα} ⊆ At. (3) For
every a ∈ A, the set {t | a ∈ At} induces a subtree of T .

Without loss of generality, we assume that the tree T underlying a tree
decomposition T = 〈T , (At)t∈T 〉 is rooted and has bounded degree. Indeed, con-
sidering some node of T as the root has no effect on the above definition of
tree decompositions. Moreover, the restriction to bounded degree can be easily
achieved (below, we shall show that, without loss of generality, we may even
restrict ourselves to binary trees; see Proposition 2.4). These assumptions on
the tree T play an important role for the equivalence of MSO and automata
(see Section 2.3). The classical equivalence between MSO and automata works
for automata on terms. However, since labeled, rooted trees of bounded degree
can be seen as terms, we thus get the equivalence between MSO and automata
on trees.

The third condition in the above definition of tree decompositions is usually
referred to as the connectedness condition. The sets At are called the bags
(or blocks) of T . The width of a tree decomposition 〈T , (At)t∈T 〉 is defined as
max{|At| | t ∈ T } − 1. The treewidth of A is the minimal width of all tree
decompositions of A. It is denoted as tw(A). Note that trees and forests are
precisely the structures of treewidth 1.

For given w ≥ 1, it can be decided in linear time if some structure has
treewidth at most w. Moreover, in case of a positive answer, a tree decom-
position of width w can be computed in linear time; see Bodlaender [1996].
Strictly speaking, the result in Bodlaender [1996] refers to tree decompositions
of graphs rather than arbitrary structures. However, we can associate a graph
G (the so-called primal or Gaifman graph) with every structure A by taking
the domain elements as the vertices of the graph. Moreover, two vertices are
adjacent in G if and only if the corresponding domain elements jointly occur
in some tuple in A. It can be easily shown that G has precisely the same tree
decompositions as A.

Unfortunately, it has been shown that the linear time algorithm from Bod-
laender [1996] is mainly of theoretical interest and the practical usefulness
is limited [Koster et al. 2001]. Recently, considerable progress has been made
in developing heuristic-based tree decomposition algorithms which can handle
graphs of moderate size with several hundreds of vertices [Koster et al. 2001;
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Fig. 1. Tree decomposition T of schema (R, F) in Example 2.1.

Bodlaender and Koster 2006, 2008; van den Eijkhof et al. 2007]. Moreover,
in some cases, the tree decomposition may be obtained from the origin of the
problem, that may be structured in a “natural way.” For instance, in Thorup
[1998], it was shown that the tree width of the control-flow graph of any goto-
free C program is at most six. A similar result was shown for Java programs in
Gustedt et al. [2002]. These results opened the ground for the efficient imple-
mentation of various compiler optimization tasks like the register allocation
problem.

In this article, we assume that a relational schema (R, F) is given as a τ -
structure with τ = {fd, att, lh, rh}. The intended meaning of these predicates is
as follows: fd( f ) means that f is an FD and att(b) means that b is an attribute.
lh(b, f ) (respectively, rh(b, f )) means that b occurs in lhs( f ) (respectively, in
rhs( f )). The treewidth of (R, F) is then defined as the treewidth of this τ

structure.

Example 2.2. Recall the relational schema (R, F) with R = abcdeg and F =
{ f1: ab → c, f2: c → b, f3: cd → e, f4: de → g, f5: g → e} from Example 2.1. This
schema is represented as the following τ -structure with τ = {fd, att, lh, rh}:
A = (A, fdA

, attA, lhA
, rhA) with A = R, fdA = { f1, f2, f3, f4, f5}, attA =

{a, b, c, d, e, g}, lhA = {(a, f1), (b, f1), (c, f2), (c, f3), (d, f3), (d, f4), (e, f4), (g, f5)},
rhA = {(c, f1), (b, f2), (e, f3), (g, f4), (e, f5).

A tree decomposition T of this structure is given in Figure 1. Note that
the maximal size of the bags in T is 3. Hence, the tree width is at most 2.
On the other hand, it is easy to check that the tree-width of T cannot be
smaller than 2: in order to see this, we consider the tuples in lhA and rhA as
edges of an undirected graph. Then the edges corresponding to (b, f1), (c, f2) ∈
lhA and (b, f2), (c, f1) ∈ rhA form a cycle in this graph. However, as we have
recalled above, only trees and forests have treewidth 1. The tree decomposition
in Figure 1 is, therefore, optimal and we have tw(F) = tw(A) = 2.

Remark. A relational schema (R, F) defines a hypergraph H(R, F) whose
vertices are the attributes in R and whose hyperedges are the sets of attributes
jointly occurring in at least one FD in F. Recall that the incidence graph of a
hypergraph H contains as nodes the vertices and hyperedges of H. Moreover,
two nodes v and h (corresponding to a vertex v and a hyperedge h in H) are
connected in this graph if and only if (in the hypergraph H) v occurs in h. It
can be easily verified that the treewidth of the above described τ -structure and
of the incidence graph of the hypergraph H(R, F) coincide.
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In Section 4, it is convenient to consider the elements in the bags of a tree
decomposition as ordered. Similarly to the normal form introduced in Theorem
6.72 of Downey and Fellows [1999], we will use the following form of normalized
tree decompositions.

Definition 2.3. Let A be a structure with tree decomposition T of width w.
We call T normalized if the following conditions are fulfilled:

(1) The bags are considered as tuples of w + 1 pairwise distinct elements
(a0, . . . , aw) rather than sets.

(2) Every internal node t ∈ T has either 1 or 2 child nodes.
(3) If a node t with bag (a0, . . . , aw) has one child node, then the bag of the child

is either obtained via a permutation of (a0, . . . , aw) or by replacing a0 with
another element a′

0. We call such a node t a permutation node or an element
replacement node, respectively.

(4) If a node t has two child nodes then these child nodes have identical bags
as t. In this case, we call t a branch node.

Finally, we also request that the number of nodes of the tree be linear in the
number of domain elements in A. In other words, we forbid “useless permuta-
tions.” Several successive permutations can be fused into a single one.

PROPOSITION 2.4. Let A be a structure with tree decomposition T of width w.
Without loss of generality, we may assume that the domain dom(A) has at least
w+1 elements. Then T can be transformed in linear time into a normalized tree
decomposition T ′, such that T and T ′ have identical width.

PROOF. We can transform an arbitrary tree decomposition T into a normal-
ized tree decomposition T ′ by the following steps (1)–(5). Clearly this transfor-
mation works in linear time and preserves the width.

(1) All bags can be padded to the “full” size of w+1 elements by adding elements
from a neighboring bag. For example, let s and s′ be adjacent nodes and let
As have w+1 elements (in a tree decomposition of width w, at least one such
node exists) and let |As′ | = w′ +1 with w′ < w. Then |As \ As′ | ≥ (w −w′) and
we may simply add (w − w′) elements from As \ As′ to As′ without violating
the connectedness condition.

(2) Suppose that some internal node s has k + 2 child nodes t1, . . . , tk+2 with
k > 0. It is a standard technique to turn this part of the tree into a binary
tree by inserting copies of s into the tree, that is, we introduce k nodes
s1, . . . , sk with Asi = As, such that the second child of s is s1, the second child
of s1 is s2, the second child of s2 is s3, etc. Moreover, t1 remains the first child
of s, while t2 becomes the first child of s1, t3 becomes the first child of s2, . . . ,
tk+1 becomes the first child of sk. Finally, tk+2 becomes the second child of sk.
Clearly, the connectedness condition is preserved by this construction.

(3) If an internal node s has two children t1 and t2, such that the bags of s, t1,
and t2 are not identical, then we simply insert a copy s1 of s between s and
t1 and another copy s2 of s between s and t2.
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Fig. 2. Normalized tree decomposition T ′ of schema (R, F) in Example 2.1.

(4) Let s be the parent of s′ and let |As \ As′ | = k with k > 1. Then we can
obviously “interpolate” s and s′ by new nodes s1, . . . , sk−1, such that sk−1

is the new parent of s′, sk−2 is the parent of sk−1, . . . , s is the parent of
s1. Moreover, the bags Asi can be defined in such a way that the bags
of any two neighboring nodes differ in exactly one element, for example,
|As \ As1 | = |As1 \ As| = 1.

(5) Let the bags of any two neighboring nodes s and s′ differ by one element,
that is, ∃a ∈ As with a �∈ As′ and ∃a′ ∈ As′ with a′ �∈ As. Then we can insert
two “interpolation nodes” t and t′, such that At has the same elements as
As but with a at position 0. Likewise, At′ has the same elements as As′ but
with a′ at position 0.

Example 2.5. The tree decomposition T in Figure 1 is clearly not normal-
ized. In contrast, the tree decomposition T ′ in Figure 2 is normalized in the
above sense. Let us ignore the node identifiers s1, . . . , s19 for the moment. Note
that T and T ′ have identical width.

When we devise concrete datalog programs for the 3-Colorability problem
of graphs and for the PRIMALITY problem of relational schemas in Section 5,
it is preferable to return to the notion of tree decompositions whose bags are
sets of domain elements rather than tuples. Hence, we may delete permutation
nodes from the tree decomposition. Moreover, it is convenient to split the action
of element replacement nodes in two steps. Recall that an element replacement
node replaces exactly one element in the bag of the child node by a new element.
In our algorithms in Section 5, we shall replace these element replacement nodes
by two new kinds of nodes, namely, element removal nodes (which remove one
domain element from the bag of the child node) and element introduction nodes
(which introduce one new element). Finally, we drop the condition that all bags
in a tree decomposition of width w must have “full size” w + 1 (by splitting
the element replacement into element removal and element introduction, this
condition would have required some relaxation anyway). In summary, we get
the following modified normal form, which was also considered in Kloks [1994].
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Fig. 3. Normalized tree decompositions with set bags.

Definition 2.6. Let A be an arbitrary structure with tree decomposition T
of width w. We call T normalized with set bags if the following conditions are
fulfilled:

(1) The bags are considered as sets of at most k+ 1 pairwise distinct elements
{a0, . . . , ak} with k ≤ w.

(2) Every internal node t ∈ T has either 1 or 2 child nodes.
(3) If a node t with bag {a0, . . . , ak} has one child node, then the bag of the parent

is obtained from the bag of the child either by introducing a new element
or by removing one element. We call such a node t an element introduction
node or an element removal node, respectively.

(4) If a node t has two child nodes then these child nodes have identical bags
as t. In this case, we call t a branch node.

Finally, we again request that the number of nodes of the tree be linear in the
number of domain elements in A. In other words, we forbid “useless copies” of
bags.

Clearly, every tree decomposition T can be transformed in linear time into
a normalized tree decomposition T ′′ with set bags according to Definition 2.6,
such that T and T ′′ have identical width. For instance, recall the tree decom-
position T ′ from Figure 2. A tree decomposition T ′′ compliant with our normal
form with set bags from Definition 2.6 is depicted in Figure 3.

2.3 Monadic Second-Order Logic

We assume some familiarity with monadic second-order logic (MSO) (see, e.g.,
Ebbinghaus and Flum [1999]; Libkin [2004]). MSO extends first order (FO)
logic by the use of set variables (usually denoted by uppercase letters), which
range over sets of domain elements. In contrast, the individual variables (which
are usually denoted by lowercase letters) range over single domain elements.
An FO formula ϕ over a τ -structure has as atomic formulae either atoms with
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some predicate symbol from τ or equality atoms. An MSO formula ϕ over a
τ -structure may additionally have atoms whose predicate symbol is a monadic
predicate variable. For the sake of readability, we denote such an atom usually
as a ∈ X rather than X(a). Likewise, we use set operators ⊆ and ⊂ with the
obvious meaning.

The quantifier depth of an MSO formula ϕ is defined as the maximum degree
of nesting of quantifiers (both for individual variables and set variables) in ϕ.
In this work, we will mainly encounter MSO formulae with free individual
variables. A formula ϕ(x) with exactly one free individual variable is called a
unary query. More generally, let ϕ(x̄) with x̄ = (x0, . . . , xw) for some w ≥ 0 be an
MSO formula with free variables x̄. Furthermore, let A be a τ -structure and
ā = (a0, . . . , aw) be distinguished domain elements. We write (A, ā) |= ϕ(x̄) to
denote that ϕ(ā) evaluates to true in A. Usually, we refer to (A, ā) simply as a
structure rather than a structure with distinguished domain elements.

Example 2.7. It was shown in Gottlob et al. [2006b] that primality can be
expressed in MSO. We give a slightly different MSO formula ϕ(x) here, which
is better suited for our purposes in Section 5, namely,

ϕ(x) = (∃Y )[Y ⊆ R ∧ Closed(Y ) ∧ x �∈ Y ∧ Closure(Y ∪ {x}, R)] with
Closed(Y ) ≡ (∀ f )[ f d( f ) → (∃b)[(rh(b, f ) ∧ b ∈ Y ) ∨ (lh(b, f ) ∧ b �∈ Y )]] and
Closure(Y, Z) ≡ Y ⊆ Z ∧ Closed(Z) ∧ ¬(∃Z′)[Y ⊆ Z′ ∧ Z′ ⊂ Z ∧ Closed(Z′)].

