
Tractable Answer-Set Programming with Weight Constraints:
Bounded Treewidth is not Enough

Reinhard Pichler∗ and Stefan Rümmele∗ and Stefan Szeider† and Stefan Woltran∗
Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria.

email: {pichler, ruemmele, woltran}@dbai.tuwien.ac.at, stefan@szeider.net

Abstract

Cardinality constraints or, more generally, weight constraints
are well recognized as an important extension of answer-set
programming. Clearly, all common algorithmic tasks related
to programs with cardinality or weight constraints (PWCs) –
like checking the consistency of a program – are intractable.
Many intractable problems in the area of knowledge repre-
sentation and reasoning have been shown to become tractable
if the treewidth of the programs or formulas under consid-
eration is bounded by some constant. The goal of this pa-
per is to apply the notion of treewidth to PWCs and to iden-
tify tractable fragments. It will turn out that the straightfor-
ward application of treewidth to PWCs does not suffice to
obtain tractability. However, by imposing further restrictions,
tractability can be achieved.

Introduction
Answer-set programming has evolved as a paradigm that al-
lows for very elegant solutions to many combinatorial prob-
lems (Marek and Truszczyński 1999). The basic idea is to
describe a problem by a logic program in such a way that
the stable models correspond to the solutions of the consid-
ered problem. By extending logic programs with cardinality
or, more generally, weight constraints, an even larger class
of problems is accessible to this method (Niemelä, Simons,
and Soininen 1999). For instance, in the product configu-
ration domain, we need to express cardinality, cost, and re-
source constraints, which are very difficult to capture using
logic programs without weights.

In this paper, we restrict ourselves to normal logic pro-
grams with cardinality constraints (PCCs, for short) or
weight constraints (PWCs, for short). Clearly, all com-
mon algorithmic tasks related to PCCs and PWCs – like
checking the consistency of a program – are intractable,
since intractability even holds without such constraints. An
interesting approach to dealing with intractable problems
comes from parameterized complexity theory and is based
on the following observation: Many hard problems become
tractable if some parameter that represents a structural as-
pect of the problem instance is small. One important pa-

∗Supported by the Austrian Science Fund (FWF), project
P20704-N18.

†Supported by the European Research Council (ERC), project
239962.

rameter is treewidth, which measures the “tree-likeness” of
a graph or, more generally, of a structure. In the area of
knowledge representation and reasoning (KR & R), many
tractability results for instances of bounded treewidth have
been recently proven (Gottlob, Pichler, and Wei 2006). The
goal of this work is to obtain tractability results via bounded
treewidth also for PCCs and PWCs. It will turn out that the
straightforward application of treewidth to PWCs does not
suffice to obtain tractability. However, by imposing further
restrictions, tractability can be achieved.

Main results of the paper
• We show that the consistency problem of PWCs re-

mains NP-complete even if the treewidth of the considered
programs is bounded by a constant (actually, even if this
constant is 1). Hence, we have to search for further restric-
tions on the PWCs to ensure tractability.

• We thus consider the largest integer occurring in (lower
and upper) bounds of the constraints in the PWC, and call
this parameter constraint-width. If also the constraint-width
is bounded by an arbitrary but fixed constant, then the con-
sistency problem of PWCs becomes linear time tractable
(the bound on the running time entails a constant factor that
is exponential in constraint-width and treewidth).

• For PCCs (i.e., PWCs where all weights are equal to 1)
we obtain non-uniform polynomial time tractability by de-
signing a new dynamic programming algorithm, i.e.: Let w
denote the treewidth of a PCC and let n denote the size of
the PCC. Then our algorithm works in time O(f (w) · n2w)
for some function f that only depends on the treewidth, but
not on the size n of the program. The term “non-uniform”
refers to the factor n2w in the time bound, where the size n
of the program is raised to the power of an expression that
depends on the treewidth w. We shall also discuss further ex-
tensions of this dynamic programming algorithm for PCCs,
e.g.: it can be used to solve in non-uniform polynomial time
the consistency problem of PWCs if the weights are given in
unary representation.

• Of course, an algorithm for the PCC consistency prob-
lem that operates in time O(f (w) · nO(1)) would be prefer-
able, i.e., the parameter w does not occur in the exponent
of the program size n. A problem with such an algorithm

is called fixed-parameter tractable. Alas, we show that un-
der common complexity theoretical assumptions no such al-
gorithm exists. Technically, we prove that the consistency
problem of PCCs parameterized by treewidth is hard for the
parameterized complexity class W[1], i.e., the problem is
fixed-parameter intractable. In other words, a non-uniform
polynomial-time running time of our dynamic programming
algorithm is the best that one can expect.

Structure of the paper After recalling the necessary
background, we prove the NP-completeness of the consis-
tency problem of PWCs in case of binary representation
of the weights. Subsequently, we show the linear fixed-
parameter tractability of the problem if we consider the
treewidth plus the size of the bounds as parameter. After-
wards, the non-uniform polynomial-time upper bound for
the consistency problem of PCCs is established by present-
ing a dynamic programming algorithm. By giving a W[1]-
hardness proof in case of unary representation in the next
section, we show that it is unlikely that this result can be
significantly improved.

Background
Weight constraint programs A program with weight
constraints (PWC) is a triple Π = (A,C,R), where A is a
set of atoms, C is a set of weight constraints (or constraints
for short), and R is a set of rules, defined as follows: each
constraint c ∈ C is a triple (S , l, u) where S is a set of weight
literals over A representing a clause and l ≤ u are nonneg-
ative integers, the lower and upper bound. A weight literal
over A is a pair (a, j) or (¬a, j) for a ∈ A and 1 ≤ j ≤ u + 1,
the weight of the literal. Unless stated otherwise, we assume
that the bounds and weights are given in binary representa-
tion. For a constraint c = (S , l, u) ∈ C, we write Cl(c) B S ,
l(c) B l, and u(c) B u. Moreover, we use a ∈ Cl(c) and
¬a ∈ Cl(c) as an abbreviation for (a, j) ∈ Cl(c) respectively
(¬a, j) ∈ Cl(c) for an arbitrary j. A rule r ∈ R is a pair (h, b)
where h ∈ C (the head) and b ⊆ C (the body). We write
(r) B h and (r) B b. Given a constraint c ∈ C and an
interpretation I ⊆ A over atoms A, we denote the weight of
c in I by

W(c, I) =
∑

(a, j)∈Cl(c)
a∈I

j +
∑

(¬a, j)∈Cl(c)
a<I

j .

