
Belief Revision with Bounded Treewidth?

Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Vienna University of Technology, Austria

Abstract. Problems arising from the revision of propositional knowledge bases
have been intensively studied for two decades. Many different approaches to re-
vision have thus been suggested, with the ones by Dalal or Satoh being two of
the most fundamental ones. As is well known, most computational tasks in this
area are intractable. Therefore, in practical applications, one requires sufficient
conditions under which revision problems become efficiently solvable. In this
paper, we identify such tractable fragments for the reasoning and the enumer-
ation problem exploiting the notion of treewidth. More specifically, we present
new algorithms based on dynamic programming for these problems in Dalal’s
setting and a tractability proof using Courcelle’s Theorem for Satoh’s approach.

1 Introduction

Since knowledge is continually evolving, there is a constant need to be able to revise a
knowledge base as new information is received. In this paper, we restrict ourselves to
propositional knowledge bases, i.e., they are given by propositional formulae. Problems
arising from the revision of knowledge bases (referred to as belief revision) have been
intensively studied for two decades. Formally, the problem of belief revision is usually
specified as follows: Given a knowledge base (i.e., a formula) α and a formula β, find a
revised knowledge base α ◦ β, such that β is true in all models of α ◦ β and the change
compared to the models of α is minimal. The following problems are of great interest:

– Reasoning. Given formulae α, β, and γ, decide if α ◦ β |= γ holds.
– Enumeration. Given formulae α and β, compute the models of α ◦ β.

Several realizations for ◦ have been proposed in the literature and desired prop-
erties are formulated by the famous AGM-Postulates [1], or in terms of propositional
logic and finite knowledge bases, by Katsuno and Mendelzon [2]. Two of the most
fundamental approaches are due to Dalal [3] and Satoh [4]. Complexity results for the
reasoning problem w.r.t. different ◦ operators are provided in [5] including Θ2P - and
Π2P -completeness for Dalal’s, respectively Satoh’s, operator.

An interesting approach to dealing with intractable problems is parameterized com-
plexity theory. In fact, hard problems can become tractable if some problem parame-
ter is bounded by a fixed constant. Such problems are called fixed-parameter tractable.
One important parameter is treewidth, which measures the “tree-likeness” of a graph or,
more generally, of a structure. By using a seminal result due to Courcelle [6], several
fixed-parameter tractability (FPT) results in the area of AI and KR have been recently
proven [7]. The goal of this work is to obtain tractability results also for belief revision.

? This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

Courcelle’s Theorem states that any property of finite structures, that is definable
in monadic second-order logic (MSO), becomes tractable over structures with bounded
treewidth. In this work, we show FPT for the reasoning problem with Satoh’s operator
◦S by giving an MSO definition of this problem, i.e., defining the property “α◦Sβ |= γ”
of a structure representing formulae α, β, and γ. In order to prove an analogous result
for Dalal’s operator, we have to make use of an extension [8] of Courcelle’s Theorem.

The proof of Courcelle’s Theorem and its extension in [8] is “constructive”: It works
by transforming the MSO evaluation problem into a tree language recognition problem,
which is then solved via a finite tree automaton (FTA). However, the “algorithms” re-
sulting from such an MSO-to-FTA transformation are usually not practical due to ex-
cessively large constants. Consequently, Niedermeier states that MSO “is a very elegant
and powerful tool for quickly deciding about FPT, but it is far from any efficient imple-
mentation” [9]. We therefore present a novel algorithm for the reasoning problem with
Dalal’s operator ◦D. This algorithm is based on dynamic programming and builds upon
an algorithm of [10] for the #SAT problem (i.e., the problem of counting all models
of a given propositional formula). Moreover, we extend our reasoning algorithm to an
algorithm for the enumeration problem of “◦D”. As far as the complexity is concerned,
our algorithms work in linear time for the reasoning problem and with linear delay (i.e.,
the time needed for computing the first model and for any further model of α ◦D β).
Due to lack of space, we only present such dedicated algorithms for Dalal’s approach
(Satoh’s approach can be handled by a similar dynamic programming algorithm, which
will be included in the full version of this paper).
Results. Our main contributions are as follows.

– A novel algorithm based on dynamic programming for deciding α ◦D β |= γ in
linear time provided that the treewidth of the formulae α, β, and γ is bounded by a
constant (for a formal definition of treewidth, see Section 2).

– An extension of the algorithm for the reasoning problem, such that also the set of
all models of α ◦D β is computed. In paticular, our algorithm works with linear
delay if the formulae α and β have bounded treewidth.

– We show that the property “α◦Sβ |= γ” is definable in MSO and that “α◦Dβ |= γ”
can be defined in the extension of MSO from [8]. In case of ◦S we thus establish
FPT w.r.t. the treewidth of the reasoning problem. In case of ◦D we thus get an
alternative proof of FPT, which follows of course also from our dedicated algorithm
via dynamic programming.

2 Background

Throughout the paper, we assume a universe U of propositional atoms. A literal is either
an atom a or a negated atom a. For a set A of atoms, A = {a : a ∈ A}. Clauses are
sets of literals. An interpretation (or assignment) I is a set of atoms and we define, for
a clause c and O ⊆ U , ModO(c) = {I ⊆ O : (I ∪ (O \ I)) ∩ c 6= ∅}. For a set C
of clauses, ModO(C) =

⋂
c∈C ModO(c). For O = U , we write Mod(C) instead of

ModO(C) for the set of classical models of C. By At(C) we denote the set of atoms
occurring in C. In what follows, we use the term formula to refer to a set of clauses. As
usual, α |= β iff each model of formula α is also a model of formula β.
Revision Operators. The approaches of revision we deal with here rely on so-called
model-based change operators. Such operators usually utilize a model distanceM∆M ′

which yields the set of atoms differently assigned in interpretations M and M ′, i.e. in
our notation,M∆M ′ = (M\M ′)∪(M ′\M). Assuming that α is consistent (we tacitly
make this assumption throughout the paper), the operators due to Satoh [4] (“◦S”), and
respectively, Dalal [3] (“◦D”), can be defined as follows:

Mod(α ◦S β) = {J ∈ Mod(β) : ∃I ∈ Mod(α) s.t. I∆J ∈ ∆min(α, β)};
Mod(α ◦D β) = {J ∈ Mod(β) : ∃I ∈ Mod(α) s.t. |I∆J | = |∆|min(α, β)};

where we use ∆min(α, β) = min⊆({I∆J : I ∈ Mod(α), J ∈ Mod(β)}) with
min⊆ selecting elements which are minimal w.r.t. set inclusion, and |∆|min(α, β) =
min({|I∆J | : I ∈ Mod(α), J ∈ Mod(β)}.

