
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Relativized hyperequivalence of logic programs for
modular programming

MIROSŁAW TRUSZCZYŃSKI and STEFAN WOLTRAN

Theory and Practice of Logic Programming / Volume 9 / Issue 06 / November 2009, pp 781 819
DOI: 10.1017/S1471068409990159, Published online: 14 September 2009

Link to this article: http://journals.cambridge.org/abstract_S1471068409990159

How to cite this article:
MIROSŁAW TRUSZCZYŃSKI and STEFAN WOLTRAN (2009). Relativized hyperequivalence of
logic programs for modular programming. Theory and Practice of Logic Programming, 9, pp
781819 doi:10.1017/S1471068409990159

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 128.131.111.93 on 22 Nov 2012

TLP 9 (6): 781–819, 2009. C© Cambridge University Press 2009

doi:10.1017/S1471068409990159 First published online 14 September 2009

781

Relativized hyperequivalence of logic programs
for modular programming

MIROS�LAW TRUSZCZYŃSKI

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA

(e-mail: mirek@cs.uky.edu)

STEFAN WOLTRAN

Institute of Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11,

1040 Vienna, Austria

(e-mail: woltran@dbai.tuwien.ac.at)

submitted 21 January 2009; revised 24 June 2009; accepted 21 July 2009

Abstract

A recent framework of relativized hyperequivalence of programs offers a unifying generaliza-

tion of strong and uniform equivalence. It seems to be especially well suited for applications

in program optimization and modular programming due to its flexibility that allows us to

restrict, independently of each other, the head and body alphabets in context programs.

We study relativized hyperequivalence for the three semantics of logic programs given by

stable, supported, and supported minimal models. For each semantics, we identify four types

of contexts, depending on whether the head and body alphabets are given directly or as

the complement of a given set. Hyperequivalence relative to contexts where the head and

body alphabets are specified directly has been studied before. In this paper, we establish the

complexity of deciding relativized hyperequivalence with respect to the three other types of

context programs.

KEYWORDS: answer-set programming, strong equivalence, uniform equivalence, relativized

equivalence, stable models, supported models, minimal models, complexity

1 Introduction

We study variants of relativized hyperequivalence that are relevant for the devel-

opment and analysis of disjunctive logic programs with modular structure. Our

main results concern the complexity of deciding relativized hyperequivalence for the

three major semantics of logic programs given by stable, supported, and supported

minimal models.

Logic programming with the semantics of stable models, nowadays often referred

to as answer-set programming, is a computational paradigm for knowledge represen-

tation, as well as modeling and solving constraint problems (Marek and Truszczyński

1999; Niemelä 1999; Gelfond and Leone 2002; Baral 2003). In recent years, it has

been steadily attracting more attention. One reason is that answer-set programming is

782 M. Truszczyński and S. Woltran

truly declarative. Unlike in, say, Prolog, the order of rules in programs and the order

of literals in rules have no effect on the meaning of the program. Second, the effi-

ciency of the latest tools for processing programs, especially solvers, reached the level

that makes it feasible to use them for problems of practical importance (Gebser

et al. 2007).

It is broadly recognized in software engineering that modular programs are easier

to design, analyze, and implement. Hence, essentially all programming languages

and environments support the development of modular programs. Accordingly,

there has been much work recently to establish foundations of modular answer-set

programming. One line of investigations has focused on the notion of an answer-set

program module (Gelfond 2002; Janhunen 2006; Oikarinen and Janhunen 2006;

Janhunen et al. 2007). This work builds on ideas for compositional semantics of

logic programs proposed by Gaifman and Shapiro (1989), and encompasses earlier

results on stratification and program splitting (Lifschitz and Turner 1994).

The other main line of research, to which our paper belongs, has centered on

program equivalence and, especially, on the concept of equivalence for substitution.

Programs P and Q are equivalent for substitution with respect to a class C of

programs called contexts, if for every context R ∈ C, P ∪ R and Q ∪ R have the

same stable models. Thus, if a logic program is the union of programs P and

R, where R ∈ C, then P can be replaced with Q, with the guarantee that the

semantics is preserved no matter what R is (as long as it is in C) precisely when

P and Q are equivalent for substitution with respect to C. If C contains the empty

program (which is typically the case and, in particular, is the case for the families of

programs we consider in the paper), the equivalence for substitution with respect to

C implies the standard equivalence under the stable-model semantics1. The converse

is not true. We refer to these stronger forms of equivalence collectively as hyperequi-

valence.

Hyperequivalence with respect to the class of all programs, known more com-

monly as strong equivalence, was proposed and studied by Lifschitz et al. (2001).

That work prompted extensive investigations of the concept that resulted in new

characterizations (Lin 2002; Turner 2003) and connections to certain nonstandard

logics (de Jongh and Hendriks 2003). Hyperequivalence with respect to contexts

consisting of facts was studied by Eiter and Fink (2003). This version of hyper-

equivalence, known as uniform equivalence, appeared first in the database area in the

setting of DATALOG and query equivalence (Sagiv 1988). Hyperequivalence with

respect to contexts restricted to a given alphabet, or relativized hyperequivalence,

was proposed by Woltran (2004) and Inoue and Sakama (2004). Both uniform

equivalence and relativized hyperequivalence were analyzed in depth by Eiter et al.

(2007), and later generalized by Woltran (2008) to allow contexts that use (possibly)

different alphabets for the heads and bodies of rules. That approach offers a

unifying framework for strong and uniform equivalence. Hyperequivalence, in which

one compares projections of answer sets on some designated sets of atoms rather

1 Two programs are equivalent under the stable-model semantics if they have the same stable models.

Hyperequivalence for modular logic programming 783

than entire answer sets has also received some attention (Eiter et al. 2005; Oetsch

et al. 2007).

All those results concern the stable-model semantics of programs. There has

been little work on other semantics, with the work by Cabalar et al. (2006) long

being a notable single exception. Recently, however, Truszczyński and Woltran

(2008) introduced and investigated relativized hyperequivalence of programs under

the semantics of supported models (Clark 1978) and supported minimal models,

two other major semantics of logic programs. Truszczyński and Woltran (2008)

characterized these variants of hyperequivalence and established the complexity of

some associated decision problems.

In this paper, we continue research of relativized hyperequivalence under all three

major semantics of logic programs. As in earlier works (Woltran 2008; Truszczyński

and Woltran 2008), we focus on contexts of the form HB(A,B), where HB(A,B)

stands for the set of all programs that use atoms from A in the heads and atoms from

B in the bodies of rules. Our main goal is to establish the complexity of deciding

whether two programs are hyperequivalent (relative to a specified semantics) with

respect to HB(A,B). We consider the cases when A and B are either specified

directly or in terms of their complement. As we point out in the following section,

such contexts arise naturally when we design modular logic programs.

2 Motivation

We postpone technical preliminaries to the following section. For the sake of the

present section it is enough to say that we focus our study on finite propositional

programs over a fixed countable infinite set At of atoms. It is also necessary to

introduce one piece of notation: Xc = At \X.

To argue that contexts specified in terms of the complement of a finite set are

of interest, let us consider the following scenario. A logic program is A-defining if

it specifies the definitions of atoms in A. The definitions may be recursive, they

may involve interface atoms, that is, atoms defined in other modules (such atoms

facilitate importing information from other modules, hence the term “interface”), as

well as atoms used locally to represent some needed auxiliary concepts. Let P be a

particular A-defining program with L as the set of its local atoms. For P to behave

properly when combined with other programs, these “context” programs must not

have any occurrences of atoms from L and must have no atoms from A in the heads

of their rules. In our terminology, these are precisely programs inHB((A∪L)c, Lc)2.

The definitions of atoms in A can in general be captured by several different

A-defining programs. A key question concerning such programs is whether they are

equivalent. Clearly, two A-defining programs P and Q, both using atoms from L to

represent local auxiliary concepts, should be regarded as equivalent if they behave in

the same way in the context of any program fromHB((A∪L)c, Lc). In other words,

the notion of equivalence appropriate in our setting is that of hyperequivalence

2 A-defining programs were introduced by Erdogan and Lifschitz (2004). However, that work considered
more restricted classes of programs with which A-defining programs could be combined.

784 M. Truszczyński and S. Woltran

with respect to HB((A ∪ L)c, Lc) under a selected semantics (stable, supported, or

supported-minimal).

Example 1

Let us assume that A = {a, b} and that c and d are interface atoms (atoms defined

elsewhere). We need a module that works as follows:

(1) If c and d are both true, exactly one of a and b must be true,

(2) If c is true and d is false, only a must be true,

(3) If d is true and c is false, only b must be true,

(4) If c and d are both false, a and b must be false.

We point out that c and d may depend on a and b and so, in some cases the overall

program may have no models of a particular type (to be concrete, for a time being

we fix attention to stable models).

One way to express the conditions (1)–(4) is by means of the following {a, b}-
defining program P (in this example we assume that {a, b}-defining programs do

not use local atoms, that is, L = ∅):

a← c, not b;

b← d, not a.

Combining P with programs that specify facts: {c, d}, {c}, {d}, and ∅, it is easy to

see that P behaves as required. For instance, P ∪ {c} has exactly one stable model

{a, c}.
However, P may also be combined with more complex programs. For instance,

let us consider the program R = {c← not d; d← a, not c}. Here, d can only be true

if a is true and c is false, which is impossible given the way a is defined. Thus, d

must be false and c must be true. According to the specifications, there should be

exactly one stable model for P ∪R in this case: {a, c, d}. It is easy to verify that it is

indeed the case.

The specifications for a and b can also be expressed by other {a, b}-defining

programs, in particular, by the following program Q:

a ← c, d, not b;

b ← c, d, not a;

a ← c, not d;

b ← d, not c.

The question arises whether Q behaves in the same way as P relative to programs

from HB({a, b}c, ∅c) =HB({a, b}c,At). For all contexts considered earlier, it is the

case. However, in general, it is not so. For instance, if R = {c ← ; d ← a} then,

{a, c, d} is a stable model of P ∪ R, while Q ∪ R has no stable models. Thus, P and

Q cannot be viewed as equivalent {a, b}-defining programs. �

A similar scenario gives rise to a different class of contexts. We call a program

P A-completing if it completes partial and nonrecursive definitions of atoms in A

given by other modules which, for instance, might specify the base conditions for

Hyperequivalence for modular logic programming 785

a recursive definition of atoms in A. Any program with all atoms in the heads of

rules in A can be regarded as an A-completing program. Assuming that P is an

A-completing program (again with L as a set of local atoms), P can be combined

with any program R that has no occurrences of atoms from L and no occurrences

of atoms from A in the bodies of its rules. However, atoms from A may occur in the

heads of rules from R, which constitute a partial, nonrecursive part of the definition

of A, “completed” by P . Such programs R form precisely the classHB(Lc, (A∪L)c).

Finally, let us consider a situation where we are to express partial problem

specifications as a logic program. In that program, we need to use concepts

represented by atoms from some set A that are defined elsewhere in terms of concepts

described by atoms from some set B. Here two programs P and Q expressing these

partial specifications can serve as each other’s substitute precisely when they are

hyperequivalent with respect to the class of programs HB(A,B).

These examples demonstrate that hyperequivalence with respect to context classes

HB(A,B), where A and B are either specified directly or in terms of their

complement is of interest. Our goal is to study the complexity of deciding whether

two programs are hyperequivalent relative to such classes of contexts.

3 Technical preliminaries

3.1 Basic logic programming notation and definitions

We recall that we consider a fixed countable infinite set of propositional atoms At .

Disjunctive logic programs (programs, for short) are finite sets of (program) rules –

expressions of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn, (1)

where ai, bi and ci are atoms in At , “∨” stands for the disjunction, “,” stands for

the conjunction, and not is the default negation. If k = 0, the rule is a constraint. If

k � 1, the rule is normal. Programs consisting of normal rules are called normal.

We often write the rule (1) as H ← B+, not B−, where H = {a1, . . . , ak}, B+ =

{b1, . . . , bm}, and B− = {c1, . . . , cn}. We call H the head of the rule, and the conjunction

B+, not B−, the body of the rule. The sets B+ and B− form the positive and negative

body of the rule. Given a rule r, we write H(r), B(r), B+(r), and B−(r) to denote

the head, the body, the positive body and the negative body of r, respectively.

For a program P , we set H (P) =
⋃

r∈P H(r), B±(P) =
⋃

r∈P (B+(r) ∪ B−(r)), and

At(P) = H (P) ∪ B±(P).

For an interpretation M ⊆ At and a rule r, we define entailments M |= B(r),

M |= H(r) and M |= r in the standard way. That is, M |= B(r), if jointly B+(r) ⊆M

and B−(r) ∩M = ∅; M |= H(r), if H(r) ∩M
= ∅; and M |= r, if M |= B(r) implies

M |= H(r). An interpretation M ⊆ At is a model of a program P (M |= P), if M |= r

for every r ∈ P .

The reduct of a disjunctive logic program P with respect to a set M of atoms,

denoted by PM , is the program {H (r) ← B+(r) | r ∈ P , M ∩ B−(r) = ∅}. A set M

786 M. Truszczyński and S. Woltran

of atoms is a stable model of P if M is a minimal model (with respect to inclusion)

of PM .

If a set M of atoms is a minimal hitting set of {H (r) | r ∈ P , M |= B (r)}, then M

is called a supported model of P (Brass and Dix 1997; Inoue and Sakama 1998)3. In

addition, M is called a supported minimal model of P if it is a supported model of P

and a minimal model of P . One can check that supported models of P are indeed

models of P .

A stable model of a program is a supported model of the program and a minimal

model of the program. Thus, a stable model of a program is a supported minimal

model of the program. However, the converse does not hold in general. Supported

models of a normal logic program P have a useful characterization in terms of

the (partial) one-step provability operator TP , defined as follows. For M ⊆ At ,

if there is a constraint r ∈ P such that M |= B (r) (i.e., M
|= r), then TP (M) is

undefined. Otherwise, TP (M) = {H (r) | r ∈ P , M |= B (r)}. Whenever we use TP (M)

in a relation such as (proper) inclusion, equality or inequality, we always implicitly

assume that TP (M) is defined.

It is well known that M is a model of P if and only if TP (M) ⊆ M (which,

according to our convention, is an abbreviation for: TP is defined for M and

TP (M) ⊆ M). Similarly, M is a supported model of P if TP (M) = M (Apt 1990)

(i.e., if TP is defined for M and TP (M) = M).

For a rule r = a1 ∨ . . . ∨ ak ← B , where k � 2, a shift of r is a normal program

rule of the form

ai ← B , not a1, . . . , not ai−1, not ai+1, . . . , not ak,

where i = 1, . . . , k. If r is normal, the only shift of r is r itself. A program consisting

of all shifts of rules in a program P is the shift of P . We denote it by sh(P). It

is evident that a set M of atoms is a (minimal) model of P if and only if M is a

(minimal) model of sh(P). It is easy to check that M is a supported (minimal) model

of P if and only if it is a supported (minimal) model of sh(P). Moreover, M is a

supported model of P if and only if Tsh(P)(M) = M.

3.2 Characterizations of hyperequivalence of programs

Let C be a class of (disjunctive) logic programs. Programs P and Q are supp-

equivalent (suppmin-equivalent, stable-equivalent, respectively) relative to C if for

every program R ∈ C, P ∪ R and Q ∪ R have the same supported (supported

minimal, stable, respectively) models.

In this paper, we are interested in equivalence of all three types relative to classes

of programs defined by the head and body alphabets. Let A,B ⊆ At . By HB(A,B)

we denote the class of all programs P such that H (P) ⊆ A and B±(P) ⊆ B.

Clearly, ∅ ∈ HB(A,B) holds, for arbitrary A,B ⊆ At . Thus, as we noted in the

introduction, for each of the semantics and every sets A and B, the corresponding

hyperequivalence implies the standard equivalence with respect to that semantics.