I is a model of c (denoted by I |= c) iff l(c) ≤ W(c, I) ≤ u(c).
For a set C ⊆ C, I |= C ⇔ I |= c for all c ∈ C. Moreover, C
is a model of a rule r ∈ R (denoted by C |= r) iff (r) ∈ C or
(r) * C. For a set R ⊆ R, C |= R⇔ C |= r for all r ∈ R. I is
a model of Π (denoted by I |= Π) iff {c ∈ C : I |= c} |= R. If
the lower bound of a constraint c ∈ C is missing, we assume
l(c) = 0. If the upper bound is missing, I |= c iff l(c) ≤
W(c, I). A program with cardinality constraints (PCC) can
be seen as a special case of a PWC, where each literal has
weight 1.

Stable model semantics Given a PWC Π = (A,C,R) and
an interpretation I ⊆ A. Following (Niemelä, Simons, and

Soininen 1999), the reduct cI of a constraint c ∈ C w.r.t. I
is obtained by removing all negative literals and the upper
bound from c, and replacing the lower bound by

l′ = max(0, l(c) −
∑

(¬a, j)∈Cl(c)
a<I

j).

The reduct ΠI of program Π w.r.t. I can be obtained by first
removing each rule r ∈ R which contains a constraint c ∈
B(r) with W(c, I) > u(c). Afterwards, each remaining rule r
is replaced by the set of rules1 (h, b), where h ∈ I ∩ Cl((r))
and b = {cI : c ∈ (r)}. Interpretation I is called a stable
model (or answer set) of Π iff I is a model of Π and there
exists no J ⊂ I s.t. J is a model of ΠI . The set of all answer
sets of Π is denoted byAS(Π). The consistency problem for
PWCs asks, whetherAS(Π) , ∅.

Tree decompositions and treewidth A tree decomposi-
tion of a graph G = (V, E) is a pair T = (T, χ), where T
is a tree and χ maps each node n of T (we use n ∈ T as a
shorthand below) to a bag χ(n) ⊆ V s.t.

(1) for each v ∈ V , there is an n ∈ T s.t. v ∈ χ(n);
(2) for each (v,w) ∈ E, there is an n ∈ T s.t. v,w ∈ χ(n);
(3) for each n1, n2, n3 ∈ T s.t. n2 lies on the path from n1

to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds.

A tree decomposition (T, χ) is called normalized (or nice)
(Kloks 1994), if T is a rooted tree and the following condi-
tions hold: (1) each n ∈ T has ≤ 2 children; (2) for each
n ∈ T with two children n1, n2, χ(n) = χ(n1) = χ(n2); and
(3) for each n ∈ T with one child n′, χ(n) and χ(n′) differ in
exactly one element.

The width of a tree decomposition is defined as the car-
dinality of its largest bag χ(n) minus one. It is known that
every tree decomposition can be normalized in linear time
without increasing the width (Kloks 1994). The treewidth
of a graph G, denoted as tw(G), is the minimum width over
all tree decompositions of G. For arbitrary but fixed w ≥ 1,
it is feasible in linear time to decide whether a graph has
treewidth ≤ w and, if so, to compute a tree decomposition of
width w, see (Bodlaender 1996).

Treewidth and constraint-width of PWCs To build tree
decompositions for programs, we use incidence graphs. For
PWC Π = (A,C,R), such a graph has vertex set A ∪ C ∪ R.
There is an edge between a ∈ A and c ∈ C iff a ∈ Cl(c) or
¬a ∈ Cl(c), and there is an edge between c ∈ C and r ∈ R iff
c ∈ {(r)} ∪ (r). The treewidth of Π, denoted by tw(Π), is
the treewidth of its incidence graph. The constraint-width of
Π, denoted by cw(Π), is the largest (lower or upper) bound
occurring in the constraints ofC (or 0 if there are no bounds).

Example 1. Consider the following system configuration
problem, where one has to choose among the given parts:
p1 : 4000$, p2 : 2000$, and p3 : 1000$ s.t. the total cost is

1With some abuse of notation, we sometimes write for an
atom h, (h, b) as a shorthand for the rule (({(h, 1)}, 1, 1), b).

c1 c2 c3 c4

p1 p2 p3

r1 r2 r3

GEx:

p2, c1, c3

p2, c1, c3

c1, c3

p3, c1, c3

p3, c3

p3, c3, c4

c3, c4

c3, c4, r3

p2, c1, c3

p2, c1

p2, c1, c2

c1, c2

c1, c2

p1, c1, c2

c1, c2

c1, c2

c1, c2, r1

c1, c2

c1, c2, r2

TEx:

Figure 1: Incidence graph GEx and tree decomposition TEx
of Example 1.

≤ 5000$. Thereby one of {p1, p2} has to be selected and p3
requires p2.

This scenario can be represented by the PWC ΠEx =
({p1, p2, p3}, {c1, c2, c3, c4}, {r1, r2, r3}) with

c1 = ({(p1, 4), (p2, 2), (p3, 1)}, 0, 5) r1 = (c1, ∅)
c2 = ({(p1, 1), (p2, 1)}, 1, 2) r2 = (c2, ∅)
c3 = ({(p2, 1)}, 1, 1) r3 = (c3, {c4})
c4 = ({(p3, 1)}, 1, 1)

The incidence graph GEx of ΠEx as well as a normalized
tree decomposition TEx for ΠEx of width 2 are depicted in
Figure 1.

NP-Completeness
Theorem 2. The consistency problem for PWCs is NP-
complete already for programs of treewidth 1.

