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Abduction is an important method of non-monotonic reasoning with many applications
in artificial intelligence and related topics. In this paper, we concentrate on propositional
abduction, where the background knowledge is given by a propositional formula. Decision
problems of great interest are the existence and the relevance problems. The complexity
of these decision problems has been systematically studied while the counting complexity
of propositional abduction has remained obscure. The goal of this work is to provide a
comprehensive analysis of the counting complexity of propositional abduction in various
settings.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Abduction is a method of non-monotonic reasoning which has taken a fundamental importance in artificial intelligence
and related topics. It is widely used to produce explanations for observed symptoms and manifestations, therefore it has
an important application field in diagnosis – notably in the medical domain (see [24]). Other important applications of
abduction can be found in planning, database updates, data-mining and many more areas (see e.g. [16,17,23]).

Logic-based abduction can be formally described as follows. Given a logical theory T formalizing an application, a set M
of manifestations, and a set H of hypotheses, find an explanation S for M , i.e., a suitable set S ⊆ H such that T ∪ S is
consistent and logically entails M . In this paper we consider propositional abduction problems, where the theory T is repre-
sented by a propositional formula over a Boolean algebra B = ({0,1};∨,∧,¬,→,≡) or a Boolean field Z2 = ({0,1};+,∧),
and the sets of hypotheses H together with the manifestations M consist of variables V . A system diagnosis problem can be
represented by a propositional abduction problem P = 〈V , H, M, T 〉 as follows. The theory T is the system description. The
hypotheses H ⊆ V describe the possibly faulty system components. The manifestations M ⊆ V are the observed symptoms,
describing the malfunction of the system. The solutions S of P are the possible explanations of the malfunction.

Example 1. Consider the following football knowledge base.

T =
⎧⎨
⎩

weak_defense ∧ weak_attack → match_lost,
match_lost → manager_sad ∧ press_angry,

star_injured → manager_sad ∧ press_sad

⎫⎬
⎭

✩ This paper is an extended version of results which appeared as [13] and [14].
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Moreover, let the set of observed manifestations and the set of hypotheses be

M = {manager_sad}
H = {star_injured,weak_defense,weak_attack}

This propositional abduction problem has five abductive explanations (= “solutions”).

S1 = {star_injured}
S2 = {weak_defense,weak_attack}
S3 = {star_injured,weak_attack}
S4 = {star_injured,weak_defense}
S5 = {star_injured,weak_defense,weak_attack}

Obviously, in the above example, not all solutions are equally intuitive. Indeed, for many applications, one is not inter-
ested in all solutions of a given propositional abduction problem P but only in all acceptable solutions of P . Acceptable in
this context means minimal with respect to some preorder � on the powerset 2H . Two natural preorders are set-inclusion ⊆
and smaller cardinality denoted as �. If we have a weight function on the hypotheses then we may define the acceptable
solutions as the weight-minimal ones. This preorder (i.e., smaller weight) is denoted as �. Finally, if indeed all solutions are
acceptable, then the corresponding preorder is the syntactic equality =.

Note that the various notions of minimality arising from the above mentioned preorders ⊆, �, and � are very natural
requirements. The intuition behind ⊆-minimality is essentially that of redundancy elimination from the solutions, i.e.: we
want to eliminate all those hypotheses from an explanation which are not needed to explain the observed symptoms. The
intuition behind � and � is usually twofold, namely to find explanations with highest probability and/or with minimal
repair requirements. More precisely, if the failure of any component in a system is independent of the failure of the other
components and all components have equal failure probability, then explanations with minimum cardinality are the ones
with highest probability. Likewise, if the repair of each individual component is assumed to cause essentially the same cost,
then the solutions with minimal cardinality are precisely the ones with minimal cost of repair. If we have numeric values
available for the repair cost or for the robustness of each component (e.g., based on data such as the empirically collected
mean time to failure and component age), then weight-minimal abduction seeks for the cheapest repair respectively for the
most likely explanation. In Example 1, only the solutions S1 and S2 are subset-minimal and only S1 is cardinality-minimal.
Moreover, suppose that we have a weight function w on the hypotheses with f (weak_defense) = 10, f (weak_attack) = 20,
f (star_injured) = 50. These weights could, for instance, express the cost of repair (in millions of € to engage a new player
in order to reinforce the defense or the attack, or to engage a new star, respectively). Then S2 is the only weight-minimal
solution.

All three criteria ⊆, �, and � can be further refined by a hierarchical organization of the hypotheses according to some
priorities (cf. [9]). The resulting preorder is denoted by ⊆P , �P , and �P , respectively. Priorities are particularly useful if
different sets of components can be ranked according to some criterion that is not well-suited for numeric values (like,
e.g., a qualitative rather than a quantitative robustness measure of components, the accessibility of components, or how
critical the failure of a certain component would be). Then this ranking can be expressed by priorities on the hypotheses.
For instance, suppose that for some reason we know that (for a specific team) star_injured is much less likely to occur
than weak_defense and weak_attack. This judgment can be formalized by assigning lower priority to the former. Then S2 is
the only minimal solution with respect to the preorders ⊆P and �P . Actually, in this simple example, S2 is also the only
�P -minimal solution independently of the particular weight function.

The usually observed algorithmic problem in logic-based abduction is the existence problem, i.e. deciding whether at
least one solution S exists for a given abduction problem P . Another well-studied decision problem is the so-called rele-
vance problem, i.e. given a propositional abduction problem P and a hypothesis h ∈ H , is h part of at least one acceptable
solution? However, this approach is not always satisfactory. Especially in database applications, in diagnosis, and in data-
mining there exist situations where we need to know all acceptable solutions of the abduction problem or at least an
important part of them. Consequently, the enumeration problem (i.e., the computation of all acceptable solutions) has re-
ceived much interest (see e.g. [6,7]). Another natural question is concerned with the total number of solutions to the
considered problem. The latter problem refers to the counting complexity of abduction. Clearly, the counting complexity
provides a lower bound for the complexity of the enumeration problem. Moreover, counting the number of abductive ex-
planations can be useful for probabilistic abduction problems (see e.g. [25]). Indeed, in order to compute the probability of
failure of a given component in a diagnosis problem (under the assumption that all preferred explanations are equiproba-
ble), we need to count the number of preferred explanations as well as the number of preferred explanations that contain
a given hypothesis.

The study of counting complexity has been initiated by Valiant [28,29] and is now a well-established part of complexity
theory, where the best known class is #P. Many counting variants of decision problems have been proved #P-complete.
Higher counting complexity classes do exist, but they are not commonly known. A counting equivalent of the polynomial
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Table 1
Counting complexity of propositional abduction.

#-abduction = ⊆ ⊆P � �P , �, �P

General case #·coNP #·coNP #·�2P #·Opt2P[log n] #·Opt2P

Horn #P #P #·coNP #·OptP[log n] #·OptP

Definite Horn #P #P #P #·OptP[log n] #·OptP

Dual Horn #P #P #P #·OptP[log n] #·OptP

Bijunctive #P #P #·coNP #·OptP[log n] #·OptP

hierarchy was defined by Hemaspaandra and Vollmer [12], whereas generic complete problems for these counting hierarchy
classes were presented in [4]. For our complexity analysis here, the classes #P, #·coNP = #·�1P, and #·�2P will play
an important role (for details, see Section 2.2). More specifically, we shall show that all relevant counting problems for
propositional abduction with the preorders =, ⊆, and ⊆P are either tractable or complete for one of these classes.

In [15], we enlarged the approach of Hemaspaandra and Vollmer to classes of optimization problems, obtaining this way
a new hierarchy of classes #·OptkP[log n] and #·OptkP for arbitrary k ∈ N (again, see Section 2.2, for details). These classes
are sandwiched between the previously known counting classes #·�kP, i.e., for each k ∈ N we have

#·�kP ⊆ #·Optk+1P[logn] ⊆ #·Optk+1P ⊆ #·�k+1P.

It was shown in [15] that these inclusions are proper unless the polynomial hierarchy collapses to the k-th level. The most
important special case is k = 1, where we write #·OptP[logn] and #·OptP as a short-hand for #·Opt1P[logn] and #·Opt1P. On
the first two levels, we thus have the inclusions #P ⊆ #·OptP[logn] ⊆ #·OptP ⊆ #·coNP ⊆ #·Opt2P[logn] ⊆ #·Opt2P ⊆ #·�2P.
We shall show that these new counting complexity classes are precisely the ones needed to pinpoint the exact counting
complexity of propositional abduction with the preorders �, �, �P and �P .

1.1. Results

The goal of this work is to provide a comprehensive analysis of the counting complexity of propositional abduction in
various settings. An overview of our results is given in Table 1. The columns of this table correspond to the seven preorders
on 2H considered here for defining the notion of acceptable solutions, namely equality =, subset-minimality ⊆, subset-
minimality with priorities ⊆P , cardinality-minimality �, cardinality-minimality with priorities �P , weight-minimality �,
and weight-minimality with priorities �P . All entries in Table 1 refer to completeness results.

