
Multicut Algorithms via Tree Decompositions?

Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Vienna University of Technology

Abstract. Various forms of multicut problems are of great importance
in the area of network design. In general, these problems are intractable.
However, several parameters have been identified which lead to fixed-
parameter tractability (FPT). Recently, Gottlob and Lee have proposed
the treewidth of the structure representing the graph and the set of pairs
of terminal vertices as one such parameter. In this work, we show how
this theoretical FPT result can be turned into efficient algorithms for
optimization, counting, and enumeration problems in this area.

1 Introduction

Multicut problems [1] are of great importance in the area of network design
– with applications to telecommunications, routing, VLSI design and trans-
portation. An instance of a multicut problem is given by an undirected graph
G = (V,E) and a set H of pairs of terminal vertices. A solution of the Edge
Multicut (EMC) problem is a set of edges whose removal disconnects each ter-
minal pair. In case of the Restricted (resp. Unrestricted) Vertex Multi-
cut problem, the solutions are sets of non-terminal vertices (resp. of arbitrary
vertices) whose removal disconnects each terminal pair. Each notion of solutions
naturally gives rise to an optimization problem (“find the cardinality of a mini-
mal solution”). Equipping, in addition, edges (resp. vertices) with some positive
integer naturally leads to weighted versions of this optimization problem (“find
the total weight of a minimal solution”). All these variants of multicut problems
are intractable (the corresponding decision problems whether a solution with
a given cardinality resp. total weight exists are NP-complete [2, 3]), even for
graphs of bounded treewidth [2, 4]. For planar graphs with outer terminals and
fixed cardinality |H|, EMC is solvable in polynomial-time [5].

An important approach in dealing with intractable problems is to search for
fixed-parameter tractability (FPT), see e.g. [6]. Thereby one tries to confine the
combinatorial explosion to certain problem parameters. More formally, we speak
of FPT w.r.t. a parameter k, if a problem is solvable in time f(k) · nO(1), where
n denotes the size of the input instance. The function f is usually exponential
but only depends on k. In case of multicut problems, various such parameters
have been studied like solution size [7, 8], cardinality |H| plus solution size [9,
10], |H| plus the treewidth of the graph G [11, 12], or the treewidth of the struc-
ture representing both G and H [13]. The result in [13] was proved by showing

? Supported by the Austrian Science Fund (FWF), project P20704-N18, and the Vi-
enna Science and Technology Fund (WWTF), project ICT08-028.

that the solutions to any of the above multicut problems can be described by
a monadic second-order (MSO) formula over the structure representing G and
H. The FPT follows by an extension of Courcelle’s Theorem [14] proved in [15]:
optimization problems expressible by an MSO formula over the input structures
are fixed-parameter tractable w.r.t. the treewidth of these structures. The proof
of this result in [15] is constructive – yielding algorithms whose running time
is non-elementary in terms of the number of quantifier alternations of the MSO
formula. For the MSO formula in [13], we would thus end up with time and space
requirements which are at least double exponential in the treewidth. The goal of
our paper is to construct more efficient algorithms in case of bounded treewidth
of the structure representing G and H. Our main results are as follows (Due to
space constraints, we omit proofs in this paper; full proofs are given in [16]):
• Optimization Problem. We present a new dynamic-programming based algo-
rithm for computing the optimal value of the Edge Multicut problem which
works by partitioning the vertices into disconnected parts. The resulting algo-
rithm runs in time O(22w∗ log w∗ · ‖(G,H)‖), where w∗ denotes the treewidth of
the input structure and ‖(G,H)‖ denotes its size. Therefore this algorithm is in
fixed-parameter linear time and single exponential in terms of the treewidth.
• Counting and Enumeration. We come up with a refinement of the optimiza-
tion algorithm in order to count the number of optimal solutions and also to
enumerate all optimal solutions. Determining the number of optimal solutions
is possible in time O(22((w∗)2+w∗ log w∗) · ‖(G,H)‖). Moreover, the enumeration
of all optimal solutions is feasible with a delay (i.e., the time needed to compute
the first respectively the next solution) that also fits into this bound.

2 Preliminaries

We briefly recall some basic definitions on treewidth and multicut problems.
Tree Decomposition and Treewidth. A tree decomposition of a graph G =
(V,E) is a pair (T, χ), where T is a tree and χ maps each node n of T (we use
n ∈ T as a shorthand below) to a bag χ(n) ⊆ V with the following properties:
(1) for each v ∈ V , there is an n ∈ T , s.t. v ∈ χ(n); (2) for each {v, w} ∈ E,
there is an n ∈ T , s.t. v, w ∈ χ(n); (3) for each n1, n2, n3 ∈ T , s.t. n2 lies on the
path from n1 to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds.