Proof. Clearly the problem is in NP. To show NP-hardness
we reduce from the well-known NP-complete problem P-
. An instance of P is a collection of positive
integers X = {x1, . . . , xn} (encoded in binary); the question
is whether there exists a set I ⊆ {1, . . . , n} such that

∑
i∈I xi =∑

i<I xi. Given an instance X = {x1, . . . , xn}, we construct a
PWC Π = (A,C,R) as follows. Let S =

∑n
i=1 xi; we may

assume that S is even since otherwise X is a no-instance
and can immediately be rejected. We put A = {a1, . . . , an},
C = {c} where c = ({(a1, x1), . . . , (an, xn)}, S/2, S/2), and
R = {(c, ∅)}.

Claim 1: Π has treewidth 1. By construction the incidence
graph of Π is a tree, hence of treewidth 1.

Claim 2: X is a yes-instance of P iff Π has a
model. This claim follows easily from the definitions.

Claim 3. All models of Π are stable. Let M be a model
of Π. Since each atom appears positively in a constraint at
the head of a rule, and since all the rules have an empty
body, it follows that the reduct ΠM is the conjunction of all
the elements of M. Hence M is stable since no proper subset
of M can satisfy ΠM . We conclude that X is a yes-instance
of P iff Π is consistent.

It is evident that Π can be constructed from X in poly-
nomial time. Hence, by Claims 1-3 we have a polynomial-
time reduction from P to the consistency problem of
PWCs of treewidth 1, and the theorem follows. �

Note that P is “weakly NP-hard” since its NP-
hardness depends on the binary encoding of the given in-
tegers. Accordingly, our reduction provides only weak NP-
hardness for the consistency of PWCs of bounded treewidth.
In fact, we shall prove later that if we assume the weights
to be given in unary the consistency problem is feasible
in (non-uniform) polynomial time for PWCs of bounded
treewidth.

Linear-Time Tractability
Theorem 3. The consistency problem for PWCs can be
solved in linear time for instances whose treewidth and
constraint-width are bounded by constants.

To prove this result we shall take a logic approach and use
Courcelle’s Theorem (Courcelle 1987), see also (Downey
and Fellows 1999; Flum and Grohe 2006). To this aim
we consider Monadic Second Order (MSO) logic on la-
beled graphs in terms of their incidence structure whose
universe contains vertices and edges. We assume an infi-
nite supply of individual variables x, x1, x2, . . . and set vari-
ables X, X1, X2, . . . The atomic formulas are E(x) (“x is an
edge”), V(x) (“x is a vertex”), I(x, y) (“vertex x is incident
with edge y”), x = y (equality), and X(y) (“element y belongs
to set X”). Further we assume that a vertex or edge x can be
labeled with an element a of some fixed finite set, denoted
by the atomic formula Pa(x). MSO formulas are built up
from atomic formulas using the usual Boolean connectives
(¬,∧,∨), quantification over individual variables (∀x, ∃x),
and quantification over set variables (∀X, ∃X).

We write G |= ϕ to indicate that an MSO formula ϕ is
true for the labeled graph G. Courcelle’s Theorem states
that G |= ϕ can be checked in linear time for labeled graphs
whose treewidth is bounded by a constant.

Let k be a constant and consider a PWC Π = (A,C,R) of
constraint-width k. We encode all the information of Π by
adding edge and vertex labels to the incidence graph of Π.
We use the edge labels +,− to indicate polarity of literals
and the labels h, b to distinguish between head and body of
rules. That is, an edge ac for a ∈ A and c ∈ C has label +
if a ∈ Cl(c), and label − if ¬a ∈ Cl(c); an edge cr for c ∈ C
and r ∈ R has label h if c = (r) and label b if c ∈ (r).
We use edge labels 1, . . . , k + 1 to encode weights of literals
(literals of weight 0 can be omitted, weights exceeding k + 1
can be replaced by k + 1). That is, an edge ac for a ∈ A
and c ∈ C has label j if the constraint c contains the weight

literal (a, j) or (¬a, j). We use vertex labels low[i] for i ∈
{0 . . . , k} and up[j] for j ∈ {0 . . . , k,∞} to encode the bounds
of constraints (we use low[0] and up[∞] in case the lower
or upper bound is missing, respectively). Finally we use
vertex labels A,C,R to indicate whether a vertex represents
an atom, a clause or a rule, respectively.

Let G denote the incidence graph of the PWC Π with
added labels as described above. In the following we will
explain how to construct an MSO formula ϕ such that G |= ϕ
iff Π has a stable model. For convenience we will slightly
abuse notation and use meta-language terms as shorthands
for their obvious definitions in the MSO language; for ex-
ample we will write X ⊆ Y instead of ∀x(X(x)→ Y(x)), and
a ∈ A instead of V(a) ∧ PA(a).

Let X,Y be set variables and c an individual variable. For
each integer s ∈ {0, . . . , k + 1} we define an MSO formula
Sums(X,Y, c) that is true for G iff X and Y are interpreted as
sets of atoms, c is interpreted as a constraint, and we have

s =
∑

(a, j)∈Cl(c)
a∈X

j +
∑

(¬a, j)∈Cl(c)
a<Y

j.

We use the fact that it is always sufficient to choose at most
k + 1 literals from c (say r positive and r′ negative literals)
to witness that the above equality holds.

Sums(X,Y, c) ≡
X,Y ⊆ A ∧ c ∈ C (1)
∧

∨
1≤r+r′≤k, 1≤n1,...,nr+r′≤k+1, s=n1+···+nr+r′

∃e1, . . . , er+r′ (2)[∧r+r′
i=1 (Pni (ei) ∧ I(c, ei) ∧ ∃a ∈ A, I(a, ei)) (3)

∧
∧

1≤i<i′≤r+r′ ei , ei′ (4)
∧∀e ∈ E (¬I(c, e) ∨ ∀a ∈ A,¬I(a, e) ∨

∨r+r′
i=1 e = ei) (5)

∧
∧r

i=1(P+(ei) ∧ ∃a ∈ X, I(a, ei)) (6)
∧

∧r′
i=r+1(P−(ei) ∧ ¬∃a ∈ Y, I(a, ei))

]
(7)

Some further explanation: Each of the r + r′ literals is repre-
sented by an edge ei of weight ni. The disjunction in line (2)
runs over all possible combinations of weights n1, . . . , nr+r′

that give the sum s. Line (3) makes sure that each edge
ei has weight ni and runs between constraint c and some
atom. Lines (4) and (5) make sure that the edges are mutu-
ally different and that no other edge runs between constraint
c and an atom. Lines (6) and (7) make sure that e1, . . . , er
represent positive literals over atoms that belong to X, and
er+1, . . . , er+r′ represent negative literals over atoms that do
not belong to Y .

