
Counting and Enumeration Problems
with Bounded Treewidth?

Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Vienna University of Technology, Vienna, Austria
{pichler, ruemmele, woltran}@dbai.tuwien.ac.at

Abstract. By Courcelle’s Theorem we know that any property of finite structures
definable in monadic second-order logic (MSO) becomes tractable over structures
with bounded treewidth. This result was extended to counting problems by Arn-
borg et al. and to enumeration problems by Flum et al. Despite the undisputed
importance of these results for proving fixed-parameter tractability, they do not
directly yield implementable algorithms. Recently, Gottlob et al. presented a new
approach using monadic datalog to close the gap between theoretical tractability
and practical computability for MSO-definable decision problems. In the current
work we show how counting and enumeration problems can be tackled by an
appropriate extension of the datalog approach.

1 Introduction

The most common problem type studied in algorithms and complexity theory is the
class of decision problems, which usually ask whether a solution to a given problem
instance exists, e.g., whether a given graph has a valid 3-coloring. On the other hand,
counting problems ask how many solutions an instance possesses, e.g., how many dif-
ferent 3-colorings are possible in the given graph. Finally, enumeration problems re-
quire as an answer the output of all possible solutions, e.g., all possible 3-colorings
of the graph. Unfortunately, many interesting decision problems are computationally
intractable. Clearly, the corresponding counting and enumeration problems then are
intractable as well. A promising approach for dealing with intractability comes from
the area of parameterized complexity theory (see [9, 12] for an overview). Thereby the
complexity analysis is not only based on the input size but also on some additional
(structural) property of the input, the parameter. Imagine that some problem admits an
algorithm with running time f(k) · nO(1), where n is the input size, k is the parameter
and f is some arbitrary (usually exponential) function. Problems which can be solved
by such algorithms are called fixed-parameter tractable (FPT). The basic idea is that
the running time of those algorithms is still feasible, as long as k remains sufficiently
small. The treewidth of an input structure, which measures the degree of cyclicity (see
Section 2 for a formal definition), is a commonly studied parameter.

Courcelle’s Theorem [7] states that every decision problem definable in MSO is FPT
(in fact, even linear in the input size) when parameterized by the treewidth of the input
structure. This result was extended to counting problems by Arnborg et al. [2] as well
? Supported by the Austrian Science Fund (FWF), project P20704-N18.



as to enumeration problems by Flum et al. [11]. Moreover, Bagan [3] and Courcelle [8]
showed that for enumeration problems, this result can be refined by stating that the
delay between the output of two successive solutions is fixed-parameter linear. Those
proofs are constructive in the sense that they transform the problem of evaluating an
MSO formula into a tree language recognition problem, which is then solved via a finite
tree automaton (FTA). Although those results are very useful for verifying that a given
problem is FPT, they do not help in finding algorithms that are usable in practice, since
even very simple MSO formulae quickly lead to a “state explosion” of the FTA [13].
Consequently, it was already stated in [15] that the algorithms derived via Courcelle’s
Theorem are “useless for practical applications”. This creates the need for other tools
that help the algorithm designer developing FPT algorithms for specific problems.

An alternative approach using monadic datalog was presented by Gottlob et al. [14].
They proved that for decision problems, the MSO evaluation problem can be trans-
formed into a monadic datalog program, of which the evaluation is FPT (and even lin-
ear in the input size). Although the general transformation presented there does not lead
to a better running time than the MSO to FTA transformation, it has been shown, that
this datalog framework helps to find algorithms for specific problems that are indeed
feasible in practice [14]. In [17], datalog was already used in an ad hoc manner to solve
some MSO-definable counting problems (including #SAT – the problem of counting
the number of satisfying truth assignments of a given propositional formula). However,
it remained an open question, whether there exists an appropriate extension of monadic
datalog, that is capable of solving every MSO-definable counting problem. Moreover,
enumeration problems have been completely left out so far.

The goal of the current work is to systematically extend the datalog approach from
[14] to counting and enumeration problems in order to give an affirmative answer to
the question mentioned above. We identify a nontrivial extension of monadic datalog,
which we call quasi-guarded fragment of extended datalog and show that this fragment
allows us to solve every MSO-definable counting problem over structures with bounded
treewidth. As a by-product, these extended datalog programs generate intermediate re-
sults which can be exploited by a post-processing algorithm to solve the corresponding
enumeration problem.

As for the complexity, we prove a fixed-parameter linear time bound for our count-
ing algorithms (assuming unit cost for arithmetic operations) and a delay between two
successive solutions for the enumeration algorithms, that is fixed-parameter linear in
the size of the input. Note that Bagan [3] and Courcelle [8] presented enumeration al-
gorithms having a delay that is fixed-parameter linear in the size of the next solution.
But since these approaches depend on an MSO to FTA transformation, their usefulness
for solving concrete problems in practice is restricted for the same reason as stated for
Courcelle’s Theorem above.

Results. Our main contributions are:

– Counting. We identify an appropriate extension of datalog, capable of expressing
every MSO-definable counting problem. Algorithms based on our MSO to data-
log transformation solve these counting problems in fixed-parameter linear time,
parameterized by the treewidth of the input structure (assuming unit cost for arith-
metic operations).



– Enumeration. Building upon our algorithms for counting problems, we devise a
post-processing method which solves the corresponding MSO-definable enumer-
ation problems. We thus get an algorithm which outputs the results with fixed-
parameter linear delay, parameterized by the treewidth of the input structure (as-
suming unit cost for arithmetic operations).

The paper is organized as follows. After recalling basic notations and results in
Section 2, we prove the main result regarding MSO-definable counting problems in
Section 3. In Section 4, we present a novel post-processing algorithm, which solves the
corresponding enumeration problem. In Section 5, we illustrate our approach by the
example of 3-COLORABILITY. A conclusion is given in Section 6.

2 Preliminaries

Finite Structures and Treewidth. A (relational) signature σ = {R1, . . . , Rn} is a set
of relation (or predicate) symbols. Each relation symbol R ∈ σ has an associated arity
arity(R) ≥ 1. A finite structure A over signature σ (or simply a σ-structure) consists
of a finite domain A = dom(A) plus a relation RA ⊆ Aarity(R) for each R ∈ σ.

A tree decomposition T of a σ-structure A is a pair (T, χ), where T is a tree and
χ maps each node n of T (we use n ∈ T as a shorthand below) to a bag χ(n) ⊆
dom(A) = A with the following properties: (1) For each a ∈ A, there is an n ∈ T ,
s.t. a ∈ χ(n). (2) For each R ∈ σ and each (a1, . . . , aα) ∈ RA, there is an n ∈ T ,
s.t. {a1, . . . , aα} ⊆ χ(n). (3) For each n1, n2, n3 ∈ T , s.t. n2 lies on the path from
n1 to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds. The third condition is usually referred to as
the connectedness condition. The width of a tree decomposition T = (T, χ) is defined
as max{|χ(n)| | n ∈ T} − 1. The treewidth of A, denoted as tw(A), is the minimal
width of all tree decompositions of A. For given w ≥ 1, deciding if a given structure
has treewidth ≤ w and, if so, to compute a tree decomposition of width w, is FPT [4].
We often have to assume that the elements in a bag χ(n) are ordered (in an arbitrary
way). In this case, χ(n) is a tuple of elements, denoted as a. By slight abuse of notation,
we shall nevertheless apply set operations to such tuples (e.g., a ∈ a, a ∩ b) with the
obvious meaning.