A rooted tree decomposition (T, χ) is called normalized (or nice) [17], if (1)
each n ∈ T has at most two children; (2) for each n ∈ T with two children n1, n2,
χ(n) = χ(n1) = χ(n2); and (3) for each n ∈ T with one child n′, χ(n) and χ(n′)
differ in exactly one element; in other words the symmetric set-difference of χ(n)
and χ(n′) is a singleton {v} with v ∈ V .

The width of a tree decomposition is defined as the cardinality of its largest
bag minus one. The treewidth of a graph G, denoted as tw(G), is the minimum
width over all tree decompositions of G. For arbitrary but fixed w ≥ 1, it is
feasible in linear time (with huge constants though) to decide if a graph has
treewidth ≤ w and, if so, to compute a tree decomposition of width w [18].
Moreover, there exist sophisticated heuristics to efficiently construct tree de-
compositions of small width [19, 20]. W.l.o.g., we may assume that every tree

2

a

b

c d

e

f

Gex : c, e, fn8

c, fn7

b, c, fn6

b, cn5

b, cn3

b, c, dn1

b, cn4

a, b, cn2

Tex :

Fig. 1. Example graph Gex and normalized tree decomposition Tex of Gex .

decomposition is normalized, since this normalization can be obtained in linear
time without increasing the width [17]. We thus distinguish between four types
of nodes: (vertex) introduction (I), (vertex) removal (R), branch (B), and leaf
(L) nodes. The first two types will usually be augmented with the vertex v which
is removed or added compared to the bag of the child node, i.e., (vR) and (vI).

Example 1. Figure 1 shows an example graph Gex together with a normalized
tree decomposition Tex of width 2. Note that the treewidth of Gex is indeed 2,
since only trees (or forests) have treewidth = 1. Examples for node types are n1

as (L) node, n3 as (dR) node, n5 as (B) node, and n6, as (fI) node.

Multicut Problems. Since we are dealing with undirected graphs G = (V,E),
we consider terminal pairs h ∈ H as sets h ⊆ V of cardinality two. In [13],
the treewidth w∗ of a structure representing both the graph G and the set H
of pairs of terminals was introduced as a parameter of the multicut problems.
Alternatively, w∗ can also be defined as w∗ = tw(G′) with G′ = (V,E ∪H).

In this paper, we focus on the edge multicut problem (EMC) without weights.
Given an instance (G,H) of the EMC problem with G = (V,E), we define
a cut for (G,H) as a set F ⊆ E of edges, such that for each {h1, h2} ∈ H,
h1 and h2 are disconnected in (V,E \ F). Cuts(G,H) will denote the set of
cuts for (G,H) and MinCuts(G,H) is the set of minimum cuts for (G,H), i.e.
MinCuts(G,H) = {F ∈ Cuts(G,H) : ∀F ′ ∈ Cuts(G,H) : |F | ≤ |F ′|}.

Example 2. Consider the instance (Gex , Hex) of the EMC problem, where Gex =
(V,E) is the graph in Figure 1 and Hex = {{a, b}, {c, d}}. As is easily verified,
the sets {{a, b}, {b, c}, {c, d}} and {{a, b}, {b, d}, {c, d}} are the minimum cuts for
(Gex , Hex). In this simple example, we have (V,E ∪Hex) = (V,E). Hence, the
treewidth w∗ of (Gex , Hex) is equal to the treewidth of Gex . We thus can use the
tree decomposition of Gex in Figure 1 also as a tree decomposition of (Gex , Hex).

For the remainder of the paper, we fix some notation: G = (V,E) and H
always refer to the currently considered instance (G,H) of a multicut problem
and we denote the size of a reasonable representation by ‖(G,H)‖. T = (T, χ)
denotes a normalized tree decomposition of (G,H) and nroot refers to the root
node of T . For any node n ∈ T , we denote by Tn the subtree of T rooted at n
and we use χ(Tn) :=

⋃
m∈Tn

χ(m). Hence, we always have V = χ(Tnroot
).

3

3 Dynamic programming for edge multicut

In this section, we give a dynamic programming algorithm for the EMC problem
to compute the number of edges a minimum cut requires. As well, we will sketch
at the end of the section, how this algorithm can be used to compute one solution
of a given EMC problem. However, we will also observe that the algorithm is
not powerful enough to count or enumerate (without repetitions) all solutions of
the given EMC problem. We will overcome this problem later in Section 4.

Our central objects in this section are so-called colorings (i.e., a special form
of partitions), which partition subsets of V into several sets (colors), such that
no terminal pair (h1, h2) ∈ H appears in the same color. The intended meaning
of a coloring is thus a separation of the vertices into components. Indeed, such
a separation induces a cut in a natural way. For our considerations in Section 4,
note that vertices of the same color are not necessarily connected in such a graph.

Definition 1. A coloring over a set W ⊆ V of vertices is a partition C =
{C1, . . . , Ck} of W , such that u, v ∈ Ci implies {u, v} /∈ H. Moreover, we
denote the set of all colorings over W by C(W). Finally, we define Γ(C) =
E ∩ {{u, v} : u ∈ Ci, v ∈ Cj , i 6= j} as the cut induced by C.