3 A set X is a hitting set for a family F of sets if for every F ∈ F, X ∩ F
= ∅.

Hyperequivalence for modular logic programming 787

When studying supp- and suppmin-equivalence we will restrict ourselves to the

case of normal programs. Indeed, disjunctive programs P and Q are supp-equivalent

(suppmin-equivalent, respectively) with respect to HB(A,B) if and only if normal

programs sh(P) and sh(Q) are supp-equivalent (suppmin-equivalent, respectively)

with respect toHB(A,B) (Truszczyński and Woltran 2008). Thus, from now onward

whenever we consider supp- and suppmin-equivalence, we implicitly assume that

programs under comparison are normal. In particular, we use that convention in

the definition below and the subsequent theorem.

For supp-equivalence and suppmin-equivalence, we need the set ModA(P), defined

by Truszczyński and Woltran (2008). Given a program P , and a set A ⊆ At ,

ModA(P) = {Y ⊆ At |Y |= P and Y \ TP (Y) ⊆ A}.

Truszczyński and Woltran (2008) explain that elements of ModA(P) can be viewed

as candidates for becoming supported models of an extension of P by some program

R ∈ HB(A,B). Indeed, each such candidate interpretation Y has to be a classical

model of P , as otherwise it cannot be a supported model, no matter how P is

extended. Moreover, the elements from Y \ TP (Y) have to be contained in A, as

otherwise programs from HB(A,B) cannot close this gap. The set ModA(P) is the

key to the characterization of supp-equivalence.

Theorem 1

Let P and Q be programs, A ⊆ At , and C a class of programs such thatHB(A, ∅) ⊆
C ⊆ HB(A,At). Then, P and Q are supp-equivalent relative to C if and only if

ModA(P) = ModA(Q) and for every Y ∈ ModA(P), TP (Y) = TQ(Y).

To characterize suppmin-equivalence, we use the set ModB
A(P) (Truszczyński and

Woltran 2008), which consists of all pairs (X,Y) such that

(1) Y ∈ ModA(P)

(2) X ⊆ Y |A∪B
(3) for each Z ⊂ Y such that Z |A∪B = Y |A∪B , Z
|= P

(4) for each Z ⊂ Y such that Z |B = X|B and Z |A ⊇ X|A, Z
|= P

(5) if X|B = Y |B , then Y \ TP (Y) ⊆ X.

Theorem 2

Let A,B ⊆ At and let P ,Q be programs. Then, P and Q are suppmin-equivalent

relative to HB(A,B) if and only if ModB
A(P) = ModB

A(Q) and for every (X,Y) ∈
ModB

A(P), TP (Y)|B = TQ(Y)|B .

Relativized stable-equivalence of programs was characterized by Woltran (2008).

We define SEB
A(P) to consist of all pairs (X,Y), where X,Y ⊆ At , such that4:

(1) Y |= P ,

(2) X = Y , or jointly X ⊆ Y |A∪B and X|A ⊂ Y |A,

(3) for each Z ⊂ Y such that Z |A = Y |A, Z
|= PY ,

4 We use a slightly different presentation than the one given by Woltran (2008). It is equivalent to the
original one.

788 M. Truszczyński and S. Woltran

(4) for each Z ⊂ Y such that Z |B ⊆ X|B and Z |A ⊃ X|A, or Z |B ⊂ X|B and

Z |A ⊇ X|A, Z
|= PY

(5) there is Z ⊆ Y such that X|A∪B = Z |A∪B and Z |= PY .

Theorem 3

Let A,B ⊆ At and let P ,Q be programs. Then, P and Q are stable-equivalent relative

to HB(A,B) if and only if SEB
A(P) = SEB

A(Q).

3.3 Decision problems

We are interested in problems of deciding hyperequivalence relative to classes of

programs of the form HB(A′, B′), where A′ and B′ stand either for finite sets or

for complements of finite sets. In the former case, the set is given directly. In the

latter, it is specified by means of its finite complement. Thus, we obtain the classes

of direct-direct, direct-complement, complement-direct, and complement-complement

decision problems. We denote them using strings of the form semδ,ε(α, β), where

(1) sem stands for supp, suppmin, or stable and identifies the semantics relative

to which we define hyperequivalence;

(2) δ and ε stand for d or c (direct and complement, respectively), and specify one

of the four classes of problems mentioned above;

(3) α is either · or A, where A ⊆ At is finite. If α = A, then α specifies a fixed

alphabet for the heads of rules in context programs: either A or the complement

Ac of A, depending on whether δ = d or c. The parameter A does not belong

to and does not vary with input. If α = ·, then the specification A of the head

alphabet is part of the input and defines it as A or Ac, again according to δ;

(4) β is either · or B, where B ⊆ At is finite. It obeys the same conventions as α

but defines the body alphabet according to the value of ε.

For instance, suppmind,c(A, ·), where A ⊆ At is finite, stands for the following

problem: given programs P and Q, and a set B, decide whether P and Q are

suppmin-equivalent with respect to HB(A,Bc). Similarly, stablec,c(·, ·) denotes the

following problem: given programs P and Q, and sets A and B, decide whether

P and Q are stable-equivalent with respect to HB(Ac, Bc). With some abuse of

notation, we often talk about “the problem semδ,ε(A,B)” as a shorthand for “an

arbitrary problem of the form semδ,ε(A,B) with fixed finite sets A and B;” likewise

we do so for semδ,ε(·, B) and semδ,ε(A, ·).
As we noted, for supp- and suppmin-equivalence, there is no essential differ-

ence between normal and disjunctive programs. For stable-equivalence, allowing

disjunctions in the heads of rules affects the complexity. Thus, in the case of stable-

equivalence, we distinguish versions of the problems stableδ,ε(α, β), where the input

programs are normal5. We denote these problems by stable
n
δ,ε(α, β).

5 As demonstrated by Woltran (2008), we can also restrict the programs used as contexts to normal
ones, as that makes no difference.

Hyperequivalence for modular logic programming 789

Fig. 1. A simple comparison of the hardness of problems.

Direct-direct problems for the semantics of supported and supported minimal

models were considered earlier (Truszczyński and Woltran 2008), and their com-

plexity was fully determined there. The complexity of problems stabled,d(·, ·), was

also established before (Woltran 2008). Problems similar to stablec,c(A,A) were

already studied by Eiter et al. (2007). In this paper, we complete the results on the

complexity of problems semδ,ε(α, β) for all three semantics. In particular, we establish

the complexity of the problems with at least one of δ and ε being equal to c.

The complexity of problems involving the complement of A or B is not a

straightforward consequence of the results on direct-direct problems. In the direct-

direct problems, the class of context programs is essentially finite, as the head and

body alphabets for rules are finite. It is no longer the case for the three remaining

problems, where at least one of the alphabets is infinite and so, the class of contexts

is infinite, as well.

We note that when we change A or B to · in the problem specification, the

resulting problem is at least as hard as the original one. Indeed for each such pair

of problems, there are straightforward polynomial-time reductions from one to the

other. We illustrate these relationships in Figure 1. Each arrow indicates that the

“arrowtail” problem can be reduced in polynomial time to the “arrowhead” one.

Consequently, if there is a path from a problem Π to the problem Π′ in the diagram,

Π′ is at least as hard as Π and Π is at most as hard as Π′. We use this observation

in proofs of all complexity results.

Finally, we note that throughout the paper, we write Pol instead of the more

common P to denote the class of all problems that can be solved by deterministic

polynomial-time algorithms. As decision problems we consider typically refer to

a program P , we want to avoid the ambiguity of using the same symbol in two

different meanings.

4 Supp-equivalence

As the alphabet for the bodies of context programs plays no role in supp-equi-

valence (cf. Theorem 1), the problems suppd,c(A, β) and suppd,c(·, β) coincide with the

problems suppd,d(A, β) and suppd,d(·, β), respectively, whose complexity was shown to

be coNP-complete (Truszczyński and Woltran 2008). For the same reason, problems

suppc,d(A, β) and suppc,d(·, β) coincide with suppc,c(A, β) and suppc,c(·, β). Thus, to

complete the complexity picture for problems suppδ,ε(α, β), it suffices to focus on

suppc,d(A, β) and suppc,d(·, β).

First, we prove an upper bound on the complexity of the problem suppc,d(·, ·). The

proof depends on two lemmas.

790 M. Truszczyński and S. Woltran

Lemma 1

Let P be a program and A and Y sets of atoms. Then, Y ∈ ModAc(P) if and only

if Y ′ ∈ ModAc(P), where Y ′ = Y ∩ (At(P) ∪ A).

Proof

First, we note that atoms that do not occur in P have no effect on whether

an interpretation satisfies the body of a rule in P . Thus, TP (Y) = TP (Y ′). If

Y ∈ ModAc(P), then Y |= P and Y \TP (Y) ⊆ Ac. The former property implies that

Y ′ |= P (as before, atoms that do not occur in P have no effect on whether an

interpretation is a model of P or not). Since Y ′ \TP (Y ′) = Y ′ \TP (Y) ⊆ Y \TP (Y),

the latter one implies that Y ′ \ TP (Y ′) ⊆ Ac. Thus, Y ′ ∈ ModAc(P).

Conversely, let Y ′ ∈ ModAc(P). Then Y ′ |= P and, consequently, Y |= P (by the

comment made above). Moreover, we also have Y ′ \TP (Y ′) ⊆ Ac. Let y ∈ Y \TP (Y).

If y /∈ Y ′ then, as y ∈ Y and Y ′ = Y ∩ (At(P)∪A), y /∈ A, that is, y ∈ Ac. If y ∈ Y ′,

then y ∈ Y ′ \ TP (Y ′) (we recall that TP (Y) = TP (Y ′)). Hence, y ∈ Ac in this case,

too. It follows that Y \ TP (Y) ⊆ Ac and so, Y ∈ ModAc(P). �

Lemma 2

Let P and Q be programs and A a set of atoms. Then, ModAc(P)
= ModAc(Q) or,

for some Y ∈ ModAc(P), TP (Y)
= TQ(Y) if and only if there is Y ′ ⊆ At(P ∪Q)∪A
such that Y ′ belongs to exactly one of ModAc(P) and ModAc(Q), or Y ′ belongs to

both ModAc(P) and ModAc(Q) and TP (Y ′)
= TQ(Y ′).

Proof

Clearly, we only need to prove the “only-if” implication. To this end, we note that

if ModAc(P)
= ModAc(Q), then by Lemma 1, there is Y ′ ⊆ At(P ∪ Q) ∪ A with that

property. Thus, let us assume that ModAc(P) = ModAc(Q). If for some Y ∈ ModAc(P),

TP (Y)
= TQ(Y) then again by the argument given above, Y ′ = Y ∩ (At(P ∪ Q) ∪
A) belongs to both ModAc(P) and ModAc(Q), and TP (Y ′) = TP (Y)
= TQ(Y) =

TQ(Y ′). �

Theorem 4

The problem suppc,d(·, ·) is in the class coNP.

Proof

It is sufficient to show that suppc,d(·, ∅) is in coNP, since (P ,Q, A) is a YES instance of

suppc,d(·, ∅) if and only if (P ,Q, A, B) is a YES instance of suppc,d(·, ·) (cf. Theorem 1).

Thus, we will now focus on proving that suppc,d(·, ∅) is in coNP. Theorem 1

and Lemma 2 imply the correctness of the following algorithm to decide the

complementary problem to suppc,d(·, ∅) for an instance (P ,Q, A):

(1) nondeterministically guess Y ⊆ At(P ∪ Q) ∪ A, and

(2) verify that Y belongs to exactly one of ModAc(P) and ModAc(Q), or that Y

belongs to ModAc(P) and ModAc(Q), and that TP (Y)
= TQ(Y).

Checking Y |= P and Y |= Q can be done in polynomial time (in the size of the

input, which is given by |At(P ∪Q)∪A|). Similarly, for R = P or Q, Y \TR(Y) ⊆ Ac

if and only if (Y \ TR(Y)) ∩ A = ∅. Thus, checking Y \ TR(Y) ⊆ Ac can be done

in polynomial time, too, and so the algorithm runs in polynomial time. Hence,

Hyperequivalence for modular logic programming 791

the complementary problem to suppc,d(·, ∅) is in NP. It follows that the problem

suppc,d(·, ∅) is in coNP and so, the assertion follows. �

For the lower bound we use the problem suppc,d(A,B). Let us comment that

the reduction, from the satisfiability problem to suppc,d(A,B), used in the following

hardness proof, is indeed computable in polynomial time. The same is true for the

reductions used in all other places in the paper. In each case, the polynomial-time

computability of the reductions is evident, and we do not state it explicitly in the

proofs.

Theorem 5

The problem suppc,d(A,B) is coNP-hard.

Proof

Let us consider a CNF formula ϕ6, let Y be the set of atoms in ϕ, and let

Y ′ = {y′ | y ∈ Y } be a set of new atoms. We define

P (ϕ) = {y ← not y′; y′ ← not y; ← y, y′ | y ∈ Y }∪,
{← ĉ | c is a clause in ϕ},

where, for each clause c ∈ ϕ, say c = y1 ∨ · · · ∨ yk ∨ ¬yk+1 ∨ · · · ∨ ¬ym, ĉ denotes

the sequence y′1, . . . , y
′
k, yk+1, . . . , ym. To simplify the notation, we write P for P (ϕ).

One can check that ϕ has a model if and only if P has a model. Moreover, for

every model M of P such that M ⊆ At(P), M is a supported model of P and,

consequently, satisfies M = TP (M).

Next, let Q consist of f and ← f. As Q has no models, Theorem 1 implies that

Q is supp-equivalent to P relative to HB(Ac, B) if and only if ModAc(P) = ∅.
If M ∈ ModAc(P), then there is M ′ ⊆ At(P) such that M ′ ∈ ModAc(P). Since

every model M ′ of P such that M ′ ⊆ At(P) satisfies M ′ = TP (M ′), it follows that

ModAc(P) = ∅ if and only if P has no models. Thus, ϕ is unsatisfiable if and only if

Q is supp-equivalent to P relative to HB(Ac, B), and the assertion follows. �

The observations made at the beginning of this section, Theorems 4 and 5, and

the relations depicted in Figure 1 imply the following corollary.

Corollary 1

The problem suppδ,ε(α, β) is coNP-complete, for any combination of δ, ε ∈ {c, d},
α ∈ {A, ·}, β ∈ {B, ·}.

5 Suppmin-equivalence

In this section, we establish the complexity for direct-complement, complement-

direct and complement-complement problems of deciding suppmin-equivalence. The

complexity of direct-direct problems is already known (Truszczyński and Woltran

2008).

6 Here and throughout the paper, by CNF formula we mean a formula in the conjunctive normal form.

792 M. Truszczyński and S. Woltran

5.1 Upper bounds

The argument consists of a series of auxiliary results. The first two lemmas are

concerned with the basic problem of deciding whether (X,Y) ∈ ModB′

A′ (P), where A′

and B′ stand for A or Ac and B or Bc, respectively.

Lemma 3

The following problems are in the class coNP: Given a program P , and sets X, Y ,

A, and B, decide whether

(i) (X,Y) ∈ ModB
Ac(P);

(ii) (X,Y) ∈ ModBc

A (P);

(iii) (X,Y) ∈ ModBc

Ac (P).

Proof

We first show that the complementary problem, this is, to decide whether (X,Y) /∈
ModB

Ac(P), is in NP. To this end, we observe that (X,Y) /∈ ModB
Ac(P) if and only if

at least one of the following conditions holds:

(1) Y /∈ ModAc(P),

(2) X
⊆ Y |Ac∪B ,

(3) there is Z ⊂ Y such that Z |Ac∪B = Y |Ac∪B and Z |= P ,

(4) there is Z ⊂ Y such that Z |B = X|B , Z |Ac ⊇ X|Ac and Z |= P ,

(5) X|B = Y |B and Y \ TP (Y)
⊆ X.

We note that verifying any condition involving Ac can be reformulated in terms of

A. For instance, for every set V , we have V |Ac = V \ A, and V ⊆ Ac if and only

if V ∩ A = ∅. Thus, the conditions (1), (2), and (5) can be decided in polynomial

time. Conditions (3) and (4) can be decided by a nondeterministic polynomial time

algorithm. Indeed, once we nondeterministically guess Z , all other tests can be

decided in polynomial time. The proofs for the remaining two claims use the same

ideas and differ only in technical details depending on which of A and B is subject

to the complement operation. �

Lemma 4

For every finite set B ⊆ At , the following problems are in the class Pol : Given a

program P , and sets X, Y , and A, decide whether

(i) (X,Y) ∈ ModBc

Ac (P);

(ii) (X,Y) ∈ ModBc

A (P).