Apart from the general case where the theory T is an arbitrary propositional formula, we also consider the subclasses
of Horn, definite Horn, dual Horn, and bijunctive theories T . These classes enjoy several favorable properties. Among other
properties, they are closed under conjunction and existential quantification, i.e., a conjunction of two formulas from C
belongs to the class C and a formula from C with an existentially quantified variable is logically equivalent to another
formula from C . Moreover, they represent the most studied formulas in logic, complexity, and artificial intelligence. This is
mainly due to Schaefer’s famous result that the satisfiability problem for them (as well as for affine formulas) is polynomial
as opposed to the NP-completeness of the general case (see [26]). A counting complexity analysis for abduction with affine
theories is more subtle: affine theories are conjunctions of linear equations over the Boolean ring Z2, hence they cannot be
expressed as a conjunction of clauses, and they require the application of methods from linear algebra. They will therefore
be the subject of a standalone upcoming work.

1.2. Related work

The complexity of logic-based propositional abduction, formulated as a decision problem asking for the existence of a so-
lution, has been intensively investigated in the literature. It was a common folklore to believe that abduction is intractable
in general. A first result2 on intractability of propositional abduction was published by Bylander et al. in [1], where the
authors also identified several tractable cases. The computational complexity effort concerning abduction was pursued by
Selman and Levesque [27], proving that abduction with Horn clauses is NP-complete. Eshghi presented in [8] a tractable
subclass of abduction problems. Eiter and Gottlob [5] were the first to prove the �2P-completeness result for the general
case, as well as a plethora of other complexity results for several special cases and minimality criteria. In [3] del Val gener-
alized and enlarged the analysis of tractable cases performed by Eshghi. Zanuttini presented in [30] yet another collection of
new polynomial-time classes for abduction. Nordh and Zanuttini presented in [21] a classification of propositional abduction
based on algebraic properties. Finally, Creignou and Zanuttini published in [2] a complete classification of the complexity of
propositional abduction. See also the excellent survey by Nordh and Zanuttini [22] on complexity results for propositional
abduction. However, all the aforementioned results, apart from a #P-completeness result briefly mentioned in [1] for inde-
pendent abduction problems (which correspond in our notation to ⊆-minimal bijunctive definite Horn abduction), concern

2 Bylander et al. published first their results in two conferences in 1987 and 1989 before writing the final version for a scientific journal.



M. Hermann, R. Pichler / Journal of Computer and System Sciences 76 (2010) 634–649 637
only the decision problem, sometimes with slight differences in the definition of the abduction problem, whereas almost no
general complexity analysis is known so far for the corresponding counting problem, with the already mentioned exception.

1.3. Structure of the paper

The paper is organized as follows. After recalling some basic definitions and results in Section 2, we analyze the counting
complexity of propositional abduction for general theories (Section 3), for Horn, definite Horn, dual Horn and bijunctive
theories (Section 4). We conclude with Section 5.

2. Preliminaries

2.1. Propositional abduction

A propositional abduction problem (PAP) P consists of a tuple 〈V , H, M, T 〉, where V is a finite set of variables, H ⊆ V is
the set of hypotheses, M ⊆ V is the set of manifestations, and T is a consistent theory in the form of a propositional formula.
A set S ⊆ H is a solution (also called explanation) to P if T ∪ S is consistent and T ∪ S | M holds.

A preorder is a reflexive and transitive binary relation. Below, we define several preorders � on the powerset 2H . They
will allow us to define the corresponding restrictions of propositional abduction where only �-minimal solutions are con-
sidered.

Definition 2. Let a propositional abduction problem P consist of a tuple 〈V , H, M, T 〉 and let A, B ⊆ H . We consider the
following preorders � on the powerset 2H .

• The equality and subset preorders A = B and A ⊆ B , respectively, are obvious.
• The cardinality preorder A � B holds if the condition |A| � |B| is satisfied by the cardinalities of the sets A and B .
• Suppose that a weight function w on the hypotheses H is given, i.e., w : H → N. The weight preorder A � B holds if

the condition
∑

a∈A w(a) �
∑

b∈B w(b) is satisfied.

Definition 3. Let a propositional abduction problem P consist of a tuple 〈V , H, M, T 〉, let A, B ⊆ H , and let P = 〈H1, . . . , H K 〉
be a stratification of the hypotheses H = H1 ∪ · · · ∪ H K into disjoint sets H1, . . . , H K . The sets H1, . . . , H K are referred to as
priorities. Then we consider the following additional preorders � on the powerset 2H :

• The subset with priorities preorder A ⊆P B holds if A = B or there exists an i ∈ {1, . . . , K } such that A ∩ H j = B ∩ H j for
all j < i and A ∩ Hi � B ∩ Hi .

• The cardinality with priorities preorder A �P B holds if A = B or there exists an i ∈ {1, . . . , K } such that |A ∩ H j | =
|B ∩ H j | for all j < i and |A ∩ Hi | < |B ∩ Hi |.

• Suppose that a weight function w on the hypotheses H is given, i.e., w : H → N. The weight with priorities preorder
A �P B holds if A = B or there exists an i ∈ {1, . . . , K } such that

∑
a∈A∩H j

w(a) = ∑
b∈B∩H j

w(b) for all j < i and∑
a∈A∩Hi

w(a) <
∑

b∈B∩Hi
w(b).

Definition 4. Let a PAP P consist of a tuple 〈V , H, M, T 〉 and let � ∈ {=, ⊆, �, �, ⊆P , �P , �P } be a preorder on 2H .
Moreover, let S ⊆ H be a solution of P . We say that S is �-minimal if there does not exist a solution S ′ of P with S ′ ≺ S ,
i.e., S ′ � S and S �= S ′ .

Let � ∈ {=, ⊆, �, �, ⊆P , �P , �} be one of the preorders defined in Definitions 2 and 3. We study the following family
of counting problems, parameterized by �:

Problem: #-�-abduction

Input: A propositional abduction problem P = 〈V , H, M, T 〉.
Output: Number of �-minimal solutions (explanations) of P .

The abduction counting problem with the equality preorder is usually denoted by #-abduction rather than #-=-
abduction. Throughout this paper we follow the formalism of Eiter and Gottlob [5], allowing only positive literals in the
solutions. In contrast, Creignou and Zanuttini [2] also allow negative literals in the solutions.

Example 5. Recall the PAP P = 〈V , H, M, T 〉 from Example 1 with

V = {star_injured,weak_defense,weak_attack,manager_sad,press_sad,match_lost}
H = {star_injured,weak_defense,weak_attack}
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M = {manager_sad}

T =
⎧⎨
⎩

weak_defense ∧ weak_attack → match_lost,
match_lost → manager_sad ∧ press_angry,

star_injured → manager_sad ∧ press_sad

⎫⎬
⎭

It is convenient to use the abbreviations SI, WD, and WA for the hypotheses in H . For the various preorders � from
Definitions 2 and 3, P has the following �-minimal solutions:

Preorder =. Every solution of a PAP is =-minimal. Hence, P has the following =-minimal solutions:

S1 = {SI}, S2 = {WD,WA}, S3 = {SI,WA}, S4 = {SI,WD}, S5 = {SI,WD,WA}
Preorders ⊆ and �. The ⊆-minimal solutions are S1 and S2. The only �-minimal solution is S1.

Preorder �. Suppose that a weight function w on the hypotheses H is given with w(SI) = 50, w(WD) = 10, and
w(WA) = 20. Then S2 is the only �-minimal solution of P .

Preorders ⊆P , �P , and �P . We consider the priorities H1 = {SI} and H2 = {WD,WA}. As we have already discussed in
Section 1, S2 is the only ⊆P -minimal and the only �P -minimal. Moreover, for any weight function w on the hypotheses H ,
S2 is also the only �P -minimal solution. Below, we illustrate that a different choice of priorities may change the situation.

Preorder �P . We consider the priorities H ′
1 = {SI,WD} and H ′

2 = {WA}. In this case, S1 = {SI} is the only �P -minimal
solution of P . This can be easily seen as follows: We have |S1 ∩ H ′

1| = 1 and |S1 ∩ H ′
2| = 0. The only possibility that S1 is

not �P -minimal is that there exists a solution S ′ of P with |S ′ ∩ H ′
1| = 0. However, none of the solutions S2, . . . , S5 fulfills

this condition.