Subsequently, we refer to a revision scenario as either a pair of formulae α, β (in
case of the enumeration problem) or a triple α, β, γ (in case of the reasoning problem).
For revision scenarios, we assume unless stated otherwise, that the universe U is given
by the set of atoms occurring in the involved formulae. In particular, we thus have that
Mod(α ◦ β) with ◦ ∈ {◦S , ◦D} refers to a set of models over At(α ∪ β) (resp. over
At(α ∪ β ∪ γ) in the context of a reasoning problem).

As shown in [5], given formulae α, β, γ, deciding α ◦S β |= γ is Π2P-complete
while deciding α ◦D β |= γ is Θ2P-complete. For both results, hardness holds even in
case γ is a single atom.
Tree Decomposition and Treewidth. A tree decomposition of a graph G = (V,E) is
a pair (T, χ), where T is a tree and χ maps each node n of T (we use n ∈ T as a
shorthand below) to a bag χ(n) ⊆ V , such that (1) for each v ∈ V , there is an n ∈ T ,
s.t. v ∈ χ(n); (2) for each (v, w) ∈ E, there is an n ∈ T , s.t. v, w ∈ χ(n); (3) for each
n1, n2, n3 ∈ T , s.t. n2 lies on the path from n1 to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds.

A tree decomposition (T, χ) is normalized (or nice) [11], if (1) each n ∈ T has ≤ 2
children; (2) for each n ∈ T with two children n1, n2, χ(n) = χ(n1) = χ(n2); and (3)
for each n ∈ T with one child n′, χ(n) and χ(n′) differ in exactly one element.

The width of a tree decomposition is defined as the cardinality of its largest bag
χ(n) minus one. It is known that every tree decomposition can be normalized in linear
time without increasing the width [11]. The treewidth of a graph G, denoted as tw(G),
is the minimum width over all tree decompositions of G. For arbitrary but fixed w ≥ 1,
it is feasible in linear time to decide if a graph has treewidth ≤ w and, if so, to compute
a tree decomposition of width w, see [12].
Tree Decompositions for Revision Scenarios. To build tree decompositions for revision
scenarios (α, β, γ), we use incidence graphs1 over Γ = α ∪ β ∪ γ. Thus, for formulae
α, β, γ, such a graph G is given by vertices Γ ∪At(Γ) and has as edges all pairs (a, c)
with an atom a appearing in a clause c of Γ . In case of normalized tree decompositions,
we distinguish between six types of nodes: atom introduction (AI), clause introduction
(CI), atom removal (AR), clause removal (CR), branch (B), and leaf (L) nodes. The first
four types will be often augmented with the element e (either an atom or clauses) which
is removed or added compared to the bag of the child node.

Example 1. Figure 1 shows the revision scenario A ◦ B, which is used as a running
example throughout the paper. Since the models of these formulae are Mod(A) =
{{x}} and Mod(B) = {{}, {x, y, z}}, it is easy to verify, that |∆|min(A,B) = 1 and

1 See [10] for justifications why incidence graphs are favorable over other types of graphs.

n1: {z}

n2: {z,c3}

n3: {z,c3,c5}

n4: {z,c5}

n5: {z,c5,c6}

n6: {c5,c6}

n7: {c4,c5,c6}

n8: {c4,c5,c6}

n9: {c4,c5}

n10: {x,c4,c5}

n11: {x,c4}

n12: {x,c1,c4}

n13: {x,c1}

n14: {x}

n15: {c4,c5,c6}

n16: {c4,c6}

n17: {y,c4,c6}

n18: {y,c6}

n19: {y,c2,c6}

n20: {y,c2}

n21: {y}

T :
A = c1 ∧ c2 ∧ c3
B = c4 ∧ c5 ∧ c6
c1 = x
c2 = ¬y
c3 = ¬z
c4 = (x ∨ ¬y)
c5 = (¬x ∨ z)
c6 = (y ∨ ¬z)

c1

c2

c3

x

y

z

c4

c5

c6

G:

Fig. 1. Revision scenario A ◦B; incidence graph G; and normalized tree decomposition T of G.

∆min(A,B) = {{x}, {y, z}}. Hence, Mod(A ◦D B) = {{}} and Mod(A ◦S B) =
{{}, {x, y, z}}. Figure 1 also shows the incidence graph G of this scenario, together
with a normalized tree decomposition T of G having width 2. Actually, G cannot have
a tree decomposition of width < 2, since only trees have treewidth = 1 and G con-
tains cycles. Hence, the tree decomposition in Figure 1 is in fact optimal and we have
tw(G) = 2. Examples for node types are n21 as (L) node, n20 as (c2-CI) node, n16 as
(y-AR) node, n7 as (B) node, n6 as (c4-CR) node, and n5 as (z-AI) node. a

3 Applying Courcelle’s Theorem

An important tool for establishing FPT of a decision problem is Courcelle’s Theo-
rem [6], stating that any property of finite structures definable in monadic second-order
logic (MSO) becomes tractable (in fact, even linear), if the treewidth of the structures
is bounded by a constant. This result was extended to counting problems as well as
extremum problems [8]. We recall that MSO extends first-order logic by the use of set
variables (denoted by upper case letters), which range over sets of domain elements.