This formula expresses the following characterization of primality: an attribute
a is prime if and only if there exists an attribute set Y ⊆ R, such that Y is closed
with respect to F (i.e., Y+ = Y), a �∈ Y, and (Y∪{a})+ = R. In other words, Y∪{a}
is a superkey but Y is not.

Recall the τ -structure A from Example 2.2 representing a relational schema.
It can be easily verified that (A, a) |= ϕ(x) and (A, e) �|= ϕ(x) hold. Clearly,
the quantifier depth of the formulae Closed(Y ) is 2. As far as the formula
Closure(Y, Z) is concerned, we have to first consider the quantifier depth of the
subformulae Y ⊆ Z and Y ⊂ Z, which can be expressed as ∀x[x ∈ Y → x ∈ Z],
and Y ⊆ Z ∧ ∃x[x ∈ Z ∧ x �∈ Y ], respectively. Thus the quantifier depth of both
subformulae is 1. Therefore, the quantifier depths of the formula Closure(Y, Z)
and ϕ(x) are 3 and 4, respectively.

We call two structures (A, ā) and (B, b̄) k-equivalent and write (A, ā) ≡MSO
k

(B, b̄) if and only if, for every MSO formula ϕ of quantifier depth at most k, the
equivalence (A, ā) |= ϕ ⇔ (B, b̄) |= ϕ holds. By definition, ≡MSO

k is an equiva-
lence relation. For any k, the relation ≡MSO

k has only finitely many equivalence
classes. These equivalence classes are referred to as k-types or simply as types.
The ≡MSO

k equivalence between two structures can be effectively decided. There
is a nice characterization of ≡MSO

k -equivalence by Ehrenfeucht-Fraı̈ssé games:
The k-round MSO game on two structures (A, ā) and (B, b̄) is played between
two players—the spoiler and the duplicator. In each of the k rounds, the spoiler
can choose between a point move and a set move. If, in the ith round, the spoiler
makes a point move, he or she then selects some element ci ∈ dom(A) or some
element di ∈ dom(B). The duplicator answers by choosing an element in the
opposite structure. If, in the ith round, the spoiler makes a set move, he or she
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then selects a set Pi ⊆ dom(A) or a set Qi ⊆ dom(B). The duplicator answers by
choosing a set of domain elements in the opposite structure. Suppose that, in k
rounds, the domain elements c1, . . . , cm and d1, . . . , dm from dom(A) and dom(B),
respectively, were chosen in the point moves. Likewise, suppose that the sub-
sets P1, . . . , Pn and Q1, . . . , Qm of dom(A) and dom(B), respectively, were chosen
in the set moves. The duplicator wins this game, if the mapping which maps
each ci to di is a partial isomorphism from (A, ā, P1, . . . , Pn) to (B, b̄, Q1, . . . , Qn).
We say that the duplicator has a winning strategy in the k-round MSO game
on (A, ā) and (B, b̄) if he or she can win the game for any possible moves of the
spoiler.

The following relationship between ≡MSO
k equivalence and k-round MSO

games holds: Two structures (A, ā) and (B, b̄) are k-equivalent if and only if
the duplicator has a winning strategy in the k-round MSO game on (A, ā) and
(B, b̄), (see Ebbinghaus and Flum [1999]; Libkin [2004]).

The importance of MSO in the context of parameterized complexity comes
from Courcelle’s Theorem, which can be phrased as follows:

THEOREM 2.8 (COURCELLE; 1987 1990A, 1990B). The model checking problem
for an MSO sentence ϕ and a τ -structure A is fixed-parameter linear with
parameter (|ϕ|, tw(A)), that is, checking if an MSO sentence ϕ evaluates to true
over a τ -structure A of treewidth w can be done in time O( f (|ϕ|, w) ∗ |A|) for
some function f .

It is important to note that the fixed-parameter linearity according to the
above theorem does not immediately guarantee practical algorithms due to
the huge “hidden” constants (which are nonelementary in general). Courcelle’s
Theorem can be proved in several ways. The proofs in [Courcelle 1987, 1990b]
were based on the Feferman Vaught Theorem (see also Makowsky [2004]). Al-
ternative proofs are based on the relationship between MSO and finite-tree
automata (see e.g., Arnborg et al. [1991]; Flum et al. [2002]) or Ehrenfeucht-
Fraı̈ssé games (as is our proof in Section 4). In any case, we end up with
constants that are nonelementary with respect to some parameter of the MSO
formula, namely, the number of quantifier alternations (in the case of the au-
tomata theoretic approach) or the quantifier depth (in the case of the other two
approaches).

2.4 Datalog

We assume some familiarity with datalog (see, e.g., Abiteboul et al. [1995];
Ceri et al. [1990]; Ullman [1989]). Syntactically, a datalog program P is a set of
function-free, definite Horn clauses, that is, each clause consists of a nonempty
head and a possibly empty body. Clauses with nonempty bodies are called rules
while those with empty bodies are called facts. Predicates occurring only in the
body of rules in P are called extensional, while predicates occurring also in the
head of some rule are called intensional.

Let A be a τ -structure with domain A and relations RA
1 , . . . , RA

K with RA
i ⊆

Aα, where α denotes the arity of Ri ∈ τ . In the context of datalog, it is convenient
to think of the relations RA

i as sets of ground atoms. The set of all such ground
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atoms of a structure A is referred to as the extensional database (EDB) of A,
which we shall denote as E(A) (or simply as A, if no confusion is possible). We
have Ri(ā) ∈ E(A) if and only if ā ∈ RA

i .
In order to evaluate a datalog program P over a structure A, we consider the

atoms in A as additional facts of the program. The result of this evaluation is
the set of those (ground) facts which are logically implied by the formula P ∧A.
The semantics thus obtained is the minimal model semantics. Alternatively,
datalog has an operational semantics by viewing the rules of a program as
inference rules which allow us to derive a fact that appears in the head of a rule
if all facts appearing in the body of a rule can be deduced. Nonground clauses
are replaced by all possible ground instantiations over the active domain (i.e.,
the set of domain elements appearing in P ∧ A). Formally, this operational
semantics is defined in terms of the immediate consequence operator which
augments a given set of facts by those facts which can be inferred in one step by
applying the rules in P. The set of (ground) facts obtained as the least fixpoint
of the immediate consequence operator coincides with the minimal model of
P ∧ A (for details see Abiteboul et al. [1995]; Ceri et al. [1990]; Ullman [1989].

Example 2.9. Let us consider the following datalog program P.

path(x, y) ← arc(x, y).
path(x, y) ← path(x, z), arc(z, y).

We assume the structure A contains the the following facts: {arc(1, 2), arc(2, 3)}.
Here the predicate path is intensional and arc is extensional. Basically, to

evaluate the program P over A, we first conduct the grounding by instantiat-
ing the rules over the active domain {1, 2, 3}. We thus get a ground program
with rules path(1, 2) ← arc(1, 2); path(2, 1) ← arc(2, 1); path(1, 3) ← arc(1, 3);
. . .; path(1, 2) ← path(1, 3), arc(3, 2); etc. Then, by applying the immediate con-
sequence operator with respect to the grounded rules, we obtain the minimal
model of P∧A where the following facts are true: {arc(1, 2), arc(2, 3), path(1, 2),
path(2, 3), path(1, 3)}.

Concerning the complexity of datalog, we are mainly interested in the com-
bined complexity (i.e., the complexity with respect to the size of the program
P and the size of the data A). In general, the combined complexity of data-
log is EXPTIME-complete (implicit in Vardi [1982]). However, there are some
fragments which can be evaluated much more efficiently. Below, we give some
examples.

(1) Propositional datalog (i.e., all rules are ground) can be evaluated in lin-
ear time (combined complexity) (see Dowling and Gallier [1984]; Minoux
[1988]).

(2) The guarded fragment of datalog (i.e., every rule r contains an extensional
atom B in the body, such that all variables occurring in r also occur in B) can
be evaluated in time O(|P|∗|A|) (see Gottlob et al. [2002]). This upper bound
on the complexity follows easily from the observation that the “guard” B
in a rule r admits at most |A| possible instantiations that are contained
in the extensional database A. Since all variables in r occur in B, also the
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number of possible ground instantiations (whose bodies do not contain an
extensional atom outside A) of every rule is bounded by |A|. The guarded
fragment of first-order logic was introduced in Andréka et al. [1995]. In the
context of logic programming, the guarded fragment was first studied in
Gottlob et al. [2002] and further treated in Calı̀ et al. [2009a, 2009b].

(3) Monadic datalog (i.e., all intensional predicates are unary) is NP-complete
(combined complexity) (see Gottlob and Koch [2004]).

(4) In Foustoucos and Guessarian [2006], the tractability of some fragments of
inf-datalog was shown. Inf-datalog extends the usual least fixpoint seman-
tics of datalog with greatest fixpoint. It thus captures some modal logics
that play an important role in computer-aided verification.

3. INDUCED SUBSTRUCTURES

In this section, we study the k-types of substructures induced by certain sub-
trees of a tree decomposition (see Definitions 3.1 and 3.2). Moreover, it is con-
venient to introduce some additional notation in Definition 3.4 below.

Definition 3.1. Let T be a tree and t a node in T . Then we denote the
subtree rooted at t as Tt. Moreover, analogously to Neven and Schwentick [2002],
we write T̄t to denote the envelope of Tt. This envelope is obtained by removing
all of Tt from T except for the node t.

Likewise, let T = 〈T , (As)s∈T 〉 be a tree decomposition of a structure. Then
we define Tt = 〈Tt, (As)s∈Tt〉 and T̄t = 〈T̄t, (As)s∈T̄t

〉.
In other words, t is the root node in Tt while, in T̄t, it is a leaf node. Clearly,

the only node occurring in both Tt and T̄t is t.

Definition 3.2. Let A be a structure and let T = 〈T , (At)t∈T 〉 be a tree
decomposition of A. Moreover, let s be a node in T with bag As = ā = (a0, . . . , aw)
and let S be one of the subtrees Ts or T̄s of T .

Then we write I(A,S, s) to denote the structure (A′, ā), where A′ is the
substructure of A induced by the elements occurring in the bags of S .

Example 3.3. Recall the relational schema (R, F) represented by the struc-
ture A from Example 2.2 with (normalized) tree decomposition T ′ in Figure 2.
Consider, for instance, the node s in T ′, as depicted in Figure 4, with bag
As = ( f3, b, c). Then the induced substructure I(A, T ′

s , s) is the substructure
of A which is induced by the elements occurring in the bags of T ′

s , whereas
I(A, T̄ ′

s , s) the substructure of A which is induced by the elements occurring in
the bags of T̄ ′

s .

Definition 3.4. Let w ≥ 1 be a natural number and let A and B be
τ -structures for some signature τ . Moreover, let (a0, . . . , aw) (respectively,
(b0, . . . , bw)) be a tuple of pairwise distinct elements in A (respectively, B).

We call (a0, . . . , aw) and (b0, . . . , bw) equivalent and write (a0, . . . , aw) ≡
(b0, . . . , bw) if and only if for any predicate symbol R ∈ τ with arity α and for all
tuples (i1, . . . , iα) ∈ {0, . . . , w}α, the equivalence RA(ai1 , . . . , aiα ) ⇔ RB(bi1 , . . . , biα )
holds.
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Fig. 4. Induced substructures T ′
s and T̄ ′

s of the tree decomposition T w.r.t. the node s.

We are now ready to generalize results from Neven and Schwentick [2002]
(dealing with trees together with a distinguished node which is either the
root or some leaf node) to the case of structures of bounded treewidth over
an arbitrary signature τ . In the three lemmas below, let k ≥ 0 and w ≥ 1 be
arbitrary natural numbers and let τ be an arbitrary signature.

LEMMA 3.5. Let A and B be τ -structures, let S (respectively, T ) be a normal-
ized tree decomposition of A (respectively, of B) of width w, and let s (respectively,
t) be an internal node in S (respectively, in T ).

(1) Permutation nodes. Let s′ (respectively, t′) be the only child of s in S (respec-
tively, of t in T ). Moreover, let ā, ā′, b̄, and b̄′ denote the bags at the nodes s,
s′, t, and t′, respectively.

If I(A,Ss′ , s′) ≡MSO
k I(B, Tt′ , t′) and there exists a permutation π , such that

ā = π (ā′) and b̄ = π (b̄′), then I(A,Ss, s) ≡MSO
k I(B, Tt, t).

(2) Element replacement nodes. Let s′ (respectively, t′) be the only child of s in S
(respectively, of t in T ). Moreover, let ā = (a0, a1, . . . , aw), ā′ = (a′

0, a1, . . . , aw),
b̄ = (b0, b1, . . . , bw), and b̄′ = (b′

0, b1, . . . , bw) denote the bags at the nodes s,
s′, t, and t′, respectively.