The following formula is true if X satisfies c.

Sat(X, c) ≡ SatL(X, X, c) ∧ SatU(X, X, c) where
SatL(X,Y, c) ≡

Plow[0]∨
∨

i∈{1,...,k}(Plow[i](c)∧
∨

i≤s≤k+1 Sums(X,Y, c)),
SatU(X,Y, c) ≡

Pup[∞] ∨
∨

j∈{0,...,k}(Pup[j](c) ∧
∨

0≤s≤ j Sums(X,Y, c)).

The next formula is true if Y is a model of Π.

Mod(Y) ≡ ∀r ∈ R ∃c ∈ C
[
(H(c, r) ∧ Sat(Y, c)) ∨ (B(c, r) ∧

¬Sat(Y, c))
]

where
H(c, r) ≡ ∃e ∈ E (I(c, e) ∧ I(r, e) ∧ Ph(e)),
B(c, r) ≡ ∃e ∈ E (I(c, e) ∧ I(r, e) ∧ Pb(e)).

Finally, the formula SMod(Y) is true iff Y is a stable model
of Π. We make use of the formula Red(X,Y) that states that
X satisfies the reduct ΠY .
SMod(Y) ≡ Mod(Y) ∧ ∀X ⊆ Y (X = Y ∨ ¬Red(X,Y))
Red(X,Y) ≡ ∀r ∈ R ∀a ∈ A [a ∈ X ∨ a < Y ∨ ¬InH(a, r)
∨∃c (B(c, r) ∧ (¬SatU(Y,Y, c) ∨ ¬SatL(X,Y, c)))] where

InH(a, r) ≡ ∃c ∈ C ∃e, e′ ∈ E (I(c, e) ∧ Ph(e) ∧ I(a, e) ∧
P+(e′)), that is, a is an atom that occurs as a positive literal
in the constraint at the head of rule r.

We summarize the correctness of the construction in the
following lemma.

Lemma 4. Let ϕ = ∃Y SMod(Y). Then Π has a stable
model if and only if G |= ϕ.

Theorem 3 now follows directly by Courcelle’s Theorem.

Dynamic Programming Approach
Recently, Jakl, Pichler, and Woltran (2009) presented a dy-
namic programming algorithm for answer-set programming
that works for programs without cardinality or weight con-
straints, but possibly with disjunction in the head of the
rules. One way to obtain a dynamic programming algo-
rithm for PCCs is to try to extend that algorithm of Jakl et
al. by methods to handle the cardinality constraints. In prin-
ciple, this should be feasible. However, computationally,
this approach has a certain drawback, namely: the afore-
mentioned algorithm is tractable for bounded treewidth, but
it is double exponential w.r.t. the treewidth (basically this
is due to the handling of disjunctions). Our goal here is to
present an algorithm that is only single exponential w.r.t. the
treewidth. In order to achieve this goal, we have to manip-
ulate a slightly more complicated data structure along the
bottom-up traversal of the tree decomposition. In particular,
we have to deal with orderings on the atoms in a model.

For this purpose, we need an alternative characterization
of stable models. Slightly rephrasing a result by Liu (2009),
we can characterize answer sets of PCCs as follows: Given
a PCC Π = (A,C,R), M ⊆ A is an answer set (stable model)
of Π iff the following conditions are jointly satisfied:

• M is a model of Π, i.e., M |= Π,

• there exists a strict linear order < over M, such that for
each atom a ∈ M, there exists a rule r ∈ R with
(R1) a ∈ Cl((r)),
(R2) M |= (r),
(R3) for each c ∈ (r), l(c) ≤
|{b ∈ Cl(c) : b < a} ∪ {¬b ∈ Cl(c) : b ∈ A \ M}|.

Since the handling of linear orders is crucial for utiliz-
ing the above characterization, we will fix some notation
first. We denote by [a1, a2, . . . , an] a (strict) linear order
a1 < a2 < . . . < an on a set A = {a1, . . . , an}. Moreover, [[A]]
denotes the set of all possible linear orders over A. Two lin-
ear orders [a1, . . . , an] and [b1, . . . , bm] are called inconsis-
tent, if there are ai, a j, bk, bl s.t. ai < a j, bk < bl, ai = bl and
a j = bk. Otherwise, we call them consistent. Given two con-
sistent linear orders [a1, . . . , an] ∈ [[A]] and [b1, . . . , bm] ∈
[[B]], we denote by [a1, . . . , an] + [b1, . . . , bm] = S the set of
their possible combinations. S contains those linear orders

[c1, . . . , cp] ∈ [[A∪B]] s.t. for every pair ai < a j (respectively
bi < b j), there exists ck < cl with ck = ai and cl = a j (re-
spectively ck = bi and cl = b j). Note that in general, there
exist more than one possible combinations. Furthermore, we
denote by [a1, . . . , ai−1, ai, ai+1, . . . , an]− [ai] the linear order
[a1, . . . , ai−1, ai+1, . . . , an].

Throughout the whole section, let T = (T, χ) be a nor-
malized tree decomposition of a PCC Π = (A,C,R). We
present a dynamic programming algorithm, traversing in a
bottom-up direction through T in order to compute whether
Π admits an answer set. Ultimately, we will state proper-
ties about subtrees of T and inductively add more and more
nodes, until we get a statement about the whole tree. To
this end, the following notions become handy. Given a node
n ∈ T , we denote by Tn the subtree of T rooted at n. For a
set S ⊆ A∪C∪R, n|S is a shorthand for χ(n)∩S . Moreover,
n↓S B

⋃
m∈Tn

m|S and n⇓S B n↓S \ n|S . Since the scope of
our solution is always limited to a subtree of the whole tree
decomposition, the notion of a model has to be refined wrt.
U = n↓A. To this end, the cardinality of a constraint c ∈ C
with respect to an interpretation I ⊆ U is given by

Γ(c, I,U) = |{b ∈ Cl(c) : b ∈ I}|+ |{¬b ∈ Cl(c) : b ∈ U \ I}|

Then I is a model of c under U (denoted by I |=U c) iff
l(c) ≤ Γ(c, I,U) ≤ u(c). For rule r ∈ R and sets C ⊆ C,
R ⊆ R, the notions of C |= r, I |= C and I |= R are extended
to C |=U r, I |=U C and I |=U R in the straightforward way.
Note that |=U and |= coincide for U = A.