Proposition 1. Cuts(G,H) =
⋃
C∈C(V){F : Γ (C) ⊆ F ⊆ E}.

For our purposes, colorings related to the bags of the tree decomposition are
of particular interest. For a coloring C over χ(n), it is natural to extend C to a
coloring over χ(Tn). We will thus later be able to extend colorings over χ(nroot)
to colorings over V . The necessary concepts are introduced below.

Definition 2. Given sets W ⊆ W ′ ⊆ V , C ∈ C(W), and C′ ∈ C(W ′). We say
that C′ extends C, in symbols C ≤ C′, in case C = {C ′ ∩W : C ′ ∈ C′} \ {∅}.

Definition 3. Given a node n ∈ T , we call a coloring over χ(n) also a coloring
of n and we write C(n) instead of C(χ(n)). For C ∈ C(n), we define

extn(C) = {C′ ∈ C(χ(Tn)) : C ≤ C′}
σn(C) = min{|Γ (C′)| : C′ ∈ extn(C)}
En(C) = {Γ (C′) : C′ ∈ extn(C) s.t. |Γ (C′)| = σn(C)}.

Intuitively, extn(C) yields all colorings over χ(Tn) which extend the color-
ing C. Note that such an extension always exists: Indeed, for nodes {u, v} ∈ H
contained in χ(n) this is assured by definition of colorings. Moreover, for nodes
{u, v} ∈ H which appear below n, we just have to assign different colors to u and
v. Furthermore, σn(C) gives the cardinality of the smallest induced cut among
these extended colorings; and En(C) actually yields all these minimum cuts.

Example 3. The first three columns of the table in Figure 2 show the colorings
C = {C1, C2, . . .} for all nodes n of our example tree decomposition, together with
the value σn(C). Due to space limitations, we will reuse this table in Section 4.
Until then, the other columns can be ignored. Note that for the root node, n8,
coloring C = {c, e, f} with minimal value σn8(C) = 3 yields the minimum cuts
of our example. In fact, En8(C) = {{{a, b}, {b, c}, {c, d}}, {{a, b}, {b, d}, {c, d}}}.

4

The last observation in the above example leads us to the following lemma.

Lemma 1. Let Cmin be the set of all C ∈ C(nroot) such that no other coloring C′
of nroot satisfies σnroot (C′) < σnroot (C). Then, MinCuts(G,H) =

⋃
C∈Cmin

Enroot (C).

In other words, to compute the size of a minimum cut, it is sufficient to derive
the values σnroot

(C) of all colorings C ∈ C(nroot). However, we do not want to
compute σnroot (C) directly with the help of Definition 3, but establish σn(C) for
all nodes n ∈ T in a bottom-up fashion. We use the following concept.

Definition 4. For C ∈ C(n) with n ∈ T , define πn(C) recursively as follows:

– If n is an (L) node, πn(C) = |Γ(C)|;
– If n is a (vR) node with child n′, πn(C) = min{πn′(C′) : C′ ∈ C(n′), C ≤ C′};
– If n is a (vI) node with child n′, πn(C) = πn′(C′) + |{u : {u, v} ∈ Γ(C)}|,

where C′ ∈ C(n′) is the unique coloring with C′ ≤ C;
– If n is a (B) node with children n′, n′′, πn(C) = πn′(C) + πn′′(C)− |Γ(C)|.

Lemma 2. For any node n ∈ T and any C ∈ C(n), σn(C) = πn(C).

This lemma (together with Definition 4) naturally yields an algorithm to
determine the size of an optimal solution by computing πn(C) for all colorings C
of all nodes n in the tree decomposition. We start by determining πn(C) for all
colorings C of leaf nodes n. For all remaining nodes n ∈ T , the values πn(C) of all
colorings C are computed in a bottom-up fashion along the tree decomposition.
Finally, we obtain the cardinality of the minimum cuts as the minimal value
πnroot

(C) among the colorings C at the root node nroot .

Example 4. We illustrate some aspects of this algorithm on our example problem
using Figure 2. Consider, for instance, coloring C = {{b}, {c}} for node n3. We
have two colorings for n1 (the child node of n3) which extend C, namely, C′ =
{{b, d}, {c}} and C′′ = {{b}, {c}, {d}}. We know σn1(C′) = πn1(C′) = |Γ(C′)| = 2,
σn1(C′′) = πn1(C′′) = |Γ(C′′)| = 3, and thus we select the smaller number and
assign πn3(C) = 2. For the branch node n5, consider coloring C = {{b}, {c}}. In
a bottom-up traversal, we already know πn3(C) = πn4(C) = 2, and we clearly
have |Γ(C)| = 1. Thus, πn5(C) = 2 + 2− 1 = 3, which equals σn5(C) as expected.

