2011 23rd IEEE International Conference on Tools with Artificial Intelligence

A New Tree-Decomposition Based Algorithm for
Answer Set Programming

Michael Morak, Nysret Musliu, Reinhard Pichler, Stefan Riimmele, Stefan Woltran
Institute of Information Systems, Vienna University of Technology
Contact: see http://dbai.tuwien.ac.at/staff

Abstract—A promising approach to tackle intractable prob-
lems is given by combining decomposition methods with dynamic
programming algorithms. One such decomposition concept is
tree decomposition. In this paper, we provide a new algorithm
using this combined approach for solving reasoning problems in
propositional answer set programming.

I. INTRODUCTION

Many instances of constraint satisfaction problems and in
general NP-hard problems can be solved in polynomial time
if their treewidth is bounded by a constant. This suggests two-
phased implementations where first a tree decomposition [1]
of the given problem is computed which is then used in the
second phase to solve the problem under consideration by a
(usually, dynamic) algorithm traversing the tree decomposition.
The running time of the dynamic algorithm (we use the term
“dynamic algorithm” as a synonym for “dynamic programming
algorithm”) mainly depends on the width of the provided
tree decomposition. Hence, the overall process performs well
on instances of small treewidth (formal definitions of tree
decompositions and treewidth are given in Section II), but can
also be used in general provided that the running time for
finding a tree decomposition remains low. Thus, instead of
complete methods for finding a tree decomposition, heuristic
methods are often employed.

Tree-decomposition based algorithms have been used in
several applications, e.g., constraint satisfaction problems such
as MAX-SAT [2]. The application area we shall focus on
here is propositional Answer-Set Programming (ASP, for
short) [3], [4] which is nowadays a well acknowledged
paradigm for declarative problem solving as witnessed by
many successful applications in the areas of Al and KR (see
http://www.cs.uni-potsdam.de/~torsten/asp/ for a collection).
The problem of deciding ASP consistency (i.e. whether a
logic program has at least one answer set) is ¥4’ -complete in
general but has been shown tractable [5] for programs having
an incidence graph of bounded treewidth. In this paper, we
consider a certain subclass of programs, namely head-cycle free
programs (HCFPs, for short) [6] (for more formal definitions,
we again refer to Section 11); for such programs the consistency
problem is NP-complete.

Let us illustrate here the functioning of ASP on a typical
example. Consider the problem of 3-colorability of an (undi-
rected) graph and suppose the vertices of a graph are given via
the predicate vertex(-) and its edges via the predicate edge(-,).
We employ a disjunctive rule to guess a color (either red, green

1082-3409/11 $26.00 © 2011 IEEE
DOI 10.1109/ICTAIL2011.154

916

or blue) for each node in the graph, and then check in the
remaining three rules whether adjacent vertices have indeed
different colors:

r(X) Vg(X) Vb(X) + vertex(X);
1L+ 1(X),r(Y),edge(X,Y);

1+ g(X),g(Y),edge(X,Y);
L+ b(X),b(Y),edge(X,Y);

In fact, the above program is head-cycle free. Many NP-
complete problems can be succinctly represented using HCFPs.
We refer to [7] (Section 3) for a collection of problems
which can be represented with HCFPs as opposed to problems
which require the full power of ASP. However, above program
contains variables and thus still has to be grounded. So-
called grounders turn such programs into variable-free (i.e.,
propositional) ones which are then fed into ASP-solvers. In
fact, the algorithm we discuss in this paper work on such
variable-free programs. For our example above, it turns out
that in case the input graph has small treewidth, then the
grounded variable-free program has small treewidth as well
(see Section II for a continuation of the example). This not
only holds for the encoding of the 3-colorability problem, but
for many other ASP programs (in particular, programs without
recursive rules). Thus the class of propositional programs with
low treewidth is indeed important also in the context of ASP
with variables.

A dynamic algorithm for general propositional ASP has
already been presented in [8]. We provide here a new algorithm
specifically designed for HCFPs. Their main differences are as
follows: the algorithm from [8] is based on ideas from dynamic
SAT algorithms [9] and explicitly takes care of the minimality
checks required for ASP; thus it requires double-exponential
time in the width of the provided tree decomposition. Our
novel algorithm follows a more involved characterization [6]
which applies to HCFPs and thus calls for a more complex data
structure and operations. However, it runs in single-exponential
time wrt. the width of the provided tree decomposition.