A tree decomposition T = (T, χ) is called normalized (or nice) [19] if: (1) Each
n ∈ T has at most two children. (2) For each n ∈ T with two children n1, n2, χ(n) =
χ(n1) = χ(n2). (3) For each n ∈ T with one child n′, χ(n) and χ(n′) differ in at most
one element (i.e., |χ(n)∆χ(n′)| ≤ 1). (4) Leaf nodes n ∈ T have empty bags (i.e.,
χ(n) = ∅). W.l.o.g., we assume that every tree decomposition is normalized, since this
normalization can be obtained in linear time without increasing the width [19].

A σ-structure A can be extended in order to additionally represent a tree decompo-
sition T of A. To this end, we extend σ to σtd = σ ∪ {root, leaf, child1, child2, bag}
by unary relation symbols root and leaf with the obvious meaning and binary relation
symbols child1 and child2. Thereby child1(n1, n) denotes that n1 is the first or the only
child of n and child2(n2, n) denotes that n2 is the second child of n. Finally, bag has
arity w + 2, where bag(n, a0, . . . , aw) expresses χ(n) = (a0, . . . , aw). For bags of
smaller size, we assume that the remaining positions in the bag-predicate are padded
with dummy elements. We write Atd to denote the σtd-structure representing both A



and T , i.e., the domain of Atd consists of dom(A) plus the nodes of T . Moreover,
the relations in Atd coincide with A for every R ∈ σ and in addition, Atd contains a
representation of T via appropriate relations for R ∈ {root, leaf, child1, child2, bag}.

The nodes of tree decompositions are either element introduction (EI), element re-
moval (ER), permutation (P), branch (B), or leaf (L) nodes. Thereby “element intro-
duction”, “element removal”, and “permutation” refers to the way in which the bag of
some node is obtained from the bag of its child.

Monadic Second-Order Logic (MSO). MSO extends first-order logic by the use of set
variables or second-order variables (denoted by upper case letters), which range over
sets of domain elements. In contrast, the individual variables or first-order variables
(denoted by lower case letters) range over single domain elements. The quantifier depth
of an MSO-formula ϕ is defined as the maximum degree of nesting of quantifiers (both
for individual and set variables) in ϕ.

Let ϕ(x,X) be an MSO-formula with free variables x = (x1, . . . , xn) and X =
(X1, . . . , Xm). Furthermore, letA be a σ-structure with A = dom(A), let a ∈ An and
A ∈ P(A)m, where P(A) denotes the powerset of A. We write (A,a,A) |= ϕ(x,X)
to denote that ϕ(a,A) evaluates to true in A. Usually, we refer to (A,a,A) simply
as a “structure” rather than a “structure with distinguished elements and sets”. We call
(a,A) a model of ϕ over A and denote by ϕ(A) the set of all models over A.

We call structures (A,a,A) and (B, b,B) k-equivalent and write (A,a,A) ≡MSO
k

(B, b,B), iff for every MSO-formula ϕ(x,X) of quantifier depth≤ k, the equivalence
(A,a,A) |= ϕ(x,X) ⇔ (B, b,B) |= ϕ(x,X) holds. By definition, ≡MSO

k is an
equivalence relation possessing only finitely many equivalence classes for any k. These
classes are referred to as k-types or simply as types. There is a nice characterization of k-
equivalence by Ehrenfeucht-Fraı̈ssé games: The k-round MSO-game on two structures
(A,a,A) and (B, b,B) is played between two players – the spoiler and the duplica-
tor. Thereby (A,a,A) and (B, b,B) are k-equivalent iff the duplicator has a winning
strategy in the game on these structures. For details, see e.g. [21].

Datalog. We assume some familiarity with datalog, see e.g. [5]. Syntactically, a datalog
program Π is a set of function-free, definite Horn clauses, i.e., each clause consists of
a non-empty head and a possibly empty body. The (minimal-model) semantics can be
defined as the least fixpoint (LFP) of applying the immediate consequence operator. A
predicate is called extensional if it occurs only in the body of the rules in Π , whereas
predicates also occurring in the heads are called intensional.

Let A be a σ-structure. In the context of datalog, it is convenient to think of the
relations RA with R ∈ σ as sets of ground atoms. The set of all such ground atoms
of a structure A is referred to as the extensional database (EDB) of A, which we shall
denote as E(A). We have R(a) ∈ E(A) iff a ∈ RA.

The fragment of quasi-guarded datalog has been recently introduced in [14]:

Definition 1. Let σtd be the extension of a signature σ and let Π be a datalog pro-
gram over σtd. Moreover, let r be a rule in Π and let x, y be variables in r. Then y
is called functionally dependent on x in one step, if the body of r contains an atom



of one of the following forms: child1(x, y), child1(y, x), child2(x, y), child2(y, x), or
bag(x, a0, . . . , ak) with y = ai for some i ∈ {1, . . . , k}.

Consequently, y is called functionally dependent on x if there exists some n ≥ 1
and variables z0, . . . , zn in r with z0 = x, zn = y and, for every i ∈ {1, . . . , n}, zi is
functionally dependent on zi−1 in one step.

Furthermore, Π is called quasi-guarded if every rule r ∈ Π contains an exten-
sional atom B, s.t., every variable occurring in r either occurs in B or is functionally
dependent on some variable in B.

Evaluating a datalog program Π over a structure A is EXPTIME-complete [23] in
general. It becomes NP-complete [10] if the arity of the intensional predicate symbols
is bounded. Quasi-guarded datalog programs Π can be evaluated over σtd-structures
Atd in time O(|Π| ∗ |Atd|) [14].

We extend quasi-guarded datalog by adding counter variables. Such variables are
integers which may be used as an additional argument for intensional predicates. An
intensional predicate p having n arguments plus a counter is denoted by p(t1, . . . , tn, j).
Thereby the value of j is required to be fully determined by the grounding of t1, . . . , tn.
If the predicate p occurs in the head of some rule r, then the counter j may have one of
the following four forms: (1) j is initialized by a constant c (e.g., p(t1, . . . , tn, c)). (2) j
takes the value of some j′ being already present in the body of r (e.g., p(t1, . . . , tn, j′)).
(3) j is the product of two counters j1, j2 occurring in r’s body (e.g., p(t1, . . . , tn, j1 ∗
j2)). Additionally, we allow rules without being quasi-guarded but having the following
strict form:

p(t1, . . . , tn,SUM(j))← q(t1, . . . , tm, j).

where p, q are intensional predicates and m > n. In this case the semantics is similar
to the SUM-aggregate function in ordinary SQL, where one first applies a GROUP BY
over the variables t1, . . . , tn. Consider for example the predicates instLecture(n, j)
stating that there are j lectures held at institute n, as well as persLecture(n, p, j) stating
that there are j lectures held by lecturer p at institute n. A possible rule expressing the
relationship between these two predicates would be

instLecture(n,SUM(j))← persLecture(n, p, j).

whose meaning is also captured by the SQL query

SELECT n, SUM(j) FROM persLecture GROUP BY n.