Theorem 1. Given an instance (G,H) of EMC and a tree decomposition of
(G,H) of width w∗, the cardinality |F | of the solutions F ∈ MinCuts(G,H) can
be computed in time O(22w∗ log w∗ · ‖(G,H)‖), assuming unit cost for arithmetic
operations.

The algorithm presented above allows us to compute a minimum cut F in
a simple postprocessing step. This can be done by a recursive procedure which
proceeds by a top-down traversal of the tree decomposition. This procedure takes
as input a node n and a coloring C at n and returns a set of edges (which are part
of the cut F). Initially, we choose an arbitrary coloring C with minimal value
σnroot

(C) among the colorings for nroot . The recursion starts with the root node
nroot and this coloring C. This initial call to the recursion returns a minimum
cut. Depending on the type of each node n, the following action is performed.

5

C1 C2 C3 σ ∆1 : σ : # ∆2 : σ : #
n1 {b, c} {d} 2 {{C1, C2}} : 2 : 1

{b, d} {c} 2 {{C1, C2}} : 2 : 1
{b} {c} {d} 3 {{C2, C3}} : 3 : 1

n2 {a} {b, c} 1 {{C1, C2}} : 1 : 1
{a, c} {b} 2
{a} {b} {c} 2 {{C1, C2}} : 2 : 1

n3 {b, c} 2 ∅ : 2 : 1
{b} {c} 2 {{C1, C2}} : 2 : 1 ∅ : 3 : 1

n4 {b, c} 1 ∅ : 1 : 1
{b} {c} 2 ∅ : 2 : 1

n5 {b, c} 3 ∅ : 3 : 1
{b} {c} 3 {{C1, C2}} : 3 : 1 ∅ : 4 : 1

n6 {b, c, f} 3
{b} {c, f} 3
{b, c} {f} 3 ∅ : 3 : 1
{b, f} {c} 3
{b} {c} {f} 3 {{C1, C2}} : 3 : 1 ∅ : 4 : 1

n7 {c, f} 3
{c} {f} 3 ∅ : 3 : 2

n8 {c, e, f} 3 ∅ : 3 : 2
{c} {e, f} 4 ∅ : 4 : 2
{c, e} {f} 4 ∅ : 4 : 2
{c, f} {e} 5
{c} {e} {f} 5 ∅ : 5 : 2

Fig. 2. Colorings of the tree decomposition of Example 2.

(a) in case n is a (vI)-node, there is a unique coloring C′ for the child node n′

of n, such that C′ ≤ C. We continue the recursion with n′ and C′. Let the
return value for (n′, C′) be Γ ′. Then, the return value for (n, C) is Γ ′ ∪Γ (C);

(b) in case n is a (vR)-node with child node n′, we choose a coloring C′ for n′

with C ≤ C′, such that πn′(C′) = πn(C). We continue the recursion with n′

and C′ and the return value for (n′, C′) is also the return value for (n, C);
(c) in case n is a (B)-node with children n′ and n′′, we continue the recursion

for both children with n′ and C, resp. with n′′ and C. The return value for
(n, C) is the union of the return values of these two calls.

(d) for a leaf node n, we just return Γ(C).

Example 5. For our example problem, we thus have to start with the coloring
C = {{c, e, f}} of n8. C extends coloring {{c, f}} of n7, which is an (R)-node.
We have to choose a coloring of n6 which extends {{c, f}}. Two such colorings
exist, {{b, c, f}} and {{b}, {c, f}}, and both have the same π-value as {{c, f}}.
Let us select C′ = {{b}, {c, f}}, We then have to proceed with C′′ = {{b}, {c}}
at n5, which is a (B)-node. At the (B) node, we proceed as follows:

We first continue with C′′ in n3 which is a (dR)-node. There are two colorings
of n1 which extend C′′, namely {{b, d}, {c}} and {{b}, {c}, {d}}. However, only
the former has the same π-value as C′′ and is thus selected. Since we are now at
a leaf node, we return the induced cut Γ1 = {{b, c}, {c, d}} of {{b, d}, {c}}.

6

Now we go into the second recursion with C′′ in n4 which is an (aR)-node.
There are two colorings for the child n2 which extend C′′, namely {{a, c}, {b}}
and {{a}, {b}, {c}}. Both have the same π-value, so we can use either of them.
Let us select {{a, c}, {b}}; we return its induced cut Γ2 = {{a, b}, {b, c}}.

Back at the branch node, we have to combine the return values and obtain
Γ = Γ1 ∪ Γ2 = {{a, b}, {b, c}, {c, d}} which is the return value at n6. For the
return value here, we observe Γ ∪ Γ (C′) = Γ and thus return Γ which is passed
on unchanged by (R)-node n7. We compute the final return value at n8 as
Γ ∪ Γ (C) = Γ ∪ ∅ = Γ . Indeed, Γ is a minimum cut of our problem.