II. PRELIMINARIES

Answer Set Programming. A (propositional) disjunctive logic
program (program, for short) is a pair IT = (A4, R), where A is
a set of propositional atoms and R is a set of rules of the form:
aypV---Va < ag,..-, s oy "y 41 —a,, where is
default negation, n > 1, n > m >l and q; € A for all 1 <

o

IEEE
computer
pSOC|ety

7 < n. We omit strong negation as considered in [6]; our result
easily extend to programs with strong negation. A rule r € R
of the above form consists of a head H(r) = {ay
and a body B(r) = B*(r) U B~ (r), given by Bt (r)
{aiy1,...,am} and B () = {ami1,-.-,an}. Aset M C A
is called a model of r, if BT (r) C M AB (r)NM =0
implies that H(r) N M # (). We denote the set of models of
r by Mod(r) and the models of a program II are given by
Mod(I1) = (), cr Mod(r).

The reduct I1' of a program 11 w.r.t. an interpretation / C A
is given by (A, {r' :r € R,B~(r) NI = 0)}), where r’ is
r without the negative body, i.e., H(r!) = H(r), Bt (r!) =
B*(r),and B~ (r') = (. Following [10], M C Ais an answer
set of a program Il = (A, R) if M € Mod(11) and for no
N C M, N € Mod(TIM),

We consider here the class of head-cycle free programs
(HCFPs) as introduced in [6]. A dependency graph of a program
IT = (A,R) is given by G = (V, F), where V = A and
E = {(p,q) | r € R,p € B"(r),q € H(r)}. A program
II is called head-cycle free if its dependency graph does not
contain a directed cycle going through two different atoms
which jointly occur in the head of a rule in II.

Example 1: We provide the fully instantiated (i.e. ground)

version of our introductory example from Section I over an
input database with facts vertex(a), vertex(b), and edge(a, b).
rl:r(a) Vgla) Vb(a) < T; r2:1(b) Vg(b) Vb(b)+ T;
r3: L<r1(a), r(b): rd: L+ g(a),g(b);
r5: L+ Db(a),b(b);
Tree Decomposition and Treewidth. A tree decomposition of
a graph G = (V,E) is a pair T = (T, x), where T is a tree
and x maps each node ¢ of T' (we use ¢t € T" as a shorthand
below) to a bag x(t) C V, such that (1) for each v € V, there
isateT, st ve x(t); (2) for each (v,w) € E, there is a
teT, st {v,w} C x(t); (3) for each r,s,t € T, s.t. s lies
on the path from r to ¢, x(r) N x(¢) C x(s).

A tree decomposition (7', x) is called normalized (or nice)
[11], if (1) each t € T has < 2 children; (2) for each ¢t € T'
with two children r and s, x(t) = x(r) = x(s); and (3)
for each ¢t € T with one child s, x(¢) and x(s) differ in
exactly one element, i.e. |x(¢)Ax(s)| = 1. The width of a tree
decomposition is defined as the cardinality of its largest bag
minus one. Every tree decomposition can be normalized in
linear time without increasing the width [11]. The treewidth
of a graph G, denoted by tw(G), is the minimum width over
all tree decompositions of G.

Tree Decompositions of Logic Programs. To build tree
decompositions for programs, we use incidence graphs. For
program II = (A4, R), such a graph is given by G = (V, E),
where V = AUTR and E is the set of all pairs (a,r) with
an atom a € A appearing in a rule » € R. Thus the resulting
graphs are bipartite. For normalized tree decompositions of
programs, we distinguish between six types of nodes: leaf (L),
Jjoin or branch (B), atom introduction (Al), atom removal (AR),
rule introduction (RI), and rule removal (RR) node. The last
four types will be augmented with either an atom or a rule
which is removed or added compared to the bag of the child

917

ri,72,r(a)
ri,72,r(a) r1,72,1r(a)
r2,1(a) 1,72
r2,73,r(a) P 0% 1,72
2,73 r1, 72, 8(D) r1,r2,b(a)
r2,73,1(D) r2, g(b) r1, b(a)
r2, g(a), g(b) 71,75, b(a)
g(a), g(b) 1,75
r4,8(a). g(b) 71,75, b(b)
Fig. 1. A normalized tree decomposition of Example 1.

node. Figure 1 shows a tree decomposition of Example 1.