Preorder ⊆P . We consider the priorities H ′
1 = {SI,WD} and H ′

2 = {WA}. There are two ⊆P -minimal solutions, namely S1 =
{SI} and S2 = {WD,WA}. The ⊆P -minimality of S1 is seen as follows: Since (S1 ∩ H ′

2) = ∅, the only possibility that S1 is not
⊆P -minimal is that there exists a solution S ′ of P with (S ′ ∩ H ′

1) ⊂ (S1 ∩ H ′
1). Since (S1 ∩ H ′

1) is a singleton, this means
that (S ′ ∩ H ′

1) = ∅, i.e., S ′ ⊆ {WA}. Clearly, no such solution exists.
Now let us verify that also S2 is ⊆P -minimal. Suppose to the contrary that it is not, i.e., there exists a ⊆P -smaller

solution S ′ . By the definition of ⊆P , this means that one of the following conditions holds: either (1) (S ′ ∩ H ′
1) ⊂ (S2 ∩ H ′

1)

or (2) (S ′ ∩ H ′
1) = (S2 ∩ H ′

1) and (S ′ ∩ H ′
2) ⊂ (S2 ∩ H ′

2). The first possibility can be dismissed as before. Now suppose that
condition (2) is fulfilled. The only set S ′ with this property is S ′ = {WD}, which is clearly not a solution of P . Hence, S2 is
indeed ⊆P -minimal.

Preorder �P . We consider the priorities H ′
1 = {SI,WD} and H ′

2 = {WA}. Now consider the weight function w ′ on the hy-
potheses H with w ′(SI) = 50, w ′(WD) = 40, and w ′(WA) = 20. Then S2 is the only �P -minimal solution, even though the
total weight of the hypotheses in S2 is 60 and thus exceeds the total weight of S1. Indeed, on the first priority level, we
have

∑
s∈S2∩H1

w ′(s) = 40 and there exists no solution S ′ with
∑

s∈S ′∩H1
w ′(s) < 40. Moreover, the only possibility to attain

the minimal value
∑

s∈S ′∩H1
w ′(s) = 40 is if S ′ ∩ H ′

1 = {WD}. But then, there exists no extension of S ′ to H ′
2 with a smaller

weight than S2, i.e., for any solution S ′ with S ′ ∩ H ′
1 = {WD}, we clearly have

∑
s∈S ′∩H ′

2
w ′(s) � 20 = ∑

s∈S2∩H ′
2

w ′(s).
Hence, S2 is indeed the only �P -minimal solution.

Together with the general case where T can be an arbitrary propositional formula, we consider the special cases where T
is Horn, definite Horn, dual Horn, and bijunctive. Due to Schaefer’s famous dichotomy result (see [26]), these classes of
formulas (as well as the affine formulas not considered here) are the most frequently studied subcases of propositional
formulas. A propositional clause C is said to be Horn, definite Horn, dual Horn, or bijunctive if it has at most one positive
literal, exactly one positive literal, at most one negative literal, or at most two literals, respectively. A theory T is Horn,
definite Horn, dual Horn, or bijunctive if it is a conjunction (or, equivalently, a set) of Horn, definite Horn, dual Horn, or
bijunctive clauses, respectively.

2.2. Counting complexity

2.2.1. Counting problems and the complexity classes #·C
The study of counting problems was initiated by Valiant in [28,29]. While decision problems ask if at least one solution of

a given problem instance exists, counting problems ask for the number of different solutions. The most intensively studied
counting complexity class is #P, which denotes the functions counting the number of accepting paths of a non-deterministic
polynomial-time Turing machine. In other words, #P captures the counting problems corresponding to decision problems
in NP. By allowing the non-deterministic polynomial-time Turing machine access to an oracle in NP,�2P,�3P, . . . , we can
define an infinite hierarchy of counting complexity classes.
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Alternatively, a counting problem is presented using a witness function which for every input x returns a set of witnesses
for x. A witness function is a function w :Σ∗ → P <ω(Γ ∗), where Σ and Γ are two alphabets, and P <ω(Γ ∗) is the collection
of all finite subsets of Γ ∗ . Every such witness function gives rise to the following counting problem: given a string x ∈ Σ∗ ,
find the cardinality |w(x)| of the witness set w(x). According to [12], if C is a complexity class of decision problems, we
define #·C to be the class of all counting problems whose witness function w satisfies the following conditions:

1. There is a polynomial p(n) such that for every x ∈ Σ∗ and every y ∈ w(x) we have |y| � p(|x|);
2. The problem “given x and y, is y ∈ w(x)?” is in C .

It is easy to verify that #P = #·P. The counting hierarchy is ordered by linear inclusion [12]. In particular, we have that
#P ⊆ #·coNP ⊆ #·�2P ⊆ #·�3P, etc. Note that we can, of course, also consider the classes #·NP, #·Σ2P, #·Σ3P, etc. However,
they play no role in this work.

2.2.2. Counting the optimal solutions
In [15], we introduced new counting complexity classes for counting optimal solutions. We followed the aforementioned

approach, where the complexity class C was chosen among OptP and OptP[logn], or, more generally, OptkP and OptkP[logn]
for arbitrary k ∈ N, respectively. These classes were previously defined by Krentel [19,20]. A large collection of completeness
results for these classes is given in [11]. As Krentel observed, the classes OptP[logn] and OptP, which are closely related to
FPNP[logn] and FPNP, contain problems of computing optimal solutions with a logarithmic and polynomial number of calls to
an NP-oracle, respectively.

The application of the counting operator to the aforementioned optimization classes allowed us to define in [15] the
counting complexity classes #·OptP, #·OptP[logn] and, more generally, #·OptkP, #·OptkP[logn] for each k ∈ N. To formally
introduce these classes, we need some supplementary notions.

A non-deterministic transducer M is a non-deterministic polynomial-time bounded Turing machine, which writes a binary
number on the output at the end of every accepting path. If M is equipped with an oracle from the complexity class C ,
then it is called a non-deterministic transducer with C -oracle. A �kP-transducer M is a non-deterministic transducer with a
�k−1P oracle. We identify non-deterministic transducers without oracle and �1P-transducers. For x ∈ Σ∗ , we write optM(x)
to denote the optimal value, which can be either the maximum or the minimum, on any accepting path of the computation
of M on x. If no accepting path exists then optM(x) is undefined.

We say that a counting problem #·A :Σ∗ → N is in the class #·OptkP for some k ∈ N, if there is a �kP-transducer M ,
such that #·A(x) is the number of accepting paths of the computation of M on x yielding the optimum value optM(x). If no
accepting path exists then #·A(x) = 0. If the length of the binary number written by M is bounded by O (log |x|), then #·A
is in the class #·OptkP[logn]. For k = 1, we write #·OptP[logn] and #·OptP as a short-hand for #·Opt1P[logn] and #·Opt1P,
respectively. It was shown in [15] that these new classes #·OptkP[logn] and #·OptkP indeed form an infinite hierarchy
and do not coincide with already known counting complexity classes unless the polynomial hierarchy collapses. Finally,
these new counting classes were shown to be sandwiched between the classes #·�kP, i.e., we obtained the inclusions
#P ⊆ #·OptP[log n] ⊆ #·OptP ⊆ #·coNP ⊆ #·Opt2P[logn] ⊆ #·Opt2P ⊆ #·�2P, etc.

2.2.3. Reductions
Completeness of counting problems in #P is usually proved by means of Turing reductions. However, these reductions

preserve neither the counting classes #·�kP, nor #·OptkP. It is therefore better to use subtractive reductions [4] which
preserve the aforementioned counting classes. We write #·R to denote the following counting problem: given a string
x ∈ Σ∗ , find the cardinality |R(x)| of the witness set R(x) associated with x. The counting problem #·A reduces to #·B via a
strong subtractive reduction if there exist two polynomial-time computable functions f and g such that for each x ∈ Σ∗ we
have

B
(

f (x)
) ⊆ B

(
g(x)

)
and

∣∣A(x)
∣∣ = ∣∣B

(
g(x)

)∣∣ − ∣∣B
(

f (x)
)∣∣

A strong subtractive reduction with B( f (x)) = ∅ is called parsimonious. Subtractive reductions are the transitive closure of
strong subtractive reductions.

2.2.4. Complete problems
The prototypical #·�kP-complete problem for k ∈ N is #�kSAT [4], defined as follows. Given a formula

ψ(X) = ∀Y1 ∃Y2 · · · Q kYk ϕ(X, Y1, . . . , Yk)

where ϕ is a Boolean formula and X, Y1, . . . , Yk are sets of propositional variables, count the number of truth assignments to
the variables in X that satisfy ψ . We obtain the prototypical #·Optk+1P[logn]-complete counting problem #min-card-�ksat

and the prototypical #·Optk+1P-complete problem #min-weight-�ksat [15] by asking for the number of cardinality-minimal
and weight-minimal models of ϕ(X), respectively. In the latter case, there exists a weight function w : X → N assigning
positive values to each variable x ∈ X . As usual, the counting problems #min-card-�0sat and #min-weight-�0sat are just
denoted by #min-card-sat and #min-weight-sat, being respectively #·OptP[logn]- and #·OptP-complete.
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3. General propositional theories

The decidability problem of propositional abduction was shown to be �2P-complete in [5]. The hardness part was proved
via a reduction from qsat2. A modification of this reduction yields the following counting complexity result.