We call the resulting fragment quasi-guarded extended datalog. For a formal definition
of the semantics of SUM, see [18]. Aggregate functions are well studied, starting with
the first formalizations of Klug [20] through to more recent work, e.g. [1, 6, 16].

3 Counting Problems

In this section, we consider MSO-definable counting problems. We start by giving a
formal definition of a more general counting problem. LetC denote a class of structures
and Φ a class of logical formulae. Then the counting variant of model checking (MC)
is defined as follows:



#MC(C ,Φ)
Instance: A structure A ∈ C and a formula ϕ ∈ Φ.

Parameter: ‖ϕ‖.
Problem: Compute |ϕ(A)|.

Thereby ‖·‖ denotes the size of a reasonable encoding. In this paper, we only con-
sider the case Φ = MSO, i.e., ϕ is an MSO-formula. Moreover, when we study the re-
lationship between #MC(C ,MSO) problems and datalog, C will be restricted to struc-
tures whose treewidth is bounded by some constant.

We illustrate the above concepts by expressing #3-COLORABILITY (i.e., the count-
ing variant of 3-COLORABILITY) as a #MC(C ,MSO)-problem. As the classC we have
the set of finite, undirected graphs or, equivalently, the σ-structures where σ consists of
a single, binary relation symbol edge . We can define an MSO-formula ϕ(R,G,B) as
follows, expressing that the sets R,G,B form a valid 3-coloring:

ϕ(R,G,B) ≡ Partition(R,G,B) ∧ ∀v1∀v2[edge(v1, v2)→
(¬R(v1) ∨ ¬R(v2)) ∧ (¬G(v1) ∨ ¬G(v2)) ∧ (¬B(v1) ∨ ¬B(v2))],

where Partition(R,G,B) is used as a short-hand for the following formula:

Partition(R,G,B) ≡ ∀v[(R(v) ∨G(v) ∨B(v)) ∧
(¬R(v) ∨ ¬G(v)) ∧ (¬R(v) ∨ ¬B(v)) ∧ (¬G(v) ∨ ¬B(v))].

Suppose that a graph (V,E) is given by an {edge}-structure A having domain
dom(A) = V and relation edgeA = E. The above formula ϕ(R,G,B) is one pos-
sible way of expressing that the sets R,G,B of vertices form a valid 3-coloring, i.e.,
R,G,B form a partition of V and, for every pair of vertices v1, v2, if they are adjacent
then they are not both in R or both in G or both in B. Then we obtain the number of
valid 3-colorings of (V,E) as∣∣{A ∈ P(V )3 | (A,A) |= ϕ(R,G,B)}

∣∣ ,
i.e., the number of possible assignments to the free set-variables R,G,B in ϕ to make
ϕ true in A.

It is convenient to define MSO-definable counting problems as #MC(C ,MSO)
problems for formulae ϕ without free first-order variables. Note that this means no
loss of generality since any free individual variable x can be replaced by a set variable
X plus an appropriate conjunct in ϕ which guarantees that X is a singleton.

The primary goal of this section is to show that every MSO-definable counting
problem over structures with bounded treewidth can be expressed by a program Π in
the quasi-guarded extended datalog fragment defined in Section 2. Actually, expressing
a problem in datalog also means solving the problem since, in contrast to MSO, data-
log also has an operational semantics in addition to its declarative semantics. We shall
therefore also analyze the complexity of evaluating such programs. This will ultimately
allow us to give an alternative proof of the fixed-parameter linear time upper bound
(assuming unit cost for arithmetic operations) on this class of counting problems.



The generic construction of a program Π corresponding to an MSO-formula ϕ
(which will be detailed in the proof of Theorem 1) crucially depends on traversing a
tree decomposition T in a bottom-up manner and reasoning about the k-type of the
structure induced by the subtree of T rooted at each node n. Lemma 1 below allows us
to establish the connection between the k-type of the structure induced by the subtree
rooted at n and the k-type of the structure(s) induced by the subtree(s) rooted at the
only child (resp. the two children) of n. We first define some additional terminology,
which will be helpful for the formulation of this lemma.

Definition 2. Let T be a tree with a node n ∈ T . Then we denote the subtree rooted at
n as Tn. Likewise, letA be a finite structure and let T = (T, χ) be a tree decomposition
ofA. Then we define Tn as the restriction of T to the nodes of Tn and we denote byAn
the substructure of A induced by the elements of the bags of Tn.

Definition 3. Let m ≥ 1 be an integer and let A and B be σ-structures. Moreover,
let a = (a0, . . . , am) and b = (b0, . . . , bm) be tuples with ai ∈ dom(A) and bi ∈
dom(B). We call a and b equivalent and write a ≡ b, iff for all predicate symbols R ∈
σ with α = arity(R) and for all tuples (i1, . . . , iα) ∈ {0, . . . ,m}α, the equivalence
RA(ai1 , . . . , aiα)⇔ RB(bi1 , . . . , biα) holds.

Lemma 1. Given σ-structures A and B, let S (resp. T ) be a normalized tree decom-
position of A (resp. B) having width w and let n (resp. m) be an internal node in
S (resp. T ). Let n′ (resp. m′) denote the only or left child of n (resp. m) and let
n′′ (resp. m′′) denote the optional right child. Let a,a′,a′′, b, b′, and b′′ denote the
bags of nodes n, n′, n′′,m,m′, and m′′, respectively. Furthermore consider l-tuples of
domain-subsets X ∈ P(dom(An))l, X ′ ∈ P(dom(An′))l, X ′′ ∈ P(dom(An′′))l,
Y ∈ P(dom(Bm))l, Y ′ ∈ P(dom(Bm′))l and Y ′′ ∈ P(dom(Bm′′))l.

(P) nodes: Let n and m be of type (P). If X = X ′, Y = Y ′ and there exists a permu-
tation π, s.t. a = π(a′) and b = π(b′), then (An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′)
implies (An,a,X) ≡MSO

k (Bm, b,Y ).
(ER) nodes: Let n and m be of type (ER), s.t. a′ \ a = {aj} and b′ \ b = {bj},

i.e. the removed elements have the same index. If X = X ′ and Y = Y ′, then
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) implies (An,a,X) ≡MSO
k (Bm, b,Y ).

(EI) nodes: Let n and m be of type (EI), s.t. a \ a′ = {aj} and b \ b′ = {bj}. If
a ≡ b and there exists (ε1, . . . , εl) ∈ {0, 1}l, s.t. Xi = X ′i respectively Yi = Y ′i
if εi = 0, and Xi = X ′i ∪ {aj} respectively Yi = Y ′i ∪ {bj} if εi = 1, then
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) implies (An,a,X) ≡MSO
k (Bm, b,Y ).