III. ALGORITHM FOR HEAD-CYCLE FREE PROGRAMS

Tree-decomposition based dynamic algorithms start at the leaf
nodes and traverse the tree to the root. At each node a set of
partial solutions is generated by taking those solutions into
account that have been computed for the child nodes. The most
difficult part in constructing such an algorithm is to identify an
appropriate data structure to represent the partial solutions
at each node: on the one hand, it must contain sufficient
information so as to compute the representation of the partial
solutions at each node from the corresponding representation
at the child node(s). On the other hand, the size of the data
structure must only depend on the size of the bag (and not on
the size of the entire program). For HCFPs we consider the
following graph as a main ingredient for such a data structure.
Definition 1: Let Il = (A, R) be an HCFP, let M/ C A, and
let p C R. Then the derivation graph G = (V,) induced by
M and pis given by V = M Up and E is the transitive closure
of the edge set £/ = {(b,r) : r € p,b € BY(r)NnM}U{(r,a) :
r€p,a€ H(r)n M.
We can now show a characterization of answer sets for
HCFPs, which adapts the characterization in [6] to our needs.
Theorem 1: Let II = (A, R) be an HCFP. Then, M C A is
an answer set of II iff the following holds: (1) M € Mod(II),
and (2) there exists a set p C R such that, M C U're;) H(r),
the derivation graph induced by M and p is acyclic; and for all
rep BY(r)C M, B (r)yNM=0,and |[H(r)NM|=1.
Based on this characterization, we now present a dynamic
algorithm for checking if an HCFP has an answer set. Given
an HCFP Il = (A, R) together with a tree decomposition
T = (T, x) of IL. Instead of just guessing a solution candidate
M C A and then checking whether it is an answer set (cf. [8]),
we can now also guess the set p C R. This makes the checking
part easier and reduces the amount of information we need
to store at each node. More precisely, given a node ¢ € T,
a partial solution is represented by a tuple (G’,S’), where
G is a derivation graph induced by M = V(G') N A and

p=V(G@)NR, and 8" C R represents the satisfied rules.
Due to the connectedness condition of tree decompositions it is
sufficient to restrict G’ and S’ to those atoms and rules visible

in the bag x (), i.e., we store G = G'[x(t)] and S = S' N x(¢).

Note that by storing G’[x(t)] we might lose the information
that a rule r € V(@) already derived some atom a, i.e., the
edge (r,a) is present in G’ but not in G. Therefore Definition 2

introduces a special node which keeps track of this information.

The same holds for the information whether a given node a
has already been derived by some rule 7.

Definition 2: We extend derivation graphs G = (V, E) by
a special node 4. For each rule » € V having at least one
outgoing edge, we add an edge (r, #). For each atom a € V

having at least one incoming edge, we also add an edge (¢, a).

W.lo.g. we assume that the bags at L nodes and at the root
node are empty. Following the characterization in Theorem 1,
the root node has a partial solution (G, S”) as defined above, if
and only if II has an answer set. Therefore, our new algorithm
calculates all possible pairs (G, S) in a bottom-up traversal over
the tree decomposition. When arriving at the empty root node,
we can derive the tuple G = ({#},0) and S = (), if and only if

II has an answer set, i.e. the algorithm is sound and complete.

In order to compute the pairs (G, S), the following operations
are performed depending on the type of the considered node.
By structural induction this algorithm can be shown to correctly
compute all pairs at each node.

L nodes: Since these nodes are empty, the only tuple generated
is the one with G = ({#},)) and S = §.

a-Al nodes: For each tuple at the child node, we generate
two new tuples; (1) one where we guess a ¢ M and (2)
one where we guess a € M. In case of (1), we discard the
tuple if —a violates B(r) for any rule r € V(G). Otherwise,
we add those rules 7’ to S which are now satisfied because
a € BT (r). In case of (2), we discard the tuple if for any rule
r € V(G), a violates B(r); or if (r, 4) € E(G) and a € H(r),
ie., [H(r)N M| > 1. Otherwise, we add those rules 7’ to S
which are now satisfied because a € B~ (r). Additionally, we
add a to V(QG) together with the appropriate edges according
to Defs. 1 and 2. If the resulting graph contains a cycle, we
discard the tuple.

r-RI nodes: For each tuple at the child node, we generate two
new tuples; (1) one where we guess r € p and (2) one where
we guess r € p. In case of (1), we add r to S if it is already
satisfied, i.e., either there is an atom a € V (G) witha € B~ (r)

or a € H(r), or there is an atom o’ & V(G) with ' € B*(r).