The following definition helps us to find partial answer
sets, limited to the scope of a subtree of T .

Definition 5. A partial solution (for node n ∈ T) is a tuple
ϑ̂ = (n, M̂, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂), with interpretation M̂ ⊆ n↓A,
satisfied constraints Ĉ ⊆ n↓C, satisfied rules R̂ ⊆ n↓R,
linear order L̂< ∈ [[M̂ ∪ Ĉ ∪ n↓R]], cardinality functions
γ̂ : n↓C → N and γ̂< : Ĉ → N, and derivation witness
∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) with derivation rules δ̂R ⊆ n↓R, de-
rived atoms δ̂M ⊆ M̂, derivation head constraints δ̂h ⊆ Ĉ,
derivation body constraints δ̂b ⊆ Ĉ, and check function
σ̂ : δ̂h → {0, 1} s.t. the following conditions are jointly sat-
isfied:

1. Ĉ ∩ n⇓C = {c ∈ n⇓C : M̂ |=n↓A c}
2. R̂ = {r ∈ n↓R : Ĉ |=n↓C r} and n⇓R ⊆ R̂
3. γ̂(c) = Γ(c, M̂, n↓A) for all c ∈ n↓C
4. γ̂<(c) = |{b ∈ Cl(c) : b < c}| +∣∣∣{¬b ∈ Cl(c) : b ∈ n↓A \ M̂}

∣∣∣ for all c ∈ n↓C
5. δ̂M = {a ∈ M̂ : c ∈ δ̂h, a ∈ c, a > c} and M̂ ∩ n⇓A ⊆

δ̂M

6. δ̂b =
⋃

r∈δ̂R
(r) and δ̂b ⊆ Ĉ

7. c ∈ (r)⇒ r > c for all c ∈ δ̂b and r ∈ δ̂R

8. l(c) ≤ γ̂<(c) for all c ∈ δ̂b ∩ n⇓C
9. σ̂(c) = 1⇔ ∃r ∈ δ̂R with (r) = c and c > r

10. σ̂(c) = 1 for all c ∈ δ̂h ∩ n⇓C
The idea of this data structure is that, for some atom,

clause, or rule that is no longer “visible” in the current bag
but was included in the subtree, the containment in one of

the sets of ϑ̂ is strictly what one would expect from an an-
swer set, while for elements that are still visible this contain-
ment does not have to fulfill that many conditions and can
be seen as some sort of “guess”. For example, Ĉ ∩ n⇓C, the
constraints in Ĉ that are no longer visible, indeed contains
exactly the constraints that are satisfied under interpretation
M̂, i.e. {c ∈ n⇓C : M̂ |=n↓A c}, while Ĉ ∩ n|C represents the
guess of those constraints, we still want to become true when
we further traverse the tree towards the root node. M̂, Ĉ, R̂,
and γ̂ are used to ensure that the answer set is a model of
our program. L̂< is the strict linear order, whose existence is
demanded in the definition of answer sets. γ̂< will be used
to check condition (R3) of stable models, i.e., it will contain
the cardinality on the left side of the equation in (R3). The
derivation of atoms a ∈ M̂ is represented by ∆̂. The defini-
tion of answer sets requires for each a ∈ M̂ the existence of
some rule r ∈ R satisfying (R1)-(R3). The set of those rules
will be represented by δ̂R. Sets δ̂h and δ̂b contain the head,
and respectively, body constraints of the rules in δ̂R. The
set δ̂M contains those atoms, for which we already found a
head constraint to derive it. σ̂ is a utility function, which en-
sures that each (guessed) constraint in δ̂h is indeed the head
of some rule in δ̂R. Thereby σ̂(c) = 1 marks that such a rule
was found.

Note that, w.l.o.g., we may assume that the root node of
a normalized tree decomposition has an empty bag. Indeed,
this can always be achieved by introducing at most tw(Π)+1
additional nodes above the root of a given tree decomposi-
tion. Then the following proposition shows the correspon-
dence between answer sets and partial solutions for the root
node of a given normalized tree decomposition.

Proposition 6. Let nroot be the root node of T , and let
χ(nroot) = ∅. Then AS(Π) , ∅ if and only if there exists
a partial solution ϑ̂ = (nroot, M̂, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂) for nroot.

Proof sketch. Given an answer set M ∈ AS(Π), it is easy to
construct a partial solution (nroot,M, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂) ful-
filling all the conditions of Definition 5. For the other di-
rection, the requirement that χ(nroot) = ∅ ensures, that the
guessing part of a given partial solution ϑ̂ is nonexistent.
One can check that the conditions of Definition 5 suffice to
guarantee that M̂ ∈ AS(Π). The most difficult part is the
linear order L̂< ranging not only over the atoms in M̂ but
also over Ĉ and all rules in R. The idea is, that whenever an
atom b is contained positively in some constraint c1, which
is in the body of some rule r, which in turn has head c2 con-
taining atom a, then the ordering [b, c1, r, c2, a] ensures that
b < a and, hence, b is contained in the set on the rhs of the
inequality in condition (R3) of stable models. �

An algorithm that computes all partial solutions at each
node of the tree decomposition is highly inefficient, since
the size and the number of such solutions can grow exponen-
tially in the input size. Therefore we introduce bag assign-
ments, which are similar data structures as partial solutions,
but instead of ranging over the whole subtree, their scope is
restricted to the current bag. But we are not interested in
arbitrary bag assignments, instead we consider those, which

can be seen as the projection of a partial solution to the cur-
rent bag. Formally this is stated as follows:
Definition 7. A bag assignment (for node n ∈ T) is a tuple
ϑ = (n,M,C,R, L<, γ, γ<,∆), with partial model M ⊆ n|A,
satisfied constraints C ⊆ n|C, satisfied rules R ⊆ n|R,
linear order L< ∈ [[M ∪ C ∪ n|R]], cardinality functions
γ : n|C → N and γ< : C → N, and derivation witness
∆ = (δR, δM , δh, δb, σ) with derivation rules δR ⊆ n|R, de-
rived atoms δM ⊆ M, derivation head constraints δh ⊆ C,
derivation body constraints δb ⊆ C, and check function
σ : δh → {0, 1}.
Definition 8. Bag assignment ϑ = (n,M,C,R, L<, γ, γ<,∆)
for node n ∈ T, with ∆ = (δR, δM , δh, δb, σ) is called
bag model (for node n ∈ T) if and only if there exists
a partial solution ϑ̂ = (n, M̂, Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂), with ∆̂ =
(δ̂R, δ̂M , δ̂h, δ̂b, σ̂) s.t.
• M̂ ∩ n|A = M, Ĉ ∩ n|C = C, R̂ ∩ n|R = R
• L̂< and L< are consistent
• γ̂(c) = γ(c), γ̂<(c) = γ<(c) for all c ∈ n|C
• δ̂R ∩ n|R = δR, δ̂M ∩ n|A = δM

• δ̂h ∩ n|C = δh, δ̂b ∩ n|C = δb

• σ̂(c) = σ(c) for all c ∈ δh

Indeed, it turns out that it is sufficient to maintain only bag
models during the tree traversal.
Proposition 9. Let nroot be the root node of T , and let
χ(nroot) = ∅. Then AS(Π) , ∅ if and only if ϑ =
(nroot, ∅, ∅, ∅, [], ∅, ∅,∆) with ∆ = (∅, ∅, ∅, ∅, ∅) is a bag model
for nroot.

Proof. Since χ(nroot) = ∅, every partial solution for nroot is
an extension of ϑ according to the conditions of Definition 8.
Therefore this statement follows from Proposition 6. �

By the same argument as for the root node, we may as-
sume that χ(n) = ∅ for leaf nodes n. Now a dynamic
programming algorithm can be achieved, by creating the
only possible bag model ϑ = (n, ∅, ∅, ∅, [], ∅, ∅,∆) with ∆ =
(∅, ∅, ∅, ∅, ∅) for each leaf n, and then propagating these bag
models along the paths to the root node. Thereby the bag
models are altered according to rules, which depend only
on the bag of the current node. In order to sketch the cor-
nerstones of the DP algorithm more clearly, we distinguish
between eight types of nodes in the tree decomposition: leaf
(L), branch (B), atom introduction (AI), atom removal (AR),
rule introduction (RI), rule removal (RR), constraint intro-
duction (CI), and constraint removal (CR) node. The last
six types will be often augmented with the element e (either
an atom, a rule, or a constraint) which is removed or added
compared to the bag of the child node.

Next we define a relation ≺T between bag assignments,
which will be used to propagate bag models in a bottom-
up direction along the tree decomposition T . In order to
facilitate the discussion below, we define the following sum
for constraint c ∈ C, interpretation I ⊆ U over a set of atoms
U ⊆ A and linear order L< ∈ [[I ∪ {c}]]:

Γ<(c, I,U, L<) = |{b ∈ Cl(c) : b < c}| +
|{¬b ∈ Cl(c) : b ∈ U \ I}| .

Definition 10. Let ϑ = (n,M,C,R, L<, γ, γ<,∆) and ϑ′ =
(n′,M′,C′,R′, L′<, γ

′, γ′<,∆
′) with ∆ = (δR, δM , δh, δb, σ) and

∆′ = (δ′R, δ
′
M , δ

′
h, δ
′
b, σ

′) be bag assignments for nodes n, n′ ∈
T. We relate ϑ′ ≺T ϑ iff n has a single child n′ and the fol-
lowing properties are satisfied, depending on the node type
of n:

(r-RR): r ∈ R′ and

ϑ = (n,M′,C′,R′ \ {r}, L′< − [r], γ′, γ′<,∆), with
∆ = (δ′R \ {r}, δ

′
M , δ

′
h, δ
′
b, σ

′).

(r-RI):

ϑ ∈ {(n,M′,C′,R∗, L∗<, γ
′, γ′<,∆) : L∗< ∈ (L′< + [r])}, with

R∗ =

{
R′ ∪ {r} if C′ |=n|C r
R′ otherwise

and one of the following two groups of properties has to
be satisfied:
• “r is used”: r ∈ R∗, (r) ∈ n|C ⇒ ((r) ∈ δ′h∧(r) > r),

for all b ∈ (r) ∩ n|C : b ∈ C′ ∧ b < r, and

∆ = (δ′R ∪ {r}, δ
′
M , δ

′
h, δ
′
b ∪ ((r) ∩ n|C), σ∗), with

σ∗(c) =

{
1 if c = (r)
σ′(c) otherwise.

• “r is not used”: ∆ = ∆′.
(a-AR): a ∈ M′ ⇒ a ∈ δ′M and

ϑ = (n,M′ \ {a},C′,R′, L′< − [a], γ′, γ′<,∆), with
∆ = (δ′R, δ

′
M \ {a}, δ

′
h, δ
′
b, σ

′).

(a-AI): One of the following two groups of properties has
to be satisfied:
• “set a to false”:

ϑ = (n,M′,C′,R′, L′<, γ
∗, γ∗<,∆

′), with

γ∗(c) = γ′(c) + Γ(c,M′, n|A) − Γ(c,M′, n′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M′, n|A, L′<) − Γ<(c,M′, n′|A, L′<).

• “set a to true”:

ϑ ∈ {(n,M∗ = M′ ∪ {a},C′,R′, L∗<, γ
∗, γ∗<,∆) :

L∗< ∈ (L′< + [a])}, with
∆ = (δ′R, δ

′
M ∪ δ

∗
M , δ

′
h, δ
′
b, σ

′), where

δ∗M =

{
{a} if ∃c ∈ δ′h, a ∈ Cl(c), a > c
∅ otherwise,

γ∗(c) = γ′(c) + Γ(c,M∗, n|A) − Γ(c,M′, n′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M∗, n|A, L∗<) − Γ<(c,M′, n′|A, L′<).