If I(A,Ss′ , s′) ≡MSO
k I(B, Tt′ , t′) and ā ≡ b̄, then I(A,Ss, s) ≡MSO

k I(B, Tt, t).
(3) Branch nodes. Let s1 and s2 (respectively, t1 and t2) be the children of s in S

(respectively, of t in T ).
If I(A,Ss1 , s1) ≡MSO

k I(B, Tt1 , t1) and I(A,Ss2 , s2) ≡MSO
k I(B, Tt2 , t2), then

I(A,Ss, s) ≡MSO
k I(B, Tt, t).

LEMMA 3.6. Let A and B be τ -structures, let S (respectively, T ) be a normal-
ized tree decomposition of A (respectively, of B) of width w, and let s (respectively,
t) be an internal node in S (respectively, in T ).

(1) Permutation nodes. Let s′ (respectively, t′) be the only child of s in S (respec-
tively, of t in T ). Moreover, let ā, ā′, b̄, and b̄′ denote the bags at the nodes s,
s′, t, and t′, respectively.
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If I(A, S̄s, s) ≡MSO
k I(B, T̄t, t) and there exists a permutation π , such that

ā = π (ā′) and b̄ = π (b̄′), then I(A, S̄s′ , s′) ≡MSO
k I(B, T̄t′ , t′).

(2) Element replacement nodes. Let s′ (respectively, t′) be the only child of s in S
(respectively, of t in T ). Moreover, let ā = (a0, a1, . . . , aw), ā′ = (a′

0, a1, . . . , aw),
b̄ = (b0, b1, . . . , bw), and b̄′ = (b′

0, b1, . . . , bw) denote the bags at the nodes s,
s′, t, and t′, respectively.

If I(A, S̄s, s) ≡MSO
k I(B, T̄t, t) and ā′ ≡ b̄′, then I(A, S̄s′ , s′) ≡MSO

k
I(B, T̄t′ , t′).

(3) Branch nodes. Let s1 and s2 (respectively, t1 and t2) be the children of s in S
(respectively, of t in T ). If I(A, S̄s, s) ≡MSO

k I(B, T̄t, t) and I(A,Ss2 , s2) ≡MSO
k

I(B, Tt2 , t2), then I(A, S̄s1 , s1) ≡MSO
k I(B, T̄t1 , t1).

If I(A, S̄s, s) ≡MSO
k I(B, T̄t, t) and I(A,Ss1 , s1) ≡MSO

k I(B, Tt1 , t1), then
I(A, S̄s2 , s2) ≡MSO

k I(B, T̄t2 , t2).

LEMMA 3.7. Let A and B be τ -structures, let S (respectively, T ) be a normal-
ized tree decomposition of A (respectively, of B) of width w, and let s (respectively,
t) be an arbitrary node in S (respectively, in T ), whose bag is (a0, . . . , aw) (respec-
tively, (b0, . . . , bw)).
If I(A,Ss, s) ≡MSO

k I(B, Tt, t) and I(A, S̄s, s) ≡MSO
k I(B, T̄t, t), then (A, ai) ≡MSO

k
(B, bi) for every i ∈ {0, . . . , w}.

PROOF IDEA OF THE LEMMAS. The three lemmas can be proved by Ehrenfeucht-
Fraı̈ssé games (see Ebbinghaus and Flum [1999]; Libkin [2004]). In all cases,
we extend or combine the winning strategy of the duplicator on the original
pair(s) of structures to a winning strategy on the target structures. Clearly, the
elements selected by the two players in point moves define a partial isomor-
phism on the original pair(s) of substructures. The connectedness condition of
tree decompositions allows us to conclude that these elements also define a
partial isomorphism on the target substructures. Alternatively, these lemmas
can be inferred from the proof of Courcelle’s Theorem in Courcelle [1990b].

Remark. The three lemmas follow the spirit of composition theorems like
the Feferman Vaught Theorem (see Makowsky [2004] for various forms and
applications of this famous theorem). Lemma 3.5 states that the k-type of the
substructure induced by a subtree Ss of the tree decomposition S is fully de-
termined by the type of the structure induced by the subtree rooted at the
child node(s) together with the relations between elements in the bag at node
s. Analogously, Lemma 3.6 deals with the k-type of the substructure induced by
a subtree S̄s. Finally, Lemma 3.7 states that the k-type of the substructures in-
duced by Ss and S̄s fully determines the type of the entire structure A extended
by some domain element from the bag of s.

4. MONADIC DATALOG

In this section, we introduce two restricted fragments of datalog, namely,
monadic datalog over structures of bounded treewidth and the quasiguarded
fragment of datalog. Let τ = {R1, . . . , RK} be a set of predicate symbols and let
w ≥ 1 denote the treewidth. We define the following extended signature τtd.

τtd = τ ∪ {root, leaf , child1, child2, bag},
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where the unary predicates root, and leaf as well as the binary predicates child1

and child2 are used to represent the tree T of the normalized tree decomposition
in the obvious way. For instance, we write child1(s1, s) to denote that s1 is
either the first child or the only child of s. Finally, bag has arity w + 2, where
bag(t, a0, . . . , aw) means that the bag at node t is (a0, . . . , aw).

Definition 4.1. Let τ be a set of predicate symbols and let w ≥ 1. A monadic
datalog program over τ -structures of treewidth w is a set of datalog rules where
all extensional predicates are from τtd and all intensional predicates are unary.

Let A be a τ -structure A and let T = 〈T , (At)t∈T 〉 be an arbitrary, normalized
tree decomposition of A of width w. Then we denote by Atd the τtd-structure
representing A and T as follows: the domain of Atd is the union of dom(A) and
the set of nodes of T . In addition to the relations RA

i with Ri ∈ τ , the structure
Atd also contains relations for each predicate root, leaf , child1, child2, and bag
thus representing the tree decomposition T . In the sequel, we shall refer to Atd

as the decomposed structure or as a structure decomposing A. By Bodlaender
[1996], one can compute T from A in linear time with respect to the size of A.
Hence, the size of Atd (for some reasonable encoding, e.g., the one presented in
Flum et al. [2002], which we recalled in Section 2.2) is also linearly bounded
by the size of A.

Example 4.2. Recall the relational schema (R, F) represented by the
structure A from Example 2.2 with normalized tree decomposition T ′ in
Figure 2. The domain of Atd is the union of dom(A) and the set of nodes
{s1, . . . , s22}. The corresponding τtd-structure Atd representing the relational
schema together with tree decomposition T ′ is made up by the following set of
ground atoms: root(s1), leaf (s12), leaf (s14), leaf (s19), child1(s2, s1), child2(s3, s1),
. . ., bag(s1, f3, d, e), . . ..

As we recalled in Section 2.4, the evaluation of monadic datalog is NP-
complete (combined complexity). However, the target of our transformation
from MSO to datalog will be a further restricted fragment of datalog, which we
refer to as quasiguarded. The evaluation of this fragment is tractable.

Definition 4.3. Let τ be a finite set of predicate symbols and let P be a
datalog program over the extended signature τtd for some treewidth w ≥ 1.
Moreover, let r be a rule in P and let x, y be variables in r.

We say that y is functionally dependent on x in one step, if the body of r con-
tains an atom of one of the following forms: child1(x, y), child1(y, x), child2(x, y),
child2(y, x), or bag(x, a0, . . . , ak) with y = ai for some i ∈ {1, . . . , k}.

We say that y is functionally dependent on x if there exists some n ≥ 1 and
variables z0, . . . , zn in r with z0 = x, zn = y and, for every i ∈ {1, . . . , n}, zi is
functionally dependent on zi−1 in one step.

Definition 4.4. Let τ be a finite set of predicate symbols and let P be a
datalog program over the extended signature τtd for some treewidth w ≥ 1. We
call a datalog program P over τtd quasiguarded if every rule r in P contains an
extensional atom B, such that every variable occurring in r either occurs in B
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or is functionally dependent on some variable in B. If this is the case, we call B
a quasiguard of r.

The idea of the above definitions is the following: suppose that we have
a τtd-structure A and a ground instantiation of some rule r, such that each
extensional atom in r is indeed instantiated to some atom in A. If a variable
y is functionally dependent on x then the value of y is fully determined by x,
that is, for every ground instantiation of x there exists at most one ground
instantiation of y. Hence, in a quasiguarded datalog program, every rule r has
at most |A| possible ground instantiations such that the extensional atoms of r
are instantiated to atoms in A—this corresponds to the maximally |A| ground
instantiations of the quasiguard in the rule r.

THEOREM 4.5. Let P be a quasiguarded datalog program and let A be a
structure. Then P can be evaluated over A in time O(|P| ∗ |A|), where |P| denotes
the size of the datalog program and |A| denotes the size of the data.

PROOF. Let r be a rule in the program P and let B be the “quasiguard” of
r, that is, all variables in r either occur in B or are functionally dependent on
some variable in B. Clearly, the semantics of P ∪A is not changed if we replace
each rule r in P by the set of all possible ground instances r′ of r, such that
the extensional atoms in r′ are indeed contained in A. In order to compute all
these ground instances r′, we first instantiate B. The maximal number of such
instantiations is bounded by |A|.

Now consider the remaining variables in r. By assumption, they are all
functionally dependent on the variables in B. Hence, we can iteratively deter-
mine the only possible value of the variables which are functionally dependent
on some variable in B in i steps (for i ≥ 1). By the above considerations, all
variables outside Badmit at most one ground instantiation such that the exten-
sional atoms of r are contained in A. Hence, the number of all possible ground
instantiations r′ of r is bounded by |A| and all these ground instantiations can
be computed in time O(|A|).

Hence, in total, the ground program P ′ consisting of all possible ground
instantiations of the rules in P has size O(|P| ∗ |A|) and also the computation of
these ground rules fits into the linear time bound. As we recalled in Section 2.4,
the ground program P ′ can be evaluated over A in time O(|P ′| + |A|) = O((|P| ∗
|A|) + |A|) = O(|P| ∗ |A|).

Before we state the main result concerning the expressive power of monadic
datalog over structures of bounded treewidth, we introduce the following no-
tation. In order to simplify the exposition below, we assume that all predicates
Ri ∈ τ have the same arity r. First, this can be easily achieved by copying
columns in relations with smaller arity. Moreover, it is easily seen that the
results also hold without this restriction.

It is convenient to use the following abbreviations. Let ā = (a0, . . . , aw)
be a tuple of domain elements. Then we write R(ā) to denote the set of all
ground atoms with predicates in τ = {R1, . . . , RK} and arguments in {a0, . . . , aw},
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that is,

R(ā) =
K⋃

i=1

w⋃

j1=0

. . .

w⋃

jr=0

{Ri(aj1 , . . . , ajr )}.

Let A be a structure with tree decomposition T and let s be a node in T whose
bag is ā = (a0, . . . , aw). Then we write (A, s) as a short-hand for the structure
(A, ā) with distinguished constants ā = (a0, . . . , aw).

THEOREM 4.6. Let τ and w ≥ 1 be arbitrary but fixed. Every MSO-definable
unary query over τ -structures of treewidth w is also computable by a quasi-
guarded monadic datalog program over τtd.

PROOF. Let ϕ(x) be an arbitrary MSO formula with free variable x and
quantifier depth k. We have to construct a monadic datalog program P with
distinguished predicate ϕ which defines the same query.

Without loss of generality, we only consider the case of structures whose
domain has at least w +1 elements. We maintain two disjoint sets of tokens �↑

and �↓, representing k-types of structures (A, ā) of the following form: A has a
tree decomposition T of width w and ā is the bag of some node s in T . Moreover,
for �↑, we require that s be the root of S while, for �↓, we require that s be a leaf
node of T . In order to ensure that �↑ and �↓ are indeed disjoint, every token in
�↑ (respectively, in �↓) is of the form ϑ↑ (respectively, ϑ↓) representing some
type ϑ . We maintain for each token ϑ↑ (respectively, ϑ↓) representing a type
ϑ a witness W(ϑ↑) = 〈A, T , s〉 (respectively, W(ϑ↓) = 〈A, T , s〉). The tokens in
�↑ and �↓ will serve as predicate names in the monadic datalog program to be
constructed. Initially, �↑ = �↓ = P = ∅.

Below we describe a bottom-up construction of �↑ and a top-down construc-
tion of �↓, respectively. Note that these constructions do not refer to a particular
term or structure. Instead, the goal of these constructions is to generate tokens
representing the types of all possible structures (A, ā) of the above mentioned
form.

(1) “Bottom-up” construction of �↑.
BASE CASE. In this step, we construct all possible types ϑ of structures (A, ā)

whose tree decomposition consists of a single node. Let a0, . . . , aw be pairwise
distinct objects and let S be a tree decomposition consisting of a single node s,
whose bag is As = (a0, . . . , aw). Then we consider all possible structures (A, s)
with this tree decomposition. In particular, dom(A) = {a0, . . . , aw}. We get all
possible structures with tree decomposition S by letting the EDB E(A) be any
subset of R(ā). For every such structure (A, s), we check if there exists a token
ϑ↑ ∈ �↑ with W(ϑ↑) = 〈B, T , t〉, such that (A, s) ≡MSO

k (B, t). If such a ϑ↑
exists, we take it. Otherwise we invent a new token ϑ↑, add it to �↑, and set
W(ϑ↑) := 〈A,S, s〉. In any case, we add the following rule to the program P:

ϑ↑(v) ← bag(v, x0, . . . , xw), leaf (v), {Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) ∈ E(A)},
{¬Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) �∈ E(A)}.