In order to show the FPT of the aforementioned belief revision problems using
Courcelle’s Theorem, we first have to define how the problem instances can be modeled
as finite structures. Let formulae α, β, γ be given by a structure A with signature σ =
{atom(·), clauseα(·), clauseβ(·), clauseγ(·), pos(·, ·),neg(·, ·)}. A has domain A =
Γ ∪ At(Γ), where Γ = α ∪ β ∪ γ. Moreover, for each relation symbol in σ, a relation
over A is contained in A with the following intended meaning: atom designates the
set of atoms, clauseα, clauseβ and clauseγ denote the set of clauses of α, β and γ
respectively. Furthermore pos(a, c) denotes that atom a occurs positively in clause c.
Negative literals are described by neg(a, c). The treewidth of a structureA is defined as
the treewidth of the graph that we get by taking the set of domain elements (in our case,
A = Γ ∪ At(Γ)) as vertices and by considering two vertices (i.e., domain elements)

as adjacent if these domain elements jointly occur in some tuple of the structure, i.e.,
the edges of this graph are of the form (a, c) where either pos(a, c) or neg(a, c) is
contained in the structure. Hence, the treewidth of A is precisely the treewidth defined
via the incidence graph of Γ as described in the previous section.

Models of a formula ϕ can then be stated by the MSO property (see also [7]):

modϕ(I) ≡ ∀x[x ∈ I → atom(x)] ∧
∀c[clauseϕ(c)→ ∃a((pos(a, c) ∧ a ∈ I) ∨ (neg(a, c) ∧ a 6∈ I))].

Towards an MSO-encoding for α ◦S β we define three more helper formulae. The first
one yields all models J of β together with the possible differences to models of α. The
other two characterize valid triples I∆J = K, respectively proper subsets X ⊂ Y .

modDα,β(J,K) ≡ modβ(J) ∧ ∃I[modα(I) ∧ diff (I , J ,K)],
diff (I , J ,K) ≡ ∀a[a ∈ K ↔ ((a ∈ I ∧ a 6∈ J) ∨ (a 6∈ I ∧ a ∈ J))],

sub(X,Y) ≡ ∀a(a ∈ X → a ∈ Y) ∧ ∃b(b ∈ Y ∧ b 6∈ X).

We put things together to characterize the models of α ◦S β:

revS
α,β(J) ≡ ∃K[modDα,β(J,K) ∧ ∀J ′∀K ′(sub(K ′,K)→ ¬modDα,β(J ′,K ′))].

It is now easy to see that the MSO formula ∀J(revS
α,β(J) → Modγ(J)) characterizes

the reasoning problem α ◦S β |= γ for Satoh’s revision operator. We thus obtain via
Courcelle’s Theorem the following result.

Theorem 1. The reasoning problem α ◦S β |= γ is fixed-parameter linear w.r.t. the
treewidth, i.e., it is solvable in time O(f(w) · ‖α ∪ β ∪ γ‖), where f is a function
depending only on the treewidth w of the revision scenario (α, β, γ).

For Dalal’s operator, we require additional machinery. Following the notation of [8],
a model of Mod(α ◦D β) can be described by a linear extended monadic second-order
extremum problem minmodDα,β(J,K) |K|, where modDα,β(J,K) is the MSO-formula
given above in the MSO-characterization of Satoh’s revision operator. By using the
extension of Courcelle’s Theorem of [8], we thus get the following FPT result.

Theorem 2. Assuming unit cost for arithmetic operations, the reasoning problem α◦D
β |= γ is fixed-parameter linear w.r.t. the treewidth, i.e., it is solvable in time O(f(w) ·
‖α ∪ β ∪ γ‖), where f is a function depending only on the treewidth w of (α, β, γ).

Proof. The key observation is that α ◦D β |= γ holds if and only if |∆|min(α, β ∧ γ) <
|∆|min(α, β∧¬γ). Moreover, both expressions |∆|min(α, β∧γ) and |∆|min(α, β∧¬γ)
can be characterized by linear extended MSO extremum problems. By Theorem 5.6 of
[8], those can be evaluated in linear time if we assume unit cost for arithmetic operations
and if the treewidth of α ∪ β ∪ γ is bounded by a fixed constant. ut

4 The Dynamic Programming Approach for ◦D

In this section, we show how the theoretical results from Section 3 can be put to prac-
tice by dynamic programming. Due to the space restrictions we discuss here only the
realization for the Dalal-revision operator ◦D in detail.

We start with an algorithm to decide α◦Dβ |= γ. The very idea of such an algorithm
is to associate certain objects (so-called bag assignments) to each node n of a tree
decomposition for this problem, such that certain information about the subproblem
represented by the subtree rooted at n remains available. Consequently, results for the
entire problem can be read off the root of the tree decomposition.

We then make use of our algorithm also for the enumeration problem. Hereby, we
traverse the tree decomposition a second time, but starting from the root, where we
already have identified certain objects which will allow us to compute the models of the
revised knowledge base. However, to guarantee that the enumeration does not provide
duplicate models, some additional adjustments in the data structure will be necessary.

4.1 Reasoning Problem

For the problem α ◦D β |= γ, we restrict ourselves here to scenarios where γ is a single
atom occurring in At(α ∪ β) in order to keep the presentation simple. In what follows,
we fix T = (T, χ) to be a normalized tree decomposition of the incidence graph for
α∪β. We refer to the root node of T as nroot , and we require that the bags of nroot and
of all leaf nodes of T do not contain any clauses. Such a tree decomposition is easily
obtained from a normalized one by suitably adding (CI)- and (CR)-nodes. Additionally,
we require that γ appears in χ(nroot). Finally, we assume α∩β = ∅ holds, thus for any
clause c ∈ α∪β, its origin o(c) is either α or β. Also recall that we fix U = At(α∪β).

For a node n ∈ T , we denote by Tn the subtree of T rooted at n. For a set S of
elements (either atoms or clauses), n|S is a shorthand for χ(n) ∩ S; moreover, n↓S is
defined as

⋃
m∈Tn m|S , and n⇓S abbreviates n↓S \ n|S .