In case of (2), we discard the tuple if B(r) is violated, i.e.,
either there is an atom a € V(@) with a € B~ (r) or there is an
atom a’ ¢ V(G) with ¢’ € B*(r). The tuple is also discarded
if there are two different atoms a,b € V(@) that occur both in
H(r). Otherwise, we add r to S if it is already satisfied, i.e.,
there is an atom a € V(G) with a € H(r). Additionally, we
add r to V(G) together with the appropriate edges according
to Defs. 1 and 2. If the resulting graph contains a cycle, we
discard the tuple.

918

a-AR nodes: For each tuple at the child node, we generate
a new tuple. Note that we identify tuples that can now no
longer be distinguished. We discard the tuple if a € V(G) but
(#,a) & E(G), i.e., a was guessed as part of the solution but
was not derived by any rule. Otherwise, we remove a together
with all incident edges from G. If ¢ was not part of G, the
tuple is left unchanged.

r-RR nodes: For each tuple at the child node, we generate a
new tuple. Again we identify tuples that can now no longer
be distinguished. We discard the tuple if r ¢ S, i.e., r was not
satisfied. Otherwise, we remove r from S and if applicable,
we also remove 7 together with all incident edges from G.

B nodes: For each pair of a tuple (Gy, S;) from the left child
with a tuple (G,,S,) from the right child, we generate a
new tuple. We discard the tuple if V(G;) # V(G,), i.e., the
guesses were different. Otherwise, we generate a new graph
G = (V(G1),E(G;) UE(G,)) and a new set S = S; U S,,
i.e., a rule is satisfied if it was satisfied in at least one child.
We discard the tuple if G contains a cycle or if there exists
arule 7 € V(@) with outgoing edges to two different atoms,
i.e., r violates |H(r)N M| = 1.

IV. CONCLUSION

In this paper we have presented a new dynamic algorithm for
head-cycle free programs. This new algorithm provides better
theoretical runtime than previous tree-decomposition based
algorithms for ASP. Preliminary experimental results are very
promising and we plan to do an extensive comparison with
state-of-the-art ASP-solvers in the future.

Acknowledgments. The work was supported by the Austrian
Science Fund (FWF) under grant P20704-N18, and by the
Vienna University of Technology program “Innovative Ideas”.

REFERENCES
[1]
12]

N. Robertson and P. D. Seymour, “Graph minors. II. Algorithmic aspects
of tree-width,” J. Algorithms, vol. 7, no. 3, pp. 309-322, 1986.

A. M. Koster, S. P. van Hoesel, and A. W. Kolen, “Solving partial
constraint satisfaction problems with tree decomposition,” Networks,
vol. 40, no. 3, pp. 170-180, 2002.

V. W. Marek and M. Truszczynski, “Stable Models and an Alternative
Logic Programming Paradigm,” in The Logic Programming Paradigm —
A 25-Year Perspective. Springer, 1999, pp. 375-398.

L. Niemeld, “Logic programs with stable model semantics as a constraint
programming paradigm,” Ann. Math. Artif. Intel., vol. 25, no. 3-4, pp.
241-273, 1999.

G. Gottlob, R. Pichler, and F. Wei, “Bounded treewidth as a key to
tractability of knowledge representation and reasoning,” in AAAI’06.
AAALI Press, 2006, pp. 250-256.

R. Ben-Eliyahu and R. Dechter, “Propositional semantics for disjunctive
logic programs,” Ann. Math. Artif. Intel., vol. 12, no. 1-2, pp. 53-87,
1994.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello, “The dlv system for knowledge representation and reasoning,”
ACM Trans. Comput. Log., vol. 7, no. 3, pp. 499-562, 2006.

M. Jakl, R. Pichler, and S. Woltran, “Answer-set programming with
bounded treewidth,” in IJCAI’09. AAAI Press, 2009, pp. 816-822.
M. Samer and S. Szeider, “Algorithms for propositional model counting,”
J. Discrete Algorithms, vol. 8, no. 1, pp. 50-64, 2010.

M. Gelfond and V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New Generation Comput., vol. 9, no. 3-4, pp.
365-386, 1991.

T. Kloks, Treewidth, computations and approximations, ser. LNCS.
Springer, 1994, vol. 842,

18

19]

[10]

(11]