INDUCTION STEP. We construct new structures by extending the tree de-
compositions of existing witnesses in “bottom-up” direction, that is, by
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introducing a new root node. This root node may be one of three kinds of
nodes.

(a) Permutation nodes. For each ϑ↑′ ∈ �↑, let W(ϑ↑′) = 〈A,S ′, s′〉 with bag
As′ = (a0, . . . , aw) at the root s′ in S ′. Then we consider all possible triples
〈A,S, s〉, where S is obtained from S ′ by appending s′ to a new root node s,
such that s is a permutation node, that is, there exists some permutation
π , such that As = (aπ(0), . . . , aπ(w))

For every such structure (A, s), we check if there exists a token ϑ↑ ∈ �↑

with W(ϑ↑) = 〈B, T , t〉, such that (A, s) ≡MSO
k (B, t). If such a ϑ↑ exists,

we take it. Otherwise we invent a new token ϑ↑, add it to �↑, and set
W(ϑ↑) := 〈A,S, s〉. In any case, we add the following rule to the program P:

ϑ↑(v) ← bag(v, xπ(0), . . . , xπ(w)), child1(v′, v), ϑ↑′(v′), bag(v′, x0, . . . , xw).

(b) Element replacement nodes. For each ϑ↑′ ∈ �↑, let W(ϑ↑′) = 〈A′,S ′, s′〉
with bag As′ = (a′

0, a1, . . ., aw) at the root s′ in S ′. Then we consider all pos-
sible triples 〈A,S, s〉, where S is obtained from S ′ by appending s′ to a new
root node s, such that s is an element replacement node. For the tree decom-
position S, we thus invent some new element a0 and set As = (a0, a1, . . . , aw).
For this tree decomposition S, we consider all possible structures A with
dom(A) = dom(A′)∪{a0}, where the EDB E(A′) is extended to the EDB E(A)
by new ground atoms from R(ā), such that a0 occurs as argument of all
ground atoms in E(A) \ E(A′).

For every such structure (A, s), we check if there exists a token ϑ↑ ∈ �↑

with W(ϑ↑) = 〈B, T , t〉, such that (A, s) ≡MSO
k (B, t). If such a ϑ↑ exists,

we take it. Otherwise we invent a new token ϑ↑, add it to �↑, and set
W(ϑ↑) := 〈A,S, s〉. In any case, we add the following rule to the program
P:

ϑ↑(v) ← bag(v, x0, x1, . . . , xw), child1(v′, v), ϑ↑′(v′), bag(v′, x′
0, x1, . . . , xw),

{Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) ∈ E(A)},
{¬Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) �∈ E(A)}.

(c) Branch nodes. Let ϑ↑1, ϑ↑2 be two (not necessarily distinct) tokens in
�↑ with W(ϑ↑1) = 〈A1,S1, s1〉 and W(ϑ↑2) = 〈A2,S2, s2〉. Let As1 =
(a0, . . . , aw) and As2 = (b0, . . . , bw), respectively. We can assume that
dom(A1) ∩ dom(A2) = ∅ because we can replace every witness by a variable
disjoint (isomorphic) copy of it.

Let δ be a renaming function with δ = {a0 ← b0, . . . , aw ← bw}. By
applying δ to 〈A2,S2, s2〉, we obtain a new triple 〈A′

2,S ′
2, s2〉 with A′

2 = A2δ

and S ′
2 = S2δ. In particular, we thus have As2δ = (a0, . . . , aw). Clearly,

(A2, s2) ≡MSO
k (A′

2, s2) holds.
For every such pair 〈A1,S1, s1〉 and 〈A′

2,S ′
2, s2〉, we check if the EDBs are

inconsistent, that is, E(A1) ∩ R(ā) �= E(A′
2) ∩ R(ā). If this is the case, then

we ignore this pair. Otherwise, we construct a new tree decomposition S
with a new root node s, whose child nodes are s1 and s2. As the bag of s, we
set As = As1 = As2δ. By construction, S is a normalized tree decomposition
of the structure A with dom(A) = dom(A1) ∪ dom(A′

2) and EDB E(A) =
E(A1) ∪ E(A′

2).

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 3, Publication date: October 2010.



3:22 • G. Gottlob

As in the cases above, we have to check if there exists a token ϑ↑ ∈ �↑

with W(ϑ↑) = 〈B, T , t〉, such that (A, s) ≡MSO
k (B, t). If such a ϑ↑ exists,

we take it. Otherwise we invent a new token ϑ↑, add it to �↑, and set
W(ϑ↑) := 〈A,S, s〉. In any case, we add the following rule to the program P:

ϑ↑(v) ← bag(v, x0, x1, . . . , xw), child1(v1, v), ϑ↑1(v1), child2(v2, v), ϑ↑2(v2),
bag(v1, x0, x1, . . . , xw), bag(v2, x0, x1, . . . , xw).

As a result of this bottom-up construction, the set �↑ is a set of tokens ϑ↑
representing all possible types ϑ of structures (B, t), where t is the root of
a tree decomposition T of B. We shall come back to this point at the end of
the construction of the desired datalog program.

(2) “Top-down” construction of �↓. Analogously to the “bottom-up” construction
of �↑, we construct the set �↓ with a “top-down” intuition. The base case is
essentially the same as before since, in every tree decomposition with only
one node s, this single node is both the root and a leaf. For the induction
step, we have to select the witness W(ϑ↓′) = 〈A′,S ′, s′〉 of some already
computed token ϑ↓′ ∈ �↓. Now the node s′ in S ′ is a leaf node and we
extend S ′ to a new tree decomposition S by appending a new leaf node s
as a child of s′. For all such tree decompositions S, we consider all possible
structures A by appropriately extending A′. The rules added to the program
P again reflect the type transitions from the type of the original structure
(A′, s′) to the type of any such new structure (A, s).

BASE CASE. Let a0, . . . , aw be pairwise distinct elements and let S be a tree
decomposition consisting of a single node s, whose bag is As = (a0, . . . , aw).
Then we consider all possible structures (A, s) with this tree decomposition.
In particular, dom(A) = {a0, . . . , aw}. We get all possible structures with tree
decomposition S by letting the EDB E(A) be any subset of R(ā). For every such
structure (A, s), we check if there exists a token ϑ↓ ∈ �↓ with W(ϑ↓) = 〈B, T , t〉,
such that (A, s) ≡MSO

k (B, t). If such a ϑ↓ exists, we take it. Otherwise we invent
a new token ϑ↓, add it to �↓, and set W(ϑ↓) := 〈A,S, s〉. In any case, we add
the following rule to the program P:

ϑ↓(v) ← bag(v, x0, . . . , xw), root(v), {Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) ∈ E(A)},
{¬Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) �∈ E(A)}.

INDUCTION STEP. We construct new structures by extending the tree decom-
positions of existing witnesses in “top-down” direction, that is, by introducing
a new leaf node s and appending it as new child to a former leaf node s′. The
node s′ may thus become one of three kinds of nodes in a normalized tree
decomposition.

(a) Permutation nodes. For each ϑ↓′ ∈ �↓, let W(ϑ↓′) = 〈A,S ′, s′〉 with bag
As′ = (a0, . . . , aw) at some leaf node s′ in S ′. Then we consider all possible
triples 〈A,S, s〉, where S is obtained from S ′ by appending s as a new child of
s′, such that s′ is a permutation node, that is, there exists some permutation
π , such that As = (aπ(0), . . . , aπ(w))
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For every such structure (A, s), we check if there exists a token ϑ↓ ∈ �↓

with W(ϑ↓) = 〈B, T , t〉, such that (A, s) ≡MSO
k (B, t). If such a ϑ↓ exists,

we take it. Otherwise we invent a new token ϑ↓, add it to �↓, and set
W(ϑ↓) := 〈A,S, s〉. In any case, we add the following rule to the program P:

ϑ↓(v) ← bag(v, xπ(0), . . . , xπ(w)), child1(v, v′), ϑ↓′(v′), bag(v′, x0, . . . , xw).

(b) Element replacement nodes. For each ϑ↓′ ∈ �↓, let W(ϑ↓′) = 〈A′,S ′, s′〉 with
bag As′ = (a′

0, a1, . . ., aw) at leaf node s′ in S ′. Then we consider all possible
triples 〈A,S, s〉, where S is obtained from S ′ by appending s as new child of
s′, such that s′ is an element replacement node. For the tree decomposition
S, we thus invent some new element a0 and set As = (a0, a1, . . . , aw). For this
tree decomposition S, we consider all possible structures A with dom(A) =
dom(A′) ∪ {a0} where the EDB E(A′) is extended to the EDB E(A) by new
ground atoms from R(ā), such that a0 occurs as argument of all ground
atoms in E(A) \ E(A′).

For every such structure (A, s), we check if there exists a token ϑ↓ ∈ �↓

with W(ϑ↓) = 〈B, T , t〉, such that (A, s) ≡MSO
k (B, t). If such a ϑ↓ exists,

we take it. Otherwise we invent a new token ϑ↓, add it to �↓, and set
W(ϑ↓) := 〈A,S, s〉. In any case, we add the following rule to the program P:

ϑ↓(v) ← bag(v, x0, x1, . . . , xw), child1(v, v′), ϑ↓′(v′), bag(v′, x′
0, x1, . . . , xw),

{Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) ∈ E(A)},
{¬Ri(xj1 , . . . , xjr ) | Ri(aj1 , . . . , ajr ) �∈ E(A)}.

(c) Branch nodes. Let ϑ↓ ∈ �↓ and ϑ↑2 ∈ �↑ with W(ϑ↓) = 〈A,S, s〉 and
W(ϑ↑2) = 〈A2,S2, s2〉. Note that s is a leaf in S while s2 is the root of
S2. Now let As = (a0, . . . , aw) and As2 = (b0, . . . , bw), respectively. We can
assume that dom(A) ∩ dom(A2) = ∅ because we can replace every witness
by a variable disjoint (isomorphic) copy of it.

Let δ be a renaming function with δ = {a0 ← b0, . . . , aw ← bw}. By
applying δ to 〈A2,S2, s2〉, we obtain a new triple 〈A′

2,S ′
2, s2〉 with A′

2 = A2δ

and S ′
2 = S2δ. In particular, we thus have As2δ = (a0, . . . , aw). Clearly,

(A2, s2) ≡MSO
k (A′

2, s2) holds.
For every such pair 〈A,S, s〉 and 〈A′

2,S ′
2, s2〉, we check if the EDBs are

inconsistent, that is, E(A) ∩R(ā) �= E(A′
2) ∩R(ā). If this is the case, then we

ignore this pair. Otherwise, we construct a new tree decomposition S1 by
introducing a new leaf node s1 and appending both s1 and s2 as child nodes of
s. As the bag of s1, we set As1 = As = As2δ. By construction, S1 is a normalized
tree decomposition of the structure A1 with dom(A1) = dom(A) ∪ dom(A′

2)
and EDB E(A1) = E(A) ∪ E(A′

2).
As in the cases above, we have to check if there exists a token ϑ↓1 ∈ �↓

with W(ϑ↓1) = 〈B, T , t〉, such that (A1, s1) ≡MSO
k (B, t). If such a ϑ↓1 exists,

we take it. Otherwise we invent a new token ϑ↓1, add it to �↓, and set
W(ϑ↓1) := 〈A1,S1, s1〉 In any case, we add the following rule to the program
P:
ϑ↓1(v1) ← bag(v1, x0, x1, . . . , xw), child1(v1, v), child2(v2, v), ϑ↓(v), ϑ↑2(v2),

bag(v, x0, x1, . . . , xw), bag(v2, x0, x1, . . . , xw).
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Now suppose that S1 is constructed from S and S2 by attaching the new node
s1 as second child of s and s2 as the first child. In this case, the structure A1

remains exactly the same as in the case above, since the order of the child
nodes of a node in the tree decomposition is irrelevant. Thus, whenever the
above rule is added to the program P, then also the following rule is added:
ϑ↓1(v2) ← bag(v2, x0, x1, . . . , xw), child1(v1, v), child2(v2, v), ϑ↓(v), ϑ↑2(v1),

bag(v, x0, x1, . . . , xw), bag(v1, x0, x1, . . . , xw).

As a result of this top-down construction, the set �↓ is a set of tokens ϑ↓
representing all possible types ϑ of structures (B, t), where t is a leaf node
of some tree decomposition T of B. We shall come back to this point at the
end of the construction of the desired datalog program.

(3) Element selection. We consider all pairs of types ϑ↑1 ∈ �↑ and ϑ↓2 ∈
�↓. Let W(ϑ↑1) = 〈A1,S1, s1〉 and W(ϑ↓2) = 〈A2,S2, s2〉. Moreover, let
As1 = (a0, . . . , aw) and As2 = (b0, . . . , bw), respectively. We can assume that
dom(A1) ∩ dom(A2) = ∅ because we can replace every witness by a variable
disjoint (isomorphic) copy of it.