Definition 1. A tuple ϑ = (n,Mα,Mβ , C), where n ∈ T , Mα,Mβ ⊆ n|U , and C ⊆
n|α∪β is called a bag assignment (for node n).

Bag assignments for a node n implicitly talk about interpretations over n↓U . The
following definition makes this more precise.

Definition 2. For a bag assignment ϑ = (n,Mα,Mβ , C) and ϕ ∈ {α, β}, define

Eϕ(ϑ) =
{
K ⊆ n↓U : K \ (n⇓U) = Mϕ;

(C ∩ ϕ) ∪ (n⇓ϕ) = {c ∈ n↓ϕ : K ∈ Modn↓U (c)}
}
.

In other words, we associate with a bag assignment (n,Mα,Mβ , C) all interpreta-
tions K that extend Mα in such a way, that all clauses from α appearing in C and in
bags below node n are satisfied. The same is done for β. Bag assignments for which
such extended interpretations exist for both α and β are of particular interest for us.

Definition 3. A bag assignments ϑ is called bag model iff Eα(ϑ) 6= ∅ 6= Eβ(ϑ).

We next rephrase the main features of the definition of ◦D in terms of bag models
and then show that bag models for the root node capture ◦D as expected.

Definition 4. For any bag model ϑ = (n,Mα,Mβ , C), define

δ(ϑ) = min
{
|Iα∆Iβ | : Iα ∈ Eα(ϑ), Iβ ∈ Eβ(ϑ)

}
; and

E(ϑ) =
{
Iβ ∈ Eβ(ϑ) : ∃Iα ∈ Eα(ϑ), |Iα∆Iβ | = δ(ϑ)

}
.

Theorem 3. Let Θ be the set of all bag models ϑ for nroot , such that no bag model ϑ′

for nroot with δ(ϑ′) < δ(ϑ) exists. Then, Mod(α ◦D β) =
⋃
ϑ∈Θ E(ϑ).

Proof. (⊆): Let J ∈ Mod(α ◦D β). Hence, J ∈ Mod(β) and there exists an I ∈
Mod(α), such that |I∆J | = |∆|min(α, β) = k. Consider ϑ = (nroot ,Mα,Mβ , ∅)
where Mα = nroot |I and Mβ = nroot |J . Since we assumed that no clauses are stored
in χ(nroot) and nroot ↓U= U , J ∈ Mod(β) yields that J ∈ Modn↓U (c) holds for
each c ∈ nroot ↓β= nroot ⇓β . The same argumentation applies to I and α. Hence,
I ∈ Eα(ϑ), J ∈ Eβ(ϑ), and thus ϑ is a bag-model. To show ϑ ∈ Θ, it remains to show
that no other ϑ′ ∈ Θ exists with δ(ϑ′) < δ(ϑ) ≤ k. Towards a contradiction, suppose
such a ϑ′ = (nroot ,M

′
α,M

′
β , C

′) exists. By definition, then there exists an I ′α ∈ Eα(ϑ′)
and an I ′β ∈ Eβ(ϑ′) with |I ′α∆I ′β | = δ(ϑ′). Let ϕ ∈ {α, β}. By definition of Eϕ(·),
we obtain I ′ϕ ∈ Modnroot↓U ((C ′ ∩ ϕ) ∪ (nroot ⇓ϕ)). Again C ′ = ∅ by our assumption
for nroot , and thus nroot ⇓ϕ= ϕ. We also know U = nroot↓U . I ′ϕ ∈ Mod(ϕ) follows.
Hence, we have found models I ′α, I

′
β for α, and resp. β, such that |I ′α∆I ′β | < k. A

contradiction to our assumption that |∆|min(α, β) = k. The other direction holds by
essentially the same arguments. ut

We now put our concept of bag models to work also below the root node. Our
goal is to characterize bag models ϑ without an explicit computation of Eϕ(ϑ). To
this end, first note that bag models for leaf nodes n are easily built from all pairs
of interpretations over the atoms in the bag χ(n); also recall that we assumed that
no clause is in χ(n). Thus, formally, the set of all bag models for a leaf node n is
given by {(n,M,N, ∅) : M,N ⊆ n|U}. For each such bag model ϑ = (n,M,N, ∅),
δ(ϑ) = |M∆N | is clear. Next, we define a relation ≺T between bag assignments, such
that all bag models of a node are accordingly linked to bag models of the child(ren)
node(s). We thus can propagate, starting from the leaves, bag models upwards the tree
decomposition. Afterwards, we will show how δ(ϑ) can be treated accordingly.

Definition 5. For bag assignments ϑ = (n,Mα,Mβ , C) and ϑ′ = (n′,M ′α,M
′
β , C

′),
we have ϑ′ ≺T ϑ iff n has a single child n′, and the following properties are satisfied,
depending on the node type of n:

1. (c-CR): Mα = M ′α, Mβ = M ′β , C = C ′ \ {c}, c ∈ C ′;
2. (c-CI): Mα = M ′α, Mβ = M ′β , and C = C ′ ∪ {c} if Mo(c) ∈ Modn|U (c); and
C = C ′ otherwise;

3. (a-AR): Mα = M ′α \ {a}, Mβ = M ′β \ {a}, C = C ′;
4. (a-AI): one of the following cases applies

– Mα = M ′α ∪ {a}, N = M ′β ∪ {a}, C = C ′ ∪ {c ∈ n|α∪β : a ∈ c};
– Mα = M ′α∪{a},Mβ = M ′β ,C = C ′∪{c ∈ n|α : a ∈ c}∪{d ∈ n|β : a ∈ d};
– Mα = M ′α,Mβ = M ′β∪{a},C = C ′∪{c ∈ n|α : a ∈ c}∪{d ∈ n|β : a ∈ d};
– Mα = M ′α, Mβ = M ′β , C = C ′ ∪ {c ∈ n|α∪β : a ∈ c}.

For branch nodes, we extend (with slight abuse of notation) ≺T to a ternary relation.