Theorem 6. The counting problems #-abduction and #-⊆-abduction are #·coNP-complete via parsimonious reductions.

Proof. The #·coNP-membership is clear by the fact that it is in 	2P to test whether a subset S ⊆ H is a solution
(respectively a subset-minimal solution) of a given propositional abduction problem (see [5, Proposition 2.1.5]). The #·coNP-
hardness is shown via the following parsimonious reduction from #�1SAT. Let an instance of the #�1SAT problem be given
by a formula

ψ(X) = ∀Y ϕ(X, Y )

with the variable sets X = {x1, . . . , xk} and Y = {y1, . . . , yl}. Moreover, let x′
1, . . . , x′

k , r1, . . . , rk , t denote fresh, pairwise
distinct variables. Let X ′ = {x′

1, . . . , x′
k} and R = {r1, . . . , rk}. We define the propositional abduction problem P = 〈V , H, M, T 〉

as follows:

V = X ∪ X ′ ∪ Y ∪ R ∪ {t}
H = X ∪ X ′

M = R ∪ {t}
T = {¬xi ∨ ¬x′

i, xi → ri, x′
i → ri | 1 � i � k

} ∪ {
ϕ(X, Y ) → t

}

Obviously, this reduction is feasible in polynomial time. We now show that the reduction is indeed parsimonious.
The manifestations R together with the formulas xi → ri , x′

i → ri in T enforce that in every solution S of the proposi-
tional abduction problem, we have to select at least one of xi and x′

i . The additional formula ¬xi ∨ ¬x′
i enforces that we

have to select at most one of xi and x′
i . By these two conditions, the value of x′

i is fully determined by xi , namely x′
i is the

opposite of xi .
Moreover, it is easy to check that there is a one-to-one relationship between the solutions S ⊆ X of P and the models

of ∀Y ϕ(X, Y ). Hence, this reduction is indeed parsimonious. The complementarity of X and X ′ enforces each solution of be
incomparable with the others and, therefore, to be subset-minimal. �

According to the above theorem, #-abduction and #-⊆-abduction have the same counting complexity. Intuitively, this
is due to the following equivalence (cf. [5]): S is a ⊆-minimal solution of the propositional abduction problem P if and
only if S is a solution of P and for every h ∈ S , S � {h} is not a solution. Hence, taking the ⊆-minimality into account
makes things only polynomially harder. In contrast, as soon as there are at least 2 priority levels, the following effect may
occur. Suppose that S is a solution of the propositional abduction problem and that S � {h} is a solution for no h ∈ S . Then
it might well happen that, for some h ∈ S , some set of the form S ′ = (S � {h}) ∪ X is a solution, where all hypotheses in X
have higher priority than h. Checking if such a set S ′ (and, in particular, if such a set X ) exists comes down to yet another
non-deterministic guess. Formally, we thus get the following complexity result.

Theorem 7. The counting problem #-⊆P -abduction is #·�2P-complete via subtractive reductions.

Proof. The ⊆P -minimal solutions of a propositional abduction problem can be computed by a non-deterministic
polynomial-time Turing machine with �2P-oracle as follows: The Turing machine non-deterministically generates all subsets
S ⊆ H and

(i) checks by an oracle call whether S is a solution of the propositional abduction problem and
(ii) if so, checks by another oracle call whether S is ⊆P -minimal.

The latter test – which is the most expensive part – can be done by a �2P-oracle. Indeed, the problem of testing that S
is not ⊆P -minimal can be done by the following �2P-algorithm: guess a subset S ′ ⊆ H such that S ′ is ⊆P -smaller than S
and check that S ′ is a solution of the propositional abduction problem. Hence, the #-⊆P -abduction problem is in #·�2P.

The #·�2P-hardness is shown by the following (strong) subtractive reduction from #�2SAT. Let an instance of the
#�2SAT problem be given by a formula

ψ(X) = ∀Y ∃Z ϕ(X, Y , Z)

with the variables X = {x1, . . . , xk}, Y = {y1, . . . , yl}, and Z = {z1, . . . , zm}. Moreover, let x′
1, . . . , x′

k , p1, . . . , pk , y′
1, . . . , y′

l ,
q1, . . . ,ql, r, t be new, pairwise distinct variables distributed among the sets X ′ = {x′

1, . . . , x′
k}, P = {p1, . . . , pk}, Y ′ =

{y′ , . . . , y′}, and Q = {q1, . . . ,ql}. Then we define two propositional abduction problems P1 and P2 as follows:
1 l
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V = X ∪ X ′ ∪ Y ∪ Y ′ ∪ Z ∪ P ∪ Q ∪ {r, t}
H = X ∪ X ′ ∪ Y ∪ Y ′ ∪ {r} with priorities H1 = H � Y ′ and H2 = Y ′

M = P ∪ Q ∪ {t}
T1 = {¬xi ∨ ¬x′

i, xi → pi, x′
i → pi | 1 � i � k

} ∪ {¬yi ∨ ¬y′
i, yi → qi, y′

i → qi | 1 � i � l
} ∪ {¬ϕ(X, Y , Z) → t

}

T2 = T1 ∪ {r ∧ y1 ∧ · · · ∧ yl → t}
Finally we set P1 = 〈V , H, M, T1〉 and P2 = 〈V , H, M, T2〉.

Obviously, this reduction is feasible in polynomial time. Now let A(ψ) denote the set of all satisfying assignments of a
#�2SAT-formula ψ and let B(P ) denote the set of ⊆P -minimal solutions of a propositional abduction problem P . We claim
that the above definition of the propositional abduction problems P1 and P2 is indeed a (strong) subtractive reduction, i.e.
that

B(P1) ⊆ B(P2) and
∣∣A(ψ)

∣∣ = ∣∣B(P2)
∣∣ − ∣∣B(P1)

∣∣
In order to prove this claim, we describe what the ⊆P -minimal solutions of the propositional abduction problems P1
and P2, respectively look like. To facilitate the discussion, we introduce the following notation. We denote solutions as
bit-vectors (x, x′, y, r, y′), where x, x′ are themselves vectors of arity k and y, y′ are vectors of arity l. The representation
of a subset of H by such a bit-vector is obvious. Moreover, let D(x, x′) and D(y, y′) be a short-hand for

∧k
i=1 (xi ≡ ¬x′

i)

respectively
∧l

i=1 (yi ≡ ¬y′
i).

Finally, we write ϕ(x, Y , Z) to denote that the variables X in ϕ(X, Y , Z) are replaced by 0 and 1 according to the
vector x. Analogously, we write ϕ(x, y, Z) if also all occurrences of Y are replaced according to y.

The ⊆P -minimal solutions of P1 correspond to vectors of type (i) below while the ⊆P -minimal solutions of P2 are
either of type (i) or (ii). The vectors of type (i) and (ii) are defined as follows:

(i) All vectors (x, x′, y,0, y′), such that D(x, x′) ∧ D(y, y′) is valid and y is minimal such that ∀Z ¬ϕ(x, y, Z) is valid, too;
(ii) All vectors (x, x′, (1, . . . ,1),1, (0, . . . ,0)), such that the formulas D(x, x′) and ∀Y ∃Z ϕ(x, Y , Z) are valid.

The idea of (i) is similar to the proof of Theorem 6. Moreover, we have r = 0 because of minimality, since the value
of r is unconstrained. Finally, y is minimal following the structure of priorities, but there is no minimality on x, since
the variables X and X ′ have the same priority and any two tuples (x1, x′

1), (x2, x′
2) are incomparable to each other by

construction.
The idea of (ii) can be described as follows. It is clear that any vector (x, x′, (1, . . . ,1),1, (0, . . . ,0)) is a (representation

of a) solution of the propositional abduction problem P2. The only question remaining is whether it is indeed ⊆P -minimal.
Note that for this particular x, by which x′ is fully determined due to the validity of D(x, x′), we actually deduce t via the
formula r ∧ y1 ∧ · · ·∧ yl → t in T2. By the priority structure and incomparability of different tuples (x, x′), this vector is ⊆P -
minimal if and only if we cannot deduce t by a ⊆P -smaller vector (x, x′, y,0, y′) via the formula ¬ϕ(X, Y , Z) → t . In other
words, (x, x′, (1, . . . ,1),1, (0, . . . ,0)) is ⊆P -minimal if and only if there does not exist a vector y such that ∀Z ¬ϕ(x, y, Z)

is valid. The variable r ensures that for the case when y is the all-1 vector, even if ∀Z ¬ϕ(x,1, Z) is valid, we have a ⊆P -
smaller vector of type (i), since that one has r = 0. This is in turn equivalent to stating that ¬∃Y ∀Z ¬ϕ(x, Y , Z) is valid or,
equivalently, ∀Y ∃Z ϕ(x, Y , Z) is valid.