Let δ be a renaming function with δ = {a0 ← b0, . . . , aw ← bw}. By
applying δ to 〈A2,S2, s2〉, we obtain a new triple 〈A′

2,S ′
2, s2〉 with A′

2 = A2δ

and S ′
2 = S2δ. In particular, we thus have As2δ = (a0, . . . , aw). Clearly,

(A2, s2) ≡MSO
k (A′

2, s2) holds.
For every such pair 〈A1,S1, s1〉 and 〈A′

2,S ′
2, s2〉, we check if the EDBs are

inconsistent, that is, E(A1) ∩ R(ā) �= E(A′
2) ∩ R(ā). If this is the case, then

we ignore this pair. Otherwise, we construct a new tree decomposition S
by identifying s1 (= the root of S1) with s2 (= a leaf of S2). By construction,
S is a normalized tree decomposition of the structure A with dom(A) =
dom(A1) ∪ dom(A′

2) and E(A) = E(A1) ∪ E(A′
2).

Now check for each ai in As1 = As2δ, if A |= ϕ(ai). If this is the case, then
we add the following rule to P:

ϕ(xi) ← ϑ↑1(v), ϑ↓2(v), bag(v, x0, . . . , xw).

We claim that the program P with distinguished monadic predicate ϕ is
the desired monadic datalog program, that is, let A be an arbitrary input
τ -structure with tree decomposition S and let Atd denote the corresponding
τtd-structure. Moreover, let a ∈ dom(A). Then the following equivalence
holds: A |= ϕ(a) if and only if ϕ(a) is true in the minimal model of P ∪ Atd.

Note that the intensional predicates in �↑, �↓, and {ϕ} are layered in
that we can first evaluate the predicates in �↑ over the structure Atd, then
�↓, and finally ϕ.

The bottom-up construction of �↑ guarantees that we indeed construct
all possible types of structures (B, t) with tree decomposition T and root t.
This can be easily shown by Lemma 3.5 and an induction on the size of the
tree decomposition T . On the other hand, for every subtree Ss of S, the type
of the induced substructure I(A,Ss, s) is ϑ for some ϑ↑ ∈ �↑ if and only if
the atom ϑ↑(s) is true in the minimal model of P ∪ Atd. Again this can be
shown by an easy induction argument using Lemma 3.5.
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Analogously, we may conclude via Lemma 3.6 that �↓ contains all possi-
ble types of structures (B, t) with tree decomposition T and some leaf node
t. Moreover, for every subtree S̄s of S, the type of the induced substructure
I(A, S̄s, s) is ϑ for some ϑ↓ ∈ �↓ if and only if the atom ϑ↓(s) is true in the
minimal model of P ∪ Atd. The definition of the predicate ϕ in part 3 is a
direct realization of Lemma 3.7. It thus follows that A |= ϕ(a) if and only if
ϕ(a) is true in the minimal model of P ∪ Atd.

Finally, an inspection of all datalog rules added to P by this construction
shows that these rules are indeed quasiguarded, that is, they all contain an
atom B with an extensional predicate, such that all other variables in this
rule are functionally dependent on the variables in B. For instance, in the
rule added to �↑ in the case of a branch node, the atom bag(v, x0, . . . , xw) is
the quasiguard. Indeed, the remaining variables v1 and v2 in this rule are
functionally dependent on v via the atoms child1(v1, v)and child2(v2, v).

Above all, Theorem 4.6 is an expressivity result. However, it can of course be
used to derive also a complexity result. Indeed, we can state a slightly extended
version of Courcelle’s Theorem as a corollary (which is in turn a special case of
Theorem 4.12 in Flum et al. [2002]).

COROLLARY 4.7 The evaluation problem of unary MSO-queries ϕ(x) over τ -
structures A of treewidth w can be solved in time O( f (|ϕ(x)|, w) ∗ |A|) for some
function f .

PROOF. Suppose that we are given an MSO query ϕ(x) and some treewidth
w. By Theorem 4.6, we can construct an equivalent, quasiguarded datalog
program P. The whole construction is independent of the data. Hence, the
time for this construction and the size of P are both bounded by some term
f (|ϕ(x)|, w). By Bodlaender [1996], a tree decomposition T of A and, therefore,
also the extended structure Atd can be computed in time O(|A|). Finally, by
Theorem 4.5, the quasiguarded program P can be evaluated over Atd in time
O(|P| ∗ |Atd|), from which the desired overall time bound follows.

As with Courcelle’s Theorem recalled in Section 2.3, this linear upper bound
on the complexity does not immediately give a feasible algorithm due to huge
multiplicative constants. In fact, an algorithm using directly the construction
from the proof of Theorem 4.6 would end up with a constant of nonelementary
size (with respect to the quantifier depth of the formula ϕ). We shall see in Sec-
tion 5 that it is nonetheless possible to come up with feasible algorithms (with
singly exponential constants for some NP-complete problems) by appropriately
adapting the monadic datalog approach from this section.

Note that Theorem 4.6 is, of course, not only applicable to MSO-definable
unary queries but also to 0-ary queries, that is, MSO queries defining a deci-
sion problem. An inspection of the proof of Theorem 4.6 reveals that several
simplifications are possible in this case. Above all, the whole “top-down” con-
struction of �↓ can be omitted. Moreover, the rules with head predicate ϕ are
now much simpler: let ϕ be a 0-ary MSO formula and let �↑ denote the set
of types obtained by the “bottom-up” construction in the above proof. Then we
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define �
↑
0 = {ϑ↑ | W(ϑ↑) = 〈A,S, s〉 and A |= ϕ}. Finally, we add the following

set of rules with head predicate ϕ to our datalog program:

ϕ ← root(v), ϑ↑0(v).

for every ϑ↑0 ∈ �
↑
0. We shall make use of these simplifications in Section 5.1

and 5.2 when we present new algorithms for two decision problems. In contrast,
these simplifications are no longer possible when we consider an enumeration
problem in Section 5.3. In particular, the “top-down” construction will indeed
be required then.

5. METAPROGRAMS BASED ON MONADIC DATALOG

We now put our monadic datalog approach to work by constructing several new
algorithms. We start off with a simple example, namely, the 3-Colorability prob-
lem, which will help to illustrate the basic ideas; see Section 5.1. Our ultimate
goal is to tackle two more involved problems; namely the PRIMALITY deci-
sion problem and the PRIMALITY enumeration problem; see Sections 5.2 and
5.3. All these problems are well-known to be intractable. However, since they
are expressible in MSO over appropriate structures, they are fixed-parameter
tractable with respect to the treewidth. In this section, we show that these
problems admit succinct and efficient solutions via datalog.

Recall from Section 2.2 that we now consider tree decompositions in the
normal form according to Definition 2.6. Hence, bags are considered as sets
(rather than tuples) and, apart from the leaf nodes, we distinguish three kinds
of internal nodes, namely, element removal nodes (which remove one domain
element from the bag of the child node), element introduction nodes (which
introduce one new element), and branch nodes (which have two child nodes—
each with identical bag as the parent).

5.1 The 3-Colorability Problem

Suppose that a graph (V, E) with vertices V and edges E is given as a τ -
structure with τ = {e}, that is, e is the binary edge relation. This graph is
3-colorable if and only if there exists a partition of V into three sets R, G, B,
such that no two adjacent vertices v1, v2 ∈ V are in the same set R, G, or B.
This criterion can be easily expressed by an MSO-sentence, namely,

ϕ ≡ ∃R∃G∃B[Partition(R, G, B) ∧ ∀v1∀v2[e(v1, v2) →
(¬R(v1) ∨ ¬R(v2)) ∧ (¬G(v1) ∨ ¬G(v2)) ∧ (¬B(v1) ∨ ¬B(v2))]]

with

Partition(R, G, B) ≡ ∀v[[R(v) ∨ G(v) ∨ B(v)] ∧
(¬R(v) ∨ ¬G(v)) ∧ (¬R(v) ∨ ¬B(v)) ∧ (¬G(v) ∨ ¬B(v))].

Suppose that a graph (V, E) together with a tree decomposition T of width
w is given as a τtd-structure with τtd = {e, root, leaf , child1, child2, bag}. In
Figure 5, we describe a datalog program which takes such a τtd-structure as
input and decides if the graph thus represented is 3-colorable.
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Fig. 5. 3-Colorability test.

Some words on the notation used in this program are in order: we are using
lowercase letters s and v (possibly with subscripts) as datalog variables for a
single node in T and for a single vertex in V , respectively. In contrast, uppercase
letters X, R, G, and B are used as datalog variables denoting sets of vertices.
Note that these sets are not sets in the general sense, since their cardinality
is restricted by the size w + 1 of the bags, where w is a fixed constant. Hence,
these “fixed-size” sets can be simply implemented by means of k-tuples with
k ≤ (w + 1) over {0, 1}. For the sake of readability, we are using nondatalog
expressions with the set operator � (disjoint union). For the fixed-size sets
under consideration here, one could, of course, replace this operator by pure
datalog expressions as we shall explain later in this section.

It is convenient to introduce the following notation. Let G = (V, E) be the
input graph with tree decomposition T . For any node s in T , we write as usual
Ts to denote, the subtree. of T rooted at s. Moreover, we write V (s) and V (Ts)
to denote, respectively, the set of vertices of the bag of s and the union of those
sets associated with the nodes in Ts.

Our 3-Colorability-program checks if G is 3-colorable via the criterion men-
tioned above, that is, there exists a partition of V into three sets R, G, B, such
that no two adjacent vertices v1, v2 ∈ V are in the same set R, G, or B.

At the heart of this program is the intensional predicate solve(s, R, G, B)
with the following intended meaning: s denotes a node in T and R, G, B are
the intersections of R, G, B with V (s). For all values s, R, G, B, the ground fact
solve(s, R, G, B, ) shall be true in the minimal model of the program and the
input structure if and only if the following condition holds:
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Fig. 6. Auxiliary predicates partition and allowed.

PROPERTY A. There exist extensions R̂ of R, Ĝ of G, and B̂ of B to V (Ts), such
that

(1) R̂, Ĝ, and B̂ form a partition of V (Ts) and
(2) no two adjacent vertices v1, v2 ∈ V (Ts) are in the same set R̂, Ĝ, or B̂.

In other words, R̂, Ĝ, and B̂ is a valid 3-coloring of the vertices in V (Ts) and
R, G, and B are the intersections of R̂, Ĝ, and B̂ with V (s).

The main task of the program is the computation of all facts solve(s, R, G, B)
via a bottom-up traversal of the tree decomposition. The other predicates have
the following meaning (see Figure 6):

—partition(s, R, G, B) is true in the minimal model if and only if R, G, B is a
partition of the bag X at node s in the tree decomposition.

—allowed(s, X) is true in the minimal model if and only if X contains no adjacent
vertices v1, v2.

Recall that the cardinality of the sets X, R, G, B occurring as arguments of
partition and allowed is bounded by the fixed constant w + 1. In fact, both the
partition predicate and the allowed predicate could also be treated as exten-
sional predicates by computing all facts partition(s, R, G, B) and allowed(s, X)
for each node s in T as part of the computation of the tree decomposition.

The intuition of the rules with the solve predicate in the head is now clear:
at the leaf nodes, the program generates ground facts solve(s, R, G, B) for all
possible partitions of the bag X at s, such that none of the sets R, G, B contains
two adjacent vertices. The three rules for element introduction nodes distin-
guish the three cases if the new vertex v is added to R, G, or B, respectively.
Of course, by the allowed atom in the body of these three rules, the attempt
to add v to any of the sets R, G, or B may fail. The three rules for element
removal nodes distinguish the three cases if the removed vertex was in R, G, or
B, respectively. The rule for branch nodes combines solve facts with identical
values of (R, G, B) at the child nodes s1 and s2 to the corresponding solve fact
at s.

In summary, the 3-colorability-program has the following properties.

THEOREM 5.1. The datalog program in Figure 5 decides the 3-Colorability
problem, that is, the fact “success” is true in the minimal model of this pro-
gram and the input τtd-structure Atd if and only if Atd encodes a 3-colorable
graph (V, E) together with a tree decomposition T of (V, E). Moreover, for any
graph (V, E) and tree decomposition T of width at most w, the program can be
evaluated in time O(3w ∗ |(V, E)|).
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PROOF. By the above considerations, it is clear that the predicate solve
indeed has the meaning described by Property A. A formal proof of this fact by
structural induction on T is immediate and therefore omitted here. Then the
rule with head success reads as follows: success is true in the minimal model
if and only if s denotes the root of T and there exist extensions R̂, Ĝ, and B̂ of
R, G, B to V (Ts) (which is identical to V in case of the root node s), such that R̂,
Ĝ, and B̂ is a valid 3-coloring of the vertices in V (Ts) = V .