Definition 6. For bag assignments ϑ = (n,Mα,Mβ , C), ϑ′ = (n′,M ′α,M
′
β , C

′) and
ϑ′′ = (n′′,M ′′α ,M

′′
β , C

′′), we have (ϑ′, ϑ′′) ≺T ϑ iff n has two children n′, n′′, Mα =
M ′α = M ′′α , Mβ = M ′β = M ′′β , and C = C ′ ∪ C ′′.

Lemma 1. Let ϑ, ϑ′, ϑ′′ be bag assignments, such that ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ).
Then, ϑ is a bag model iff ϑ′ is a bag model (resp. both ϑ′ and ϑ′′ are bag models).

Proof. For the proof, one has to distinguish between the node types. Here, we only
show the case where ϑ is a bag assignment for a (c-CI) node n with child m. In this
case, ϑ′ ≺T ϑ holds exactly for assignments of the form ϑ = (n,Mα,Mβ , C) and
ϑ′ = (m,Mα,Mβ , C

′), where C = C ′ ∪ {c} if c appears in ϕ ∈ {α, β} and Mϕ is a
partial model of c (i.e., Mϕ ∈ Modn|U (c)); and C = C ′ otherwise. Consider the case
c ∈ α (the other case is symmetric). We show Eα(ϑ) = Eα(ϑ′) and Eβ(ϑ) = Eβ(ϑ′).
The assertion then follows. There is only room to sketch a proof for Eα(ϑ) = Eα(ϑ′).

We have V = n↓U= m↓U , W = n⇓U= m⇓U . It is sufficient to show (C ∩ α) ∪
n⇓α= {d ∈ n↓α : K ∈ ModV (d)} iff (C ′∩α)∪m⇓α= {d ∈ m↓α : K ∈ ModV (d)}
for each K ⊆ V s.t. K \W = Mα. Fix such a K and note that n ⇓α= m ⇓α. One
can show (C ∩ α) = {d ∈ n|α : K ∈ ModV (d)} iff (C ′ ∩ α) = {d ∈ m|α : K ∈
ModV (d)} by observing that K ∈ ModV (c) iff Mα ∈ Modn|U (c). ut

Next, we define recursively a number assigned to bag models n and show that this
number in fact matches the minimal distance δ(ϑ) defined above.

Definition 7. Let ϑ = (n,Mα,Mβ , C) be a bag model. We define

ρ(ϑ) =

|Mα∆Mβ | if n is a leaf node
ρ(ϑ′) if n is type (CI) or (CR); and ϑ′ ≺T ϑ
min

{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
if n is type (AR)

min
{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
if n is type (a-AI) and a ∈Mα iff a ∈Mβ

min
{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
+ 1 if n is type (a-AI) and a /∈Mα iff a ∈Mβ

min
{
ϑ′×ϑ′′ : (ϑ′, ϑ′′) ≺T ϑ

}
if n is type (B)

where ϑ′ × ϑ′′ stands for ρ(ϑ′) + ρ(ϑ′′)− |Mα∆Mβ |.

Lemma 2. For any bag model ϑ, δ(ϑ) = ρ(ϑ).

Example 2. In Fig. 2, we list all bag models ϑ of the tree decomposition from Exam-
ple 1 together with values ρ(ϑ). For instance, leaf node n21 has bag models for all pairs
of interpretations over {y}. If we go upwards the tree, we observe that bag models for
n19 additionally contain clauses from {c2, c6} satisfied by the respective assignments.
In the next node n18 only those bag models survive where c2 was contained, since n18

is a (c2-CR) node. Due to space restrictions, we cannot discuss all steps in detail. Note
that for the root, the bag model ϑ = (n1, ∅, ∅, ∅) is the one with minimal ρ(ϑ). It can be
checked that E(ϑ) = {{}} as expected (recall that Mod(α ◦D β) = {{}}). a

Theorem 4. Assuming unit cost for arithmetic operations, α ◦D β |= γ can be decided
in time O(f(w) · ‖α ∪ β‖), where f is a function depending only on the treewidth w of
(α, β).

Proof. Lemma 1 suggests the following algorithm: first, we establish the bag models
ϑ for leaf nodes together with their value for δ(ϑ) = ρ(ϑ); then we compute all re-
maining bag models via ≺T in a bottom-up manner, and keep track of δ(·) using the
definition of ρ, which is indeed feasible thanks to Lemma 2. As soon as we have the
bag models for the root node together with their δ-values we know that bag models in

(n1, ∅, z, ∅): 2 (n5, z, z, c5c6): 1 (n8, ∅, ∅, c4): 0 (n15, ∅, ∅, c6): 1
(n1, ∅, ∅, ∅): 1 (n5, z, z, c5): 0 (n8, ∅, ∅, c5): 1 (n15, ∅, ∅, c4): 0
(n2, z, z, ∅): 1 (n5, z, ∅, c6): 1 (n9, ∅, ∅, c4): 0 (n16, ∅, ∅, c6): 1
(n2, z, ∅, ∅): 2 (n5, z, ∅, c5c6): 2 (n9, ∅, ∅, c5): 1 (n16, ∅, ∅, c4): 0

(n2, ∅, z, c3): 2 (n5, ∅, z, c5c6): 2 (n10, x, x, c4): 0 (n17, ∅, y, c6): 1
(n2, ∅, ∅, c3): 1 (n5, ∅, z, c5): 1 (n10, x, ∅, c5): 1 (n17, ∅, ∅, c4): 0
(n3, z, z, c5): 1 (n5, ∅, ∅, c6): 0 (n11, x, x, c4): 0 (n18, ∅, y, c6): 1
(n3, z, ∅, ∅): 1 (n5, ∅, ∅, c5c6): 1 (n11, x, ∅, ∅): 1 (n18, ∅, ∅, ∅): 0

(n3, z, ∅, c5): 2 (n6, ∅, ∅, c6): 1 (n12, x, x, c1c4): 0 (n19, y, y, c6): 0
(n3, ∅, z, c5c3): 2 (n6, ∅, ∅, ∅): 0 (n12, x, ∅, c1): 1 (n19, y, ∅, ∅): 1