Proof

In each case, the argument follows the same lines as that for Lemma 3. The difference

is in the case of the conditions (3) and (4). Under the assumptions of this lemma,

they can be decided in deterministic polynomial time. Indeed, let us note that there

are no more than 2|B| sets Z such that Z |Ac∪Bc = Y |Ac∪Bc (or, for the second problem,

such that Z |A∪Bc = Y |A∪Bc). Since B is finite, fixed, and not a part of the input,

the condition (3) can be checked in polynomial time by a simple enumeration of

all possible sets Z such that Z ⊂ Y and Z |Ac∪Bc = Y |Ac∪Bc and checking for each

of them whether Z |= P . For the condition (4), the argument is similar. Since Z is

Hyperequivalence for modular logic programming 793

constrained by Z |Bc = X|Bc , there are no more than 2|B| possible candidate sets Z

to consider in this case, too. �

The role of the next lemma is to show that (X,Y) ∈ ModB
A(P) implies constraints

on X and Y .

Lemma 5

Let P be a program and A,B ⊆ At . If (X,Y) ∈ ModB
A(P) then X ⊆ Y ⊆ At(P)∪A.

Proof

We have Y ∈ ModA(P). Thus, Y \TP (Y) ⊆ A and, consequently, Y ⊆ TP (Y)∪A ⊆
At(P) ∪ A. We also have X ⊆ Y |A∪B ⊆ Y . �

Theorem 6

The problem suppmind,c(·, ·) is in the class ΠP
2 . The problem suppmind,c(·, B) is in the

class coNP.

Proof

We start with an argument for the problem suppmind,c(·, ·). By Theorem 2, P

and Q are not suppmin-equivalent relative to HB(A,Bc) if and only if there is

(X,Y) ∈ ModBc

A (P) ÷ ModBc

A (Q), or there is (X,Y) ∈ ModBc

A (P) and TP (Y)|Bc
=
TQ(Y)|Bc . Thus, by Lemma 5, to decide that P and Q are not suppmin-equivalent

relative to HB(A,Bc), one can guess X and Y such that X ⊆ Y ⊆ At(P ∪ Q) ∪ A

and verify that (X,Y) ∈ ModBc

A (P) ÷ ModBc

A (Q), or that (X,Y) ∈ ModBc

A (P) and

TP (Y)|Bc
= TQ(Y)|Bc . By Lemma 3(ii), deciding the membership of (X,Y) in

ModBc

A (P) and ModBc

A (Q) can be accomplished by means of two calls to a coNP

oracle. Deciding TP (Y)|Bc
= TQ(Y)|Bc can be accomplished in polynomial time (we

note that TP (Y)|Bc = TP (Y) \ B and TQ(Y)|Bc = TQ(Y) \ B). The argument for the

second part of the assertion is essentially the same. The only difference is that we

use Lemma 4(ii) instead of Lemma 3(ii) to obtain a stronger bound. �

Lemma 5 is too weak for the membership results for complement-direct and

complement-complement problems. Indeed, for these two types of problems, it only

limits Y to subsets of At(P) ∪ Ac, which is infinite. To handle these two classes of

problems we use results that provide stronger limits on Y and can be used in proofs

of the membership results. The proofs are quite technical. To preserve the overall

flow of the argument, we present them in the appendix.

Lemma 6

Let P ,Q be programs and A,B ⊆ At .

(1) If (X,Y) ∈ ModB
Ac(P)\ModB

Ac(Q) then there is (X ′, Y ′) ∈ ModB
Ac(P)\ModB

Ac(Q)

such that Y ′ ⊆ At(P ∪ Q) ∪ A.

(2) If (X,Y) ∈ ModB
Ac(P) and TP (Y)|B
= TQ(Y)|B , then there is (X ′, Y ′) ∈

ModB
Ac(P) such that TP (Y ′)|B
= TQ(Y ′)|B and Y ′ ⊆ At(P ∪ Q) ∪ A.

Theorem 7

The problems suppminc,d(·, ·) and suppminc,c(·, ·) are contained in the class ΠP
2 . The

problem suppminc,c(·, B) is in the class coNP.

794 M. Truszczyński and S. Woltran

Proof

The argument is similar to that of Theorem 6. First, we will consider the problem

suppminc,d(·, ·). By Theorem 2, P and Q are not suppmin-equivalent relative to

HB(Ac, B) if and only if there is (X,Y) ∈ ModB
Ac(P) ÷ ModB

Ac(Q), or (X,Y) ∈
ModB

Ac(P) and TP (Y)|B
= TQ(Y)|B . By Lemma 6, P and Q are not suppmin-

equivalent relative to HB(Ac, B) if and only if there is (X,Y) such that X ⊆ Y ⊆
At(P ∪ Q) ∪ A and (X,Y) ∈ ModB

Ac(P) ÷ ModB
Ac(Q), or (X,Y) ∈ ModB

Ac(P) and

TP (Y)|B
= TQ(Y)|B .

Thus, to decide the complementary problem, it suffices to guess X,Y ⊆ At(P ∪
Q) ∪ A and check that (X,Y) ∈ ModB

Ac(P) ÷ModB
Ac(Q), or that (X,Y) ∈ ModB

Ac(P)

and TP (Y)|B
= TQ(Y)|B . The first task can be decided by NP oracles (Lemma 3(i)),

and testing TP (Y)|B
= TQ(Y)|B can be accomplished in polynomial time.

The remaining arguments are similar. To avoid repetitions, we only list essential

differences. In the case of suppminc,c(·, ·), we use Lemma 3(iii). To obtain a stronger

upper bound for suppminc,c(·, B), we use Lemma 4(i) instead of Lemma 3(iii). �

When A is fixed to ∅, that is, we have Ac = At, which means there is no

restriction on atoms in the heads of rules, a stronger bound on the complexity of

the complement-complement and complement-direct problems can be derived. We

first state a key lemma (the proof is in the appendix).

Lemma 7

Let P ,Q be programs and B ⊆ At . If ModB
At (P)
= ModB

At (Q), then there is Y ⊆
At(P ∪Q) such that Y is a model of exactly one of P and Q, or there is a ∈ Y such

that (Y \ {a}, Y) belongs to exactly one of ModB
At (P) and ModB

At (Q).

Theorem 8

The problems suppminc,c(∅, ·) and suppminc,d(∅, ·) are in the class coNP.

Proof

The case of suppminc,d(∅, ·) was settled before by Truszczyński and Woltran (2008)

(they denoted the problem by suppminAt). Thus, we consider only the problem

suppminc,c(∅, ·). We will show that the following nondeterministic algorithm verifies,

given programs P , Q and a set B ⊆ At , that P and Q are not suppmin-equivalent

relative to HB(At , Bc). We guess a pair (a, Y), where Y ⊆ At(P ∪ Q), and a ∈
At(P ∪ Q) such that (a) Y is a model of exactly one of P and Q; or (b) a ∈ Y and

(Y \ {a}, Y) belongs to exactly one of ModBc

At (P) and ModBc

At (Q); or (c) Y is model

of P and TP (Y) \ B
= TQ(Y) \ B.

Such a pair exists if and only if P and Q are not suppmin-equivalent relative to

HB(At , Bc). Indeed, let us assume that such a pair (a, Y) exists. If (a) holds for

(a, Y), say Y is a model of P but not of Q, then (Y , Y) ∈ ModBc

At (P) \ModBc

At (Q)

(easy to verify from the definition of ModBc

At (·)). Thus, ModBc

At (P)
= ModBc

At (Q) and,

by Theorem 2, P and Q are not suppmin-equivalent relative to HB(At , Bc). If

(b) holds for (a, Y), ModB
At (P)
= ModB

At (Q) again, and we are done, as above, by

Theorem 2. Finally, if (c) holds, (Y , Y) ∈ ModBc

At (P) (as Y |= P) and TP (Y)|Bc =

TP (Y) \ B
= TQ(Y) \ B = TQ(Y)|Bc . Thus, one more time by Theorem 2, P and Q

are not suppmin-equivalent relative to HB(At , Bc).

Hyperequivalence for modular logic programming 795

Conversely, if P and Q are not suppmin-equivalent relative to HB(At , Bc), then

ModBc

At (P)
= ModBc

At (Q), or there is (X,Y) ∈ ModBc

At (P) such that TP (Y)|Bc
=
TQ(Y)|Bc . By Lemma 7, if ModBc

At (P)
= ModBc

At (Q) then there is (a, Y) such that

Y ⊆ At(P ∪ Q) and (a, Y) satisfies (a) or (b). Thus, let us assume that there is

(X,Y) ∈ ModBc

At (P) such that TP (Y)|Bc
= TQ(Y)|Bc . Then, Y |= P and TP (Y)|Bc
=
TQ(Y)|Bc or, equivalently, TP (Y) \B
= TQ(Y) \B. Let Y ′ = Y ∩At(P ∪Q). Clearly,

Y ′ |= P , TP (Y) = TP (Y ′), and TQ(Y) = TQ(Y ′). Thus, TP (Y ′) \ B
= TQ(Y ′) \ B.

Picking any a ∈ At(P ∪ Q) (since P and Q are not suppmin-equivalent relative to

HB(At , Bc), At(P ∪ Q)
= ∅) yields a pair (a, Y ′), with Y ′ ⊆ At(P ∪ Q), for which

(c) holds.

It follows that the algorithm is correct. Moreover, checking whether Y |= P

and Y |= Q can clearly be done in polynomial time in the total size of P , Q,

and B; the same holds for checking TP (Y) \ B
= TQ(Y) \ B. Finally, testing

(Y \ {a}, Y) ∈ ModBc

At (P) and (Y \ {a}, Y) ∈ ModBc

At (Q) are polynomial-time tasks

(with respect to the size of the input), too. The conditions (1)–(3) and (5) are evident.

To verify the condition (4), we need to verify that Z
|= P for just one set Z , namely

Z = Y \ {a}. Thus, the algorithm runs in polynomial time. It follows that the

complement of our problem is in the class NP. �

5.2 Lower bounds and exact complexity results

We start with direct-complement problems.

Theorem 9

The problem suppmind,c(A, ·) is ΠP
2 -hard.

Proof

Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y . We can assume

that A ∩ X = ∅ (if not, variables in X can be renamed). Next, we can assume that

A ⊆ Y (if not, one can add to ϕ “dummy” clauses y ∨ ¬y, for y ∈ Y). We will

construct programs P (ϕ) and Q(ϕ), and a set B, so that ∀Y ∃Xϕ is true if and only

if P (ϕ) and Q(ϕ) are suppmin-equivalent relative to HB(A,Bc). Since the problem

to decide whether a given QBF ∀Y ∃Xϕ is true is ΠP
2 -complete, the assertion will

follow.

For every atom z ∈ X ∪ Y , we introduce a fresh atom z′ (in particular, in such a

way that z′ /∈ A). Given a set of “nonprimed” atoms Z , we define Z ′ = {z′ | z ∈ Z}.
Thus, we have A ∩ (Y ′ ∪X ′) = ∅. We use ĉ as in the proof of Theorem 5 and define

the following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← y, y′ | y ∈ Y }∪,
{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪
{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause in ϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← z, z′ | z ∈ X ∪ Y } ∪
{← ĉ | c is a clause in ϕ}.

To simplify notation, from now on we write P for P (ϕ) and Q for Q(ϕ). We also

define B = X ∪X ′ ∪ Y ∪ Y ′. We observe that At(P) = At(Q) = B.

796 M. Truszczyński and S. Woltran

One can check that the models of Q contained in B are sets of type

(1) I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, where J ⊆ X, I ⊆ Y and I ∪ J |= ϕ.

Each model of Q is also a model of P but P has additional models contained in B,

viz.

(2) I ∪ (Y \ I)′ ∪X ∪X ′, for each I ⊆ Y .

Clearly, for each model M of Q such that M ⊆ B, TQ(M) = M. Similarly, for each

model M of P such that M ⊆ B, TP (M) = M. Hence, each such model M is also

supported for both P and Q.

From these comments, it follows that for every model M of Q (P , respectively),

TQ(M) = M ∩ B (TP (M) = M ∩ B, respectively). Thus, for every model M of both

P and Q, TQ(M)|Bc = TP (M)|Bc . It follows that P and Q are suppmin-equivalent

with respect to HB(A,Bc) if and only if ModBc

A (P) = ModBc

A (Q) (indeed, we recall

that if (N,M) ∈ ModBc

A (R) then M is a model of R).

Let us assume that ∀Y ∃Xϕ is false. Hence, there exists an assignment I ⊆ Y to

atoms Y such that for every J ⊆ X, I ∪ J
|= ϕ. Let N = I ∪ (Y \ I)′ ∪ X ∪ X ′. We

will show that (N|A∪Bc , N) ∈ ModBc

A (P).

Since N is a supported model of P , N ∈ ModA(P). The requirement (2) for

(N|A∪Bc , N) ∈ ModBc

A (P) is evident. The requirement (5) holds, since N \ TP (N) = ∅.
By the property of I , N is a minimal model of P . Thus, the requirements (3) and

(4) hold, too. It follows that (N|A∪Bc , N) ∈ ModBc

A (P), as claimed. Since N is not a

model of Q, (N|A∪Bc , N) /∈ ModBc

A (Q).

Let us assume that ∀Y ∃Xϕ is true. First, observe that ModBc

A (Q) ⊆ ModBc

A (P).

Indeed, let (M,N) ∈ ModBc

A (Q). It follows that N is a model of Q and, consequently, of

P . From our earlier comments, it follows that TQ(N) = TP (N). Since N \TQ(N) ⊆ A,

N \TP (N) ⊆ A. Thus, N ∈ ModA(P). Moreover, if M|Bc = N|Bc then N \TQ(N) ⊆M

and, consequently, N\TP (N) ⊆M. Thus, the requirement (5) for (M,N) ∈ ModBc

A (P)

holds. The condition M ⊆ N|A∪Bc is evident (it holds as (M,N) ∈ ModBc

A (Q)). Since

N is a model of Q, N = N ′ ∪V , where N ′ is a model of type 1 and V ⊆ At \B. Thus,

every model Z ⊂ N of P is also a model of Q. It implies that the requirements (3)

and (4) for (M,N) ∈ ModBc

A (P) hold. Hence, (M,N) ∈ ModBc

A (P) and, consequently,

ModBc

A (Q) ⊆ ModBc

A (P).

We will now use the assumption that ∀Y ∃Xϕ is true to prove the converse

inclusion, i.e., ModBc

A (P) ⊆ ModBc

A (Q). To this end, let us consider (M,N) ∈ ModBc

A (P).

If N = N ′ ∪ V , where N ′ is of type 1 and V ⊆ At \ B, then arguing as above, one

can show that (M,N) ∈ ModBc

A (Q). Therefore, let us assume that N = N ′ ∪V , where

N ′ is of type 2 and V ⊆ At \ B. More specifically, let N ′ = I ∪ (Y \ I)′ ∪ X ∪ X ′,

for some I ⊆ Y . By our assumption, there is J ⊆ X such that I ∪ J |= ϕ. It follows

that Z = I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′ ∪ V is a model of P . Clearly, Z ⊂ N. Moreover,

since Bc ∩ (X ∪X ′ ∪Y ∪Y ′) = A∩ (X ∪X ′ ∪Y ∪Y ′) = ∅, we have Z |A∪Bc = N|A∪Bc .

Since (M,N) ∈ ModBc

A (P), the requirement (3) implies that Z is not a model of

P , a contradiction. Hence, the latter case is impossible and ModBc

A (P) ⊆ ModBc

A (Q)

follows.

Hyperequivalence for modular logic programming 797

We proved that ∀Y ∃Xϕ is true if and only if ModBc

A (P) = ModBc

A (Q). This

completes the proof of the assertion. �

Theorem 10
The problem suppmind,c(A,B) is coNP-hard.