As this example shows, our postprocessing step would have yielded the same
solution, if we had selected {{a}, {b}, {c}} instead of {{a, c}, {b}} at node n2.
This is due to the fact that our data model does not guarantee that two distinct
colorings C, C′ of some node n, satisfy En(C) ∩ En(C′) = ∅. This, in particular,
causes problems for giving a general enumeration algorithm (it would yield dupli-
cate results) and is also a serious obstacle for counting the number of solutions.

4 Counting and enumeration

In the previous section, the key objects to maintain during the bottom-up traver-
sal of the tree decompositions were the colorings C ∈ C(n) for each node n ∈ T .
As we have seen, it is possible that two distinct colorings C1, C2 ∈ C(n) share
some solutions, i.e. En(C1) ∩ En(C2) = ∅ does not necessarily hold. The reason
is, that we guarantee for two distinct colors Ci, Cj ∈ C, only that the cut dis-
connects all vertices v ∈ Ci from the vertices w ∈ Cj . No statement was made
about the connectedness of vertices contained in the same partition Ci. We now
modify our approach so as to guarantee this connectedness.

Definition 5. A parsimonious coloring (pcoloring, for short) over a set W ⊆ V
of vertices is a tuple (C, ∆), where C ∈ C(W) and ∆ is a set of unordered pairs
{Ci, Cj} of distinct colors Ci, Cj ∈ C, such that for each {u, v} ∈ H it holds
that {Ci, Cj} ∈ ∆, whenever u ∈ Ci and v ∈ Cj. ∆ is called the disconnection
relation of the pcoloring P = (C, ∆). We shall use Pc to identify the coloring C
and Pd to identify the disconnection relation ∆. Moreover, we denote by P(W)
the set of all pcolorings over W and write P(n) as a shorthand for P(χ(n)).

Given P ∈ P(n), Pc is simply a coloring of n. Ultimately, we are only in-
terested in colorings Pc, s.t. (in some extension of Pc) the vertices in each color
are indeed connected in the subgraph of G induced by the vertices χ(Tn). In
contrast to the previous section, we now allow that two different colors Ci, Cj

get melted to a single color during the bottom-up traversal of T ; this happens,
e.g., at a (vI)-node if v has edges to some vertices vi ∈ Ci and vj ∈ Cj and
if none of these edges is added to the cut. However, if for some terminal pair
{h1, h2} ∈ H, we have h1 ∈ Ci and h2 ∈ Cj , then these colors Ci, Cj must never
get melted as the bottom-up traversal continues. The very purpose of the second
component Pd of P is to keep track of such pairs which must not get melted.
Clearly, for each coloring C, there exists a relation ∆, s.t. (C, ∆) is a pcoloring.
Below, we overload the concepts from Definitions 2 and 3 for pcolorings.

7

Definition 6. Let W ⊆ W ′ ⊆ V , P ∈ P(W) and P ′ ∈ P(W ′). Then, P ≤ P ′,
if Pc ≤ P ′c and Pd = {{Ci ∩W,Cj ∩W} : {Ci, Cj} ∈ P ′d} \ {{∅, ·}, {·, ∅}}.

For a node n ∈ T , let us denote by Gn the subgraph induced by the vertices
χ(Tn), i.e. Gn = (χ(Tn), En) where En = E ∩ {{v, u} : v, u ∈ χ(Tn)}. Moreover,
for a graph Gn, let κ(Gn) denote the set of connected components of Gn, and,
for a set of edges F , let Gn \ F = (χ(Tn), En \ F) as expected.

Definition 7. Let ∆(C) = {{Ci, Cj} ⊆ C : {u, v} ∈ H,u ∈ Ci, v ∈ Cj} for
coloring C. Given a node n ∈ T and P ∈ P(n), we define

extn(P) = {P ′ ∈ P(χ(Tn)) : P ≤ P ′, κ(Gn \ Γ(P ′c)) = P ′c,P ′d = ∆(P ′c)}.

P is called valid (in n) if extn(P) 6= ∅.
The remaining two concepts are now only defined for valid pcolorings.

σn(P) = min{|Γ (P ′c)| : P ′ ∈ extn(P)}
En(P) = {Γ (P ′c) : P ′ ∈ extn(P) s.t. |Γ (P ′c)| = σn(P)}.

The modified definition of extensions guarantees that the vertices in each
color are indeed connected in the subgraph of G induced by the vertices χ(Tn)
and that this connectedness is still fulfilled after removing the edges contained
in the cut. This property is ensured by the condition κ(Gn \ Γ(P ′c)) = P ′c in
the definition of extn(P). The condition P ′d = ∆(P ′c) ensures that P ′d contains
only disconnection pairs that are justified by some terminal pair in H. As a
consequence, P ′d is uniquely determined by P ′c, which will be crucial for Lemma 4
below. Of course, extn(P) may be empty. For instance, consider the coloring
C = {{a, c}, {b}} at node n2 of our running example. Since b is in a different
color than a and c, both edges (a, b) and (b, c) are contained in the induced cut
Γ (C). But then {a, c} is disconnected in the corresponding subgraph Gn2 \Γ (C).
Hence, there exists no ∆ to turn (C, ∆) into a valid pcoloring. Actually, all rows
in Figure 2 where the last two columns are empty contain colorings that cannot
be part of a valid pcoloring. Analogously to Lemma 1, particular pcolorings for
nroot characterize the minimum cuts of a given problem instance.