(n3, ∅, ∅, c3): 0 (n6, ∅, ∅, c5): 1 (n12, ∅, x, c4): 1 (n19, ∅, y, c2c6): 1
(n3, ∅, ∅, c5c3): 1 (n7, ∅, ∅, c4c6): 1 (n12, ∅, ∅, ∅): 0 (n19, ∅, ∅, c2): 0

(n4, z, z, c5): 1 (n7, ∅, ∅, c5c6): 2 (n13, x, x, c1): 0 (n20, y, y, ∅): 0
(n4, z, ∅, ∅): 1 (n7, ∅, ∅, c4): 0 (n13, x, ∅, c1): 1 (n20, y, ∅, ∅): 1

(n4, z, ∅, c5): 2 (n7, ∅, ∅, c4c5): 1 (n13, ∅, x, ∅): 1 (n20, ∅, y, c2): 1
(n4, ∅, z, c5): 2 (n13, ∅, ∅, ∅): 0 (n20, ∅, ∅, c2): 0
(n4, ∅, ∅, ∅): 0 (n14, x, x, ∅) 0 (n21, y, y, ∅): 0

(n4, ∅, ∅, c5): 1 (n14, x, ∅, ∅) 1 (n21, y, ∅, ∅): 1
(n14, ∅, x, ∅) 1 (n21, ∅, y, ∅): 1
(n14, ∅, ∅, ∅) 0 (n21, ∅, ∅, ∅): 0

Fig. 2. All bag models for the tree decomposition from Example 1.

Θ as defined in Theorem 3 characterize the models of α ◦D β. Due to our assumption
that γ is just a single atom occurring in χ(nroot), it remains to check whether for each
(nroot ,Mα,Mβ , C) ∈ Θ, γ ∈Mβ holds.

The effort needed for processing a leaf node as well as the transition from child to
parent nodes only depends on the treewidth but not on ‖α ∪ β‖. The size of T is linear
bounded by the size of α∪β, thus the desired time bound for our algorithm follows. ut

4.2 Enumeration Problem

Our reasoning algorithm from Section 4.1 gathers the following information along the
bottom-up traversal of T : (1) all bag models ϑ = (n,Mα,Mβ , C) for all nodes n in T ,
(2) the minimal distance δ(ϑ) between the models Iα ∈ Eα(ϑ) and Iβ ∈ Eβ(ϑ), and (3)
the relation ≺T indicating which bag model(s) ϑ′ at the child node n′ (resp. at the two
child nodes n′ and n′′) give rise to which bag model ϑ at a node n in T . In principle,
this is all the information needed to enumerate the models in α ◦D β by starting with
the bag models ϑ in Θ from Theorem 3 (i.e., the bag models ϑ at the root node nroot ,
s.t. no other bag model ϑ′ at nroot with smaller value of δ(·) exists) and determining
E(ϑ) for every ϑ ∈ Θ by traversing T in top-down direction following the ≺T relation
in reversed direction. However, such an enumeration algorithm faces two problems:

(1) In Definition 7 (with ρ(ϑ) = δ(ϑ), by Lemma 2) we computed the minimum
value attainable by ρ(ϑ) over all possible bag models ϑ′ (resp. pairs (ϑ′, ϑ′′)) with
ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ). Hence, when we now follow the ≺T relation in the
reversed direction, we have to make sure that, from any ϑ, we only continue with bag
models ϑ′ (resp. with pairs (ϑ′, ϑ′′)) that actually lead to the minimal value of ρ(ϑ).

(2) For distinct bag models ϑ, ϑ′ for any node n, E(ϑ) ∩ E(ϑ′) = ∅ is not guar-
anteed. More precisely, suppose that two bag models ϑ = (n,Mα,Mβ , C) and ϑ′ =

(n,M ′α,M
′
β , C

′) fulfill the condition Mβ = M ′β . Then it may well happen that some
model Iβ is contained both in Eβ(ϑ) and Eβ(ϑ′), s.t. Iβ has minimal distance δ(ϑ) from
some Iα ∈ Eα(ϑ) and also minimal distance δ(ϑ′) from some I ′α ∈ Eα(ϑ′). However,
for our enumeration algorithm we want to avoid the computation of duplicates since
this would, in general, destroy the linear time upper bound on the delay.

The first problem is dealt with below by restricting the relation ≺T to a subset
�T of ≺T . For the second problem, we shall extend the relation �T on bag models
to a relation on sets of bag models. We start with the definition �T on bag models.
Let us introduce some additional notation first: We identify the components of a bag
assignment ϑ = (n,Mα,Mβ , C) as ϑnode = n; ϑα = Mα; ϑβ = Mβ ; and ϑclause =
C. If Θ is a set of bag assignments, s.t. ϑβ is identical for all ϑ ∈ Θ, then we write Θβ
to denote ϑβ for any ϑ ∈ Θ. Finally, we write E(Θ) as a short-hand for

⋃
ϑ∈Θ E(ϑ).

Definition 8. Let ϑ, ϑ′, and optionally, ϑ′′ be bag models, s.t. ϑ′node (and, optionally,
also ϑ′′node) is a child of n = ϑnode . We define ϑ′ �T ϑ (resp. (ϑ′, ϑ′′) �T ϑ) iff
ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ) and one of the following conditions is fulfilled:

(i) n is of type (CI) or (CR);
(ii) n is of type (AR) and δ(ϑ) = δ(ϑ′);
(iii) n is of type (a-AI), a ∈ ϑα iff a ∈ ϑβ , and δ(ϑ) = δ(ϑ′);
(iv) n is of type (a-AI), a 6∈ ϑα iff a ∈ ϑβ , and δ(ϑ) = δ(ϑ′) + 1; or
(v) n is of type (B) and δ(ϑ) = δ(ϑ′) + δ(ϑ′′)− |ϑα∆ϑβ |.

We now extend�T from a relation on bag models to a relation on setsΘ of bag models
ϑ (with identical component ϑβ). By slight abuse, we reuse the same symbol�T .