(c-CR): c ∈ C′ ⇔ l(c) ≤ γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1,
c ∈ δ′b ⇒ γ′<(c) ≥ l(c), and

ϑ = (n,M′,C′ \ {c},R′, L′< − [c], γ′, γ′<,∆), with
∆ = (δ′R, δ

′
M , δ

′
h \ {c}, δ

′
b \ {c}, σ

′).

(c-CI): One of the following two groups of properties has
to be satisfied:

• “set c to false”: c < (r) for all r ∈ δ′R, and

ϑ = (n,M′,C′,R′ ∪ R∗, L′<, γ
′ ∪ γ∗, γ′< ∪ γ

∗
<,∆

′), with

R∗ = {r ∈ n|R : C′ |=n|C r}, γ∗ = {(c,Γ(c,M′, n|A)},
γ∗< = {(c,Γ<(c,M′, n|A, L′<)}.

• “set c to true”: (c ∈ (r)⇒ r > c)∧ (c = (r)⇒ r < c)
for all r ∈ δ′R, and

ϑ ∈ {(n,M′,C∗ = C′ ∪ {c},R′ ∪ R∗, L∗<, γ
∗, γ∗<,∆) :

L∗< ∈ (L′< + [c])}, with
∆ = (δ′R, δ

′
M ∪ δ

∗
M , δ

′
h ∪ δ

∗
h, δ
′
b ∪ δ

∗
b, σ

∗), where

R∗ = {r ∈ n|R : C∗ |=n|C r}, γ∗ = γ′ ∪ {(c,Γ(c,M′, n|A)},
γ∗< = γ′< ∪ {(c,Γ<(c,M′, n|A, L′<)},

δ∗b =

{
{c} if ∃r ∈ δ′R : c ∈ (r)
∅ otherwise,

δ∗h ∈

{
{{c}} if ∃r ∈ δ′h : c = (r)
{∅, {c}} otherwise,

δ∗M = {a ∈ M′ : a ∈ Cl(c), c ∈ δ∗h, a > c}, and
σ∗(c) = 1⇔ c ∈ δ∗h ∧ ∃r ∈ δR : (r) = c.

For branch nodes, we extend (with slight abuse of notation)
≺T to a ternary relation.

Definition 11. Given any three bag assignments ϑ =
(n,M,C,R, L<, γ, γ<,∆), ϑ′ = (n′,M′,C′,R′, L′<, γ

′, γ′<,∆
′),

and ϑ′′ = (n′′,M′′,C′′,R′′, L′′< , γ
′′, γ′′< ,∆

′′), with derivation
witnesses ∆ = (δR, δM , δh, δb, σ), ∆′ = (δ′R, δ

′
M , δ

′
h, δ
′
b, σ

′),
and ∆′′ = (δ′′R , δ

′′
M , δ

′′
h , δ

′′
b , σ

′′). We relate (ϑ′, ϑ′′) ≺T ϑ iff

• n has two children n′ and n′′

• M = M′ = M′′ C = C′ = C′′

• R = R′ ∪ R′′ L< = L′< = L′′<
• γ(c) = γ′(c) + γ′′(c) − Γ(c,M, n|A) for all c ∈ n|C
• γ<(c) = γ′<(c) + γ′′< (c) − Γ<(c,M, n|A, L<) for all c ∈ n|C
• δR = δ′R = δ′′R δM = δ′M ∪ δ

′′
M

• δh = δ′h = δ′′h δb = δ′b ∪ δ
′′
b

• σ(c) = max{σ′(c), σ′′(c)} for all c ∈ δh

Let us look exemplarily at (CR) nodes in more de-
tail. Consider nodes n which remove a constraint c, i.e.
χ(n) = χ(n′) \ {c}, where n′ is the child of n (see, for
instance, the node with bag {p3, c3} in the left branch of
TEx in Figure 1, which is a c4-removal node). Let ϑ′ =
(n′,M′,C′,R′, L′<, γ

′, γ′<,∆
′) with ∆′ = (δ′R, δ

′
M , δ

′
h, δ
′
b, σ

′)
be a bag model for n′. We then create a bag model for n
as follows: First we have to check whether the conditions
c ∈ C′ ⇔ l(c) ≤ γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1,
and c ∈ δ′b ⇒ γ′<(c) ≥ l(c) are satisfied. Note that those
checks correspond to the conditions 1, 10, and 8 of Def-
inition 5. They ensure that all guesses with respect to c
turned out be correct. In the case of an affirmative answer,
we remove c from all sets of ϑ′ in order to create the new
bag model ϑ = (n,M′,C′ \ {c},R′, L′< − [c], γ′, γ′<,∆) with
∆ = (δ′R, δ

′
M , δ

′
h \ {c}, δ

′
b \ {c}, σ

′).
The following two theorems state that the rules defined

above indeed help in finding bag models.

Theorem 12 (Soundness). Given a bag model ϑ′ (respec-
tively bag models ϑ′ and ϑ′′). Then each bag assignment ϑ
with ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ) is a bag model.

Proof. Let ϑ′ be a bag model for n′ ∈ T and let ϑ
be a bag assignment for node n ∈ T with ϑ′ ≺T ϑ.
Then n′ is the single child of n, with n being of type
(RR),(RI),(AR),(AI),(CR), or (CI). Assume n is a (r-RR)
node. According to Definition 10, we have r ∈ R′ with ϑ
and ϑ′ differing only in R = R′ \ {r}, L< = L′< − [r], and
δR = δ′R \ {r}. Since ϑ′ is a bag model, there exists a partial
solution ϑ̂ of n′, satisfying all the conditions of Definition 8.

Claim: ϑ̂ is also a partial solution of n.
To verify this claim, we have to check the conditions of
Definition 5. Since n′⇓C = n⇓C, n′↓C = n↓C, n′⇓A = n⇓A,
n′↓A = n↓A, and n′↓R = n↓R, the only non-trivial condition
is number 2 where we have to check n⇓R ⊆ R̂. Since r ∈ R′
and R′ = R̂ ∩ n′|R, we have r ∈ R̂. Hence, from n′⇓R ⊆ R̂
follows that n⇓R = n′⇓R ∪ {r} ⊆ R̂.