(B) nodes: Let n and m be of type (B). If X = (X ′1 ∪ X ′′1 , . . . , X ′n ∪ X ′′n) and
Y = (Y ′1 ∪ Y ′′1 , . . . , Y ′n ∪ Y ′′n ), then (An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) and
(An′′ ,a′′,X ′′) ≡MSO

k (Bm′′ , b′′,Y ′′) imply (An,a,X) ≡MSO
k (Bm, b,Y ).

Proof Idea. The proof proceeds by a case distinction over the four possible types of
internal nodes n and m in a normalized tree decomposition. All cases are shown by
an easy argument using Ehrenfeucht-Fraı̈ssé games (see [21]). By the k-equivalence
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) and, optionally, (An′′ ,a′′,X ′′) ≡MSO
k (Bm′′ , b′′,

Y ′′), the duplicator has a winning strategy in the k-round game played on the struc-
tures (An′ ,a′,X ′) and (Bm′ , b′,Y ′) as well as on the structures (An′′ ,a′′,X ′′) and



(Bm′′ , b′′,Y ′′). Then the winning strategy at the only child node of n and m (resp. at
the two child nodes of n andm) can be extended (resp. combined) to a winning strategy
in the game played on the structures (An,a,X) and (Bm, b,Y ). Actually, in case of
(P) and (ER) nodes, the winning strategy for (An′ ,a′,X ′) and (Bm′ , b′,Y ′) may even
be left unchanged. In order to extend the winning strategy in case of an (EI)-node and
to combine the winning strategies in case of a (B)-node, the connectedness condition of
tree decompositions is crucial. ut
Lemma 1 gives us the intuition how to determine the k-type of the substructure induced
by a subtree Tn via a bottom-up traversal of the tree decomposition T . Essentially, the
type of the structure induced by Tn is fully determined by three components: (i) the type
of the structure induced by the subtree rooted at the child node(s) of n, (ii) the relations
between elements in the bag at node n, and (iii) the intersection of the distinguished
domain elements a and distinguished sets X with the elements in the bag at node n.

We now have a closer look at the distinguished sets and their effect on the type of
a structure. Suppose that we have fixed some structure A together with distinguished
elements a. Then the question is if different choices A and B of distinguished sets
necessarily lead to different types. In the following lemma we give a positive answer to
this question for the case that A and B differ on an element in a. This lemma will be
very useful when, on our bottom-up traversal of the tree decomposition, we encounter
an element introduction node: Let a denote the element that is new w.r.t. the bag at
the child node and suppose that we are considering l distinguished sets. Then, by the
lemma below, we know that each of the 2l possible choices of either adding the element
a to each of the l distinguished sets or not necessarily produces a different type. This
property in turn is important for solving the #MC(C ,MSO) problem since it guarantees
that we do not count any solution twice. Similarly, in Section 4, it will keep us from
outputting a solution twice.

Lemma 2. Given a σ-structure A with a ∈ dom(A)m and A,B ∈ P(dom(A))l.
If there exists an index i ∈ {1, . . . ,m}, s.t. Ai ∩ a 6= Bi ∩ a, then it follows that
(A,a,A) 6≡MSO

k (A,a,B).

Proof. This follows directly from the definition of ≡MSO
k through Ehrenfeucht-Fraı̈ssé

games. Indeed, suppose that some domain element a ∈ a is contained in some Ai but
not in Bi (or vice versa). Then the spoiler can win the game on the structures (A,a,A)
and (A,a,B) in a single move, simply by choosing a.

We introduce one more auxiliary definition and then we will be ready to formulate
and prove the main result of this section, namely Theorem 1.

Definition 4. Let A be a σ-structure and let a be a tuple of elements of dom(A). Then
R(a) denotes the set of all ground atoms with predicates in σ and arguments in a, i.e.
R(a) = {R(a1, . . . , aα) | R ∈ σ, α = arity(R), a1, . . . , aα ∈ a}.

Theorem 1. Let signature σ and integer w ≥ 1 be arbitrary but fixed. For the class C
of σ-structures of treewidth at most w, the problem #MC(C ,MSO) is definable in the
quasi-guarded fragment of extended datalog over σtd.



Proof. Let ϕ(X) be an arbitrary MSO-formula with free second-order variables X =
X1, . . . , Xl and quantifier depth k. We will construct a quasi-guarded extended datalog
program Π with a distinguished predicate solution, s.t. for any σ-structure C ∈ C,
solution(j) is in the LFP of Π ∪ Ctd iff |ϕ(C)| = j.

During the construction we maintain a set Θ of rank-k types ϑ of structures of the
form (A,a,A), where tw(A) ≤ w, T is a tree decomposition of A with width tw(A),
n = root(T ), a = bag(n) and A ∈ P(dom(A))l. For each type ϑ ∈ Θ, we save a
witness denoted by W (ϑ) = (A,a,A). The types ϑ ∈ Θ will serve as names of binary
predicates in our program P as well as names for constants. No confusion will arise
from this “overloading” since the meaning will always be clear from the context.

It is important to notice that the construction of program Π only depends on ϕ(X)
and the upper bound w on the treewidth of the structures in C but not on a concrete
structure C ∈ C. But of course, Π will ultimately be used to compute |ϕ(C)| for a
concrete input structure C. The intended meaning of the ϑ-predicate (which holds for
any structure C ∈ C) in our program construction is captured by Property A below.

Let ϑ ∈ Θ, let C ∈ C and let n be a node in a tree decomposition T of C, s.t. the
bag at n is b. Then we define the set Γ (n, ϑ) as

Γ (n, ϑ) = {B ∈ P(dom(Cn))l | (Cn, b,B) ≡MSO
k W (ϑ)}.

(Recall from Definition 2 that Cn denotes the substructure of C induced by the elements
in the bags of the subtree Tn rooted at n.) Then, we have

Property A. For every j ≥ 1, there exists an atom ϑ(n, j) in the LFP of Π ∪ Ctd iff
|Γ (n, ϑ)| = j. Furthermore, there exists no atom ϑ(n, ) in the LFP, iff |Γ (n, ϑ)| = 0.

We shall show that Property A indeed holds at the end of the proof. First, we give
the details of the construction of program Π . Initially, we set Θ = Π = ∅. Then we
construct Θ by structural induction over normalized tree decompositions. Since there
are only finitely many MSO rank-k types for structures (A,a,A) [21], the induction
will eventually halt. For the base case of the induction, we consider a tree decomposition
T consisting of a single node n with empty bag a. To create structure (A,a,A) having
tree decomposition T , let A be the σ-structure with dom(A) = ∅. Moreover A =
(∅, . . . , ∅). Now we invent a new token ϑ, add it to Θ and save the witness W (ϑ) =
(A,a,A). Additionally we add the following rule to Π:

ϑ(n, 1)← leaf(n).