Lemma 3. Let Pmin be the set of all valid pcolorings P of nroot , for which there
exists no other valid pcoloring P ′ of nroot , such that σnroot (P ′) < σnroot (P). Then,
MinCuts(G,H) =

⋃
P∈Pmin

Enroot
(P).

Lemma 4. Given a node n ∈ T and distinct valid pcolorings P1 and P2 of n,
it holds that En(P1) ∩ En(P2) = ∅.

Next, we define two operations on pcolorings which we need for the bottom-
up traversal of T . The melting operation is denoted as PS . It takes a pcoloring
P and some set S of vertices and melts all colors containing at least one vertex
from S to a single color. This operation will be needed at (vI)-nodes where all
colors containing some vertex vi adjacent to v get melted into a single color
(unless we add the edge connecting v and vi to the cut). The second operation is
the composition of two pcolorings P,P ′, denoted as P ∪P ′. Intuitively, the first
component of P∪P ′ is obtained as the connected components of a graph of which

8

we know that all vertices jointly occurring in some color of P or P ′ are connected.
The composition operation will be needed at (B)-nodes. For both operations, the
disconnection relation has to be adapted correspondingly. We first introduce the
following notation for a pcoloring P ∈ P(W) and a set S ⊆W ⊆ V :

P|S = {C ∈ Pc : C ∩ S 6= ∅} and [P, S] =
⋃

C∈P|S C.

Moreover, for a vertex u we write [P, u] instead of [P, {u}] which simply denotes
the color C ∈ Pc with u ∈ C.

Definition 8. Let W ⊆ V , P ∈ P(W) and S ⊆ W . Then PS = (C, ∆) where
C = {[P, S]} ∪ (Pc \ P|S) and

∆ =
{
{[P, S], C ′} : C ′ ∈ Pc \ P|S , C ∈ P|S , {C,C ′} ∈ Pd

}
∪{

{C,C ′} : C,C ′ ∈ C, {C,C ′} ∈ Pd

}
.

Definition 9. Let W ⊆ V , P,P ′ ∈ P(W), and for each w ∈ W , let Cw be the
smallest set such that w ∈ Cw and, for each u ∈ Cw, [P, u] ∪ [P ′, u] ⊆ Cw. We
define P ∪ P ′ = (C, ∆) where C = {Cw : w ∈W} and

∆ = {{C1, C2} : C1, C2 ∈ C, C1 6= C2, C
′
1 ⊆ C1, C

′
2 ⊆ C2, {C ′1, C ′2} ∈ Pd ∪ P ′d}.

For S = ∅, or a singleton S, we get PS = P as expected. Note that PS is
possibly not a pcoloring. This is the case if h ⊆ [P, S] for some terminal pair
h ∈ H. Moreover, for a valid pcoloring P, the pcoloring PS may be invalid , if
(C1 ∪ C2) ⊆ [P, S] for some pair {C1, C2} ∈ Pd. Likewise, P ∪ P ′ may be not
a pcoloring. This is the case if a pair {h1, h2} of terminal vertices ends up in a
joint color. Just consider the simple situation that Pc contains a color {h1, v}
and P ′c contains a color {h2, v} for some vertex v. It may also happen that two
valid pcolorings P and P ′ lead to an invalid pcoloring P ∪P ′ if P ∪P ′ contains
a color C, s.t. C1 ∪ C2 ⊆ C for some pair {C1, C2} in Pd or P ′d.

Next, we define relations between pcolorings over adjacent nodes in the tree
decomposition. These relations will be used to traverse the tree decomposition.

Definition 10. Let n ∈ T , P ∈ P(n), P ′ ∈ P(n′), and P ′′ ∈ P(n′′). Then, the
following pairs are contained in relation ≺n.

1. P ′ ≺n P, if n is a (vI)-node with child n′, and there exists a set S ⊆ χ(n′)∩
{u : {v, u} ∈ E}, such that (P ′)S ≤ P, [P ′, S] ∪ {v} = [P, v], and for each
{C ′, D′} ∈ (P ′)d, there is a {C,D} ∈ Pd with C ′ ⊆ C and D′ ⊆ D.

2. P ′ ≺n P, if n is an (R)-node with child n′, and P ≤ P ′.
3. (P ′,P ′′) ≺n P, if n has two children n′, n′′, P = P ′ ∪ P ′′, and for each
{C ′, D′} ∈ (P ′)d ∪ (P ′′)d, there is a {C,D} ∈ Pd with C ′ ⊆ C and D′ ⊆ D.