For the upper bound on the time complexity, we observe that in all facts
solve(s, R, G, B) derived by the program, the sets R, G, B form a partition of
the bag at s (which contains at most w + 1 vertices). Again, this property can
be easily proved by structural induction on T . Hence, the datalog program
P in Figure 5 is equivalent to a ground program P ′ where each rule of P is
replaced by O(3w ∗ |(V, E)|) ground rules. These ground rules can be computed
as follows: at a leaf node s, we have 3w+1 possible values of (R, G, B), such that
partition(s, R, G, B) is fulfilled. Moreover, for the bag at s, there are in total
at most 2w+1 possible instances of the allowed(s, X) predicate, which can be
computed in O(2w ∗w2), that is, we have to check for every pair of vertices (x, y)
in a set of at most w + 1 vertices, that x and y are not adjacent.

Likewise, for all other kinds of nodes, there are at most 3w+1 possible values of
(R, G, B), such that solve(s, R, G, B) is the head of a rule in the ground program
P ′. Note that, for all rules in Figure 5 at element introduction and branch
nodes, the instantiation of the variables (s, R, G, B) in the head admits at most
one instantiation of the variables in the body. If s is an element removal node,
then the bag at s has at most w elements and there are only 3w possible values
of (R, G, B), such that solve(s, R, G, B) is the head of a ground rule in P ′. On the
other hand, each such value (s, R, G, B) admits three possible instantiations of
the variables in the body. Hence, we again end up with 3w+1 possible ground
rules in P ′. Finally, also the rule with the success-predicate in the head admits
at most 3w+1 possible ground instantiations (of the solve predicate in the body
and, hence, of the entire rule).

In total, we can evaluate the program P in Figure 5 over an input graph
(V, E) by first computing the equivalent ground program P ′ with O(3w∗|(V, E)|)
rules and then evaluating P ′ in linear time.

Actually, the linear time data complexity in Theorem 5.1 could also be seen
as follows (without getting the concrete value 3w for the multiplicative con-
stant though): our program in Figure 5 is essentially a succinct representa-
tion of a quasiguarded monadic datalog program. For instance, in the atom
solve(s, R, G, B), the sets R, G, B are subsets of the bag of s. Hence, each com-
bination R, G, B could be represented by three subsets r1, r2, r3 over {0, . . . , w}
referring to indices of elements in the bag of s. Recall that w is a fixed constant.
Hence, solve(s, R, G, B) is simply a succinct representation of constantly many
monadic predicates of the form solve〈r1,r2,r3〉(s). The quasiguard in each rule can
thus be any atom with argument s, for example, bag(s, X) or bag(s, X) � {v}.
Thus, an upper bound of the form O( f (w) ∗ |(V, E)|) for some function f de-
pending on the treewidth w of the graph (but not on the size the graph) follows
immediately from Theorem 4.5.
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Discussion. Let us briefly compare the monadic program constructed in
the proof of Theorem 4.6 with the 3-Colorability program in Figure 5. Actually,
since we are dealing with a decision problem here, we only look at the bottom-
up construction in the proof of Theorem 4.6; the top-down construction is not
needed for a 0-ary target formula ϕ(). As was already mentioned above, the
atoms solve(s, R, G, B) can be thought of as a succinct representation for atoms
of the form solve〈r1,r2,r3〉(s). Now the question naturally arises where the type ϑ

of some node s from the proof of Theorem 4.6 is present in the 3-Colorability
program. A first tentative answer is that this type essentially corresponds to the
set R(s) = {〈r1, r2, r3〉 | solve〈r1,r2,r3〉(s) is true in the minimal model}. However,
there are two significant aspects which distinguish our 3-Colorability program
from merely a succinct representation of the type transitions encoded in the
monadic datalog program of Theorem 4.6:

(1) By Property A, we are only interested in the types of those structures
which—in principle—could be extended in bottom-up direction to a 3-
colorable graph. Hence, in contrast to the construction in the proof of The-
orem 4.6, our 3-Colorability program does clearly not keep track of all
possible types that the substructure induced by some tree decomposition
Ts may possibly have.

(2) R(s) = {〈r1, r2, r3〉 | solve〈r1,r2,r3〉(s) is true in the minimal model} does not
exactly correspond to the type of s. Instead, it only describes the crucial
properties of the type. Thus, the 3-Colorability program somehow “aggre-
gates” several types from the proof of Theorem 4.6.

These two properties ensure that the 3-Colorability program is much shorter
than the program in the proof of Theorem 4.6 and that the difference be-
tween these two programs is not just due to the succinct representation of a
monadic program by a nonmonadic one. The rationale behind this improve-
ment is that we take the target MSO formula ϕ (namely, the characterization
of 3-Colorability) into account for the entire construction of the datalog pro-
gram in Figure 5. In contrast, the datalog program constructed in the proof
of Theorem 4.6 is fully generic, that is, the rules describing all possible type-
transitions in the proof of Theorem 4.6 only depend on the treewidth w and
the quantifier depth k but not on the concrete target MSO formula ϕ that we
ultimately want to evaluate.

5.1.2 Set Arithmetic Versus Pure Datalog. The program shown in Figure
5 contains set variables and set operations which are not part of the data-
log language. For given treewidth w, it is fairly straightforward to transform
the set arithmetic into pure datalog constructs. Below, we instantiate the 3-
Colorability program as a pure datalog program for treewidth 3; see Figure 7.
Note, however, that there are state-of-the-art datalog engines which actually do
support sets. For instance, a recent extension of the DLV-system [Leone et al.
2006], which is called DLV-Complex,1 provides special built-in predicates for
set arithmetic.

1http://www.mat.unical.it/dlv-complex.
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Fig. 7. Datalog instantiation of the 3-Colorability program.
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Let w denote some constant which is an upper bound on the treewidth of
the intended inputs. The basic idea of the transformation of the program in
Figure 5 into a pure datalog program is to replace each set variable X with
w + 1 individual variables. In Figure 7, we show the resulting pure datalog
program for treewidth w = 3. Of course, a set may contain fewer than four
elements. In this case, we pad the set with appropriately many copies of the
auxiliary symbol ⊥. For instance, a set X = {v1, v2} can be represented by
the quadruple v1, v2,⊥,⊥. Note that in Figure 7 (and also for the definition
of auxiliary predicates in Figures 8 and 9) we adopt the convention that the
symbol ⊥ is filled in from the right, for example, v1,⊥, v2⊥ would not be a legal
representation of X = {v1, v2}.

The predicates solve and partition, which contain three sets, now have 12 po-
sitions (in addition to the argument s) to represent these three sets, for example,
the intended meaning of solve(s, r1, r2, r3, r4, g1, g2, g3, g4, b1, b2, b3, b4) is that
the sets R, G, B have the values R = {r1, r2, r3, r4} \ {⊥}, G = {g1, g2, g3, g4} \ {⊥},
and B = {b1, b2, b3, b4} \ {⊥}.

Of course, things are now slightly complicated by the fact that we can choose
different orderings to arrange the elements of a set as a list of individual
variables. Hence, we define additional auxiliary predicates bag permutation
and solve permutation which generate all those facts that can be obtained
from the bag—respectively, solve—predicate by permuting the elements (see
Figures 8 and 9).

The datalog program in Figure 7 uses the auxiliary predicates
partition(s, r1, r2, r3, r4, g1, g2, g3, g4, b1, b2, b3, b4), allowed(s, v1, v2, v3, v4),
introduced(s, v), removed(s, v), and solve permutation(s, r1,
r2, r3, r4, g1, g2, g3, g4, b1, b2, b3, b4) with the obvious meaning; for example:
introduced(s, v) means that s is an element introduction node, such that v is
the newly introduced vertex (i.e., the vertex which was not present in the bag
at the child node of s). Likewise, removed(s, v) means that s is an element
removal node, such that v is the removed vertex (i.e., the vertex which was
present in the bag at the child node of s but not in the bag of s). The definition of
these auxiliary predicates is shown in Figure 8. There, two additional auxiliary
predicates bag permutation and bag subset are needed, whose meaning is also
obvious, namely: bag permutation(s, v1, v2, v3, v4) means that v1, v2, v3, v4 is
a permutation of the vertices in the bag at node s; bag subset(s, v1, v2, v3, v4)
means that v1, v2, v3, v4 represents a subset of the vertices in the bag at node s.
As mentioned above, a subset of cardinality smaller than 4 is represented by
filling in the symbol ⊥ appropriately often (in contiguous places starting from
the right). The details are worked out in Figure 9. The number of resulting
rules in Figures 7, 8, and 9 is (singly) exponential with respect to the treewidth
w.

5.1.3 Computing a Solution. We conclude this section by sketching an
algorithm that computes one possible solution to the 3-Coloring problem in
the case that the success-fact is true in the minimal model of the program in
Figure 5. To this end, we construct a recursive procedure which takes as input
a tuple (s, R, G, B) and accumulates a possible 3-coloring in global variables R̂,
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Fig. 8. Datalog instantiation of the auxiliary predicates.
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Fig. 9. Further auxiliary predicates.

Ĝ, and B̂. Initially the sets R̂, Ĝ, and B̂ are empty and we start the recursion by
choosing s as the root node of the tree decomposition T . As (R, G, B) we choose
any combination, such that the fact solve(s, R, G, B) is true in the minimal
model of the program. Then we traverse the tree decomposition T in top-down
direction by carrying out the following action at every node s:

(1) If s is a leaf node, then we set R̂ := R̂ ∪ R, Ĝ := Ĝ ∪ G, and B̂ := B̂∪ B.

(2) Suppose that s is an element introduction node with child node s1 and
newly introduced vertex v. Then, depending on whether v is in R, G, or B,
we set R̂ := R̂∪{v}, Ĝ := Ĝ∪{v}, or B̂ := B̂∪{v}, respectively. The recursion
continues with the values (s1, R \ {v}, G \ {v}, B \ {v}).

(3) Suppose that s is an element removal node with child node s1 and re-
moved vertex v. By construction, there exists a fact solve(s, R, G, B) which
is true in the minimal model of the program. Hence, at least one of
the following facts is also true in the minimal model of the program:
solve(s1, R∪ {v}, G, B), solve(s1, R, G∪ {v}, B), and solve(s1, R, G, B∪ {v}). We
thus continue the recursion with the value combination (s1, R ∪ {v}, G, B),
respectively, (s1, R, G ∪ {v}, B), respectively, (s1, R, G, B∪ {v}).

(4) If s is a branch node with child nodes s1 and s2, then we continue with two
calls to our recursive procedure: one with the value combination (s1, R, G, B)
and one with (s2, R, G, B).

5.2 The Primality Decision Problem

Recall from Section 2.2 that we represent a relational schema (R, F) as a
τ -structure with τ = {fd, att, lh, rh}. Moreover, recall that, in Section 5,
we consider normalized tree decompositions with 3 kinds of internal nodes,
namely element removal nodes, element introduction nodes, and branch nodes
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(cf. Definition 2.6). With our representation of relational schemas (R, F) as
structures, the domain elements are the attributes and FDs in (R, F). Hence,
we distinguish two kinds of element removal nodes, namely, attribute removal
nodes and FD removal nodes. Likewise, we have two kinds of element intro-
duction nodes, namely, attribute introduction nodes and FD introduction nodes.
Moreover, it is convenient to denote the bags as a pairs of sets (At, Fd), where
At is a set of attributes and Fd is a set of FDs. Finally, it will greatly simplify
the presentation of our datalog program if we require that, whenever an FD
f ∈ F is contained in a bag of the tree decomposition, then the attribute rhs( f )
must be as well. In the worst case, this may double the width of the resulting
decomposition.

Suppose that a schema (R, F) together with a tree decompo-
sition T of width w is given as a τtd-structure with τtd =
{fd, att, lh, rh, root, leaf , child1, child2, bag}. In Figure 10, we describe a datalog
program, where the input is given as an attribute a ∈ R and a τtd-structure,
such that a occurs in the bag at the root of the tree decomposition.

Analogously to Section 5.1, we are using lower case letters s, f , and b (possi-
bly with subscripts) as datalog variables for a single node in T , for a single FD,
or for a single attribute in R, respectively. Uppercase letters are used as dat-
alog variables denoting sets of attributes (in the case of Y, At, Co,	C) or sets
of FDs (in the case of Fd, FY, FC). In addition, Co is considered as an ordered
set (indicated by the superscript o). When we write Co � {b}, we mean that b
is arbitrarily “inserted” into Co, leaving the order of the remaining elements
unchanged. Again, the cardinality of these (ordered) sets is restricted by the
size w + 1 of the bags, where w is a fixed constant. In addition to � (disjoint
union) we are now also using the set operators ∪, ∩, ⊆, and ∈. For the fixed-
size (ordered) sets under consideration here, one could, of course, easily replace
these operators by pure datalog expressions. In Figures 7, 8, and 9 we have
already seen how set variables and some set operators can be realized in pure
datalog for treewidth w = 3. In Figures 11 and 12, the realization of further
set operators is presented.