But then, this is also equivalent to saying that x is a satisfying assignment of the #�2SAT-formula ψ . Note that the vec-
tors of type (i) and of type (ii) are disjoint. Hence, the ⊆P -minimal solutions of P2 minus the ⊆P -minimal solutions of P1
corresponds to the vectors of type (ii) above. Their cardinality is indeed identical to the number of satisfying assignments x
of the #�2SAT-formula ψ . �
Theorem 8. The counting problem #-�-abduction is #·Opt2P[logn]-complete and the counting problem #-�-abduction is
#·Opt2P-complete.

Proof. In order to prove the membership, we show that these problems can be solved by an appropriate �2P-transducer M ,
i.e., M works in non-deterministic polynomial time with access to an NP-oracle and, in the case of #-�-abduction, the out-
put of M is logarithmically bounded. We give a high-level description of M: It takes an arbitrary propositional abduction
problem P = 〈V , H, M, T 〉 as input and non-deterministically enumerates all subsets S ⊆ H , such that every computation
path of M corresponds to exactly one S ⊆ H . By two calls to an NP-oracle, M checks on every path whether T ∪ S is
consistent (i.e., satisfiable) and if T ∪ S | M holds. If both oracle calls answer “yes”, then S is a solution of P and the
computation path is accepting. The output written by M on each path is the cardinality of the corresponding set S (respec-
tively the sum of the weights of the elements in S ) for the #-�-abduction problem (respectively for the #-�-abduction

problem). Finally, we define the optimal value of M to be the minimum. Obviously, the accepting paths of M outputting the
optimal value correspond one-to-one to the cardinality-minimal (respectively weight-minimal) solutions of the propositional
abduction problem P .
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The hardness of #-�-abduction (respectively of #-�-abduction) is shown by reduction from #min-card-�1sat (re-
spectively from #min-weight-�1sat). Let an arbitrary instance of #min-card-�1sat (respectively of #min-weight-�1sat)
be given by the quantified Boolean formula ϕ(X) = ∀Y ψ(X, Y ) with X = {x1, . . . , xk} and Y = {y1, . . . , yl}. In the case
of #min-weight-�1sat, we additionally have a weight function w defined on the variables in X . Let X ′ = {x′

1, . . . , x′
k},

X ′′ = {x′′
1, . . . , x′′

k }, Q = {q1, . . . ,qk}, R = {r1, . . . , rk}, and t be fresh variables. Then we define the propositional abduction
problem P = 〈V , H, M, T 〉 as follows:

V = X ∪ X ′ ∪ X ′′ ∪ Y ∪ Q ∪ R ∪ {t}
H = X ∪ X ′ ∪ X ′′

M = Q ∪ R ∪ {t}
T = {

ψ(X, Y ) → t
} ∪ {¬xi ∨ ¬x′

i, xi → qi, x′
i → qi | i = 1, . . . ,k

} ∪ {¬x′
i ∨ ¬x′′

i , x′
i → ri, x′′

i → ri | i = 1, . . . ,k
}

In the case of #-�-abduction, we leave the weights of the variables in X unchanged. For the remaining hypotheses, we set
w(xi) = w(x′

i) = w(x′′
i ) for every i ∈ {1, . . . ,k}.

For each i, the clauses ¬xi ∨ ¬x′
i , xi → qi , x′

i → qi in T ensure that every solution S of P contains exactly one of {xi, x′
i}.

Similarly, the clauses ¬x′
i ∨ ¬x′′

i , x′
i → ri , x′′

i → ri ensure that every solution contains exactly one of {x′
i, x′′

i }. In total, for
every i ∈ {1, . . . ,k}, every solution contains either {xi, x′′

i } or {x′
i}. The intuition of the set X ′ is the same as in the proof

of Theorem 6, namely to provide a means for forcing a hypothesis xi ∈ X to false (by including x′
i in the solution). As

a consequence, the solutions of P are incomparable on X ∪ X ′ , since every solution contains exactly k out of these 2k
hypotheses. The intuition of X ′′ is to add a “copy” x′′

i of each xi ∈ S to the solution S in order to make the cardinalities
of S ∩ X for various solutions S comparable again. Hence, a solution S is (cardinality- respectively weight-)minimal if and
only if S ∩ X ′′ is minimal, which is in turn the case if and only if S ∩ X is minimal.

For a subset of variables A ⊆ X , let A′ and A′′ be defined as A′ = {x′ | x ∈ A} and A′′ = {x′′ | x ∈ A}. Then, for every
subset A ⊆ X , the following equivalence holds. The assignment I on X with I−1(1) = A is a model of ϕ(X) if and only if
A ∪ (X � A)′ ∪ {¬xi ∨ ¬x′

i | i = 1, . . . ,k} ∪ {ψ(X, Y ) → t} | {t}. Thus, for every A ⊆ X , we have the following equivalences.
The assignment I on X with I−1(1) = A is a model of ϕ(X) if and only if A ∪ (X � A)′ ∪ A′′ is a solution of P . Moreover, the
previous assignment I is cardinality-minimal (respectively weight-minimal) if and only if A ∪ (X � A)′ ∪ A′′ is a cardinality-
minimal (respectively a weight-minimal) solution of P . This accomplishes a parsimonious reduction to #-�-abduction

(respectively #-�-abduction). �
The counting problem #-�P -abduction with no restriction on the number of priorities requires some preparatory work.

For this purpose, we first consider the appropriate version of #sat.

Problem: #min-lex–�ksat

Input: A quantified Boolean formula ϕ(X) = ∀Y1 ∃Y2 · · · Q Yk ψ(X, Y1, . . . , Yk) and a subset of variables X ′ = {x1, . . . , x
} ⊆ X ,
such that Q = ∀ (respectively Q = ∃) and ψ(X, Y1, . . . , Yk) is in DNF (respectively in CNF) if k is odd (respectively k is
even).
Output: Number of satisfying assignments I : X → {0,1} of the formula ϕ(X), such that the vector (I(x1), . . . , I(x
)) is lexi-
cographically minimal.

As usual, #min-lex–�0sat represents the aforementioned problem for unquantified formulas, therefore we denote it as
#min-lex-sat.

Theorem 9. The counting problem #min-lex–�ksat is #·Optk+1P-complete. In particular, the problem #min-lex-sat is #·OptP-
complete.

Proof. We only give the proof for #min-lex-sat, since the generalization to higher levels of the hierarchy is obvious.
In order to prove the membership, we show that #min-lex-sat can be solved by an appropriate NP-transducer M .

We give a high-level description of M: It takes as input an arbitrary propositional formula ϕ with variables in X plus a
subset X ′ = {x1, . . . , x
} ⊆ X of distinguished variables. M non-deterministically enumerates all possible truth assignments
I : X → {0,1}, such that every computation path of M corresponds to exactly one assignment I . On each path, M checks in
polynomial time if I is a model of ϕ . If this is the case, then the computation path is accepting. The output written by M
on each path is the binary string (I(x1), . . . , I(x
)). Finally, we define the optimal value of M to be the minimum. Obviously,
the accepting paths of M outputting the optimal value correspond one-to-one to the satisfying assignments I of ϕ , such
that (I(x1), . . . , I(x
)) is lexicographically minimal.

For the hardness proof, let L be an arbitrary minimum problem in #·OptP. We show that there exists a parsimonious
reduction from L to #min-lex-sat. Since L is in #·OptP, there exists an NP-transducer M for L. On input w , the trans-
ducer M produces an output of length smaller or equal to p(|w|) on every branch for some polynomial p. Without loss of
generality, we may assume that M actually produces an output of length exactly equal to p(|w|). Now let w be an arbitrary
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instance of L and let N = p(|w|) denote the length of the output on every computation path. Analogously to Cook’s theorem
(see [10]), there exists a propositional formula ϕ with variables X , such that there is a one-to-one correspondence between
the satisfying truth assignments of ϕ and the successful computations of M on w . Moreover, X and ϕ can be extended in
such a way that the output on each successful computation path is encoded by the variables X ′ = {x1, . . . , xN }, i.e., for every
successful computation path π , the truth values (I(x1), . . . , I(xN )) of the corresponding model I of ϕ represent exactly the
output on the path π . But then there is indeed a one-to-one correspondence between the computation paths of M on w ,
such that M outputs the minimum on these paths and the satisfying assignments of the (extended) formula ϕ , such that
the truth values on (x1, . . . , xN) are lexicographically minimal. �

We also need the usual restriction of the previous problem to three literals per clause.