As already mentioned above, some colorings at a child node may get melted
at (I)-nodes or (B)-nodes. For a (vI)-node, S in the above definition denotes an
arbitrarily chosen subset of all vertices adjacent to v, s.t. all colors containing
a vertex in S are then melted into a single color Ci on the transition from P ′
to P. The neighbors of v not selected in S may end up in a different color Cj .
Implicitly, the edges connecting v with these neighbors are thus added to the

9

cut. For (B)-nodes, the condition P = P ′ ∪P ′′ forces P ′ ∪P ′′ to be a pcoloring.
Moreover, the existence of {C ′, D′} ∈ Pd with C ⊆ C ′ and D ⊆ D′ makes sure
that no “disconnected pair” in either P ′d or P ′′d gets melted into a single color.

Lemma 5. If P ′ ∈ P(n′) is valid in n′ (and P ′′ ∈ P(n′′) is valid in n′′), then
each P ∈ P(n) with P ′ ≺n P (resp. (P ′,P ′′) ≺n P) is valid in n. If P ∈ P(n) is
valid in n, then there exists P ′ ∈ P(n′) (and P ′′ ∈ P(n′′)) with P ′ ≺n P (resp.
(P ′,P ′′) ≺n P), s.t. P ′ is valid in n′ (and P ′′ is valid in n′′).

Similarly to Section 3, we can compute σn(P) for valid pcolorings P by a
bottom-up traversal of T . The cases of (vI) and (B) nodes are slightly more
complicated, since different pcolorings might collapse into the same pcoloring.

Definition 11. For a valid pcoloring P ∈ P(n) and n ∈ T (possibly with chil-
dren n′,n′′), we define πn(P) recursively, depending on the node type of n.

– (L)-node: πn(P) = |Γ(Pc)|;
– (vR)-node: πn(P) = min{πn′(P ′) : P ′ ≺n P};
– (vI)-node: πn(P) = min{πn′(P ′) : P ′ ≺n P}+ |{u : {u, v} ∈ Γ(Pc)|;
– (B)-node: πn(P) = min{πn′(P ′) + πn′′(P ′′) : (P ′,P ′′) ≺n P} − |Γ(Pc)|.

Lemma 6. For any node n ∈ T and any valid pcoloring P of n, σn(P) = πn(P).

We are now ready to construct an algorithm to count the solutions of an
EMC instance. One further notation is required: We restrict the relation ≺n on
pcolorings to a relation ≺min

n , s.t. P ′ ≺min
n P (resp. (P ′,P ′′) ≺min

n P) only holds if
πn(P) is determined by πn′(P ′) (resp. by πn′(P ′) and πn′′(P ′′)) in Definition 11.
I.e., P ′ ≺min

n P holds iff P ′ ≺n P and either πn(P) = min{πn′(P ′) : P ′ ≺n P}
(for (R)-nodes) or πn(P) = min{πn′(P ′) : P ′ ≺n P} + |{u : {u, v} ∈ Γ(Pc)| (for
(I)-nodes) holds. Likewise, (P ′,P ′′) ≺min

n P holds iff (P ′,P ′′) ≺n P and πn(P) =
min{πn′(P ′) + πn′′(P ′′) : (P ′,P ′′) ≺n P} − |Γ(Pc)|.

Definition 12. For P ∈ P(n) and n ∈ T (possibly with children n′,n′′), let

#n(P) =

1 n is (L)-node∑
P′≺min

n P #n′(P ′) n is (I)- or (R)-node∑
(P′,P′′)≺min

n P #n′(P ′) ·#n′′(P ′′) n is (B)-node

Lemma 7. For each n ∈ T and each valid pcoloring P of n, |En(P)| = #n(P).

By combining Lemmas 3, 4, and 7, we immediately get the following theorem.

Theorem 2. Let Pmin be the set of all valid pcolorings P of nroot , for which
there exists no other pcoloring P ′ of nroot , such that σnroot

(P ′) < σnroot
(P). Then,

|MinCuts(G,H)| =
∑
P∈Pmin

#nroot
(P).

Example 6. We revisit the instance of the EMC problem from Example 2. In
Figure 2, the result of computing σn(P) and #n(P) for all valid pcolorings
P at all nodes n is shown. Only the rows with an entry in one of the last
two columns correspond to a valid pcoloring P. In this case, the sets in the

10

second column (with heading C1, C2, C3) define the coloring Pc and the column
labeled ∆1 : σ : # contains the set of “disconnected pairs” Pd together with
the size of the corresponding cuts in En(P) and the number #n(P) of such
cuts. Some colorings Pc admit two possible sets of “disconnected pairs” in order
to form a valid pcoloring. In these cases, the last column contains the second
possibility – again together with the corresponding size of the cuts and the
counter #n(P). The minimum cuts correspond to the valid pcolorings at the
root node n8 with minimal value of σn8(P). In our example, the only such
pcoloring is P = ({{c, e, f}}, ∅). Thereby the cuts corresponding to P consist of
three edges and there are, in total, two minimum cuts (see Example 2).