For the input schema (R, F) with tree decomposition T , we use the following
notation: we write FD(s) to denote the FDs in the bag of s and FD(Ts) to denote
the FDs that occur in any bag in Ts. Analogously, we write Att(s) and Att(Ts) as
a short-hand for the attributes occurring in the bag of s, respectively, in any
bag in Ts. Our PRIMALITY program in Figure 10 checks the primality of an
attribute a via the criterion used for the MSO characterization in Example 2.7:
we have to search for an attribute set Y ⊆ R, such that Y is closed with respect
to F (i.e., Y+ = Y), a �∈ Y, and (Y ∪ {a})+ = R, that is, Y ∪ {a} is a superkey but
Y is not.

At the heart of our PRIMALITY-program is the intensional predicate
solve(s, Y, FY, Co,	C, FC) with the following intended meaning: s denotes
a node in T . Y (respectively, Co) is the intersection of Y (respectively, of
R \ Y) with Att(s). We consider R \ Y as ordered with respect to an appro-
priate derivation sequence of R from Y ∪ {a}, that is, suppose that Y ∪ {A0} →
Y ∪ {A0, A1} → Y ∪ {A0, A1, A2} → · · · → Y ∪ {A0, A1, . . . , An}, such that A0 = a
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Fig. 10. Primality test.

and Y ∪ {A0, A1, . . . , An} = R. Without loss of generality, the Ai ’s may be as-
sumed to be pairwise distinct. Then for any two i �= j, we simply set Ai < Aj

if and only if i < j. By the connectedness condition on T , our datalog program
ensures that the order on each subset Co of R \Y is consistent with the overall
ordering.

The argument FY of the solve predicate is used to guarantee that Y is
indeed closed. Informally, FY contains those FDs in FD(s) for which we have
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Fig. 11. Datalog instantiation of set operators, Part 1.

already verified (on the bottom-up traversal of the tree decomposition) that
they do not constitute a contradiction with the closedness of Y. In other words,
either rhs( f ) ∈ Y or there exists an attribute in lhs( f ) ∩ At(Ts) which is not
in Y.

The arguments 	C and FC of the solve predicate are used to ensure that
(Y ∪ {a})+ = R indeed holds: the intended meaning of the set FC is that it
contains those FDs in FD(s) which are used in the above derivation sequence.
Moreover, 	C contains those attributes from Att(s) for which we have already
shown that they can be derived from Y and smaller atoms in Co.

More precisely, for all values s, Y, FY, Co,	C, FC, the ground fact
solve(s, Y, FY, Co,	C, FC) shall be true in the minimal model of the program
and the input structure if and only if the following condition holds:

PROPERTY B. There exist extensions Ŷ of Y and Ĉo of Co to Att(Ts) and an
extension F̂C of FC to FD(Ts), such that
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Fig. 12. Datalog instantiation of set operators, Part 2.

(1) Ŷ and Ĉo form a partition of Att(Ts);
(2) for every f ∈ FD(Ts) \ FD(s), if rhs( f ) �∈ Ŷ , then lhs( f ) �⊆ Ŷ ; moreover,

FY = { f ∈ FD(s) | rhs( f ) �∈ Ŷ and lhs( f ) ∩ Att(Ts) �⊆ Ŷ };
(3) For every f ∈ F̂C, f is consistent with the order on Ĉo, that is, for every

f ∈ F̂C, rhs( f ) ∈ Ĉo holds and, for every b ∈ lhs( f ) ∩ Ĉo, b < rhs( f ) holds;
(4) 	C ∪ Ĉo \ Att(s) = {rhs( f ) | f ∈ F̂C}.
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The main task of the program is the computation of all facts
solve(s, Y, FY, Co,	C, FC) by means of a bottom-up traversal of the tree de-
composition. The other predicates have the following meaning:

—outside(FY, Y, At, Fd) is true in the minimal model if and only if FY = { f ∈
Fd | rhs( f ) �∈ Y and lhs( f ) ∩ At �⊆ Y }, that is, for every f ∈ FY , rhs( f ) is
outside Y but this will never conflict with the closedness of Y because lhs( f )
contains an attribute from outside Y .

—consistent(FC, Co) is true in the minimal model if and only if ∀ f ∈ FC we
have rhs( f ) ∈ Co and ∀b ∈ lhs( f ) ∩ Co: b < rhs( f ), that is, the FDs in FC
are only used to derive greater attributes from smaller ones (and attributes
from Y).

—The fact unique(	C1,	C2, FC) is true in the minimal model if and only if the
condition 	C1 ∩ 	C2 = {b | b = rhs( f ) for some f ∈ FC} holds. The unique
predicate is only used in the body of the rule for branch nodes. Its purpose
is to avoid that an attribute in R \ Y is derived via two different FDs in the
two subtrees at the child nodes of the branch node.

—The 0-ary predicate success indicates if the fixed attribute a is prime in the
schema encoded by the input structure.

The PRIMALITY-program has the following properties.

LEMMA 5.2. The solve predicate has the intended meaning described
above, that is, for all values s, Y , FY , Co, 	C, FC, the ground fact
solve(s, Y, FY, Co,	C, FC) is true in the minimal model of the PRIMALITY
program and the input structure if and only if Property B holds.

PROOF SKETCH. The lemma can be shown by structural induction on T . We
restrict ourselves here to outlining the ideas underlying the various rules of
the PRIMALITY-program. The induction itself is then obvious and therefore
omitted.

(1) Leaf nodes. The rule for a leaf node s realizes two “guesses,” so to speak: (i)
a partition of At(s) into Y and Co together with an ordering on Co and (ii)
the subset FC ⊆ Fd(s) of FDs which are used in the derivation sequence
of R \ Y from Y ∪ {a}. The remaining variables are thus fully determined:
FY is determined via the outsidepredicate, while 	C is determined via the
equality 	C = {rhs( f ) | f ∈ FC}. Finally, the body of the rule contains the
checks consistent(FC, Co) and 	C ⊆ Co to make sure that (at least at the
leaf node s) the “guesses” are allowed.

(2) Attribute introduction node. The two rules are used to distinguish two cases
whether the new attribute b is added to Y or to Co. If b is added to Y then all
arguments of the solvefact at the child node s1 of s remain unchanged at s.
In contrast, if b is inserted into Co then the following actions are required.

The atom consistent(FC, Co � {b}) makes sure that the rules in FC are
consistent with the ordering of Co, that is, it must not happen that the
new attribute b occurs in lhs( f ) for some f ∈ FC, such that b > rhs( f )
holds.
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The new attribute b outside Y may possibly allow us to verify for some
additional FDs that they do not contradict the closedness of Y. The atom
outside(FY2, Y, At, Fd) determines the set FY2 which contains all FDs with
rhs( f ) �∈ Y but with some attribute from Co (in particular, the new attribute
b) in lhs( f ).

Recall that we are requiring that, whenever an FD f ∈ F is contained
in a bag of the tree decomposition, then the attribute rhs( f ) is as well.
Hence, since the attribute b has just been introduced on our bottom-up
traversal of the tree decomposition, we can be sure that b does not occur on
the right-hand side of any FD in the bag of s. Thus, 	C is not affected by
the transition from s1 to s.

(3) FD introduction node. The three rules distinguish, in total, three cases:
first, does rhs( f ) ∈ Y or rhs( f ) ∈ Co hold? (Recall that we assume that
every bag containing some FD also contains the right-hand side of this FD.)
The latter case is then further divided into the subcases if f is used for the
derivation of R\Y or not. The first rule deals with the case rhs( f ) ∈ Y . Then
all arguments of the solve fact at the child node s1 of s remain unchanged
at s.

The second rule addresses the case that rhs( f ) ∈ Co and f is used for
the derivation of R \ Y. Then the attribute rhs( f ) is added to 	C. The
disjoint union makes sure that this attribute has not yet been derived by
another rule with the same right-hand side. The atom consistent(FC, Co �
{b}) is used to check the consistency of f with the ordering of Co. The atom
outside(FY2, Y, At, Fd) is used to check if f may be added to FY , that is, if
some attribute in lhs( f ) is in Co.

The third rule refers to the case that rhs( f ) ∈ Co and f is not used for
the derivation of R \ Y. Again, the atom outside(FY2, Y, At, Fd) is used to
check if f may be added to FY .

(4) Attribute removal node. The two rules are used to distinguish two cases
whether the attribute b was in Y or in Co. If b was in Y then all arguments
of the solve fact at the child node s1 of s remain unchanged at s. In contrast,
if b was in Co, then we have to check (by pattern matching with the fact
solve(s1, . . . ,	C � {b}, . . .)) that a rule f for deriving b has already been
found. Recall that, on our bottom-up traversal of T , when we first encounter
an attribute b, it is either added to Y or Co. If b is added to Co then we
eventually have to determine the FD by which b is derived. Hence, initially,
b is in Co but not in 	C. However, when b is finally removed from the bag
then its derivation must have been verified. The arguments Y , FY , and FC
are of course not affected by this attribute removal.

(5) FD removal node. Similarly to the FD introduction node, we distinguish, in
total, three cases. If rhs( f ) ∈ Y then all arguments of the solve fact at the
child node s1 of s remain unchanged at s. If rhs( f ) ∈ Co then we further
distinguish the subcases if f is used for the derivation of R \ Y or not.
The second and third rule refer to these two subcases. The action carried
out by these two rules is the same, namely, it has to be checked (by pattern
matching with the fact solve(s1, . . . , FY �{ f }, . . .)) that f does not constitute
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a contradiction with the closedness of Y. In other words, since rhs( f ) ∈ Co,
we must have encountered (on our bottom-up traversal of T ) an attribute
in lhs( f ) which is outside Y.

(6) Branch node. Recall that a branch node s and its two child nodes s1 and s2

have identical bags by our notion of normalized tree decompositions. The
argument of the solve fact at s is then determined from the arguments at s1

and s2 as follows: the arguments Y and Co must have the same value at all
three nodes s, s1, and s2. Likewise, FC (containing the FDs from the bags
at these nodes which are used in the derivation of R\Y) must be identical.
In contrast, FY and 	C are obtained as the union of the corresponding
arguments in the solve-facts at the child nodes s1 and s2, that is, it suffices
to verify at one of the child nodes s1 or s2 that some FD does not contradict
the closedness of Y and that some attribute in Co is derived by some FD.

Recall that we define an order on the attributes in R \ Y by means of some
derivation sequence of R \ Y from Y ∪ {a}. Hence, we have to make sure that
every attribute in R \ Y is derived only once in this derivation sequence. In
other words, for every b ∈ R\ (Y ∪{a}), we use exactly one FD f with rhs( f ) = b
in our derivation sequence. The atom unique(	C1,	C2, FC) in the rule body
ensures that no attribute in R \ Y is derived via two different FDs in the two
subtrees at the child nodes of the branch node.

THEOREM 5.3. The datalog program in Figure 10 decides the PRIMALITY
problem for a fixed attribute a, that is, the fact “success” is true in the minimal
model of this program and the input τtd-structure Atd if and only if Atd encodes
a relational schema (R, F) together with a tree decomposition T of (R, F), such
that a is part of a key. Moreover, for any schema (R, F) and tree decomposi-
tion T of width at most w, the program can be evaluated in time O(4(w log w) ∗
|(R, F)|).

PROOF. By Lemma 5.2, the predicate solve indeed has the meaning accord-
ing to Property B. Thus, the rule with head success reads as follows: success
is true in the minimal model if and only if s denotes the root of T , a is an
attribute in the bag at s, and Y is the intersection of the desired attribute
set Y with Att(s), that is, (1) Y is closed (this is ensured by the condition that
{ f ∈ Fd | rhs( f ) �∈ Y } = FY ), (2) a �∈ Y and, finally, (3) all attributes in
R \ (Y ∪ {a}) are indeed determined by Y ∪ {a} (this is ensured by the condition
	C = Co \ {a}).

The upper bound on the time complexity is shown by a similar argument as
in the proof of Theorem 5.1: the datalog program in Figure 10 is equivalent to
a ground program P ′ where each rule of P is replaced by O(4(w log w) ∗ |(R, F)|)
ground rules. A detailed proof of this fact can be given by a case distinction over
the possible kinds of nodes in the tree decomposition. In all cases, the crucial
observation is that the number of possible instantiations of the arguments of
the solve(s, Y, FY, Co,	C, FC) predicate is bounded as follows: suppose that
the bag at node s consists of k attributes and l FDs with k + l ≤ w + 1. The
arguments Y and Co are disjoint subsets of Att(s); moreover, Co is ordered.
Hence, there are at most 2k ∗ k! possible instantiations of these two arguments.
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The argument FC is a subset of FD(s). Hence, there are at most 2l possible
instantiations of this argument. Finally, 	C is fully determined by the choice
of Co and FC; likewise, FY is fully determined by the choice of Y . In total,
the number of ground instantiations of each rule in P is bounded by (w +
1)! ∗ (w + 1)! = O(2(w log w) ∗ 2(w log w)) = O(4(w log w)) for every node s in the tree
decomposition T of |(R, F)|. Since the size of T is linearly bounded in |(R, F)|,
we get the upper bound O(4(w log w) ∗ |(R, F)|) on the size of P ′. This ground
program can then be evaluated in linear time.