In the induction step, we construct all possible structures (A,a,A) that can be created
by extending the tree decomposition of witness W (ϑ′) = (A′,a′,A′) for any ϑ′ ∈ Θ
in a “bottom-up” manner by introducing a new root node. Let a′ = (a0, . . . , am) be the
bag of the old root n′. The new root n can be of any of the following node types:

(P) node: Consider all possible permutations π of the indices {0, . . . ,m} and set a =
(aπ(0), . . . , aπ(m)), A = A′, and A = A′. For each of these (A,a,A), we check
whether there exists ϑ ∈ Θ with witness W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO

k

(B, b,B). If such a ϑ is found we take it, otherwise we invent a new token ϑ, add it to
Θ and save the witness W (ϑ) = (A,a,A). In either case, we add the following rules



to Π . Note that we do not write down the dummy elements for smaller bags.

auxP (n, ϑ, ϑ′, j)← bag(n, xπ(0), . . . , xπ(m)), child(n′, n),
bag(n′, x0, . . . , xm), ϑ′(n′, j).

ϑ(n, j)← auxP (n, ϑ, , j).

(ER) node: Set a = (a1, . . . , am), A = A′ and A = A′. For each of these (A,a,A)
we check whether there exists ϑ ∈ Θ with W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO

k

(B, b,B). If no such ϑ is found, we invent a new token ϑ, add it to Θ and save W (ϑ) =
(A,a,A). In either case, the following rule is added to Π:

auxR(n, ϑ, ϑ′, j)← bag(n, x1, . . . , xm), child1(n′, n),
bag(n′, x0, x1, . . . , xm), ϑ′(n′, j).

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n,SUM(j))← auxR(n, ϑ, , j).

(EI) node: Adding an (EI) node is only possible if m < w. We take a new element
am+1 6∈ dom(A) and let a = (a0, . . . , am, am+1). All possible structures A can be
generated by setting dom(A) = dom(A′)∪ {am+1} and by extending the EDB E(A′)
to E(A) in the following way. Let ∆ = E(A) \ E(A′) be an arbitrary set of tuples, s.t.
∆ ⊆ R(a) and am+1 occurs as an argument of all tuples in∆. Furthermore we consider
all possible tuples ε = (ε1, . . . , εl) ∈ {0, 1}l and extend A′ to A, s.t. Ai = A′i if
εi = 0 and Ai = A′i ∪ {am+1} if εi = 1. For every such structure, i.e. for each
combination ofA and A, we check whether there exists ϑ ∈ Θ withW (ϑ) = (B, b,B),
s.t. (A,a,A) ≡MSO

k (B, b,B). If no such ϑ is found, we invent a new token ϑ, add it
to Θ and save W (ϑ) = (A,a,A). In either case, the following rule is added to Π:

auxI(n, ϑ, ϑ′, ε, j)← bag(n, x0, . . . , xm+1), child1(n′, n),
bag(n′, x0, . . . , xm), ϑ′(n′, j),
{R(xi1 , . . . , xir ) | R(ai1 , . . . , air ) ∈ E(A)},
{¬R(xi1 , . . . , xir ) | R(ai1 , . . . , air ) 6∈ E(A)}.

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n, SUM(j))← auxI(n, ϑ, , , j).

(B) node: Let ϑ′′ ∈ Θ be a type with W (ϑ′′) = (A′′,a′′,A′′), not necessarily distinct
from ϑ′. W.l.o.g. we require a′ = a′′ and dom(A′) ∩ dom(A′′) = a′. Note that
this can easily be achieved by renaming the elements of one of the two structures.
Furthermore we check for inconsistency of the EDBs of the two structures (A′,a′,A′)
and (A′′,a′,A′′), i.e. we check whether E(A′) ∩ R(a′) 6= E(A′′) ∩ R(a′) or A′ ∩
a′ 6= A′′ ∩ a′. If this is true, we ignore the pair, otherwise we create the new structure
(A,a,A) by setting dom(A) = dom(A′) ∪ dom(A′′), E(A) = E(A′) ∪ E(A′′),
a = a′ and Ai = A′i ∪ A′′i . For every such structure, we check whether there exists
ϑ ∈ Θ with witness W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO

k (B, b,B). If such a ϑ is



found we take it, otherwise we invent a new token ϑ, add it to Θ and save the witness
W (ϑ) = (A,a,A). In either case, we add the following rule to Π:

auxB(n, ϑ, ϑ1, ϑ2, j1 ∗ j2)← child1(n1, n), bag(n1, x0, . . . , xm),
child2(n2, n), bag(n2, x0, . . . , xm),
bag(n, x0, . . . , xm), ϑ1(n1, j1), ϑ2(n2, j2).

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n,SUM(j))← auxB(n, ϑ, , , j).

Now that we have constructed Θ, the only thing left to do is the actual counting of
solutions. To this end, we check for every ϑ ∈ Θ with W (ϑ) = (A,a,A), whether
A |= ϕ(A) holds and, if the answer is affirmative, we add the following rule to P:

auxroot(ϑ, j)← root(n), ϑ(n, j).

Finally we also add:

solution(SUM(j))← auxroot( , j).

The bottom-up construction of Θ guarantees that we construct all possible rank-k types
of structures (A,a,A), where tw(A) ≤ w and a is the bag of the root node of a tree
decomposition of A. This follows from Lemma 1 and an easy induction argument.

Now consider an arbitrary input structure C ∈ C with tree decomposition T . We
have to show that solution(j) is in the LFP of Π ∪Ctd iff |ϕ(C)| = j. By the above two
rules with head predicates auxroot and solution, it suffices to show that the ϑ-predicate
has the desired Property A. We prove this by discussing the program rules added for
each node type. Below, we restrict ourselves to the case that |Γ (n, ϑ)| ≥ 1. The case
|Γ (n, ϑ)| = 0 (i.e., no fact ϑ(n, ) is in the LFP of Π ∪ Ctd) is obvious.
(L) nodes: For an (L) node n with type ϑ, Γ (n, ϑ) = {(∅, . . . , ∅)}. Since the only rule
for deriving ϑ(n, j) sets j = 1, the statement holds.
(P) nodes: Rules for a (P) node nwith type ϑ do not alter the counter j. But neither does
a permutation of the elements in the root bag change the corresponding set Γ (n, ϑ).
(ER) nodes: For an (ER) node n with type ϑ, the rule deriving auxR does not alter j. If
the type ϑ′ of child n′ changes for solution A′ stored in W (ϑ′) to the type ϑ, then by
Lemma 1, this is also true for all B′ ∈ Γ (n′, ϑ′). For the second rule note that, for two
types ϑ′ and ϑ′′ both leading to ϑ, we have Γ (n′, ϑ′) ∩ Γ (n′, ϑ′′) = ∅. Thus |Γ (n, ϑ)|
can be computed by summation over all the counters appearing in a derived fact auxR.
(EI) nodes: For an (EI) node n with type ϑ, the rule deriving auxI does not alter j
either. If the modification of solution A′ stored in W (ϑ′) according to the tuple ε =
(ε1, . . . , εl) changes the type ϑ′ of child n′ to the type ϑ, then by Lemma 1, this is
also true for all B′ ∈ Γ (v′, ϑ′) under the same modification ε. Lemma 2 states that a
different modification ε′ leads to a type different from ϑ. Therefore and by the same
argument as for (ER) nodes, |Γ (n, ϑ)| can be computed by summation over all the
counters appearing in a derived fact auxI .
(B) nodes: For a (B) node n, we know by Lemma 1, if the combination of solution A1