Proof
Let us consider a CNF formula ϕ over a set of atoms Y . Without loss of generality

we can assume that Y ∩ B = ∅. For each atom y ∈ Y , we introduce a fresh atom

y′. Thus, in particular, B ∩ (Y ∪ Y ′) = ∅. Finally, we consider programs P (ϕ) and

Q = {f ←; ← f} from the proof of Theorem 5. In the remainder of the proof, we

write P for P (ϕ).

From the proof of Theorem 5, we know that P has a model if and only if ϕ has

a model (is satisfiable). We will now show that ModBc

A (P)
= ∅ if and only if ϕ is

satisfiable. It is easy to check that ModBc

A (Q) = ∅. Thus, the assertion will follow by

Theorem 2.

Let us assume that P has a model. Then P has a model, say M, such that

M ⊆ Y ∪ Y ′. We show that (M,M) ∈ ModBc

A (P). Indeed, since TP (M) = M,

M ∈ ModA(P). Also, since Y ∪ Y ′ ⊆ Bc, M|A∪Bc = M and so, M ⊆ M|A∪Bc .

Lastly, M \ TP (M) = ∅ ⊆ M. Thus, the conditions (1), (2), and (5) for (M,M) ∈
ModBc

A (P) hold. Since M|A∪Bc = M and M|Bc = M, there is no Z ⊂ M such that

Z |A∪Bc = M|A∪Bc or Z |Bc = M|Bc . Thus, also the conditions (3) and (4) hold, and

ModBc

A (P)
= ∅ follows. Conversely, let ModBc

A (P)
= ∅ and let (N,M) ∈ ModBc

A (P).

Then M ∈ ModA(P) and, in particular, M is a model of P . �

Combining Theorems 9 and 10 with Theorem 6 yields the following result that

fully determines the complexity of direct-complement problems.

Corollary 2
The problems suppmind,c(A, ·) and suppmind,c(·, ·) are ΠP

2 -complete. The problems

suppmind,c(A,B) and suppmind,c(·, B) are coNP-complete.

Before we move on to complement-direct and complement-complement problems,

we present a construction that will be of use in both cases. Let ∀Y ∃Xϕ be a QBF,

where ϕ is a CNF formula over X ∪ Y . Without loss of generality we can assume

that X and Y are nonempty.

We define X ′, Y ′ and ĉ, for each clause c of ϕ, as before. Next, let A,B ⊆ At be

such that: A
= ∅, A∩ (X ∪X ′ ∪Y ∪Y ′) = B ∩ (X ∪X ′ ∪Y ∪Y ′) = ∅, and let g ∈ A.

We define W = X ∪X ′ ∪Y ∪Y ′ ∪ {g} and observe that X ∪X ′ ∪Y ∪Y ′ ⊆ Ac and

g /∈ Ac. Finally, we select an arbitrary element x0 from X and define the programs

P (ϕ) and Q(ϕ) as follows:

P (ϕ) = {← not y, not y′; ← y, y′ | y ∈ Y } ∪
{← u, not v, not v′; ← u′, not v, not v′

← not u, v, v′; ← not u′, v, v′ | u, v ∈ X} ∪
{← ĉ, x0, not x′0; ← ĉ, not x0, x

′
0 | c is a clause in ϕ} ∪

{← not g} ∪ {u← x0, x
′
0, u | u ∈W }

Q(ϕ) = P (ϕ) ∪ {← not x0, not x′0}.

798 M. Truszczyński and S. Woltran

Lemma 8

Under the notation introduced above, ∀Y ∃Xϕ is true if and only if P (ϕ) and Q(ϕ)

are suppmin-equivalent relative to HB(Ac, B).

Proof

As usual, to simplify notation we write P for P (ϕ) and Q for Q(ϕ). We observe that

At(P) = At(Q) = W . We observe that both P and Q have the following models that

are contained in W :

(1) {g} ∪X ∪X ′ ∪ I ∪ (Y \ I)′, for each I ⊆ Y ; and

(2) {g} ∪ J ∪ (X \ J)′ ∪ I ∪ (Y \ I)′, where J ⊆ X, I ⊆ Y and I ∪ J |= ϕ.

Moreover, P has also additional models contained in W :

(3) {g} ∪ I ∪ (Y \ I)′, for each I ⊆ Y .

For each model M of the type 1, TP (M) = TQ(M) = M, thanks to the rules u←
x0, x

′
0, u, where u ∈ W . Thus, for each model M of type 1, we have M ∈ ModAc(P)

and M ∈ ModAc(Q).

Let M be a model of P of one of the other two types. Then, we have TP (M) = ∅.
Moreover, since g ∈ M and g /∈ Ac, M \ TP (M)
⊆ Ac. Thus M /∈ ModAc(P).

Similarly, if M is a model of Q of type 2, TQ(M) = ∅. For the same reasons as

above, M /∈ ModAc(Q). Hence, ModAc(P) = ModAc(Q), and both ModAc(P) and

ModAc(Q) consist of interpretations N of the form N ′ ∪ V , where N ′ is a set of

the type 1 and V ⊆ At \W . Clearly, for each such set N, TP (N) = N ′ = TQ(N).

Thus TP (N)|B = TQ(N)|B holds for each (M,N) ∈ ModB
Ac(P) (as (M,N) ∈ ModB

Ac(P)

implies N ∈ ModAc(P)). By Theorem 2, it follows that P and Q are suppmin-

equivalent relative to HB(Ac, B) if and only if ModB
Ac(P) = ModB

Ac(Q).

Thus, to complete the proof, it suffices to show that ∀Y ∃Xϕ is true if and only if

ModB
Ac(P) = ModB

Ac(Q).

Let us assume that ∀Y ∃Xϕ is false. Hence, there exists an assignment I ⊆ Y to

atoms Y such that for every J ⊆ X, I∪J
|= ϕ. Let N = {g}∪I∪ (Y \I)′ ∪X∪X ′. We

will show that ({g}|B,N) ∈ ModB
Ac(Q). Since N is of the type 1, N ∈ ModAc(Q). The

requirement (2) for ({g}|B,N) ∈ ModB
Ac(Q) is evident, as g ∈ N. The requirement (5)

holds, since N \TQ(N) = ∅ ⊆ {g}|B . By the property of I , N is a minimal model of Q.

Thus, the requirements (3) and (4) hold, too. It follows that ({g}|B,N) ∈ ModB
Ac(Q), as

claimed. On the other hand ({g}|B,N) /∈ ModB
Ac(P). Indeed, let M = {g}∪I∪ (Y \I)′.

Then M |= P (it is of the type 3). We now observe that M ⊂ N, {g}|B = M|B (as

B∩(Y ∪Y ′) = ∅), and M|Ac ⊇ ({g}|B)|Ac (as ({g}|B)|Ac = ∅, due to the fact that g /∈ Ac).

It follows that ({g}|B,N) violates the condition (4) for ({g}|B,N) ∈ ModB
Ac(P).

Conversely, let us assume that ∀Y ∃Xϕ is true. We first observe that ModB
Ac(P) ⊆

ModB
Ac(Q). Indeed, let (M,N) ∈ ModB

Ac(P). Then, N ∈ ModAc(P) and, consequently,

N ∈ ModAc(Q). Moreover, if M|B = N|B , then N \ TP (N) ⊆ M and, as TP (N) =

TQ(N), N \ TQ(N) ⊆ M. Next, as (M,N) ∈ ModB
Ac(P), M ⊆ N|Ac∪B . Thus, the

requirements (1), (5), and (2) for (M,N) ∈ ModB
Ac(Q) hold. Since every model of Q

is a model of P , it follows that the conditions (3) and (4) hold, too.

We will now use the assumption that ∀Y ∃Xϕ is true to prove the converse inclusion

ModB
Ac(Q) ⊆ ModB

Ac(P). To this end, let us consider (M,N) ∈ ModB
Ac(Q). Reasoning

Hyperequivalence for modular logic programming 799

as above, we can show that the conditions (1), (5), and (2) for (M,N) ∈ ModB
Ac(P)

hold.

By our earlier comments, N = N ′ ∪V , where N ′ is of the form 1 and V ⊆ At \W .

More specifically, N ′ = {g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′, for some I ⊆ Y .

Let us consider Z ⊂ N such that Z |Ac∪B = N|Ac∪B . Since W \ {g} ⊆ Ac, Z ⊇
N|Ac∪B ⊇ I ∪ (Y \ I)′ ∪X ∪X ′. It follows that Z ∩W is not of the type 3. Thus, since

Z
|= Q, Z
|= P . Consequently, the condition (3) for (M,N) ∈ ModB
Ac(P) holds.

So, let us consider Z ⊂ N such that Z |B = M|B and Z |Ac ⊇ M|Ac . Let us assume

that Z |= P . Since Z
|= Q, Z = Z ′ ∪ U, where Z ′ is a set of the type 3 and

U ⊆ At \W . Since Z ⊆ N, Z ′ ⊆ N ′, and so, Z ′ = {g} ∪ I ∪ (Y \ I)′.

Since ∀Y ∃Xϕ is true, there is J ⊆ X such that I ∪ J |= ϕ. It follows that

N ′′ = {g} ∪ I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′ ∪U

is a model of both P and Q (of the type 2). Since B ∩W ⊆ {g}, it follows that

N ′′|B = Z |B = M|B . Since N ′′ ⊇ Z , N ′′|Ac ⊇ Z |Ac ⊇ M|Ac . Moreover, N ′′ ⊂ N. Since

(M,N) ∈ ModB
Ac(Q), N ′′
|= Q, a contradiction. Thus, Z
|= P and, consequently, the

condition (4) for (M,N) ∈ ModB
Ac(P) holds. This completes the proof of ModB

Ac(Q) ⊆
ModB

Ac(P) and of the lemma. �

We now apply this lemma to complement-direct problems. We have the following

result.

Theorem 11

The problem suppminc,d(A,B), where A
= ∅, is ΠP
2 -hard.

Proof

Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y such that X and

Y are nonempty. We can assume that A ∩ (X ∪ Y) = B ∩ (X ∪ Y) = ∅ (if not,

variables in the QBF can be renamed). We define X ′ and Y ′ as in other places.

Thus, (A ∪ B) ∩ (X ′ ∪ Y ′) = ∅. Finally, we pick g ∈ A, and define P (ϕ) and Q(ϕ)

as above. By Lemma 8, ∀Y ∃Xϕ is true if and only if P (ϕ) and Q(ϕ) are suppmin-

equivalent with respect to HB(Ac, B). Thus, the assertion follows. (We note that

since B is fixed, we cannot assume g ∈ B or g /∈ B here; however, Lemma 8 takes

care of both cases). �

We are now in a position to establish exactly the complexity of complement-direct

problems.

Corollary 3

The problems suppminc,d(·, B) and suppminc,d(·, ·) are ΠP
2 -complete. For A
= ∅, the

problems suppminc,d(A,B), and suppminc,d(A, ·), are also ΠP
2 -complete. The problems

suppminc,d(∅, B) and suppminc,d(∅, ·) are coNP-complete.

Proof

For problems suppminc,d(A,B) (where A
= ∅), suppminc,d(·, B), suppminc,d(A, ·) (where

A
= ∅), and suppminc,d(·, ·), the upper bound follows from Theorem 7, and the lower

bound from Theorem 11. The problems suppminc,d(∅, B) and suppminc,d(∅, ·) were

proved to be coNP-complete by Truszczyński and Woltran (2008) (in fact, they

denoted these problems by suppmin
B
At and suppminAt , respectively). �

800 M. Truszczyński and S. Woltran

We will now apply Lemma 8 to complement-complement problems.

Theorem 12

The problem suppminc,c(A, ·), where A
= ∅, is ΠP
2 -hard.

Proof

Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y . We select g ∈ A,

and define X ′ and Y ′ as usual. Without loss of generality we can assume that

A∩(X∪X ′∪Y ∪Y ′) = ∅. In particular, g /∈ X∪X ′∪Y ∪Y ′. We set B = X∪X ′∪Y ∪Y ′
and so, Bc ∩ (X ∪ X ′ ∪ Y ∪ Y ′) = ∅. Finally, we set W = X ∪ X ′ ∪ Y ∪ Y ′ ∪ {g}
and define programs P and Q as we did in preparation for Lemma 8. By Lemma 8,

∀Y ∃Xϕ is true if and only if P and Q are suppmin-equivalent with respect to

HB(Ac, Bc). Thus, the assertion follows. �

Next, we determine the lower bound for the problem suppminc,c(A,B).

Theorem 13

The problem suppminc,c(A,B) is coNP-hard.

Proof

The problem suppminc,c(∅, ∅) is coNP-complete (Truszczyński and Woltran 2008) (in

the paper proving that fact, the problem was denoted by suppmin
At
At). We will show

that it can be reduced to suppminc,c(A,B) (for any finite A,B ⊆ At).

Thus, let us fix A and B as two finite subsets of At , and let P and Q be

normal logic programs. We define P ′ and Q′ to be programs obtained by replacing

consistently atoms in P and Q that belong to A∪B with atoms that do not belong to

At(P ∪Q)∪A∪B. Clearly, P and Q are suppmin-equivalent relative toHB(At ,At)

if and only if P ′ and Q′ are suppmin-equivalent relative to HB(At ,At).

Moreover, it is clear that suppmin-equivalence relative toHB(At ,At) between P ′

and Q′ implies suppmin-equivalence relative to HB(Ac, Bc) between P ′ and Q′. We

will now show the converse implication. To this end, let R be an arbitrary program

from HB(At ,At). By R′ we denote the program obtained by replacing consistently

atoms in R that belong to A∪B with atoms that do not belong to At(P ′ ∪Q′)∪A∪B.

Since P ′ and Q′ are suppmin-equivalent relative to HB(Ac, Bc), P ′ ∪ R′ and Q′ ∪ R′
have the same suppmin models. Now, we note that because (A∪B)∩At(P ′ ∪Q′) = ∅,
P ′ ∪R′ and Q′ ∪R′ have the same suppmin models if and only if P ′ ∪R and Q′ ∪R
have the same suppmin models. Thus, P ′ ∪ R and Q′ ∪ R have the same suppmin

models and, consequently, P ′ and Q′ are suppmin-equivalent relative toHB(At ,At).

It follows that P and Q are suppmin-equivalent relative to HB(At ,At).

By this discussion, P and Q are suppmin-equivalent relative toHB(At ,At) if and

only if P ′ and Q′ are suppmin-equivalent relative to HB(Ac, Bc). coNP-hardness of

suppminc,c(A,B) thus follows from the coNP-hardness of suppminc,c(∅, ∅). �

Taking into account Theorems 7 and 8, Theorems 12 and 13 yield the following

result.

Corollary 4

The problems suppminc,c(A, ·), with A
= ∅, and suppminc,c(·, ·) are ΠP
2 -complete. The

problems suppminc,c(A,B), suppminc,c(·, B), and suppminc,c(∅, ·) are coNP-complete.

Hyperequivalence for modular logic programming 801

6 Stable-equivalence

In this section, we establish the complexity for direct-complement, complement-

direct, and complement-complement problems of deciding stable-equivalence. We

will again make use of the relations depicted in Figure 1 to obtain our results. Thus,

for instance, when we derive an upper bound for a problem stableδ,ε(·, ·) and a

matching lower bound for stableδ,ε(A,B), we obtain the exact complexity result for

all problems between stableδ,ε(A,B) and stableδ,ε(·, ·) (inclusively). As we will show,

for stable equivalence those bounds match in all cases other than δ = ε = c.

We also mention that for the upper bounds for relativized hyperequivalence with

respect to the stable-model semantics, some relevant results were established before.

Specifically, the direct-direct problem stabled,d(·, ·) is known to be in the class

ΠP
2 and, under the restriction to normal logic programs, in coNP (Woltran 2008).

However, for the sake of completeness we treat the direct-direct problems here in

full detail as, in the case of fixed alphabets, they were not considered before.

6.1 Upper bounds

The following lemmas mirror the corresponding results from the previous section

but show some interesting differences. For instance, as the following result shows, the

problem of model checking is slightly harder now compared to Lemma 3. Namely,

it is located in the class DP . (We recall that the class DP consists of all problems

expressible as the conjunction of a problem in NP and a problem in coNP.) However,

this increase in complexity compared to Lemma 3 does not influence the subsequent

ΠP
2 -membership results, since a call to a DP -oracle amounts to two NP-oracle calls.