Definition 9. Let Θ 6= ∅ a set of bag models for n ∈ T , s.t. for all ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′β .
(i) Suppose that n is either of type (CI), (CR) or of type (a-AI) with a 6∈ Θβ . Then we

define Θ′ �T Θ for Θ′ = {ϑ′ : ϑ′β = Θβ and ϑ′ �T ϑ for some ϑ ∈ Θ}.
(ii) Suppose that n is of type (a-AI) with a ∈ Θβ . Then we define Θ′ �T Θ for

Θ′ = {ϑ′ : ϑ′β = Θβ \ {a} and ϑ′ �T ϑ for some ϑ ∈ Θ}.
(iii) Suppose that n is of type (a-AR). Then we define Θ′1 �T Θ and Θ′2 �T Θ for

Θ′1 = {ϑ′ : ϑ′β = Θβ and ϑ′ �T ϑ for some ϑ ∈ Θ} and Θ′2 = {ϑ′ : ϑ′β =
Θβ ∪ {a} and ϑ′ �T ϑ for some ϑ ∈ Θ}.

(iv) Suppose that n is of type (B). Then we define Θ′ �T Θ for Θ′ = {ϑ′ : ∃ϑ′′ with
(ϑ′, ϑ′′)�T ϑ for some ϑ ∈ Θ}.
Moreover, for every Θ̂ ⊆ Θ′ with Θ′ �T Θ, we define (Θ̂, Θ′′) �T Θ, where
Θ′′ = {ϑ′′ : ∃ϑ ∈ Θ and ∃ϑ′ ∈ Θ̂ with (ϑ′, ϑ′′)�T ϑ}.

The following lemma states that every model in E(Θ) at node n can be computed via
E(Θ′) (and optionally E(Θ′′)) at the child node(s) of n and, conversely, that every
element in E(Θ′) (and optionally E(Θ′′)) can indeed be extended to a model of E(Θ).

Lemma 3. Let n ∈ T and Θ be a non-empty set of bag models for n, s.t. for all
ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′β . Then the following properties hold:
(i) Suppose n is of type (CI), (CR), (AR), or of type (a-AI), s.t. a 6∈ Θβ . Then I ∈ E(Θ)

iff I ∈ E(Θ′), s.t. Θ′ �T Θ.
(ii) Suppose n is of type (a-AI), s.t. a 6∈ Θβ . Then I ∈ E(Θ) iff (I \ {a}) ∈ E(Θ′), s.t.

Θ′ �T Θ.

(iii) Suppose n is of type (B). Then I ∈ E(Θ) iff I = I ′ ∪ I ′′ for some I ′ ∈ E(Θ̂) and
I ′′ ∈ E(Θ′′), where Θ̂ ⊆ Θ′, Θ′ �T Θ, and (Θ̂, Θ′′)�T Θ.

For our enumeration algorithm, we start at the root node of T and first partition the
relevant bag models ϑ according to ϑβ . Formally, letΘ be the set of all bag models ϑ for
nroot , such that no bag model ϑ′ for nroot with δ(ϑ′) < δ(ϑ) exists. Then we partition
Θ into Θ1, . . . , Θn, such that for each ϑ, ϑ′ ∈ Θi, ϑβ = ϑ′β , and for each ϑ ∈ Θi,
ϑ′ ∈ Θj with i 6= j, ϑβ 6= ϑ′β . Clearly, the sets E(Θi) are pairwise disjoint. Hence, no
duplicates will be computed when we compute E(Θ1), . . . , E(Θn) separately.

Given a set Θ of bag models, we compute E(Θ) by implementing an appropriate
iterator for every node n in T . The iterator provides functions open, get current, and
get next. In addition, other functions like close (to deallocate state information) are
needed which we do not discuss here.
The open function. The open function serves to initialize the state information at each
node of a given subtree of T . For instance, it is convenient (in particular, for branch
nodes) to store in a Boolean flag first whether get next() has not yet been called since
the initialization with the call of function open. Moreover, for an (AR) node, there can
exist two sets Θ1 and Θ2 with Θi �T Θ. We have to store in the state of the (AR)
node, which one of these two sets is currently being processed at the child node.

The open function takes as input a set Θ of bag models ϑ with identical ϑβ and
recursively calls open(Θ′) with Θ′ �T Θ. If the current node is of type (CI), (CR), or
(AI), then Θ′ is unique. Likewise, Θ′ is unique for the first child of a branch node. In
case of an (AR) node,Θ′ corresponds toΘ1 from Definition 9, case (iii), provided that it
is non-empty. Otherwise, Θ′ = Θ2 is chosen. The children of a branch node are treated
asymmetrically by the �T -relation and, hence, also by the open function. In the first
place, we only compute Θ′ with Θ′ �T Θ for the first child of every branch node. As
we shall explain below, the function get next() computes the set of assignments E(Θ),
returning one such assignment per call. For branch nodes, we thus compute for the first
child the set E(Θ′) with Θ′ �T Θ. For each assignment I ′ thus returned, get next()
also yields Γ ′ = {ϑ̂ : I ′ ∈ E(ϑ̂)} ⊆ Θ′. Then the subtree rooted at the second child
node is processed with Θ′′, s.t. (Γ ′, Θ′′) �T Θ. Hence, for every assignment I ′, we
have to compute Θ′′ (which is uniquely determined by Γ ′ and Θ) and call open(Θ′′),
before we can retrieve the assignments I ′′ in E(Θ′′) with get next().
The get next and get current function. Suppose that a node n in T has been initialized
by a call of open(Θ) with ϑnode = n for every ϑ ∈ Θ. Then we can call get next() for
this node in order to retrieve the first resp. the next assignment I in E(Θ). In addition
to the assignment I , the get next function also provides a set Γ ⊆ Θ as output, s.t.
Γ = {ϑ̂ : I ∈ E(ϑ̂)}. As we have already seen, this set Γ of bag assignments is
needed when we encounter a branch node on our way back to the root, in order to
determine the set Θ′′ for the second child. The get current function is called (for the
first child of a branch node) to retrieve once again the result from the previous call to
get next. If no next assignment exists, then get next returns the value “Done”.