in W (ϑ1) with solution A2 in W (ϑ2) leads to ϑ, then any solution B1 ∈ Γ (n1, ϑ1)



combined with any solution B2 ∈ Γ (n2, ϑ2) leads to ϑ. Since B1 ∩B2 = ∅ and from
the connectedness condition of tree decompositions, it follows that there are indeed
|Γ (n1, ϑ1)| ∗ |Γ (n2, ϑ2)| = j1 ∗ j2 possible different solutions that lead to ϑ through
combination of ϑ1 and ϑ2. The second rule groups all solutions leading to ϑ together.
From the discussion above and from the rules for auxroot and solution, it follows that Π
is the desired quasi-guarded extended datalog program.

So far, we have shown hat every MSO-definable counting problem is indeed solv-
able by quasi-guarded extended datalog. The following result complements this ex-
pressibility result by showing that quasi-guarded extended datalog programs can be
evaluated in linear time.

Theorem 2. Let Π be a quasi-guarded extended datalog program and let A be a finite
structure. Then Π can be evaluated over A in time O(‖Π‖ ∗ ‖A‖), assuming unit
cost for arithmetic operations. Thereby ‖Π‖ denotes the size of the extended datalog
program and ‖A‖ denotes the size of the data.

Proof. Gottlob et al. [14] showed that this theorem holds for quasi-guarded datalog
without the extension by counter variables. By definition, the counter is fully deter-
mined from the other arguments of the predicate. Therefore, the number of possible
groundings of a rule r does not increase and hence the argument in [14] is still valid for
quasi-guarded extended datalog without the SUM(·) operator. On the other hand, it is
easy to see, that adding rules with this operator does not harm the linear time bound,
since we could replace rule r by rule r′, where SUM(j) is substituted by j. The facts
for r can then be derived by summation of the counter of r′. Since we assume unit cost
for arithmetic operations, this does not violate the linear time bound.

Note that the construction and, therefore, the size of the datalog program Π in the
proof of Theorem 1 only depends on the length of the formula ϕ and the treewidth w,
but not on the structure A. Hence, combining Theorem 1 and 2 immediately yields an
alternative proof of the counting variant of Courcelle’s Theorem as a corollary. Origi-
nally, this result was shown in [2] via the correspondence of MSO with FTAs.

Corollary 1. Let C be the class of structures whose treewidth is bounded by some
constant w. Then #MC(C ,MSO) is solvable in fixed-parameter linear time, i.e. for
each structureA ∈ C and formula ϕ ∈ MSO it is solvable in timeO(f(‖ϕ‖, w) ·‖A‖).

4 Enumeration Problems

We now show how the extended datalog programs from Theorem 1 can be used to solve
also MSO-definable enumeration problems. Similarly as in Section 3, we start with a
formal definition of the enumeration variant of model checking (MC).

#ENUM-MC(C ,Φ)
Instance: A structure A ∈ C and a formula ϕ ∈ Φ.

Parameter: ‖ϕ‖.
Problem: Compute ϕ(A).



As before, ϕ(A) denotes the set of possible assignments to the free variables in ϕ that
make ϕ true in A. Again, we only consider the case that Φ = MSO and C is a class of
structures with bounded treewidth. By MSO-definable enumeration problems we mean
#ENUM-MC(C ,MSO) problems for formulae ϕ without free first-order variables.

Let ϕ(X) be an MSO-formula,Π be the extended datalog program from Theorem 1
to solve the counting problem defined by ϕ(X),A be a σ-structure, andAtd denote the
σtd-structure representing both A and a tree decomposition T of A. We cannot expect
to useΠ directly to compute the solutions of ϕ(X). This would mean computing tuples
of sets, which clearly surpasses the expressive power of datalog. However, we can use
the facts in the LFP ofΠ ∪Atd (i.e., the intermediate results of our counting algorithm)
and generate all solutions of ϕ(X) in a postprocessing step. In Figure 1, we present the
program enumerateSolutions, which is designed for precisely this purpose.

Our enumeration algorithm thus starts at the root node of T rather than at the leaves.
Note that this is exactly what we have to do, since the root is the only node where
types ϑwhich correspond to some solutions of ϕ(X) are identified. More precisely, our
algorithm iterates over all types ϑ, s.t. the LFP of Π ∪Atd contains a fact auxroot(ϑ, j).
By construction, these types correspond to the solutions of ϕ(X). More formally, let a
be the tuple of elements in the bag at the root of T and let A be a tuple of sets. Then the
k-type of (A,a,A) is some ϑ, s.t. auxroot(ϑ, ) is in the LFP ofΠ ∪Atd iffA |= ϕ(A).

We can then exploit further facts from the LFP of Π ∪ Atd to construct the actual
solutions. Hereby, we collect for all nodes in T the types which contributed to the
currently processed ϑ. We do so by constructing a new tree Υ for each such ϑ, which
is stored in an internal data structure and described in detail below. Function getSol(·)
in Figure 1 then traverses Υ several times until all solutions A of ϕ(X) corresponding
to ϑ are found. Below, we give a more detailed description of this procedure and all the
auxiliary procedures used inside it.

Let us first describe the construction of the tree Υ for a type ϑ. This is done in
the auxiliary procedure initTree(ϑ) of enumerateSolutions. In fact, Υ has as root node
(n, ϑ), where n is the root node of tree decomposition T . We then recursively add to a
node (n′, ϑ′) in Υ a child node (n′′, ϑ′′), if child1(n′′, n′) and auxλ(n′, ϑ′, ϑ′′, . . .) (for
λ ∈ {P,R, I}) are in the LFP of Π ∪ Atd. In case n′ is a (B) node, we analogously
add nodes using auxB(n′, ϑ′, ϑ1, ϑ2, ) but distinguish between left and right children.
We store the children of a node as an ordered list of pointers (for (B) nodes, we have
two such lists) together with a mark which sits on exactly one pointer in each such list.
initTree(ϑ) initializes all marks to the first pointer in the respective lists. We will see
below how marks are moved to obtain a new solution in each call of getSol(·) from
enumerateSolutions.

We now describe function getSol(·) (ignoring the flag isLast and the function
hasNextChild(·) which both are described below). Roughly speaking, getSol(·) tra-
verses Υ following the marked pointers using getChildren(n, ϑ) which yields the result
of the pointer marked in the list for the current node (for (B) nodes, this method accord-
ingly returns two nodes, one for each of the two child nodes in the tree decomposition).
This way, we go down the tree Υ by recursive calls of getSol(·) until the leaves are
reached. In the leaves, we start with an empty solution and update it on the way back to
the root. The only modifications are done when we are at an (EI) node or at a (B) node.