Lemma 9

The following problems are in the class DP : given a program P , and sets X, Y , A,

and B, decide whether (X,Y) ∈ SEB′

A′ (P), where A′ stands for one of A and Ac, and

B′ stands for one of B and Bc,

Proof

We use similar arguments as in the proof of Lemma 3, but we need now both an

NP and a coNP test.

We recall that verifying any condition involving Ac can be reformulated in terms

of A. For instance, for every set V , we have V |Ac = V \ A, and V ⊆ Ac if and only

if V ∩ A = ∅. The same holds for Bc.

Let A′ ∈ {A,Ac} and B′ ∈ {B,Bc}. We will use the observation above to establish

upper bounds on the complexity of deciding each of the conditions (1)–(5) for

(X,Y) ∈ SEB′

A′ (P).

The condition (1) can clearly be decided in polynomial time. The same holds

for the condition (2). It is evident once we note that X ⊆ Y |A′∪B′ is equivalent to

X ⊆ Y ∩ (A∪B), X ⊆ (Y ∩B)∪ (Y \A), X ⊆ (Y ∩A)∪ (Y \B), and X ⊆ Y \ (A∩B),

depending on the form of A′ and B′.

It is also easy to show that each of the conditions (3) and (4) can be decided by

means of a single coNP test, and that the condition (5) can be decided by means

of one NP test. For all instantiations of A′ and B′, the arguments are similar. We

802 M. Truszczyński and S. Woltran

present the details for one case only. For example, if A′ stands for A and B′ stands

for Bc, to decide whether (X,Y) violates the condition (4), we guess a set Z ⊂ Y

and verify that (a) Z |Bc ⊆ X|Bc (by checking that Z \ B ⊆ X \ B); (b) X|A ⊆ Z |A;

(c) one of the two inclusions is proper; and (d) Z |= PY . All these tasks can be

accomplished in polynomial time, and so deciding that the condition (4) does not

hold amounts to an NP test. Consequently, deciding that the condition (4) holds

can be accomplished by a coNP test. �

When we fix A and B (they are no longer components of the input), the complexity

of testing whether (X,Y) ∈ SEBc

Ac (P) is lower – the problem is in the class Pol .

Comparing with Lemma 4, the lower complexity holds only for A′ = Ac and

B′ = Bc. Moreover, both A and B must be fixed.

Lemma 10

For every finite sets A,B ⊆ At the following problem is in the class Pol : given a

program P , and sets X, Y , decide whether (X,Y) ∈ SEBc

Ac (P).

Proof

As we noted, testing the conditions (1) and (2) for (X,Y) ∈ SEBc

Ac (P) can be done in

polynomial time.

For the condition (3) we check all candidate sets Z . Since Z |Ac = Y |Ac all elements

of Z are determined by Y except possibly for those that are also in A. Thus, there

are at most 2|A| possible sets Z to consider. Since A is fixed (not a part of the

input), checking for all these sets Z whether Z |= PY and Z ⊂ Y can be done in

polynomial time.

For the condition (4), the argument is similar. We note that Z is, in particular,

restricted by Z |Bc ⊆ X|Bc and X|Ac ⊆ Z |Ac . The two conditions imply that X|Ac∩Bc =

Z |Ac∩Bc . Thus, all elements of Z are determined except possibly for those that are

also in A ∪ B. It follows that there are at most 2|A∪B| possibilities for Z to consider.

Clearly, for each of them, we can check whether it satisfies or fails the premises

and the consequent of (4) in polynomial time. Thus, checking the condition (4) is a

polynomial-time task.

The same (essentially) argument works also for the condition (5). Since Z |Ac∪Bc =

X|Ac∪Bc , all elements of Z are determined except possibly for those that are also

in A ∩ B. Thus, there are at most 2|A∩B| possible sets Z to consider. Given that A

and B are fixed, checking all those sets Z for Z |= PY and Z ⊂ Y can be done in

polynomial time. �

The reduct of a normal program is a Horn program. That property allows us to

obtain stronger upper bounds for the case of normal logic programs.

Lemma 11

The following problems are in the class Pol . Given a normal program P , and sets

X, Y , A, and B, decide whether (X,Y) ∈ SEB′

A′ (P), where A′ stands for A or Ac, and

B′ stands for B or Bc.

Hyperequivalence for modular logic programming 803

Proof

As we noted, deciding the conditions (1) and (2) can be accomplished in polynomial

time (even without the assumption of normality).

To show that the condition (3) can be decided in polynomial time, we show that

the complement of (3) can be decided in polynomial time. The complement of (3)

has the form: there is Z ⊂ Y such that Z |A′ = Y |A′ and Z |= PY . Let us consider the

Horn program P ′ = PY ∪ Y |A′ . Since P , Y , and A are given, P ′ can be constructed

in polynomial time (for instance, if A = Ac, P ′ = PY ∪ (Y \ A)). We will show that

the complement of the condition (3) holds if and only if P ′ is consistent and its

least model, say L, satisfies L ⊂ Y and L|A′ = Y |A′ . First, we observe that if the

complement of (3) holds, then P ′ has a model Z such that Z ⊂ Y and Z |A′ = Y |A′ .
It follows that P ′ is consistent and its least model, say L, satisfies L ⊆ Z . Thus,

L ⊂ Y and L|A′ ⊆ Y |A′ . Moreover, since L |= P ′, Y |A′ ⊆ L. Thus, Y |A′ ⊆ L|A′ .
Therefore, we have L ⊂ Y and L|A′ = Y |A′ as needed. The converse implication is

trivial. Since P ′ can be constructed in polynomial time and L can be computed in

polynomial time (P ′ is Horn), deciding the complement of the condition (3) can be

accomplished in polynomial time, too.

To settle the condition (4), we again demonstrate that the complement of the

condition (4) can be decided in polynomial time. To this end, we observe that the

complement of (4) holds if and only if one of the following two conditions holds:

(4′) there is Z ⊂ Y such that, X|A′ ⊆ Z |A′ , Z |B′ ⊂ X|B′ and Z |= PY ;

(4′′) there is Z ⊂ Y such that, X|A′ ⊂ Z |A′ , Z |B′ ⊆ X|B′ and Z |= PY .

One can check that (4′) holds if and only if PY ∪ X|A′ is consistent and its least

model, say L, satisfies L ⊂ Y and L|B′ ⊂ X|B′ . Similarly, (4′′) holds if and only if

there is y ∈ (Y \X)|A′ such that PY ∪ (X ∪ {y})|A′ is consistent and its least model,

say L, satisfies L ⊂ Y and L|B′ ⊆ X|B′ . Thus, the conditions (4′) and (4′′) can be

checked in polynomial time.

The argument for the condition (5) is similar to that for the complement of

the condition (3). The difference is that instead of P ′ we use the Horn program

PY ∪ X|A′∪B′ . Reusing the argument for (3) with the arbitrary containment of Z in

Y (rather than a proper one) shows that the complement of (5) can be decided in

polynomial time. �

The next lemma plays a key role in establishing an upper bound on the complexity

of the problems stableδ,ε(·, ·). Its proof is technical and we present it in the appendix.

Lemma 12

Let P ,Q be programs and A,B ⊆ At . If (X,Y) ∈ SEB
A(P) \ SEB

A(Q), then there are

sets X ′, Y ′ ⊆ At(P ∪ Q), such that at least one of the following conditions holds:

(i) (X ′, Y ′) ∈ SEB
A(P) \ SEB

A(Q),

(ii) A \ At(P ∪ Q)
= ∅ and for every y, z ∈ A \ At(P ∪ Q), (X ′, Y ′ ∪ {y, z}) ∈
SEB

A(P) \ SEB
A(Q).

We now use similar arguments to those in the previous section to obtain the

following collection of membership results.

804 M. Truszczyński and S. Woltran

Theorem 14

The problem stableδ,ε(·, ·), is contained in the class ΠP
2 , for any δ, ε ∈ {c, d};

stablec,c(A,B) is contained in the class coNP. The problem stable
n
δ,ε(·, ·), is contained

in the class coNP for any δ, ε ∈ {c, d}.

Proof

Given finite programs P and Q, and finite subsets A,B of At the following algorithm

decides the complementary problem to stableδ,ε(·, ·). If δ = d and A\At(P ∪Q) = ∅,
the algorithm guesses two sets X,Y ⊆ At(P ∪ Q). It verifies whether (X,Y) ∈
SEB

A(P)÷ SEB
A(Q) and if so, returns YES. Otherwise, the algorithm guesses two sets

X,Y ⊆ At(P ∪Q). If δ = d, it selects two elements y, z ∈ A \ At(P ∪Q) or, if δ = c,

it selects two elements y, z ∈ Ac \At(P ∪Q). The algorithm verifies whether (X,Y) ∈
SEB

A′(P)÷ SEB
A′ (Q) (where A′ = A if δ = d, and A′ = Ac if δ = c) and if so, returns

YES. Otherwise, the algorithm verifies whether (X,Y ∪ {y, z}) ∈ SEB
A′(P)÷ SEB

A′(Q)

(where A′ = A if δ = d, and A′ = Ac if δ = c) and if so, returns YES.

The correctness of the algorithm follows by Lemma 12. Since the sizes of X and Y

are polynomial in the size of P ∪Q, the membership of the complementary problem

in the class ΣP
2 follows by Lemma 9.

The remaining claims of the assertion follow in the same way by Lemmas 10 and

11, respectively. �

6.2 Lower bounds and exact complexity results

We start with the case of normal programs.

Theorem 15

The problem stable
n
δ,ε(A,B) is coNP-hard for any δ, ε ∈ {c, d}.

Proof

Let us fix δ and ε, and let A′ and B′ be sets of atoms defined by the combinations

A and δ, and B and ε. We will show that UNSAT can be reduced to stable
n
δ,ε(A,B).

Let ϕ be a CNF over of set of atoms Y . We define P (ϕ) and Q as in the proof of

Theorem 5. We note that both programs are normal. As before, we write P instead

of P (ϕ) in order to simplify the notation.

To prove the assertion it suffices to show that ϕ is unsatisfiable if and only if P

and Q are stable-equivalent with respect to HB(A′, B′). To this end, we will show

that ϕ is unsatisfiable if and only if SEB′

A′ (P) = SEB′

A′ (Q) (cf. Theorem 3).

Since Q has no models, SEB′

A′ (Q) = ∅. Moreover, SEB′

A′ (P) = ∅ if and only if P has

no models (indeed, if (X,Y) ∈ SEB′

A′ (P), then Y is a model of P ; if Y is a model of

P , then (Y , Y) ∈ SEB′

A′ (P)). It follows that SEB′

A′ (P) = SEB′

A′ (Q) if and only if P has

no models.

In the proof of Theorem 5, we noted that P has models if and only if ϕ has

models. Thus, SEB′

A′ (P) = SEB′

A′ (Q) if and only if ϕ is unsatisfiable. �

Together with the matching coNP-membership results for stable
n
δ,ε(·, ·) from

Theorem 14 we obtain the following result.

Hyperequivalence for modular logic programming 805

Corollary 5

The following problems are coNP-complete for any δ, ε ∈ {c, d}: stable
n
δ,ε(·, ·),

stable
n
δ,ε(A, ·), stable

n
δ,ε(·, B) and stable

n
δ,ε(A,B).

We now turn to the case of disjunctive programs. It turns out that the problems

stablec,d(A,B), stabled,d(A,B) and stabled,c(A,B) are ΠP
2 -hard. The situation is

different for stablec,c(A,B). By Theorems 14 and Corollary 5, the problem is coNP-

complete. However, the two immediate successors of that problem, stablec,c(A, ·)
and stablec,c(·, B) (cf. Figure 1) are ΠP

2 -hard. We will now show these results.

To start with we provide some technical results concerning the structure of the

set SEB
A(P) when At(P) ⊆ A and At(P) ∩ B = ∅. It will be applicable to programs

we construct below.

Lemma 13

Let P be a program and A,B ⊆ At . If At(P) ⊆ A and At(P) ∩ B = ∅, then

(X,Y) ∈ SEB
A(P) if and only if there are X ′, Y ′ ⊆ At(P) and W ⊆ A \ At(P) such

that one of the following conditions holds:

(a) X = X ′ ∪W , Y = Y ′ ∪W , and (X ′, Y ′) ∈ SEB
A(P);

(b) X = X ′∪W , (X ′, X ′) ∈ SEB
A(P) and Y = X ′∪W ∪{y}, for some y ∈ A\At(P);

(c) X = X ′ ∪ W , (X ′, X ′) ∈ SEB
A(P) and Y = X ′ ∪ W ∪ D, for some D ⊆

B ∩ (A \ At(P)) such that W ∩ D = ∅ and |D| � 2.

The proof of this result is technical and we give it in the appendix. This lemma

points to the crucial role played by those pairs (X,Y) ∈ SEB
A(P) that satisfy

Y ⊆ At(P). In particular, as noted in the next result, it allows to narrow down

the class of pairs (X,Y) that need to be tested for the membership in SEB
A(P) and

SEB
A(Q) when considering stable-equivalence of P and Q with respect to HB(A,B).

Lemma 14

Let P and Q be programs, and A,B subsets of At such that At(P ∪ Q) ⊆ A and

At(P ∪ Q) ∩ B = ∅. Then, P and Q are stable-equivalent with respect to HB(A,B)

if and only if for every X,Y such that Y ⊆ At(P ∪Q), (X,Y) ∈ SEB
A(P) if and only

if (X,Y) ∈ SEB
A(Q).

Proof

Without loss of generality, we can assume that At(P) = At(Q). Indeed, let P ′ =

P ∪ {a ← a | a ∈ At(Q) \ At(P)} and Q′ = Q ∪ {a ← a | a ∈ At(P) \ At(Q)}. It is

easy to see that P and P ′ (Q and Q′, respectively) are stable-equivalent with respect

to HB(A,B). Thus, in particular, SEB
A(P) = SEB

A(P ′) and SEB
A(Q) = SEB

A(Q′).

Moreover, At(P ′) = At(Q′) = At(P ∪ Q). Therefore, At(P ′ ∪ Q′) ⊆ A if and only if

At(P ∪ Q) ⊆ A, and At(P ′ ∪ Q′) ∩ B = ∅ if and only if At(P ∪ Q) ∩ B = ∅.
Thus, let us assume that At(P) = At(Q). Only the “if” part of the claim requires

a proof, the other implication being evident. Let us assume that (X,Y) ∈ SEB
A(P).

By Lemma 13, there are X ′, Y ′ ⊆ At(P), and W ⊆ A \ At(P) such that one of the

conditions (a)–(c) holds. If (a) holds, (X ′, Y ′) ∈ SEB
A(Q) and so, (X,Y) ∈ SEB

A(Q). If

(b) or (c) holds, (X ′, X ′) ∈ SEB
A(Q) and so, (X,Y) ∈ SEB

A(Q), as well. �

806 M. Truszczyński and S. Woltran

Finally, we note that under the assumptions of Lemma 13, if Y ⊆ At(P), then the

conditions for (X,Y) ∈ SEB
A(P) simplify.

Lemma 15

Let P be a program and A,B ⊆ At . If At(P) ⊆ A, At(P) ∩ B = ∅ and Y ⊆ At(P),

then (X,Y) ∈ SEB
A(P) if and only if Y |= P , X ⊆ Y , X |= PY , and for every Z ⊂ Y

such that X ⊂ Z , Z
|= PY .

Proof

Under the assumptions of the lemma, the four conditions are equivalent to the

conditions (1), (2), (5), and (4) for (X,Y) ∈ SEB
A(P), respectively, and the condition

(3) is vacuously true. �

Our first ΠP
2 -hardness result for stable equivalence results concerns the problem

stablec,d(A,B).

Theorem 16

The problem stablec,d(A,B) is hard for the class ΠP
2 .

Proof

According to our notational convention, we have to show that stablec,d(A,B) is

ΠP
2 -hard, for every finite A,B ⊆ At .

Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y . Without loss of

generality we can assume that every clause in ϕ contains at least one literal x or

¬x, for some x ∈ X. Furthermore, we can also assume that A ∩ (X ∪ Y) = ∅ and

B∩ (X ∪Y) = ∅ (if not, variables in ϕ can be renamed). We select the primed (fresh)

variables so that A ∩ (X ′ ∪ Y ′) = ∅ and B ∩ (X ′ ∪ Y ′) = ∅, as well.

We will construct programs P (ϕ) and Q(ϕ) so that ∀Y ∃Xϕ is true if and only

if P (ϕ) and Q(ϕ) are stable-equivalent relative to HB(Ac, B). Since the problem

to decide whether a given QBF ∀Y ∃Xϕ is true is ΠP
2 -complete, the assertion will

follow.

To construct P (ϕ) and Q(ϕ) we select an additional atom a /∈ X∪X ′∪Y ∪Y ′∪A∪B,

and use ĉ, as defined in some of the arguments earlier in the paper. We set

R(ϕ) = {a← x, x′; x← a; x′ ← a | x ∈ X} ∪
{y ∨ y′; ← y, y′ | y ∈ Y } ∪
{a← ĉ | c is a clause in ϕ} ∪
{← not a}

and define

P (ϕ) = {x ∨ x′ | x ∈ X} ∪ R(ϕ),

Q(ϕ) = {x ∨ x′ ← u | x ∈ X, u ∈ {a} ∪X ∪X ′} ∪ R(ϕ).

To simplify notation, from now on we write P for P (ϕ) and Q or Q(ϕ).

We note that At(P) = At(Q), At(P) ⊆ Ac, At(Q) ⊆ Ac, At(P) ∩ B = ∅, and

At(Q)∩B = ∅. Thus, to determine whether P and Q are stable-equivalent with respect

to HB(Ac, B), we will focus only on pairs (N,M) ∈ SEB
Ac(P) and (N,M) ∈ SEB

Ac(Q)

that satisfy N ⊆ M ⊆ At(P) (cf. Lemma 14). By Lemma 15, to identify such pairs,

Hyperequivalence for modular logic programming 807

we need to consider models (contained in At(P) = At(Q)) of the two programs,

and models (again contained in At(P) = At(Q)) of the reducts of the two programs

with respect to their models. From now on in the proof, whenever we use the term

“model” (of a program or the reduct of a program) we assume that it is a subset of

At(P) = At(Q).

First, one can check that the models of P and Q coincide and are of the form:

(1) I ∪ (Y \ I)′ ∪X ∪X ′ ∪ {a}, for each I ⊆ Y .

Next, we look at models of the reducts of P and Q with respect to their models,

that is, sets of the form 1. Let M be such a set. Since a ∈M, then every model of P

is a model of PM , and the same holds for Q.

However, PM and QM have additional models. First, each reduct has as its models

sets of the form

(2) I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, where J ⊆ X, I ⊆ Y and I ∪ J |= ϕ.

Furthermore, QM has additional models, namely, sets of the form

(3) I ∪ (Y \ I)′, for each I ⊆ Y .

Indeed, it is easy to check that I ∪ (Y \ I)′ satisfies all rules of QM (in the case of

the rules a← ĉ, we use the fact that every sequence ĉ contains an atom x or x′ for

some x ∈ X).

We will now show that ∀Y ∃Xϕ is true if and only if P and Q are stable-equivalent

relative to HB(Ac, B). To this end, we will show that ∀Y ∃Xϕ is true if and only if

SEB
Ac(P) = SEB

Ac(Q).

We recall that since At(P) = At(Q) ⊆ Ac and At(P)∩B = At(Q)∩B = ∅, we can

use Lemmas 14 and 15. Thus, if M ⊆ At(P), (N,M) ∈ SEB
Ac(P) if and only if M is

a set of type 1, that is, M = I ∪ (Y \ I)′ ∪X ∪X ′ ∪ {a}, for some I ⊆ Y , and either

N = M or N is a set of type 2, that is, N = I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, for some

J ⊆ X such that I ∪ J |= ϕ.

The same pairs (N,M) belong to SEB
Ac(Q) (still under the assumption that M ⊆

At(P) = At(Q)). However, SEB
Ac(Q) contains also pairs (N,M) where M is a set of

type 1, N = I ∪ (Y \ I)′ and for every J ⊆ X, I ∪ J
|= ϕ (given that the only models

of QM that are proper supersets of N and proper subsets of M are models of type

2, that is precisely what is needed to ensure that for every Z , N ⊂ Z ⊂ M implies

Z
|= QM).

Let us assume that ∀Y ∃Xϕ is false. Then, there exists I ⊆ Y such that for every

J ⊆ X, I ∪ J
|= ϕ. Let N = I ∪ (Y \ I)′ and M = I ∪ (Y \ I)′ ∪ X ∪ X ′ ∪ {a}.
From our discussion, it is clear that (N,M) ∈ SEB

Ac(Q) but (N,M) /∈ SEB
Ac(P). Thus,

SEB
Ac(P)
= SEB

Ac(Q).

Conversely, if ∀Y ∃Xϕ is true, then for every I ⊆ Y there is J ⊆ X such that

I ∪ J |= ϕ. This implies that there are no pairs (N,M) ∈ SEB
Ac(Q) of the last kind.

Thus, in that case, if M ⊆ At(P)=At(Q), then (N,M) ∈ SEB
Ac(P) if and only if

(N,M) ∈ SEB
Ac(Q). By Lemma 14, SEB

Ac(P) = SEB
Ac(Q). �

Combining Theorem 16 with Theorem 14 yields the following result.

808 M. Truszczyński and S. Woltran

Corollary 6

The problems stablec,d(A,B), stablec,d(·, B), stablec,d(A, ·) and stablec,d(·, ·), are

ΠP
2 -complete.

Next, we consider the problems stabled,c(A,B), and stabled,d(A,B). We have the

following simple result.

Lemma 16

Let P and Q be programs and A,B subsets of At such that At(P ∪ Q) ∩ A = ∅.
Then, P and Q are stable-equivalent with respect to HB(A,B) if and only if P and

Q have the same stable models.

Proof

Let R ∈ HB(A,B). Since At(P ∪ Q) ∩ A = ∅, we can apply the splitting theorem

(Lifschitz and Turner 1994) to P ∪R. It follows that M is a stable model of P ∪R if

and only if M = M ′ ∪M ′′, where M ′ is a stable model of P and M ′′ is a stable model

of M ′′ ∪ R. Similarly, M is a stable model of Q ∪ R if and only if M = M ′ ∪M ′′,

where M ′ is a stable model of Q and M ′′ is a stable model of M ′′ ∪ R. Thus, the

assertion follows. �

We now use this result to determine the lower bounds on the complexity of

problems stabled,c(A,B) and stabled,d(A,B).

Theorem 17

The problems stabled,c(A,B) and stabled,d(A,B) are hard for the class ΠP
2 .

Proof

To be precise, we have to show that stabled,c(A,B) and stabled,d(A,B) are ΠP
2 -hard,

for every finite A,B ⊆ At .

It is well known that the problem to decide whether a logic program P has a stable

model is ΣP
2 -complete (Eiter and Gottlob 1995). We will reduce this problem to the

complement of stabled,c(A,B) (stabled,d(A,B), respectively). That will complete the

proof.

Thus, let P be a logic program. Without loss of generality, we can assume that

At(P) ∩ A = ∅ (if not, we can rename atoms in P , without affecting the existence

of stable models). Let f be an atom not in A. and define Q = {f, ← f}. Clearly,

At(P ∪ Q) ∩ A = ∅. Moreover, P and Q do not have the same stable models if and

only if P has stable models. By Lemma 16, P has stable models if and only if P

and Q are not stable-equivalent relative toHB(A,Bc). Similarly (as B is immaterial

for the stable-equivalence in that case), P has stable models if and only if P and Q

are not stable-equivalent relative to HB(A,B). �

We now explicitly list all cases, where we are able to give completeness results

(membership results are from Theorem 14).

Corollary 7

The problems stabled,d(A,B), stabled,d(·, B), stabled,d(A, ·), and stabled,d(·, ·) are

ΠP
2 -complete.

Hyperequivalence for modular logic programming 809

Corollary 8

The problems stabled,c(A,B), stabled,c(·, B), stabled,c(A, ·), and stabled,c(·, ·) are

ΠP
2 -complete.

Finally, we show ΠP
2 -hardness of problems stablec,c(A, ·) and stablec,c(·, B).

Theorem 18

The problems stablec,c(A, ·) and stablec,c(·, B). are ΠP
2 -hard.

Proof

We first show that the problem stablec,c(A, ·) is ΠP
2 -hard, for every finite A ⊆ At .

Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y . As in the proof

of Theorem 16, without loss of generality we can assume that every clause in ϕ

contains a literal x or ¬x, for some x ∈ X, and that A∩ (X∪Y) = ∅ (if not, variables

in ϕ can be renamed).

Let P (ϕ) and Q(ϕ) be the programs used in the proof of Theorem 16, where we

choose primed variables so that A ∩ (X ′ ∪ Y ′) = ∅. We define B = At(P). We have

that At(P) ⊆ Ac and At(P) ∩ Bc = ∅.
We recall that the argument used in the proof of Theorem 16 to show that ∀Y ∃Xϕ

is true if and only if P (ϕ) and Q(ϕ) are stable-equivalent with respect toHB(Ac, B)

does not depend on the finiteness of B but only on the fact that B ∩ At(P) = ∅.
Thus, the same argument shows that ∀Y ∃Xϕ is true if and only if P (ϕ) and Q(ϕ)

are stable-equivalent with respect to HB(Ac, Bc). It follows that stablec,c(A, ·) is

ΠP
2 -hard.

Next, we show that the problem stablec,c(·, B) is ΠP
2 -hard, for every finite B ⊆ At .

We reason as in the proof of Theorem 17. That is, we construct a reduction from

the problem to decide whether a logic program has no stable models. Specifically,

let P be a logic program. We define A = At(P). Clearly, we have At(P) ∩ Ac = ∅.
We recall the argument used in Theorem 17 to show that P has stable models if

and only if P and Q = {f, ← f} are not stable-equivalent with respect toHB(A,B)

does not depend on the finiteness of A nor on B. Thus, it follows that P has stable

models if and only if P and Q = {f, ← f} are not stable-equivalent with respect to

HB(Ac, Bc) and the ΠP
2 -hardness of stablec,c(·, B) follows. �

We put the things together using Theorem 15 for the coNP-hardness and

Theorem 18 for the ΠP
2 -hardness. The matching upper bounds are from Theorem 14.

Corollary 9

The problem stablec,c(A,B) is coNP-complete. The problems stablec,c(·, B), stablec,c

(A, ·), and stablec,c(·, ·) are ΠP
2 -complete.

7 Discussion

We studied the complexity of deciding relativized hyperequivalence of programs

under the semantics of stable, supported, and supported minimal models. We focused

on problems semδ,ε(α, β), where at least one of δ and ε equals c, that is, at least one

810 M. Truszczyński and S. Woltran

Table 1. Complexity of semδ,ε(α, β); all entries are completeness results.

δ ε α β supp suppmin stable stable
n

d d coNP ΠP
2 ΠP

2 coNP

d c · coNP ΠP
2 ΠP

2 coNP

d c B coNP coNP ΠP
2 coNP

c c · or A
= ∅ · coNP ΠP
2 ΠP

2 coNP

c c ∅ · coNP coNP ΠP
2 coNP

c c · B coNP coNP ΠP
2 coNP

c c A B coNP coNP coNP coNP

c d · or A
= ∅ coNP ΠP
2 ΠP

2 coNP

c d ∅ coNP coNP ΠP
2 coNP

of the alphabets for the context problems is determined as the complement of the

corresponding set A or B. As we noted, such problems arise naturally in the context

of modular design of logic programs, yet they have received essentially no attention

so far.

Table 1 summarizes the results (for the sake of completeness we also include the

complexity of direct-direct problems). It shows that the problems concerning supp-

equivalence (no normality restriction), and stable-equivalence for normal programs

are all coNP-complete (cf. Corollaries 1 and 5, respectively). The situation is more

diversified for suppmin-equivalence and stable-equivalence (no normality restriction)

with some problems being coNP- and others ΠP
2 -complete. For suppmin-equivalence

lower complexity requires that B be a part of problem specification, or that A

be a part of problem specification and be set to ∅. The results for direct-direct

problems were known earlier (Truszczyński and Woltran 2008), the results for the

direct-complement problems are by Corollary 2, for the complement-complement

problems results are by Corollary 4, and for the complement-direct problems results

are by Corollary 3. For stable-equivalence, the lower complexity only holds for

the complement-complement problem with both A and B fixed as part of the

problem specification. The results for direct-direct (direct-complement, complement-

complement, complement-direct, respectively) problems are by Corollary 7 (8, 9,

6, respectively) in this paper. We also note that the complexity of problems for

stable-equivalence is always at least that for suppmin-equivalence.

Our research opens questions worthy of further investigations. First, we believe

that results presented here may turn out important for building “intelligent”

programming environments supporting development of logic programs. For instance,

a programmer might want to know the effect of changes she just made to a program

(perhaps already developed earlier) that represents a module of a larger project.

One way to formalize that effect is to define it as the maximal class of contexts of

the form HB(A′, B′) with respect to which the original and the revised versions of

the program are equivalent (say under the stable-model semantics). The sets A′ and

B′ appearing in the specification of such a class of contexts will be of the form Ac

Hyperequivalence for modular logic programming 811

and Bc, for some finite sets A and B. Finding the appropriate sets A and B would

provide useful information to the programmer. Our results on the complexity of the

complement-complement version of the hyperequivalence problem and their proofs

may yield insights into the complexity of finding such sets A and B, and suggest

algorithms.

Second, there are other versions of hyperequivalence that need to be investigated.

For instance, while stable-equivalence when only parts of models are compared

(projections on a prespecified set of atoms) was studied (Eiter et al. 2005; Oetsch

et al. 2007), no similar results are available for supp- and suppmin-equivalence.

Also the complexity of the corresponding complement-direct, direct-complement,

and complement-complement problems for the three semantics in that setting has

yet to be established.

Acknowledgments

This work was partially supported by the NSF grant IIS-0325063, the KSEF grant

KSEF-1036-RDE-008, and by the Austrian Science Fund (FWF) under grants

P18019 and P20704.

Appendix

We present here proofs of some technical results we needed in the paper. We first

prove Lemma 6. We start with two auxiliary results.

Lemma 17

Let P be a program and A,B ⊆ At . Let y ∈ X be such that y /∈ At(P) ∪ A. Then

(X,Y) ∈ ModB
Ac(P) if and only if (X \ {y}, Y \ {y}) ∈ ModB

Ac(P).

Proof

(⇒) Since Y ∈ ModAc(P), Y |= P and Y \ TP (Y) ⊆ Ac. We have y /∈ At(P).

Thus, Y \ {y} |= P and TP (Y) = TP (Y \ {y}). Since Y \ {y} ⊆ Y , (Y \ {y}) \
TP (Y \ {y}) ⊆ Ac. It follows that Y \ {y} ∈ ModAc(P). Thus, the condition (1)

for (X \ {y}, Y \ {y}) ∈ ModB
Ac(P) holds. The condition (2) for (X \ {y}, Y \ {y}) ∈

ModB
Ac(P) is evident.

Let Z ⊂ Y \ {y} be such that Z |Ac∪B = (Y \ {y})|Ac∪B . Let Z ′ = Z ∪{y}. We have

y ∈ X and so, y ∈ Y . Hence, Z ′ ⊂ Y . Since y /∈ A, y ∈ Ac. Thus, Z ′|Ac∪B = Y |Ac∪B .

It follows that Z ′
|= P and, consequently, Z
|= P (as y /∈ At(P)). Thus, the condition

(3) for (X \ {y}, Y \ {y}) ∈ ModB
Ac(P) holds.