5.3 The Primality Enumeration Problem

In order to extend the PRIMALITY algorithm from the previous section to
a monadic predicate selecting all prime attributes in a schema, a naive first
attempt might look as follows: one can consider the tree decomposition T as
rooted at various nodes, such that each a ∈ R is contained in the bag of one
such root node. Then, for each a and corresponding tree decomposition T , we
run the algorithm from Figure 10. Obviously, this method has quadratic time
complexity with respect to the data size. However, in this section, we describe
a linear time algorithm.

The idea of this algorithm is to implement a top-down traversal of the tree
decomposition in addition to the bottom-up traversal realized by the program
in Figure 10. For this purpose, we modify our notion of normalized tree decom-
positions in the following way: first, any tree decomposition can of course be
transformed in such a way that every attribute a ∈ R occurs in at least one
leaf node of T . Moreover, for every branch node s in the tree decomposition, we
insert a new node u as new parent of s, such that u and s have identical bags.
Hence, together with the two child nodes of s, each branch node is “surrounded”
by three neighboring nodes with identical bags. It is thus guaranteed that a
branch node always has two child nodes with identical bags, no matter where
T is rooted. Moreover, this insertion of a new node also implies that the root
node of T is not a branch node.

We propose the following algorithm for computing a monadic predicate
prime(), which selects precisely the prime attributes in (R, F). In addition to
the predicate solve, whose meaning was described by Property B in Section 5.2,
we also compute a predicate solve↓, whose meaning is described by replacing
every occurrence of Ts in Property B by T̄s. As the notation solve↓ suggests,
the computation of solve↓ can be done via a top-down traversal of T . Note
that solve↓(s, . . .) for a leaf node s of T is exactly the same as if we computed
solve(s, . . .) for the tree rooted at s. Hence, we can define the predicate prime()
as follows.

Program Monadic-Primality

prime(a) ← leaf (s), bag(s, At, Fd), a ∈ At, solve↓(s, Y, FY, Co, 	C, FC), a �∈ Y ,
FY = { f ∈ Fd | rhs( f ) �∈ Y }, 	C = Co \ {a}.

By the intended meaning of solve↓ and by the properties of the PRIMALITY
algorithm in Section 5.2, we immediately get the following result. As far as
the upper bound on the complexity is concerned, note that a ground program
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P ′ equivalent to the program P for the PRIMALITY enumeration problem has
essentially the double size of a ground program for the PRIMALITY decision
problem. Hence, the upper bound on the complexity carries over from Theo-
rem 5.3.

THEOREM 5.4. The monadic predicate prime() as defined above selects pre-
cisely the prime attributes. Moreover, for any schema (R, F) and tree de-
composition T of width at most w, the program can be evaluated in time
O(4(w log w) ∗ |(R, F)|).

Note that, in all programs presented in Section 5, we consider the tree
decomposition as part of the input. It has already been mentioned in Section 2.2
that, in theory, for every given value w ≥ 1, it can be decided in linear time
(with respect to the size of the input structure), if some structure has treewidth
at most w. Moreover, in the case of a positive answer, a tree decomposition of
width w can also be computed in linear time, (see Bodlaender [1996]). We have
also mentioned in Section 2.2 that the practical usefulness of this linearity is
limited due to excessively big constants [Koster et al. 2001]. At any rate, the
improvement of tree decomposition algorithms is an area of very active research
and considerable progress has recently been made in developing heuristic-
based tree decomposition algorithms [Koster et al. 2001; Bodlaender and Koster
2006, 2008; van den Eijkhof et al. 2007].

6. IMPLEMENTATION AND RESULTS

To test our new datalog programs in terms of their scalability with a large num-
ber of attributes and rules, we have implemented the PRIMALITY program
from Section 5.2 in C++. The experiments were conducted on Linux kernel
2.6.17 with an 1.60-GHz Intel Pentium(M) processor and 512 MB of memory.
We measured the processing time of the PRIMALITY program on different in-
put parameters such as the number of attributes and the number of FDs. The
treewidth in all the test cases was 3. Note, however, that the applicability of
our approach is not restricted to such a low treewidth. In fact, in Jakl et al.
[2009], our approach has recently been adapted and applied to a 
P

2 -complete
problem in the area of answer set programming. Even in this case, it was shown
that our approach scales up to the treewidth of 7 and 1000 nodes in the tree
decomposition.

6.1 Test Data Generation

Due to the lack of available test data, we generated a balanced nor-
malized tree decomposition. Test data sets with increasing input parame-
ters are then generated by expanding the tree in a depth-first style. We
have ensured that all different kinds of nodes occur evenly in the tree
decomposition.

6.2 Experimental Results

The outcome of the tests is shown in Table I, where tw stands for the treewidth,
and #Att, #FD, and #tn stand for the number of attributes, FDs, and tree
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Table I. Processing Time in milliseconds for
PRIMALITY

tw #Att #FD #tn MD MONA
3 3 1 3 0.1 650
3 6 2 12 0.2 9210
3 9 3 21 0.4 17930
3 12 4 34 0.5 —
3 21 7 69 0.8 —
3 33 11 105 1.0 —
3 45 15 141 1.2 —
3 57 19 193 1.6 —
3 69 23 229 1.8 —
3 81 27 265 1.9 —
3 93 31 301 2.2 —

nodes, respectively. The processing time (in milliseconds) obtained with our
C++ implementation following the monadic datalog program in Section 5.2
are displayed in the column labeled MD. The measurements nicely reflect an
essentially linear increase of the processing time with the size of the input.
Moreover, there is obviously no big “hidden” constant which would render the
linearity useless.

In Gottlob et al. [2006a], we proved the FPT of several nonmonotonic rea-
soning problems via Courcelle’s Theorem. Moreover, we also carried out some
experiments with a prototype implementation using MONA (see Klarlund et al.
[2002]) for the MSO model checking. We have now extended these experiments
with MONA to the PRIMALITY problem. The time measurements of these ex-
periments are shown in the last column of Table I. Due to problems discussed
in Gottlob et al. [2006a], MONA does not ensure linear data complexity. Hence,
all tests below line 3 of the table failed with “out-of-memory” errors. Moreover,
also in cases where the exponential data complexity does not yet “hurt,” our
datalog approach outperformsed the MSO-to-FTA approach by a factor of 1000
or even more.

6.3 Optimizations

In our implementation, we have realized several optimizations, which are high-
lighted below.

(1) Succinct representation by nonmonadic datalog. As was mentioned in the
discussion following Theorem 5.1, our datalog programs can be regarded as
succinct representations of big monadic datalog programs. Such a monadic
datalog program has essentially the same size as the ground program ob-
tained by computing all possible ground instantiations of the nonmonadic
datalog program (like in the proofs of Theorems 5.1 and 5.3). However, the
nonmonadic datalog program—combined with lazy grounding [Palù et al.
2009] (i.e., computing the required ground instances of a datalog rule only
when the datalog rule is actually applied)—has the advantage that many
possible instantiations may never have to be materialized since they are
not “reachable” along the bottom-up computation. For instance, in the proof
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of Theorem 5.1, the upper bound on the complexity was obtained by consid-
ering all possible ground instantiations of the rules in Figure 5. However,
suppose that for some node s1 in the tree decomposition, two vertices v1, v2

in the bag of s must always be assigned different colors, that is, in all
solve(s1, R, G, B) facts derivable by the program, v1 and v2 are in different
sets. Then the rules with head solve(s, R′, G′, B′) for the parent node s of s1

will never need a ground instantiation with v1 and v2 jointly occurring in
one of the sets R′, G′, or B′.

(2) General optimizations and lazy grounding [Palù et al. 2009]. In principle,
our implementation is based on the general idea of grounding followed by
an evaluation of the ground program. This corresponds to the general tech-
nique to ensure linear time data complexity; cf. Theorem 4.5. As mentioned
above, a further improvement is achieved by the natural idea of generating
only those ground instances of rules which actually produce new facts.

(3) Problem-specific optimizations of the nonmonadic datalog programs. In the
paragraph below Theorem 5.1, we have already mentioned that the data-
log programs presented in Section 5 incorporate several problem-specific
optimizations. The underlying idea of these optimizations is that many
transitions which are kept track of by the generic construction in the proof
of Theorem 4.6 (and, likewise, in the MSO-to-FTA approach) will not lead
to a solution anyway. Hence, they are omitted in our datalog programs right
from the beginning.

(4) Language extensions. As was mentioned in Section 5, we are using language
constructs (in particular, for handling sets of attributes and FDs) which are
not part of the datalog language (nevertheless they may be supported by
datalog engines like the DLV-Complex extension of the DLV system [Leone
et al. 2006]). In principle, they could be realized in datalog. Nevertheless, we
preferred an efficient implementation of these constructs directly on C++
level. Further language extensions are conceivable and easy to realize.

(5) Further improvements. We are planning to implement further improve-
ments. For instance, we are currently applying a strict bottom-up intuition
as we compute new facts solve(v, . . .). However, some top-down guidance
in the style of magic sets so as not to compute all possible such facts at
each level would be desirable. Note that ultimately, at the root, only facts
fulfilling certain conditions (like a �∈ Y , etc.) are needed in case that an
attribute a is indeed prime.

7. CONCLUSION

In this work, we have proposed a new approach based on monadic datalog to
tackle a big class of fixed-parameter tractable problems. Theoretically, we have
shown that every MSO-definable unary query over finite structures of bounded
treewidth is also definable in monadic datalog. In fact, the resulting program
even lies in a particularly efficient fragment of monadic datalog. Practically,
we have put this approach to work by applying it to the 3-Colorability problem
and the PRIMALITY problem in case of bounded treewidth. The experimental
results thus obtained look very promising. They underline that datalog with
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its potential for optimizations and its flexibility is clearly worth considering for
this class of problems.

Recall that the PRIMALITY problem is closely related to an important prob-
lem in the area of artificial intelligence, namely the relevance problem of propo-
sitional abduction (i.e., given a system description in form of a propositional
clausal theory and observed symptoms, one has to decide if some hypothesis is
part of a possible explanation of the symptoms). Indeed, if the clausal theory
is restricted to definite Horn clauses and if we are only interested in minimal
explanations, then the relevance problem is basically the same as the problem
of deciding primality in a subschema R′ ⊆ R. Extending our prime() program
(and, in particular, the solve() predicate) from Section 5 so as to test primality
in a subschema is rather straightforward. On the other hand, extending such
a program to abduction with arbitrary clausal theories (which is on the second
level of the polynomial hierarchy; see Eiter and Gottlob [1995]) is much more
involved. A monadic datalog program solving the relevance problem also in this
general case was presented in Gottlob et al. [2008].

Our datalog program in Section 5 was obtained by an ad hoc construction
rather than via a generic transformation from MSO. Nevertheless, we are
convinced that the idea of a bottom-up propagation of certain conditions is quite
generally applicable. We are therefore planning to tackle many more problems,
whose FPT was established via Courcelle’s Theorem, with this new approach.
We have already incorporated some optimizations into our implementation.
Further improvements are on the way (in particular, further heuristics to prune
irrelevant parts of the search space).
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GOTTLOB, G., GRÄDEL, E., AND VEITH, H. 2002. Datalog LITE: A deductive query language with
linear time model checking. ACM Trans. Comput. Logic 3, 1, 42–79.

GOTTLOB, G. AND KOCH, C. 2004. Monadic datalog and the expressive power of languages for Web
information extraction. J. ACM 51, 1, 74–113.

GOTTLOB, G., PICHLER, R., AND WEI, F. 2006a. Bounded treewidth as a key to tractability of knowl-
edge representation and reasoning. In Proceedings of AAAI. AAAI Press, Menlo Park, CA, 250–
256.

GOTTLOB, G., PICHLER, R., AND WEI, F. 2006b. Tractable database design through bounded
treewidth. In Proceedings of PODS. ACM Press, New York, NY, 124–133.

GOTTLOB, G., PICHLER, R., AND WEI, F. 2007. Monadic datalog over finite structures with bounded
treewidth. In Proceedings of PODS. ACM Press, New York, NY, 165–174.

GOTTLOB, G., PICHLER, R., AND WEI, F. 2008. Abduction with bounded treewidth: From theoretical
tractability to practically efficient computation. In Proceedings of AAAI. AAAI Press, Menlo Park,
CA, 1541–1546.

GROHE, M. 1999. Descriptive and parameterized complexity. In Proceedings of CSL. Lecture
Notes in Computer Science, vol. 1683. Springer, Berlin, Germany, 14–31.

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 3, Publication date: October 2010.



3:48 • G. Gottlob

GUSTEDT, J., MÆHLE, O. A., AND TELLE, J. A. 2002. The treewidth of Java programs. In Proceedings
of (ALENEX). 4th International Workshop on Algorithm Engineering and Experiments, Revised
Papers. Lecture Notes in Computer Science, vol. 2409. Springer, Berlin, Germany, 86–97.
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