Program enumerateSolutions Function getSol(n, ϑ, isLast)
begin input: node n, type ϑ, boolean isLast

take node n, s.t. root(n) return: tuple of sets X , boolean isLast
for each ϑ with auxroot(ϑ, ) do begin
initTree(ϑ) if n is (L) node then
repeat X = (∅, . . . , ∅)
(X, isLast) = getSol(n, ϑ, true) elseif n is (B) node then
output X ((n′, ϑ′), (n′′, ϑ′′)) = getChildren(n, ϑ)

until isLast (X ′, isLast) = getSol(n′, ϑ′, isLast)
done (X ′′, isLast) = getSol(n′′, ϑ′′, isLast)

end X = X ′ ∪X ′′

elseif n is (EI) node then
Function hasNextChild(n, ϑ) (n′, ϑ′) = getChildren(n, ϑ)
input: node n, type ϑ (X ′, isLast) = getSol(n′, ϑ′, isLast)
return: boolean isLast X = addElement(n, ϑ,X ′)
begin else /∗ (ER) or (P) node ∗/
l = number of children of (n, ϑ) (n′, ϑ′) = getChildren(n, ϑ)
if (n, ϑ).mark < l − 1 then (X, isLast) = getSol(n′, ϑ′, isLast)
(n, ϑ).mark++ endif
return true if isLast then

endif isLast = hasNextChild(n, ϑ)
(n, ϑ).mark = 0 endif
return false return (X, isLast)

end end

Fig. 1. Program enumerateSolutions

For (EI) nodes, addElement(n, ϑ,X ′) alters X ′ according to ε in auxI(n, ϑ, ϑ′, ε, j).
For (B) nodes, X is simply the componentwise union of the respective results X ′,X′′.

Finally, we describe how the flag isLast works and how the marks on pointers
are moved when traversing the tree (this is done in function hasNextChild(n, ϑ)). Flag
isLast plays a kind of dual role. Being a parameter, it indicates whether we are cur-
rently allowed to move the mark, and this flag is passed down the recursive calls (note
that the call from enumerateSolutions always sets this flag to 1, but this is not necessar-
ily the case when going down the second subtree in a (B) node). Being a return value,
flag isLast indicates whether all possible positions of marks have been run through in
the processed subtree. If this is the case, we may also move the mark of the current
node; otherwise we do not touch it. Function hasNextChild(n, ϑ) takes care of the re-
quired manipulation of marks: it moves the mark to the next pointer, or in case the mark
was already on the last pointer, it moves the mark back to the first pointer of the list;
in both cases, the function returns the pointer which is now marked; however, in the
former case, it returns as second value false , in the latter case (the mark is reset to the
first pointer), it returns true . Thus, if true is returned to enumerateSolutions we are
done, since all possible positions of marks have been run through. Therefore, this algo-
rithm guarantees that (i) each solution leading to the current ϑ in enumerateSolutions
is found; (ii) no such solution is returned twice to enumerateSolutions.



Theorem 3. Let σ and w ≥ 1 be arbitrary but fixed. For the class C of σ-structures
of treewidth w, the solutions of problem #ENUM-MC(C ,MSO) for input A ∈ C and
ϕ ∈ MSO can be enumerated with delay O(f(‖ϕ‖, w) · ‖A‖), where f is a function
that only depends on w and |ϕ|.
Proof. We call the bound O(f(‖ϕ‖, w) · ‖A‖) fixed-parameter linear (FPL). Since the
evaluation of the program Π over A in the proof of Theorem 1 is FPL, the number of
atoms in the LFP of Π over A is also FPL. Therefore the creation and the size of Υ
is FPL. Moreover, a traversal of Υ can also be done in FPL, and enumerateSolutions
outputs the solutions with a delay in FPL.

Program Π3−C (#3-COLORABILITY)
/* (L) node */
solve(n, ∅, ∅, ∅, 1)← leaf(s).
/* (EI) node */
forbidden(n, Y )← bag(n,X), Y ⊆ X , edge(u, v), u ∈ Y , v ∈ Y .
allowed(n, Y )← not forbidden(n, Y ).
auxI(n,R ] {v}, G,B,R,G,B, j)← bag(n,X ] {v}), child1(n1, n), bag(n1, X),

solve(n1, R,G,B, j), allowed(n,R ] {v}).
auxI(n,R,G ] {v}, B,R,G,B, j)← bag(n,X ] {v}), child1(n1, n), bag(n1, X),

solve(n1, R,G,B, j), allowed(n,G ] {v}).
auxI(n,R,G,B ] {v}, R,G,B, j)← bag(n,X ] {v}), child1(n1, n), bag(n1, X),

solve(n1, R,G,B, j), allowed(n,B ] {v}).
solve(n,R,G,B, j)← auxI(n,R,G,B, , , , j).
/* (ER) node */
auxR(n,R,G,B,R ] {v}, G,B, j)← bag(n,X), child1(n1, n), bag(n1, X ] {v}),

solve(n1, R ] {v}, G,B, j).
auxR(n,R,G,B,R,G ] {v}, B, j)← bag(n,X), child1(n1, n), bag(n1, X ] {v}),

solve(n1, R,G ] {v}, B, j).
auxR(n,R,G,B,R,G,B ] {v}, j)← bag(n,X), child1(n1, n), bag(n1, X ] {v}),

solve(n1, R,G,B ] {v}, j).
solve(n,R,G,B,SUM(j))← auxR(n,R,G,B, , , , j).
/* (B) node */
auxB(n,R,G,B,R,G,B, j1 ∗ j2)← bag(n,X), child1(n1, n), child2(n2, n), bag(n1, X),

bag(n2, X), solve(n1, R,G,B, j1), solve(n2, R,G,B, j2).
solve(n,R,G,B, j)← auxB(n,R,G,B, , , , j).
/* result (at the root node) */
count(SUM(j))← root(n), solve(n, , , , j).

Fig. 2. Counting 3-colorings

5 3-Colorability

In this section, we illustrate our approach with the aid of the counting and enumer-
ation variant of 3-COLORABILITY, whose MSO-encoding ϕ(R,G,B) was given in



Section 3. A graph (V,E) with vertices V and edges E is represented as a σ-structure
Awith σ = {edge}. ByAtd we denote the σtd-structure which, in addition to the graph,
also represents a tree decomposition T of A of width ≤ w for some constant w. We
write C(A) to denote the set of valid 3-colorings of A, i.e., C(A) = {(R̄, Ḡ, B̄) | A |=
ϕ(R̄, Ḡ, B̄)}. The program in Figure 2 takes a σtd-structureAtd as input and calculates
|C(A)|.