Problem: #min-lex-3sat

Input: A propositional formula ϕ in conjunctive normal form over the variables X with at most three literals per clause and
a subset X ′ = {x1, . . . , x
} ⊆ X .
Output: Number of satisfying assignments I : X → {0,1} of the formula ϕ , such that the Boolean vector (I(x1), . . . , I(x
)) is
lexicographically minimal.

Since there exists a parsimonious reduction from #sat to #3sat (see [18]), the same reduction implies the following
consequence of Theorem 9.

Corollary 10. The counting problem #min-lex-3sat is #·OptP-complete.

Theorem 11. The counting problems #-�P -abduction without restriction on the number of priorities and #-�P -abduction with or
without restriction on the number of priorities are #·Opt2P-complete. The problem #-�P -abduction is #·Opt2P[logn]-complete if
the number of priorities is bounded by a constant.

Proof. For the membership proof, we slightly modify the �2P-transducer M from the membership proof of Theorem 8.
Again, M non-deterministically enumerates all subsets S ⊆ H , such that every computation path of M corresponds to
exactly one S ⊆ H . By two calls to an NP-oracle, M checks on every path whether T ∪ S is consistent (i.e., satisfiable)
and whether T ∪ S | M holds. If both oracle calls answer “yes”, then S is a solution of P and the computation path is
accepting. Only the output written by M on each path has to be modified with respect to the proof of Theorem 8: Suppose
that the input propositional abduction problem P has K priorities H1, . . . , H K . Then M computes on every computation
path the vector (c1, . . . , cK ), where ci is the cardinality (respectively the total weight) of S ∩ Hi for every i. Without loss of
generality we may assume for every i that, on all paths, the binary representation of the numbers ci has identical length (by
adding appropriately many leading zeros). Then M simply outputs this vector (c1, . . . , cK ), considered as a single number in
binary. Finally, we again define the optimal value of M as the minimum. Obviously, the accepting paths of M outputting the
optimal value correspond one-to-one to the �P -minimal (respectively �P -minimal) solutions of the propositional abduction
problem P . If we consider �P -minimality, the length of each ci is bounded by log |H| bits, since ci � |H| holds. For �P -
minimality, ci is bounded by |bw | · log |H| bits, where |bw | is the number of bits needed to represent the biggest weight of
the hypotheses. Hence, we need O (K log |H|) respectively O (K |bw | · log |H|) bits to represent the vector (c1, . . . , cK ). If there
are no restrictions on the number K of priorities or if we consider weight-minimality, then the output of M has polynomial
length. In contrast, for �P -minimality with a constant number K of priorities, this upper bound becomes O (log |H|).

For the hardness part, only the #·Opt2P-hardness of #-�P -abduction without restriction on the number of priorities has
to be shown. The remaining cases follow from the corresponding hardness result without priorities in Theorem 8. We reduce
the #min-lex–�1sat problem to #-�P -abduction. Let an arbitrary instance of #min-lex–�1sat be given by the quantified
Boolean formula ϕ(X) = ∀Y ψ(X, Y ) with X = {x1, . . . , xn} and the subset X ′ = {x1, . . . , x
} ⊆ X . Let t , Q = {q1, . . . ,qn}, R =
{r1, . . . , r
}, Z = {z1, . . . , zn}, and Z ′ = {z′

1, . . . , z′

} be fresh variables. Then we define the propositional abduction problem

P = 〈V , H, M, T 〉 as follows:

V = X ∪ Y ∪ Z ∪ Z ′ ∪ Q ∪ R ∪ {t}
H = X ∪ Z ∪ Z ′ with H1 = {x1}, . . . , H
 = {x
}, and H
+1 = (

X � X ′) ∪ Z ∪ Z ′

M = Q ∪ R ∪ {t}
T = {

ψ(X, Y ) → t
} ∪ {¬xi ∨ ¬zi, xi → qi, zi → qi | 1 � i � n} ∪ {¬zi ∨ ¬z′

i, zi → ri, z′
i → ri | 1 � i � 


}

The idea of the variables in Q , R , Z , and Z ′ is similar to the variables Q , R , X ′ , and X ′′ in the proof of Theorem 8. They
ensure that every solution S of P contains exactly n variables out of the 2n variables in H
+1. This can be seen as follows.
By the clauses ¬xi ∨ ¬zi, xi → qi, zi → qi with i ∈ {1, . . . ,n}, every solution contains exactly one of {xi, zi}. Of course, the
variables xi with i ∈ {1, . . . , 
} are not in H
+1. However, the clauses ¬zi ∨ ¬z′, zi → ri, z′ → ri with i ∈ {1, . . . , 
} ensure
i i
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that every solution contains exactly one of {zi, z′
i}. In other words, for every i ∈ {1, . . . , 
}, every solution contains either

{xi, z′
i} or {zi}.

There is a one-to-one correspondence between the models of ϕ(X) which are lexicographically minimal on X ′ and the
�P -minimal solutions of P . Indeed, let I be a model of ϕ(X) which is lexicographically minimal on X ′ . Then I can be
extended to exactly one �P -minimal solution S of P , namely S = I−1(1) ∪ {zi | 1 � i � n and I(xi) = 0} ∪ {z′

i | 1 � i � 
 and
I(xi) = 1}.

Conversely, let S be a �P -minimal solution of P . Then we obtain a lexicographically minimal model I of ϕ(X) simply
by restricting S to X , i.e. I(x) = 1 for all x ∈ S ∩ X and I(x) = 0 otherwise. �
4. Horn, dual Horn, and bijunctive theories

In this section, we consider the special case where the theory T is a set of (arbitrary or definite) Horn, dual Horn, or
bijunctive clauses. If no minimality criterion is applied to the solutions then we get the following result.

Theorem 12. The counting problem #-abduction for Horn, definite Horn, dual Horn, or bijunctive theories is #P-complete.

Proof. The #P-membership is easily seen by the fact that it can be checked in polynomial time whether some subset S ⊆ H
is a solution, since the satisfiability and also the unsatisfiability of a set of (dual) Horn or bijunctive clauses can be checked
in polynomial time.

For the #P-hardness, we reduce the #positive-2sat problem (which is known to be #P-complete by [29]) to it and show
that this reduction is parsimonious. Let an arbitrary instance of #positive-2sat be given as a 2CNF-formula

ψ = (p1 ∨ q1) ∧ · · · ∧ (pn ∨ qn)

where the pi ’s and qi ’s are propositional variables from the set X = {x1, . . . , xk}. Moreover, let g1, . . . , gn denote fresh,
pairwise distinct variables and let G = {g1, . . . , gn}. Then we define the propositional abduction problem P = 〈V , H, M, T 〉
as follows:

V = X ∪ G

H = X

M = G

T = {pi → gi | 1 � i � n} ∪ {qi → gi | 1 � i � n}
Obviously, this reduction is feasible in polynomial time. Moreover, it is easy to check that there is a one-to-one relationship
between the solutions S ⊆ X of P and the models of ψ . Note that the clauses in T are at the same time definite Horn,
bijunctive, and dual Horn. �

Analogously to the case of general theories, the counting complexity remains unchanged when we restrict our attention
to subset-minimal solutions.

Theorem 13. The counting problem #-⊆-abduction for Horn, definite Horn, dual Horn, or bijunctive theories is #P-complete.

Proof. The #P-membership holds analogously to the case of abduction without subset-minimality. This is due to the fol-
lowing property (see [5], Proposition 2.1.5). S ⊆ H is a subset-minimal solution of P if and only if S is a solution and for
all h ∈ S , the set S � {h} is not a solution of P .

For the #P-hardness, we modify the reduction from the #positive-2sat problem in Theorem 12. Let ψ , X , and G be
defined as before. Moreover, let X ′ = {x′

1, . . . , x′
k} and R = {r1, . . . , rk} be fresh, pairwise distinct variables. Then we define

P = 〈V , H, M, T 〉 as follows:

V = X ∪ X ′ ∪ G ∪ R

H = X ∪ X ′

M = R ∪ G

T = {pi → gi, qi → gi | 1 � i � n} ∪ {
xi → ri, x′

i → ri | 1 � i � k
}

The idea of the variables X ′ and the additional manifestations G is similar to the proof of Theorem 6, with the following
slight change. Whenever a subset S ⊆ H with xi, x′

i ∈ S is a solution of P , then S � {x′
i} is also a solution since x′

i is useless
as soon as xi is present (note that the only use of x′

i is to derive ri in the absence of xi ). Therefore in a subset-minimal
solution of the propositional abduction problem P , we will never select both xi and x′

i even without the formula ¬xi ∨ ¬x′
i .

The formulas in T are indeed definite Horn, dual Horn, and bijunctive. �
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The result of Theorem 13, although using a different vocabulary, has been proved in [1] by a reduction from #minimal

vertex covers. The latter was proved #P-complete by Valiant [29].
Below we consider propositional abduction problems with ⊆P -minimality. It turns out that for definite Horn and dual

Horn clauses, the priorities leave the counting complexity unchanged. In all other cases, the counting complexity increases.