Next, let Z ⊂ Y \ {y} be such that Z |B = (X \ {y})|B and Z |Ac ⊇ (X \ {y})|Ac . As

before, let Z ′ = Z ∪ {y}. Since y ∈ X and y ∈ Y (see above), Z ′ ⊂ Y , Z ′|B = X|B
and Z ′|Ac ⊇ X|Ac . Thus, Z ′
|= P . Since y /∈ At(P), Z
|= P and the condition (4) for

(X \ {y}, Y \ {y}) ∈ ModB
Ac(P) holds.

Finally, let (X \ {y})|B = (Y \ {y})|B . Clearly, it follows that X|B = Y |B . Thus,

Y \ TP (Y) ⊆ X. Since y /∈ At(P), TP (Y) = TP (Y \ {y}). It follows that (Y \ {y}) \
TP (Y \ {y}) ⊆ X \ {y}. Consequently, the condition (5) for (X \ {y}, Y \ {y}) ∈
ModB

Ac(P) is satisfied, as well.

812 M. Truszczyński and S. Woltran

(⇐) By the assumption, we have (X \ {y}, Y \ {y}) ∈ ModB
Ac(P). Thus, Y \ {y} ∈

ModAc(P) and, consequently, Y \ {y} is a model of P . Since y /∈ At(P), Y is a model

of P . We also have (Y \ {y}) \ TP (Y \ {y}) ⊆ Ac. Since y /∈ At(P), TP (Y \ {y}) =

TP (Y). Thus, as y ∈ Ac, Y \ TP (Y) ⊆ Ac. That is, the condition (1) for (X,Y) ∈
ModB

Ac(P) holds. The condition (2) follows from y ∈ Ac and X \ {y} ⊆ (Y \ {y})|Ac∪B .

Let Z ⊂ Y be such that Z |Ac∪B = Y |Ac∪B . It follows that y ∈ Z (we recall

that y ∈ X ⊆ Y and y ∈ Ac). Let Z ′ = Z \ {y}. We have Z ′ ⊂ Y \ {y} and

Z ′|Ac∪B = (Y \ {y})|Ac∪B . Thus, Z ′
|= P and, consequently, Z
|= P . It follows that

the condition (3) for (X,Y) ∈ ModB
Ac(P) holds.

Let Z ⊂ Y be such that Z |B = X|B and Z |Ac ⊇ X|Ac . Since y ∈ X and y ∈ Ac,

y ∈ Z . Let Z ′ = Z \ {y}. It follows that Z ′ ⊂ Y \ {y}, Z ′|B = (X \ {y})|B , and

Z ′|Ac ⊇ (X \ {y})|Ac . Hence, Z ′
|= P and so, Z
|= P . In other words, the condition

(4) for (X,Y) ∈ ModB
Ac(P), holds.

Finally, let X|B = Y |B . Clearly, (X \ {y})|B = (Y \ {y})|B and so, (Y \ {y}) \
TP (Y \ {y}) ⊆ X \ {y}. Since TP (Y \ {y}) = TP (Y), we obtain Y \ TP (Y) ⊆ X.

Thus, (5) for (X,Y) ∈ ModB
Ac(P), holds. �

Lemma 18

Let P be a program, A,B ⊆ At . If X|B ⊂ Y |B , y ∈ (Y \ X) \ (At(P) ∪ A), and

(Y \ {y})|B
= X|B , then (X,Y) ∈ ModB
Ac(P) if and only if (X,Y \ {y}) ∈ ModB

Ac(P).

Proof

(⇒) The arguments for the conditions (1), (2), and (3) for (X,Y \ {y}) ∈ ModB
Ac(P)

are essentially the same as in Lemma 17 (although the argument for the condition

(2) requires also the assumption that y /∈ X).

Next, let Z ⊂ Y \ {y} be such that Z |B = X|B and Z |Ac ⊇ X|Ac . Then Z ⊂ Y and

so, Z
|= P . Thus, the condition (4) for (X,Y \ {y}) ∈ ModB
Ac(P) holds.

Finally, (Y \ {y})|B
= X|B; the condition (5) for (X,Y \ {y}) ∈ ModB
Ac(P) is thus

trivially true.

(⇐) As above, the arguments for the conditions (1), (2), and (3) for (X,Y) ∈
ModB

Ac(P) are the same as in Lemma 17.

Let Z ⊂ Y be such that Z |B = X|B and Z |Ac ⊇ X|Ac . Since (Y \ {y})|B
= X|B ,

Z
= Y \ {y}. Thus, Z ⊂ Y \ {y} and so, Z
|= P . That is, the condition (4)

for (X,Y) ∈ ModB
Ac(P), holds. Finally, since X|B ⊂ Y |B , the condition (5) for

(X,Y) ∈ ModB
Ac(P), holds, as well. �

We are now ready to prove Lemma 6.

Lemma 6

Let P ,Q be programs and A,B ⊆ At .

(1) If (X,Y) ∈ ModB
Ac(P)\ModB

Ac(Q) then there is (X ′, Y ′) ∈ ModB
Ac(P)\ModB

Ac(Q)

such that Y ′ ⊆ At(P ∪ Q) ∪ A.

(2) If (X,Y) ∈ ModB
Ac(P) and TP (Y)|B
= TQ(Y)|B , then there is (X ′, Y ′) ∈

ModB
Ac(P) such that TP (Y ′)|B
= TQ(Y ′)|B and Y ′ ⊆ At(P ∪ Q) ∪ A.

Hyperequivalence for modular logic programming 813

Proof

(1) Let (X,Y) ∈ ModB
Ac(P)\ModB

Ac(Q) and let y ∈ X be such that y /∈ At(P ∪Q)∪A.

Then, by Lemma 17, (X \ {y}, Y \ {y}) ∈ ModB
Ac(P) \ModB

Ac(Q). By repeating this

process, we arrive at a pair (X ′′, Y ′′) ∈ ModB
Ac(P) \ ModB

Ac(Q) such that X ′′ ⊆
At(P ∪ Q) ∪ A.

If X ′′|B = Y ′′|B , then Y ′′ \TP (Y ′′) ⊆ X ′′. Thus, Y ′′ ⊆ TP (Y ′′)∪X ′′ ⊆ At(P ∪Q)∪A.

Thus, let us consider the other possibility that X ′′|B ⊂ Y ′′|B (indeed, as X ′′ ⊆
Y ′′|Ac∪B ⊆ Y ′′, there are no other possibilities). Let y ∈ (Y ′′ \X ′′)\ (At(P ∪Q)∪A) be

such that (Y ′′ \ {y})|B
= X ′′|B . By Lemma 18, (X ′′, Y ′′ \ {y}) ∈ ModB
Ac(P)\ModB

Ac(Q).

By repeating this process, we arrive at a pair (X ′, Y ′) ∈ ModB
Ac(P) \ModB

Ac(Q) such

that for every y ∈ (Y ′ \ X ′) \ (At(P ∪ Q) ∪ A), (Y ′ \ {y})|B = X ′|B . Since X ′ = X ′′,

X ′ ⊆ At(P ∪ Q) ∪ A.

We also note that for every y /∈ X ′, (Y ′ \ {y}) ⊇ X ′ (as Y ′ ⊇ X ′) and so,

(Y ′ \ {y})|Ac ⊇ X ′|Ac . We will now show that Y ′ ⊆ At(P ∪Q)∪A. To this end, let us

assume that there is y ∈ Y ′ such that y /∈ At(P ∪Q) ∪A. Since X ′ ⊆ At(P ∪Q) ∪A,

y /∈ X ′. Thus, y ∈ (Y ′ \X ′) \ (At(P ∪Q)∪A). It follows that (Y ′ \ {y})|B = X ′|B and

(Y ′ \ {y})|Ac ⊇ X ′|Ac . Since Y ′ \ {y} ⊂ Y ′ and (X ′, Y ′) ∈ ModB
Ac(P), Y ′ \ {y}
|= P .

On the other hand, Y ′ |= P and, since y /∈ At(P), Y ′ \ {y} |= P , a contradiction.

(2) It is easy to see that if we apply the construction described in (1) to (X,Y) we

obtain (X ′, Y ′) such that Y ′ ⊆ At(P ∪ Q) ∪ A and TP (Y ′)|B
= TQ(Y ′)|B . Indeed, in

every step of the construction, we eliminate an element y such that y /∈ At(P ∪ Q),

which has no effect on the values of TP and TQ. �

Lemma 7

Let P ,Q be programs and B ⊆ At . If ModB
At (P)
= ModB

At (Q), then there is Y ⊆
At(P ∪Q) such that Y is a model of exactly one of P and Q, or there is a ∈ Y such

that (Y \ {a}, Y) belongs to exactly one of ModB
At (P) and ModB

At (Q).

Proof

Let us assume that P and Q have the same models (otherwise, there is Y ⊆ At(P∪Q)

that is a model of exactly one of P and Q, and the assertion follows). Without loss

of generality we can assume that there is (X,Y) ∈ ModB
At (P) \ModB

At (Q). Moreover,

by Lemma 6, we can assume that Y ⊆ At(P ∪ Q) (recall At c = ∅). It follows that

(X,Y) satisfies the conditions (1)–(5) for (X,Y) ∈ ModB
At (P). Since P and Q have the

same models, (X,Y) satisfies the conditions (1)–(4) for (X,Y) ∈ ModB
At (Q). Hence,

(X,Y) violates the condition (5) for (X,Y) ∈ ModB
At (Q), that is, X|B = Y |B and

Y \ TQ(Y)
⊆ X hold. In particular, there is a ∈ (Y \ TQ(Y)) \X. We will show that

(Y \ {a}, Y) ∈ ModB
At (P) and (Y \ {a}, Y) /∈ ModB

At (Q).

Since (X,Y) ∈ ModB
At (P), Y is a model of P and so, Y ∈ ModAt (P). Next,

obviously, Y \{a} ⊆ Y . Thus, the conditions (1) and (2) for (Y \{a}, Y) ∈ ModB
At (P)

hold. The condition (3) is trivially true.

Further, let Z ⊂ Y be such that Z |B = (Y \ {a})|B and Z ⊇ Y \ {a}. Then

Z = Y \ {a}. We have Y |B = X|B , a ∈ Y , and a /∈ X. Thus, a /∈ B. It follows that

(Y \ {a})|B = X|B and X ⊆ Y \ {a}. Since Y \ {a} ⊂ Y and (X,Y) ∈ ModB
At (P),

814 M. Truszczyński and S. Woltran

Y \ {a}
|= P , that is, Z
|= P . Thus, the condition (4) for (Y \ {a}, Y) ∈ ModB
At (P)

holds.

Since a /∈ B, (Y \ {a})|B = Y |B . Thus, we also have to verify the condition (5). We

have Y \TP (Y) ⊆ X (we recall that Y |B = X|B) and so, a /∈ Y \TP (Y). Consequently,

Y \ TP (Y) ⊆ Y \ {a}. Hence, the condition (5) holds and (Y \ {a}, Y) ∈ ModB
At (P).

On the other hand, a ∈ Y \ TQ(Y) and a /∈ Y \ {a}. Thus, the condition (5) for

(Y \ {a}, Y) ∈ ModB
At (Q) does not hold and so, (Y \ {a}, Y) /∈ ModB

At (Q). �

Next, we present proofs of the technical results needed in Section 6: Lemmas 12

and 13. First, we establish some auxiliary results. We start with conditions providing

conditions restricting X and Y given that (X,Y) ∈ SEB
A(P).

Lemma 19

Let P be a program and A,B ⊆ At . If (X,Y) ∈ SEB
A(P) then X ⊆ Y ⊆ At(P) ∪ A.

Proof

Let (X,Y) ∈ SEB
A(P). The inclusion X ⊆ Y follows from the condition (2). To

prove Y ⊆ At(P) ∪ A, let us assume to the contrary that Y \ (At(P) ∪ A)
= ∅.
Let y ∈ Y \ (At(P) ∪ A). We have Y |= P and thus Y |= PY . Since y /∈ At(P),

y /∈ At(PY). Thus, Y \ {y} |= PY . Since y /∈ A, taking Z = Y \ {y} shows that

(X,Y) violates the condition (3) for (X,Y) ∈ SEB
A(P), a contradiction. �

The next two lemmas show that some atoms are immaterial for the membership

of a pair (X,Y) in SEB
A(P).

Lemma 20

Let P be a program, A,B,X, Y ⊆ At , y ∈ (X ∩ Y) \ At(P), and y ∈ A. Then

(X,Y) ∈ SEB
A(P) if and only if (X \ {y}, Y \ {y}) ∈ SEB

A(P).

Proof

We will show that each of the conditions (1)–(5) for (X,Y) ∈ SEB
A(P) is equivalent

to its counterpart for (X \ {y}, Y \ {y}) ∈ SEB
A(P).

The case of the condition (1) is clear. Since y /∈ At(P), Y |= P if and only

if Y \ {y} |= P . It is also evident that X = Y if and only if X \ {y} = Y \ {y},
X ⊆ Y |A∪B if and only if X \ {y} ⊆ (Y \ {y})|A∪B , and X|A ⊂ Y |A if and only if

(X \ {y})|A ⊂ (Y \ {y})|A. Thus, the corresponding conditions (2) are also equivalent.

Let us assume the condition (3) for (X,Y) ∈ SEB
A(P). Let Z ⊂ Y \ {y} be such

that Z |A = (Y \ {y})|A. Let Z ′ = Z ∪ {y}. Then Z ′ ⊂ Y and Z ′|A = Y |A (as y ∈ Y).

By the condition (3) for (X,Y) ∈ SEB
A(P), Z ′
|= PY . Since y /∈ At(P), Z
|= PY \{y},

and so, the condition (3) for (X \ {y}, Y \ {y}) ∈ SEB
A(P) follows. Conversely, let us

assume the condition (3) for (X \ {y}, Y \ {y}) ∈ SEB
A(P) and let Z ⊂ Y be such

that Z |A = Y |A. It follows that y ∈ Z . We set Z ′ = Z \ {y}. Clearly, Z ′ ⊂ Y \ {y}
and Z ′|A = (Y \ {y})|A. Thus, Z ′
|= PY \{y}. As y /∈ At(P), Z
|= PY and, so, the

condition (3) for (X,Y) ∈ SEB
A(P) follows.

Next, let us assume the condition (4) for (X,Y) ∈ SEB
A(P). Let Z ⊂ Y \ {y}

be such that Z |B ⊂ (X \ {y})|B and Z |A ⊇ (X \ {y})|A, or Z |B ⊆ (X \ {y})|B and

Z |A ⊃ (X \ {y})|A. Let Z ′ = Z ∪ {y}. We have Z ′ ⊂ Y . Moreover, it is evident that

Z ′|B ⊂ X|B and Z ′|A ⊇ X|A, or Z ′|B ⊆ X|B and Z ′|A ⊃ X|A. Thus, Z ′
|= PY and so,

Hyperequivalence for modular logic programming 815

Z
|= PY \{y}. Similarly, let the condition (4) for (X \ {y}, Y \ {y}) ∈ SEB
A(P) hold.

Let Z ⊂ Y be such that Z |B ⊂ X|B and Z |A ⊇ X|A, or Z |B ⊆ X|B and Z |A ⊃ X|A.

Since y ∈ X and y ∈ A, y ∈ Z . We define Z ′ = Z \ {y} and note that Z ′ ⊂ Y \ {y}.
Moreover, as y ∈ X and y ∈ Y , Z ′|B ⊂ (X \ {y})|B and Z ′|A ⊇ (X \ {y})|A, or

Z ′|B ⊆ (X \ {y})|B and Z ′|A ⊃ (X \ {y})|A. Thus, Z ′
|= PY \{y} and so, Z
|= PY .

Finally, a similar argument works also for the condition (5). Let the condition

(5) for (X,Y) ∈ SEB
A(P) hold. Thus, there is Z ⊆ Y such that X|A∪B = Z |A∪B and

Z |= PY . Let Z ′ = Z \ {y}. Since y ∈ X and y ∈ A, y ∈ Z . Thus, Z ′ ⊆ Y \ {y}
and (X \ {y})|A∪B = Z ′|A∪B . Moreover, since Z |= PY , Z ′ |= PY \{y}. Conversely, let

the condition (5) for (X \ {y}, Y \ {y}) ∈ SEB
A(P) hold. Then, there is Z ⊆ Y \ {y}

such that Z |A∪B = (X \ {y})|A∪B and Z |= PY \{y}. Let Z ′ = Z ∪ {y}. Then Z ′ ⊆ Y ,

Z ′|A∪B = X|A∪B and Z ′ |= PY . �

Lemma 21

Let P be a program, A,B,X, Y ⊆ At and y ∈ (Y \ (X ∪ At(P))) ∩ A. If |(Y \ (X ∪
At(P))) ∩ A| > 2, then (X,Y) ∈ SEB

A(P) if and only if (X,Y \ {y}) ∈ SEB
A(P).