We conclude this section by outlining an algorithm for enumerating all solu-
tions with fixed-parameter linear delay by extending the computation of a single
solution in the previous section. The basic idea is to traverse the tree decom-
position in top-down direction several times – namely once for each solution. In
the recursive algorithm described in Section 3, we made arbitrary choices at the
root node (for selecting one coloring with optimal value σnroot

(C)) and at internal
nodes (e.g., at an (R)-node n, for selecting some coloring C′ at the child node n′

with C ≤ C′). For enumerating all solutions, we have to maintain lists to keep
track of all possible choices at each node in the tree decomposition. These lists
allow us to iterate through all possible choices. Hence, at the root, we iterate
through all valid pcolorings P of nroot with minimal value σnroot (P). Likewise,
for a valid pcoloring P at some (R)- or (I)-node n, we eventually have to process
all pcolorings P ′ at the child node n′ of n, s.t. P ′ ≺min

n P. Finally, also for a
valid pcoloring P at some (B)-node n, we eventually have to process all pairs
(P ′,P ′′) of pcolorings at the child nodes n′ and n′′ of n, s.t. (P ′,P ′′) ≺min

n P.
Only at (L)-nodes, no iterating of several possible pcolorings is required. In [16],
we state the full algorithm, which crucially depends on Lemma 4, guaranteeing
that no duplicates are produced. Note that this algorithm could also be used for
the optimization problem, but this would result in a loss of efficiency.

Theorem 3. Given an instance (G,H) of the EMC problem together with a
tree decomposition T of (G,H) having width w∗. Assuming unit cost for arith-
metic operations, O(22((w∗)2+w∗ log w∗) · ‖(G,H)‖) bounds the time to compute
|MinCuts(G,H)| as well as the delay to enumerate MinCuts(G,H).

5 Conclusion

We have presented novel algorithms for the optimization and counting problem
of Edge Multicut. Moreover, we have outlined how the counting algorithm
can be extended to an enumeration algorithm. It is now straightforward to adapt
these algorithms to the (Restricted or Unrestricted) Vertex Multicut
problem. Indeed, for the optimization problem, we can proceed as in Section 3.
The main modification required is to allow colorings where some vertices possi-
bly do not get a color assigned. The intended meaning is that colorless vertices
are exactly those which are part of the cut. The pcolorings introduced in Sec-
tion 4 for the counting and enumeration problem have to be adapted analogously.

11

The details of these algorithms are left for future work. Further extending these
algorithms to the weighted multicut problems is even simpler: Rather than main-
taining the cardinality πn as in Definitions 4 and 11, we would now have to keep
track of the total weight of a (p)coloring.

Note that the upper bounds on the constants of our algorithms (in Theo-
rems 1 and 3) are obtained by very coarse estimates – assuming straightforward
methods for storing and manipulating partitions, etc. For future work, we plan
to implement our multicut algorithms – using more sophisticated data structures
and algorithms – which should also improve the upper bounds.

References

1. Costa, M.C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer
multiflow: A survey. European Journal of Operational Research 162 (2005) 55–69

2. Călinescu, G., Fernandes, C.G., Reed, B.A.: Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width. J. Alg. 48 (2003) 333–359

3. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23 (1994) 864–894

4. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18 (1997) 3–20

5. Bentz, C.: A simple algorithm for multicuts in planar graphs with outer terminals.
Discrete Applied Mathematics 157 (2009) 1959–1964

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
7. Bousquet, N., Daligault, J., Thomassé, S., Yeo, A.: A polynomial kernel for mul-

ticut in trees. In: Proc. STACS’09. Volume 3 of LIPIcs. (2009) 183–194
8. Marx, D., Razgon, I.: Constant ratio fixed-parameter approximation of the edge

multicut problem. In: Proc. ESA’09. Vol. 5757 of LNCS., Springer (2009) 647–658
9. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351

(2006) 394–406
10. Xiao, M.: Simple and improved parameterized algorithms for multiterminal cuts

(to appear). Theory Comput. Syst. (2010)
11. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and

exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research 186 (2008) 542–553

12. Bentz, C.: On the complexity of the multicut problem in bounded tree-width
graphs and digraphs. Discrete Applied Mathematics 156 (2008) 1908–1917

13. Gottlob, G., Lee, S.T.: A logical approach to multicut problems. Inf. Process.
Lett. 103 (2007) 136–141

14. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of
Theor. Comp. Sci., Volume B. Elsevier Science Publishers (1990) 193–242

15. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12 (1991) 308–340

16. Pichler, R., Rümmele, S., Woltran, S.: Multicut algorithms via tree decompositions.
Technical Report DBAI-TR-2010-67, Technische Universität Wien (2010)

17. Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
18. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25 (1996) 1305–1317
19. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for

weighted treewidth. Algorithmica 47 (2007) 139–158
20. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of

bounded treewidth. Comput. J. 51 (2008) 255–269

12