In order to compute the first resp. next assignment I , we traverse T downwards by
recursive calls of get next() until the leaves are reached. In the leaves, we start with
the assignment I = Θβ and also set Γ = Θ. This assignment I and the set Γ are now
updated on the way back to the root. The only modifications to I are in fact done when
we are at an (a-AI) node or at a (B) node. For (AI) nodes, we add a in case a is added

Function get next for a branch node n with child nodes n′, n′′

Let Θ be the input parameter of the previous call of function open
if first then

first = False;
(I ′, Γ ′) = n′.get next();
Let Θ′′ s.t. (Γ ′, Θ′′)�T Θ;
n′′.open(Θ′′)
(I ′′, Γ ′′) = n′′.get next()

else
(I ′, Γ ′) = n′.get current()
(I ′′, Γ ′′) = n′′.get next()
if (I ′′, Γ ′′) = undefined (i.e., the call of n′′.get next() returned “Done”) then

(I ′, Γ ′) = n′.get next();
if (I ′, Γ ′) = undefined (i.e., the call of n′.get next() returned “Done”) then

return “Done”
endif
Let Θ′′ s.t. (Γ ′, Θ′′)�T Θ;
n′′.open(Θ′′)
(I ′′, Γ ′′) = n′′.get next()

endif
endif
return (I ′ ∪ I ′′, {ϑ ∈ Θ : ∃γ′ ∈ Γ ′ and ∃γ′′ ∈ Γ ′′, s.t. (γ′, γ′′)�T ϑ})

Fig. 3. Function get next() for a branch node.

to the respective Θβ . For (B) nodes, we set I = I ′ ∪ I ′′, where I ′ (resp. I ′′) is the
assignment returned by the call of get next() for the first (resp. second) child node. In
Figure 3 we give the pseudo-code of the get next function in case of a branch node. For
the remaining node types, the implementation of get next is even simpler.

Theorem 5. Given formulae α and β, the models in Mod(α ◦D β) can be computed
with delay O(f(w) · |α ∪ β|), where f is a function depending only on the treewidth w
of (α, β).

Proof. By our definition of�T on sets and by Lemma 3, we can be sure that (1) every
assignment in Mod(α ◦D β) is eventually computed by our iterator-based implemen-
tation via recursive calls of get next and (2) no assignment is computed twice. Indeed,
our set-based definition of the�T -relation groups together bag models ϑwith identical
ϑβ and, for any bag models ϑ′ with ϑβ 6= ϑ′β , we trivially have E(ϑ) ∩ E(ϑ′) = ∅.

As far as the complexity is concerned, note that the recursive calls of the open
function come down to a top-down traversal of T . (In fact, by the asymmetric treatment
of the children of a branch node, open is only called for the nodes along the left-most
path in T .) Similarly, each call of get next and get current leads to a single traversal of
the subtree below the current node n. The work actually carried out inside each call is
independent of the size of T . Hence, in total, we end up with a time bound that is linear
in the size of T and, hence, in the size of α and β. ut

5 Conclusion

The quest for (fixed-parameter) tractability has been pursued in many areas of KR and
AI. However, in the context of belief revision, very few activities have been undertaken

in this direction – apart from the work of Darwiche [13], which relies on compilation
techniques. To the best of our knowledge, neither Courcelle’s Theorem [6] (or one of
its extensions as [8]) nor dynamic programming approaches (along the lines of tree
decompositions) have been applied to belief revision problems, so far. For other KR
formalisms though such approaches already proved to be successful (see, e.g., [7, 14]).

In this work, we have identified new tractable classes of revision problems with
respect to two of the most fundamental approaches [3, 4]. Moreover, we provided novel
dynamic programming algorithms for Dalal’s revision operator [3] (i.e. for the problem
of deciding α ◦D β |= γ, and enumerating the models of α ◦D β) which run in linear
time (resp. with linear delay) if the treewidth of the revision scenario is bounded.

Future work includes to apply the methods used in this paper also to update opera-
tors. The approach due to Winslett [15], for instance, can be shown tractable by “plain”
MSO, while the approach due to Forbus [16] is less accessible to such techniques since
the concept of cardinality is “hidden” in the characterization (see, e.g. [17] for further
discussions on this problem). Another direction of research is to apply our methods to
approaches for iterated belief revision. This however calls for the additional require-
ment that the outcome of a single revision step has to be of bounded treewidth as well.
It is an interesting research question of its own how to ensure such a property.

References
1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet

functions for contraction and revision. Journal of Symbolic Logic 50 (1985) 510–530
2. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.

Artificial Intelligence 52 (1991) 263–294
3. Dalal, M.: Investigations into a theory of knowledge base revision. In: Proc. AAAI’88,

AAAI Press / The MIT Press (1988) 449–479
4. Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: Proceedings of the

International Conference on Fifth Generation Computer Systems. (1988) 455–462
5. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates,

and counterfactuals. Artificial Intelligence 57 (1992) 227–270
6. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoret-

ical Computer Science, Vol. B. Elsevier Science Publishers (1990) 193–242
7. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge

representation and reasoning. In: Proc. AAAI’06, AAAI Press (2006) 250–256
8. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal

of Algorithms 12 (1991) 308–340
9. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

10. Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Proc. LPAR’07.
Vol. 4790 of LNCS. Springer (2007) 484–498

11. Kloks, T.: Treewidth, Computations and Approximations. Springer (1994)
12. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput. 25 (1996) 1305–1317
13. Darwiche, A.: On the tractable counting of theory models and its application to truth main-

tenance and belief revision. Journal of Applied Non-Classical Logics 11 (2001) 11–34
14. Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth. To

appear in Proc. IJCAI (2009)
15. Winslett, M.: Reasoning about action using a possible models approach. In: Proc.

(AAAI’88), AAAI Press / The MIT Press (1988) 89–93
16. Forbus, K.: Introducing actions into qualitative simulation. Proc. IJCAI (1989) 1273–1278
17. Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. In:

Proc. MFCS’08. Vol. 5162 of LNCS. Springer (2008) 601–612