Proof

Since |(Y \ (X ∪ At(P))) ∩ A| > 2, there are y′, y′′ ∈ (Y \ (X ∪ At(P))) ∩ A such that

y, y′, y′′ are all distinct. As before, we will show that each of the conditions (1)–(5)

for (X,Y) ∈ SEB
A(P) is equivalent to its counterpart for (X,Y \ {y}) ∈ SEB

A(P).

The case of the condition (1) is evident. By our assumptions, neither X = Y

nor X = Y \ {y}. Moreover, X ⊆ Y |A∪B if and only if X ⊆ (Y \ {y})|A∪B and

X|A ⊂ Y |A if and only if X|A ⊂ (Y \ {y})|A (since y, y′ ∈ Y and y, y′ ∈ A). Thus,

the corresponding versions of the condition (2) are also equivalent. The case of the

condition (3) can be argued in the same way as it was in Lemma 20.

Let us assume the condition (4) for (X,Y) ∈ SEB
A(P). Let Z ⊂ Y \ {y} be

such that Z |B ⊂ X|B and Z |A ⊇ X|A, or Z |B ⊆ X|B and Z |A ⊃ X|A. Clearly,

Z ⊂ Y . Consequently, by the condition (4) for (X,Y) ∈ SEB
A(P), Z
|= PY and so,

Z
|= PY \{y}. Thus the condition (4) for (X,Y \ {y}) ∈ SEB
A(P) holds.

Conversely, let the condition (4) for (X,Y \ {y}) ∈ SEB
A(P) hold. Let Z ⊂ Y be

such that Z |B ⊂ X|B and Z |A ⊇ X|A, or Z |B ⊆ X|B and Z |A ⊃ X|A. If Z ⊂ Y \ {y},
then Z
|= PY \{y} (as the condition (4) for (X,Y \ {y}) ∈ SEB

A(P) holds). Thus,

Z
|= PY . Otherwise, i.e. for Z = Y \ {y}, we have y′, y′′ ∈ Z . Let Z ′ = Z \ {y, y′}. It

follows that Z ′ ⊂ Y \ {y} and Z ′|A ⊃ X|A (the former, as y′ ∈ Y \ {y}\Z ′; the later,

as y′′ ∈ Z ′|A \X|A). Thus, Z ′ ⊂ Y \ {y}, Z ′|B ⊆ X|B and Z ′|A ⊃ X|A. Consequently,

Z ′
|= PY \{y} (again, as the condition (4) for (X,Y \ {y}) ∈ SEB
A(P) holds). Thus,

also in that case, Z
|= PY . It follows that the condition (4) for (X,Y) ∈ SEB
A(P)

holds.

Finally, for the condition (5) we reason as follows. Let the condition (5) for

(X,Y) ∈ SEB
A(P) hold. Thus, there is Z ⊆ Y such that X|A∪B = Z |A∪B and Z |= PY .

Clearly, y /∈ Z (as y /∈ X and y ∈ A). Thus, Z ⊆ Y \ {y} and so Z |= PY follows.

Conversely, let the condition (5) for (X,Y \ {y}) ∈ SEB
A(P) hold. Then, there is

Z ⊆ Y \ {y} such that Z |A∪B = X|A∪B and Z |= PY . Clearly, we also have Z ⊆ Y

and so, the condition (5) for (X,Y) ∈ SEB
A(P) follows. �

816 M. Truszczyński and S. Woltran

Finally, we note that the membership of a pair (X,Y), where X ⊆ At(P), in

SEB
Ac(P) does not depend on specific elements in Y \ At(P) but only on their

number.

Lemma 22

Let P be a program, A,B ⊆ At , X,Y ⊆ At(P), and Y ′, Y ′′ ⊆ A\At(P). If |Y ′| = |Y ′′|
then (X,Y ∪ Y ′) ∈ SEB

A(P) if and only if (X,Y ∪ Y ′′) ∈ SEB
A(P).

Proof

It is clear that the corresponding conditions (1)–(5) for (X,Y ∪ Y ′) ∈ SEB
A(P) and

(X,Y ∪ Y ′′) ∈ SEB
A(P), respectively are equivalent to each other. �

Lemmas 19–22 allow us to prove Lemma 12.

Lemma 12

Let P ,Q be programs and A,B ⊆ At. If (X,Y) ∈ SEB
A(P) \ SEB

A(Q), then there are

sets X ′, Y ′ ⊆ At(P ∪ Q), such that at least one of the following conditions holds:

(i) (X ′, Y ′) ∈ SEB
A(P) \ SEB

A(Q),

(ii) A \ At(P ∪ Q)
= ∅ and for every y, z ∈ A \ At(P ∪ Q), (X ′, Y ′ ∪ {y, z}) ∈
SEB

A(P) \ SEB
A(Q).

Proof

Since (X,Y) ∈ SEB
A(P), X ⊆ Y ⊆ At(P) ∪ A (cf. Lemma 19). Thus, X ⊆ Y ⊆

At(P ∪ Q) ∪ A.

By applying repeatedly Lemma 20 and then Lemma 21, we can construct sets

X ′ ⊆ At(P ∪ Q) and Y ′′ ⊆ A ∪ At(P ∪ Q) such that

(a) (X ′, Y ′′) ∈ SEB
A(P) \ SEB

A(Q), and

(b) |Y ′′ \ At(P ∪ Q)| � 2.

If Y ′′ ⊆ At(P ∪ Q), (i) follows (with Y ′ = Y ′′). Otherwise, (ii) follows (by

Lemma 22). �

Next we present a proof of Lemma 13

Lemma 13

Let P be a program and A,B ⊆ At. If At(P) ⊆ A and At(P) ∩ B = ∅, then (X,Y) ∈
SEB

A(P) if and only if there are X ′, Y ′ ⊆ At(P) and W ⊆ A \ At(P) such that one of

the following conditions holds:

(i) X = X ′ ∪W , Y = Y ′ ∪W , and (X ′, Y ′) ∈ SEB
A(P);

(ii) X = X ′∪W , (X ′, X ′) ∈ SEB
A(P) and Y = X ′∪W∪{y}, for some y ∈ A\At(P);

(iii) X = X ′ ∪ W , (X ′, X ′) ∈ SEB
A(P) and Y = X ′ ∪ W ∪ D, for some D ⊆

B ∩ (A \ At(P)) such that W ∩ D = ∅ and |D| � 2.

Proof

(⇐) If (i) holds, then (X,Y) ∈ SEB
A(P) follows from Lemma 20. Thus, let us assume

that (ii) or (iii) holds. Then X ′ |= P and so, X ′ ∪ {y} ∪ W |= P (respectively,

X ′ ∪W ∪ D |= P). Moreover, X ⊂ Y . Thus, since Y ⊆ A, the condition (2) for

(X,Y) ∈ SEB
A(P) holds. Next, it is evident that the condition (3) is vacuously true.

Hyperequivalence for modular logic programming 817

The condition (4) is also vacuously true. To see it, let us consider Z ⊂ Y such that

Z |B ⊂ X|B and Z |A ⊇ X|A, or Z |B ⊆ X|B and Z |A ⊃ X|A. Since X ⊆ Y ⊆ A, X ⊆ Z .

Thus, X|B ⊆ Z |B , and so Z |B ⊂ X|B is impossible. Consequently, Z |B ⊆ X|B and

Z |A ⊃ X|A. The latter implies X ⊂ Z . We also have Z ⊂ Y . Thus, |Y \ X| � 2,

contradicting (ii). It follows that (iii) holds. Consequently, X ′ ∪W ⊂ Z ⊂ X ′ ∪W ∪D.

Since Z |B ⊆ X|B , D = ∅, a contradiction.

Finally, let Z be a set verifying the condition (5) for (X ′, X ′) ∈ SEB
A(P) (which

holds under either (ii) or (iii)). Clearly, the set Z∪W demonstrates that the condition

(5) for (X,Y) ∈ SEB
A(P) holds.

(⇒) Let W = X ∩ (A \ At(P)). We define X ′ = X \W and Y ′ = Y \W . Clearly,

X ′ ⊆ At(P). Moreover, by Lemma 20, (X ′, Y ′) ∈ SEB
A(P). If Y ′ ⊆ At(P), then (i)

follows.

Thus, let us assume that Y ′ \At(P)
= ∅. Next, let us assume that X ′ ⊂ Y ′ ∩At(P)

and let Z = Y ′ ∩ At(P). Clearly, Z ⊂ Y ′, Z |B = ∅ and X|A = X ⊂ Z = Z |A.

By the condition (4) for (X ′, Y ′) ∈ SEB
A(P), Z
|= PY ′ . On the other hand, by the

condition (1) for (X ′, Y ′) ∈ SEB
A(P), Y ′ |= P . Consequently, Y ′ |= PY ′ . It follows

that Z |= PY ′ , a contradiction.

It follows that X ′ = Y ′ ∩ At(P). If there are y′, y′′ ∈ Y ′ \ At(P) such that y′
= y′′

and y′ /∈ B, then let us define Z = X ′ ∪ {y′}. It is easy to verify that Z contradicts

the condition (4). If |Y ′ \ At(P)| = 1, then (ii) follows (with the only element of

Y ′ \ At(P) as y). Otherwise, |Y ′ \ At(P)| � 2 and Y ′ \ At(P) ⊆ B. In this case, (iii)

follows (with D = Y ′ \ At(P)). �

References

Apt, K. 1990. Logic programming. In Handbook of Theoretical Computer Science, Volume B:

Formal Models and Semantics, J. van Leeuven, Ed. Elsevier, Amsterdam, 493–574.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge, UK.

Brass, S. and Dix, J. 1997. Characterizations of the disjunctive stable semantics by partial

evaluation. Journal of Logic Programming 32, 3, 207–228.

Cabalar, P., Odintsov, S., Pearce, D. and Valverde, A. 2006. Analysing and extending

well-founded and partial stable semantics using partial equilibrium logic. In Proc. of the

22nd International Conference (ICLP 2006), S. Etalle and M. Truszczyński, Eds. Lecture

Notes in Computer Science, Vol. 4079. Springer, Berlin, 346–360.

Clark, K. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,

Eds. Plenum Press, New York and London, 293–322.

de Jongh, D. and Hendriks, L. 2003. Characterizations of strongly equivalent logic programs

in intermediate logics. Theory and Practice of Logic Programming 3, 3, 259–270.

Eiter, T. and Fink, M. 2003. Uniform equivalence of logic programs under the stable model

semantics. In Proc. of the 19th International Conference on Logic Programming (ICLP

2003), C. Palamidessi, Ed. Lecture Notes in Computer Science, Vol. 2916. Springer, Berlin,

224–238.

Eiter, T., Fink, M. and Woltran, S. 2007. Semantical characterizations and complexity of

equivalences in answer set programming. ACM Transactions on Computational Logic 8, 3,

Paper 17.

818 M. Truszczyński and S. Woltran

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:

Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3–4, 289–323.

Eiter, T., Tompits, H. and Woltran, S. 2005. On solution correspondences in answer-set

programming. In Proc. of the 19th International Joint Conference on Artificial Intelligence

(IJCAI 2005), L. P. Kaelbling and A. Saffiotti, Eds. Professional Book Center, Denver,

97–102.

Erdogan, S. and Lifschitz, V. 2004. Definitions in answer set programming (extended

abstract). In Proc. of the 7th International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR 2004), V. Lifschitz and I. Niemelä, Eds. Lecture Notes

in Computer Science, Vol. 2916. Springer, Berlin, 483–484.

Gaifman, H. and Shapiro, E. 1989. Fully abstract compositional semantics for logic programs.

In Proc. of the 16th Annual ACM Symposium on Principles of Programming Languages

(POPL 1989). ACM, New York, 134–142.

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T. and Truszczyński, M.

2007. The first answer set programming system competition. In Proc. of the 9th International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007), C. Baral,

G. Brewka and J. Schlipf, Eds. Lecture Notes in Computer Science, Vol. 4483. Springer,

Berlin, 3–17.

Gelfond, M. 2002. Representing knowledge in A-Prolog. In Computational Logic: Logic

Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, A. Kakas and

F. Sadri, Eds. Lecture Notes in Computer Science, Vol. 2408. Springer, Berlin, 413–451.

Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation – The

A-prolog perspective. Artificial Intelligence 138, 1–2, 3–38.

Inoue, K. and Sakama, C. 1998. Negation as failure in the head. Journal of Logic

Programming 35, 39–78.

Inoue, K. and Sakama, C. 2004. Equivalence of logic programs under updates. In Proc. of the

9th European Conference on Logics in Artificial Intelligence (JELIA 2004), J. Alferes and

J. Leite, Eds. Lecture Notes in Computer Science, Vol. 3229. Springer, Berlin, New York,

174–186.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and

propositional theories. Journal of Applied Non-Classical Logics 16, 1–2, 35–86.

Janhunen, T., Oikarinen, E., Tompits, H. and Woltran, S. 2007. Modularity aspects of

disjunctive stable models. In Proc. of the 9th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2007), C. Baral, G. Brewka and J. Schlipf, Eds.

Lecture Notes in Artificial Intelligence, Vol. 4483. Springer, Berlin, 175–187.

Lifschitz, V., Pearce, D. and Valverde, A. 2001. Strongly equivalent logic programs. ACM

Transactions on Computational Logic 2, 4, 526–541.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proc. of the 11th

International Conference on Logic Programming (ICLP 1994), P. V. Hentenryck, Ed. MIT

Press, Cambridge, MA, 23–37.

Lin, F. 2002. Reducing strong equivalence of logic programs to entailment in classical

propositional logic. In Proc. of the 8th International Conference on Principles of Knowledge

Representation and Reasoning (KR 2002), D. Fensel, D. McGuinness and M.-A. Williams,

Eds. Morgan Kaufmann, San Francisco, 170–176.

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, K. Apt, W. Marek,

M. Truszczyński and D. Warren, Eds. Springer, Berlin, 375–398.

Niemelä, I. 1999. Logic programming with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–

273.

Hyperequivalence for modular logic programming 819

Oetsch, J., Tompits, H. and Woltran, S. 2007. Facts do not cease to exist because they are

ignored: Relativised uniform equivalence with answer-set projection. In Proc. of the 22nd

National Conference on Artificial Intelligence (AAAI 2007). AAAI Press, Menlo Park, CA,

458–464.

Oikarinen, E. and Janhunen, T. 2006. Modular equivalence for normal logic programs.

In Proc. of the 17th European Conference on Artificial Intelligence (ECAI 2006), Vol. 141,

G. Brewka, S. Coradeschi, A. Perini and P. Traverso, Eds. IOS Press, Amsterdam, 412–416.

Sagiv, Y. 1988. Optimizing datalog programs. In Foundations of Deductive Databases and

Logic Programming, J. Minker, Ed. Morgan Kaufmann, San Francisco, 659–698.

Truszczyński, M. and Woltran, S. 2008. Hyperequivalence of logic programs with respect

to supported models. Annals of Mathematics and Artificial Intelligence 53, 1–4, 331–365.

Turner, H. 2003. Strong equivalence made easy: Nested expressions and weight constraints.

Theory and Practice of Logic Programming 3, 4–5, 609–622.

Woltran, S. 2004. Characterizations for relativized notions of equivalence in answer set

programming. In Proc. of the 9th European Conference on Logics in Artificial Intelligence

(JELIA 2004), J. Alferes and J. Leite, Eds. Lecture Notes in Computer Science, Vol. 3229.

Springer, Berlin, 161–173.

Woltran, S. 2008. A common view on strong, uniform, and other notions of equivalence in

answer-set programming. Theory and Practice of Logic Programming 8, 2, 217–234.