Theorem 14. The counting problem #-⊆P -abduction for definite Horn and for dual Horn theories is #P-complete.

Proof. The #P-hardness is clear, since it holds even without priorities. The #P-membership for definite Horn clauses is
proved as follows. Let P = 〈V , H, M, T 〉 where T consists only of Horn clauses. According to [5, Theorem 5.3.3], for any
S ⊆ H , we can check in polynomial time whether S is a ⊆P -minimal solution. The #P-membership for definite Horn
clauses is thus proved.

Now suppose that T is dual Horn. Let N = {h | h ∈ H and T | ¬h}. Clearly, for T dual Horn, N can be computed in
polynomial time. Then for every solution S of P , we have S ⊆ H � N , since otherwise T ∪ S would be inconsistent.
Moreover, for any S ′ with S ⊆ S ′ ⊆ H � N , the set S ′ is also a solution of P , since (by the special form of dual Horn) S ′ ∪ T
is also consistent and (by the monotonicity of |) S ′ ∪ T also implies M .

So let H1, . . . , Hk denote the priorities of H . Then S is a ⊆P -minimal solution of P if and only if S is a solution of P
and for all i ∈ {1, . . . ,k} and for all x ∈ (S ∩ Hi) the set

S ′ = (
S � {x}) ∪ (Hi+1 � N) ∪ · · · ∪ (Hk � N)

is not a solution of P , because any solution ⊆P -smaller than S would be a subset of such an S ′ . The latter test is clearly
feasible in polynomial time in the dual Horn case. Moreover, there are only polynomially many such tests required. �

Recall from our remark preceding Theorem 7 that the effect of at least 2 priority levels is as follows. In order to check
that some solution S is not ⊆P -minimal, we have to test that there exists some solution of the form S ′ = (S � {h}) ∪ X ,
where all hypotheses in X have higher priority than h. In general, the difficulty of determining if such a set X exists is
the following one. If we choose X too small, then S ′ might not entail the manifestations M . If we choose X too big, then
S ′ ∪ T might be inconsistent. The intuition underlying Theorem 14 is that the problem of choosing X too big disappears for
definite Horn and dual Horn clauses. For definite Horn, the only candidate X that has to be checked is X = Hi+1 ∪ · · · ∪ H K .
For dual Horn, the only candidate X is X = (Hi+1 ∪ · · · ∪ H K ) � N , where N contains all hypotheses h ∈ H with T | ¬h.

Theorem 15. The counting problem #-⊆P -abduction for Horn or bijunctive theories is #·coNP-complete via subtractive reductions.

Proof. The #·coNP-membership is clear. Given a set of variables S , we have to (i) check whether S is a solution of the
propositional abduction problem and (ii) if so, check whether S is ⊆P -minimal. The latter test, which dominates the overall
complexity, can be done by a coNP-oracle. The #·coNP-hardness is shown by a (strong) subtractive reduction from #�1SAT.
Let an instance of the #�1SAT problem be given by a formula

ψ(X) = ∀Y ϕ(X, Y )

with the variables X = {x1, . . . , xk} and Y = {y1, . . . , yl}. Without loss of generality, we may assume that ϕ(X, Y ) is in 3DNF,
i.e., it is of the form C1 ∨ · · · ∨ Cn where each Ci is of the form Ci = li1 ∧ li2 ∧ li3 and the li j ’s are propositional literals over
X ∪ Y .

Let x′
1, . . . , x′

k , p1, . . . , pk , y′
1, . . . , y′

l , q1, . . . ,ql , g1, . . . , gn , t denote fresh, pairwise distinct variables. Let X ′ = {x′
1, . . . , x′

k},
Y ′ = {y′

1, . . . , y′
l}, P = {p1, . . . , pk}, Q = {q1, . . . ,ql} and G = {g1, . . . , gn}. Then we define two propositional abduction prob-

lems P1 and P2 as follows.

V = X ∪ X ′ ∪ Y ∪ Y ′ ∪ P ∪ Q ∪ G ∪ {r}
H = X ∪ X ′ ∪ Y ∪ Y ′ ∪ {r} with priorities H1 = H � Y ′ and H2 = Y ′

M = P ∪ Q ∪ G

T1 = {¬xi ∨ ¬x′
i, xi → pi, x′

i → pi | 1 � i � k
} ∪ {¬yi ∨ ¬y′

i, yi → qi, y′
i → qi | 1 � i � l

}

∪ {zi j → gi | 1 � i � n and 1 � j � 3}
where zi j is either of the form xk , x′

k , yl , or y′
l depending on whether the literal li j in Ci is of the form ¬xk , xk , ¬yl , or yl ,

respectively. In other words, the variable zi j encodes the negation of li j . The second theory is defined as

T2 = T1 ∪ {r ∧ y1 ∧ · · · ∧ yl → gi | 1 � i � n}
Finally, we set P1 = 〈V , H, M, T1〉 and P2 = 〈V , H, M, T2〉.
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Obviously, this reduction is feasible in polynomial time. Now let A(ψ) denote the set of all satisfying assignments of a
#�1SAT-formula ψ and let B(P ) denote the set of ⊆P -minimal solutions of a propositional abduction problem P . We claim
that P1 and P2 have the following property.

B(P1) ⊆ B(P2) and
∣∣A(ψ)

∣∣ = ∣∣B(P2)
∣∣ − ∣∣B(P1)

∣∣
In order to prove this claim, we describe what the ⊆P -minimal solutions of the propositional abduction problems P1
and P2, respectively look like. Analogously to the proof of Theorem 7, we denote subsets of H by bit-vectors of the form
(x, x′, y, r, y′), where x, x′, y, y′ are themselves vectors of the obvious arity. The formula D(x, x′) (respectively D(y, y′)) is
used as a short-hand for the condition that x′ (respectively y′) encodes the bitwise opposite of x (respectively y). Finally
we write ϕ(x, Y ) to denote that the variables X in ϕ(X, Y ) are replaced by 0 and 1 according to the vector x. Analogously
we write ϕ(x, y) if also all occurrences of Y are replaced according to y.

The ⊆P -minimal solutions of P1 correspond to vectors of type (1) below. The ⊆P -minimal solutions of P2 correspond
to vectors of either type (1) or type (2). The vectors of type (1) and (2) are defined as follows:

(1) All vectors (x, x′, y,0, y′), such that D(x, x′) ∧ D(y, y′) is valid, and y is minimal such that ϕ(x, y) is false;
(2) All vectors (x, x′, (1, . . . ,1),1, (0, . . . ,0)), such that the formulas D(x, x′) and ∀Y ϕ(x, Y ) are valid.

For the idea of (1), recall that each zi j in the formula zi j → gi encodes the dual of li j . Hence, all gi ’s are implied if ϕ(x, y) is
false. Similarly to the proof of Theorem 7, the idea of (2) is as follows. Any vector of the form (x, x′, (1, . . . ,1),1, (0, . . . ,0))

is a (representation of a) solution of the propositional abduction problem P2 since it allows us to deduce the gi ’s via the
formulas r ∧ y1 ∧· · ·∧ yk → gi in T2. Moreover, (x, x′, (1, . . . ,1),1, (0, . . . ,0)) is ⊆P -minimal if and only if we cannot deduce
all gi ’s by a ⊆P -smaller vector (x, x′, y, r, y′) via the rules zi j → gi . The latter condition holds if there is no vector y such
that ϕ(x, y) is false or, equivalently, if ∀Y ϕ(x, Y ) is valid (see the proof of Theorem 7). This is in turn equivalent to stating
that x is a satisfying assignment of the #�1SAT-formula ψ .

Thus, the ⊆P -minimal solutions of P2 minus the ⊆P -minimal solutions of P1 corresponds to the vectors fulfilling con-
dition (2) above. Their cardinality is identical to the number of satisfying assignments x of the #�1SAT-formula ψ .

The case of Horn clauses is thus proved. It remains to show how the above subtractive reduction can be modified to
settle the case of bijunctive clauses. Actually, each clause r ∧ y1 ∧ · · · ∧ yl → gi in T2 may be replaced by the set of clauses
{r → gi, r → y1, . . . , r → yl}. It is easy to show that this does not change the set of ⊆P -minimal solutions of P1 and P2.
Then the resulting theories T1 and T2 indeed consist only of bijunctive clauses. �

We need some additional counting problems to be able to consider the counting problems for propositional abduction
with the cardinality and weight preorders. Recall the following counting problem introduced in [15].

Problem: #min-card-vertex-cover (respectively #min-weight-vertex-cover)

Input: Graph G = (V , E) (plus a weight function w : V → N in the case of #min-weight-vertex-cover).
Output: Number of vertex covers of G with minimal cardinality (respectively with minimal weight), i.e., cardinality-minimal
(respectively weight-minimal) subsets C ⊆ V such that (u, v) ∈ E implies u ∈ C or v ∈ C .