Note that the set variables used in Figure 2 are not sets in the general sense, since
their cardinality is restricted by the size w + 1 of the bags, where w is a fixed constant.
Hence, these “fixed-size” sets can be simply implemented by means of k-tuples over
{0, 1} with k ≤ (w+ 1). For the sake of readability, we also use the non-datalog opera-
tor ] (disjoint union), which could be easily replaced by a “proper” datalog expression.
By considering the bags as sets, we no longer need the node type (P).

At the heart of this program is the intensional predicate solve(n,R,G,B, j) with
the following intended meaning: n denotes a node in T , the setsR,G,B are the projec-
tions of some coloring onAn onto bag(n) and j denotes the number of different color-
ings onAn having this projection. More precisely, let Λ(An, R,G,B) = {(R̄, Ḡ, B̄) ∈
C(An) with projection (R,G,B) onto bag(n)}, then a fact solve(n,R,G,B, j) shall
be in the LFP of Π3−C ∪ Atd, iff |Λ(An, R,G,B)| = j ≥ 1.

The main task of the program is the computation of all facts solve(n,R,G,B, j)
via a bottom-up traversal of the tree decomposition. The predicate count holds the final
result. Π3−C solves the #3-COLORABILITY problem in the following way:

Theorem 4. Given an instance of #3-COLORABILITY, i.e., an {edge}-structure A,
together with a tree decomposition T of A having width w, then count(j) with j ≥
1 is in the LFP of Π3−C ∪ Atd iff A has exactly j possible 3-colorings. Moreover,
both the construction of Atd and the evaluation of Π3−C ∪ Atd can be computed in
O(32w+2) · ‖A‖, assuming unit cost for arithmetic operations.

Proof Idea. The correctness of the programΠ3−C follows immediately as soon as it has
been shown that solve(n,R,G,B, j) indeed has the intended meaning described above.
This in turn can be easily shown by structural induction over the tree decomposition T
via a case distinction for the possible node types (L), (EI), (ER), and (B) of n.

For the complexity, we notice that program Π3−C is essentially a succinct rep-
resentation of a quasi-guarded extended datalog program. For instance, in the atom
solve(n,R,G,B, j), the sets R, G, and B are subsets of size ≤ w of bag An at
node n. Hence, each combination R,G,B could be represented by three sets r, s, t ⊆
{0, . . . , w} referring to indices of elements inAn. Hence, solve(n,R,G,B, j) is a suc-
cinct representation of constantly many predicates of the form solver,s,t(n, j). Then
bag(n,X) is a quasi-guard in each rule. The fixed-parameter linearity follows from
Theorem 2. A finer analysis of the program reveals, that for #3-COLORABILITY the
function f(‖ϕ‖, w) can be explicitly stated as 32w+2, since there are at most 3w+1 par-
titionsR,G,B at each node n. Hence, the combination of two partitions as the argument
of predicates (e.g., auxI(n,R,G,B,R′, G′, B′, j)) yield at most 32w+2 groundings of
these predicates. ut

The enumeration variant of 3-COLORABILITY can be solved with linear delay by a
slight modification of the program in Figure 1. Instead of nodes (n, ϑ) in Υ , we consider



nodes of the form (n,R,G,B). Then we again use the child(·) and auxλ(·) facts in the
LFP of Π3−C ∪ Atd to establish a parent-child relation between nodes (n,R,G,B)
and (n′, R′, G′, B′). Analogously to the program in Figure 1, each solution R̄, Ḡ, B̄ is
constructed in a bottom-up way, starting with an empty solution at the leaves. When
we reach an (EI) node n, the set difference between R,G,B and R′, G′, B′ of a fact
auxI(n,R,G,B,R′, G′, B′, j) determines how the sets R̄, Ḡ, B̄ are extended.

Discussion. The generic construction of a program Π from some MSO-formula ϕ in
the proof of Theorem 1 is “constructive” in theory but not feasible in practice. However,
in contrast to the MSO-to-FTA approach, datalog allows us to construct tailor-made
programs like programΠ3−C , which follow the intuition of the generic programsΠ but
incorporates several short-cuts that make it indeed feasible: Above all, as the intended
meaning of the solve-predicate suggests, we only propagate those “types” (represented
by the solve-facts) which can possibly be extended in bottom-up direction to a solution.
Moreover, the solve-facts do not exactly correspond to the types in Theorem 1 but only
describe the properties of each type which are crucial for the target formula ϕ(R,G,B).

6 Conclusion

We have extended the monadic datalog approach [14] to MSO-definable counting and
enumeration problems. For the latter, we have thus shown that they can be solved with
linear delay in case of bounded treewidth. We have also illustrated the potential of our
approach for constructing efficient algorithms by solving the counting and enumeration
variant of 3-COLORABILITY. As future work, we plan to apply our approach to fur-
ther MSO-definable problems. Finally, we also want to tackle extensions of MSO with
our approach; in particular extensions by optimization (i.e., counting/enumerating the
minimal or the maximal solutions only) [2] and by local cardinality constraints [22].

References

1. Foto N. Afrati and Rada Chirkova. Selecting and using views to compute aggregate queries.
In Proc. ICDT’05, volume 3363 of LNCS, pages 383–397. Springer, 2005.

2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

3. Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In Proc. CSL’06, volume 4207 of LNCS, pages 167–181. Springer, 2006.

4. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

5. Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer, 1990.

6. Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries using
views. In Proc. PODS’99, pages 155–166. ACM, 1999.

7. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theo-
retical Computer Science, Volume B, pages 193–242. Elsevier Science Publishers, 1990.

8. Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Ap-
plied Mathematics, 157(12):2675–2700, 2009.



9. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, New
York, 1999.

10. T. Eiter, W. Faber, M. Fink, and S. Woltran. Complexity results for answer set program-
ming with bounded predicate arities and implications. Annals of Mathematics and Artificial
Intelligence, 51(2–4):123–165, 2007.

11. Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions.
Journal of the ACM, 49(6):716–752, 2002.

12. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
13. M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic

revisited. In Proc. LICS’02, pages 215–224, 2002.
14. Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite structures with

bounded treewidth. In Proc. PODS’07, pages 165–174. ACM, 2007.
15. Martin Grohe. Descriptive and parameterized complexity. In Proc. CSL’99, volume 1683 of

LNCS, pages 14–31, 1999.
16. Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. On the equivalence and

rewriting of aggregate queries. Acta Inf., 40(8):529–584, 2004.
17. Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Fast counting with

bounded treewidth. In Proc. LPAR’08, volume 5330 of LNCS, pages 436–450. Springer,
2008.

18. David B. Kemp and Peter J. Stuckey. Semantics of logic programs with aggregates. In Proc.
ISLP, pages 387–401, 1991.

19. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

20. Anthony C. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM, 29(3):699–717, 1982.

21. Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
22. Stefan Szeider. Monadic second order logic on graphs with local cardinality constraints. In

Proc. MFCS’08, volume 5162 of LNCS, pages 601–612. Springer, 2008.
23. Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proc.

STOC’82, pages 137–146. ACM, 1982.