We proved in [15] that #min-card-vertex-cover is #·OptP[logn]-complete while #min-weight-vertex-cover is #·OptP-
complete. We will use these results for proving the lower bounds in the following theorem.

Theorem 16. The counting problem #-�-abduction is #·OptP[log n]-complete and the counting problem #-�-abduction is #·OptP-
complete for Horn, definite Horn, dual Horn, or bijunctive theories.

Proof. For the membership part, we construct a transducer M exactly as in the proof of Theorem 8. The only difference is
that we can now check in deterministic polynomial time whether T ∪ S is consistent (i.e., satisfiable) and whether T ∪ S | M
holds. Hence, we end up with the desired NP-transducer (rather than a �2P-transducer) since we no longer need an NP-
oracle.

Hardness is shown by a reduction from the counting problem #min-card-vertex-cover (respectively #min-weight-

vertex-cover). Let an arbitrary instance of #min-card-vertex-cover be given by the graph G = (V , E) with V = {v1, . . . , vn}
and E = {e1, . . . , em}. By slight abuse of notation, we consider the elements in V and E also as propositional variables and
we set X = {v1, . . . , vn} and R = {e1, . . . , em}. In the case of #min-weight-vertex-cover, we additionally have a weight
function w defined on the variables in X . Then we define the propositional abduction problem P = 〈W , H, M, T 〉 as follows.

W = X ∪ R

H = X

M = R

T = {vi → e j | vi ∈ e j,1 � i � n,1 � j � m}
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The resulting theory contains only clauses which are, at the same time, Horn, definite Horn, dual Horn, and bijunctive.
Obviously, for every subset X ′ ⊆ X = V the following equivalence holds: X ′ is a solution of P if and only if X ′ is a vertex
cover of G . But then there exists also a one-to-one correspondence between the cardinality-minimal (respectively weight-
minimal) solutions of P and the cardinality-minimal (respectively weight-minimal) vertex covers of G . �

Again, #-�P -abduction with no restriction on the number of priorities requires some preparatory work. For this purpose,
we first consider an appropriate variant of counting the vertex covers of a graph.

Problem: #min-lex-vertex-cover

Input: Graph G = (V , E) and a subset V ′ = {v1, . . . , v
} ⊆ V .
Output: Number of vertex covers C of G , such that (χ(v1), . . . ,χ(v
)) is lexicographically minimal, where χ is the charac-
teristic function of the vertex cover C .

Theorem 17. The counting problem #min-lex-vertex-cover is #·OptP-complete.

Proof. In order to prove the membership, we show that #min-lex-vertex-cover can be solved by the following NP-
transducer M . It takes as input an arbitrary graph G = (V , E) with distinguished vertices V ′ = {v1, . . . , v
}. M non-
deterministically enumerates all subsets C ⊆ V , such that every computation path of M corresponds to exactly one such
subset C . If C is a vertex cover of G , then the computation path is accepting. The output written by M on each path
is the binary vector (χC (v1), . . . ,χC (v
)). Obviously, the accepting paths of M outputting the minimal value correspond
one-to-one to the vertex covers C of G , such that (χC (v1), . . . ,χC (v
)) is lexicographically minimal.

The hardness proof is by a parsimonious reduction from #min-lex-3sat. In fact, this is the same reduction as in the
standard NP-completeness proof of vertex cover by reduction from 3sat to vertex cover, see e.g. [10]. Let ϕ(x1, . . . , xk)

be a propositional formula in CNF with three literals per clause. We construct the graph G = (V , E) as follows. For each
variable xi we construct an edge ei = (xi, x′

i). For each clause ci = l1i ∨ l2i ∨ l3i we construct three edges (l1i , l2i ), (l2i , l3i ), (l3i , l1i )
forming a triangle ti . Finally, we connect each positive literal z in the triangle ti to its counterpart z in an edge e j = (z, z′),
as well as each negative literal ¬z in the triangle ti to its counterpart z′ . The set of distinguished variables X ′ from #min-

lex-3sat becomes the set of distinguished vertices V ′ in #min-lex-vertex-cover. �
Theorem 18. The counting problem #-�P -abduction without restriction on the number of priorities and the problem #-�P -
abduction with or without restriction on the number of priorities are #·OptP-complete for Horn, definite Horn, dual Horn, or bijunctive
theories. The problem #-�P -abduction for Horn, definite Horn, dual Horn, or bijunctive theories is #·OptP[logn]-complete if the num-
ber of priorities is restricted by a constant.

Proof. For the membership part, we construct a transducer M exactly as in the proof of Theorem 11. The only difference is
that we get an NP-transducer (rather than a Σ2P-transducer) since we no longer need an NP-oracle for checking whether
T ∪ S is consistent (i.e., satisfiable) and whether T ∪ S | M holds.

For the hardness part, only the #·OptP-hardness of #-�P -abduction without restriction on the number of priorities
has to be shown. The remaining cases follow from the corresponding hardness result without priorities in Theorem 16.
Let an arbitrary instance of #min-lex-vertex-cover be given by the graph G = (V , E) with V = {v1, . . . , vn} and E =
{e1, . . . , em} and let V ′ = {v1, . . . , v
} with 
 � n. As in the proof of Theorem 16, we consider the elements in V and E
also as propositional variables and set X = {v1, . . . , vn} and R = {e1, . . . , em}. In addition, let Q = {q
+1, . . . ,qn}, and Z =
{z
+1, . . . , zn} be fresh variables. Then we define the propositional abduction problem P = 〈V , H, M, T 〉 as follows:

V = X ∪ R ∪ Q ∪ Z

M = R ∪ Q

H = X ∪ Z with H1 = {v1}, . . . , H
 = {v
}, and H
+1 = (
X � V ′) ∪ Z

T = {vi → e j | vi ∈ e j,1 � i � n,1 � j � m} ∪ {vi → qi, zi → qi | 
 + 1 � i � n}
The resulting theory contains only clauses which are, at the same time, Horn, definite Horn, dual Horn, and bijunctive. The
variables Q and Z realize the familiar idea that in every �P -minimal solution S of P , for every i ∈ {
 + 1, . . . ,n}, exactly
one of vi and zi is contained in S . It can then be easily shown that there is a one-to-one correspondence between the
lexicographically minimal vertex covers of G and the �P -minimal solutions of P . �
5. Concluding remarks

Eiter and Gottlob proved in [5] a plethora of complexity results for propositional abduction. Their results were extended
to a trichotomy of propositional abduction problems without minimality-criterion by Creignou and Zanuttini [2]. A thorough
study of the computational complexity of the abduction problem has been presented by Nordh and Zanuttini in [22]. The use
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of complexity results is usually twofold. Theoretically, they give us a better understanding of the nature of the considered
problem class. Practically, they give us a hint as to which subclass of the problem we should aim at, provided that the
application in mind admits such a restriction. In this sense, the counting complexity results shown here are important in
complementing the already known decision complexity results. Note that our results indeed reveal differences between the
counting complexity behavior of propositional abduction problems and the decision complexity. For instance, definite Horn
abduction has been shown to be tractable [2,22]. In contrast, by our Theorem 12, the corresponding counting problem is
#P-complete. This is one more example of the often observed “easy to decide, hard to count” phenomenon. In this case, the
gap between the complexity for existence and for counting is due to the fact that definite Horn abduction is degenerate for
existence of a solution.

From a complexity theoretic point of view, there is another interesting aspect to the counting complexity results shown
here. The class #P has been studied intensively and many completeness results for this class can be found in the literature.
In contrast, for the higher counting complexity classes #·�kP, #·OptkP[logn], and #·OptkP (with k � 1), very few problems
had been shown to be complete. In fact, to the best of our knowledge, our #·�2P-completeness result in Theorem 7 is the
first one apart from #�2SAT. Our results on the counting complexity of propositional abduction thus also lead to a better
understanding of these counting complexity classes.

In this article, we have considered the complexity of determining the number of all �-minimal explanations of a propo-
sitional abduction problem, where � ∈ {=, ⊆, ⊆P , �, �P , �, �P }. We were able to prove precise complexity classifications
for counting problems of abduction with all these preorders � in the case of general theories as well as Horn, dual Horn,
definite Horn, and bijunctive theories. A thorough complexity analysis for the subclass of affine theories has to be postponed
to a standalone upcoming work since these theories do not follow the usual clausal presentation, they require the applica-
tion of different methods, mainly issued from linear algebra, and we still have gaps in the counting complexity classification
of affine abduction for several preorders.

For future work, we also plan to extend the complexity analysis of many more families of decision problems in the
artificial intelligence domain to counting problems, like, e.g., counting the number of minimal models of a theory for closed-
world reasoning in various settings.
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