Furthermore, the projection of ϑ̂ to the bag χ(n) is exactly
ϑ, since ϑ′ and ϑ differ only by the fact, that r is removed
from every set in ϑ. Therefore ϑ is a bag model. Analo-
gously the theorem can be checked for the other five node
types above.

Now let ϑ′ and ϑ′′ be bag models for n′, n′′ ∈ T and let
ϑ be a bag assignment for node n ∈ T with (ϑ′, ϑ′′) ≺T ϑ.
Then n has two children n′ and n′′ and all the properties
of Definition 11 are satisfied. Since ϑ′ and ϑ′′ are bag
models, there exist partial solutions ϑ̂′ of n′ and ϑ̂′′ of
n′′. Using these two partial solutions we construct ϑ̂ =

(n, M̂′ ∪ M̂′′, Ĉ′ ∪ Ĉ′′, R̂′ ∪ R̂′′, L̂<, γ̂, γ̂<, ∆̂) with ∆̂ = (δ̂′R ∪
δ̂′′R , δ̂

′
M ∪ δ̂

′′
M , δ̂

′
h ∪ δ̂

′′
h , δ̂

′
b ∪ δ̂

′′
b , σ̂). Thereby L̂< ∈ (L̂′< + L̂′′<),

γ̂(c) =


γ̂′(c) c ∈ n′⇓C,
γ̂′′(c) c ∈ n′′⇓C,
γ̂′(c) + γ̂′′(c) − Γ(c, n|M̂ , n|A) otherwise,

γ̂<(c) =


γ̂′<(c) c ∈ n′⇓C,
γ̂′′< (c) c ∈ n′′⇓C,
γ̂′<(c) + γ̂′′< (c) − Γ<(c, n|M̂ , n|A, L̂<) otherwise,

σ̂(c) =


σ̂′(c) c ∈ δ̂′h \ δ̂

′′
h ,

σ̂′′(c) c ∈ δ̂′′h \ δ̂
′
h,

max{σ̂′(c), σ̂′′(c)} otherwise.
One can now check the conditions of Definition 5 in order
to verify that ϑ̂ is a partial solution for n. Furthermore, our
construction ensures that the projection of ϑ̂ to the bag χ(n)
is exactly ϑ, which is therefore a bag model. �

Theorem 13 (Completeness). Given a bag model ϑ for node
n ∈ T. Then either n is a leaf node, or there exists a
bag model ϑ′ (respectively two bag models ϑ′ and ϑ′′) with
ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ).

Proof. Again, we have to distinguish between the node type
of n. Let n ∈ T be a (r-RR) node with child n′, let ϑ be a bag
model for n. We have to show that there exists a bag model
ϑ′ for n′ with ϑ′ ≺T ϑ. Since ϑ is a bag model, there exists
a partial solution ϑ̂ of n, satisfying all the conditions of Def-
inition 8. From r ∈ n⇓R follows, that r ∈ R̂. Now consider

the projection of ϑ̂ onto the bag of n′. Then the result is a
bag model ϑ′ of n′ satisfying the conditions of Definition 8
and having r ∈ R′. But then it is easy to check, that ϑ′ ≺T ϑ,
which closes the proof for (RR) nodes. Analogously the the-
orem can be checked for the other six node types. �

Theorem 12 and Theorem 13 show, that starting from the
trivial bag models for empty leafs, the dynamic program-
ming algorithm creates all bag models for the root node. Ac-
cording to Proposition 9, those bag models are all we need
to know. Thus, this dynamic programming algorithm solves
the consistency problem.

Theorem 14. The consistency problem for PCCs Π can be
solved in time O(22w(log w+4)k4w · ‖Π‖), with w = tw(Π), k =
cw(Π) and ‖Π‖ denoting the size of Π.

Proof sketch. The number of different bag models at each
node n ∈ T is bounded by O(24ww!k2w). The number of
nodes in our tree decomposition is bounded by ‖Π‖ and at
each node the effort to compute a single bag model is con-
stant with the exception of branch nodes, where one has to
compare all possible pairs of bag models of each child node.
The given time bound follows from these observations. �

Extensions
In this section, we discuss some extensions of our dynamic
programming approach and of Theorem 14.

PWCs with unary weights. Our dynamic programming
algorithm for the consistency problem of PCCs can be easily
extended to PWCs with unary representation of weights and
of constraint bounds (PWCs with unary weights, for short).

Theorem 15. The consistency problem for PWCs Π with
unary weights can be solved in time O(22w(log w+4)k4w · ‖Π‖)
with w = max(3, tw(Π)) and k = cw(Π).

Proof. It suffices to show that every PWC Π with unary
weights can be efficiently transformed into a PCC Π′ s.t. Π is
only linearly bigger than Π, the constraint-width remains the
same, and the treewidth is max(3, tw(Π)). The transforma-
tion from Π to Π′ processes each literal ` with weight j > 1
in each constraint c of Π as follows: reduce the weight of `
to 1 and add j − 1 fresh atoms `2, . . . , ` j (each of weight 1)
to c. Moreover, we add, for α ∈ {2, . . . , j}, new constraints
cα := ({(`, 1), (¬`α, 1)}, 1, 1) and new rules rα := (cα, ∅) to
ensure that the fresh variables `2, . . . , ` j have the same truth
value as ` in every model of Π.
It is easy to check that Π′ is only linearly bigger than
Π (since j is given in unary representation) and that the
constraint-width and treewidth are not increased (resp.
changed from treewidth ≤ 2 to treewidth 3). �

Reasoning with PCCs and PWCs with unary weights.
In the context of non-monotonic reasoning, two kinds of rea-
soning are usually considered, namely skeptical and credu-
lous reasoning. Recall that an atom a is skeptically (resp.

credulously) implied by a program Π if a is true (i.e. con-
tained) in every (resp. some) stable model of Π. Our algo-
rithm for the consistency problem can be easily extended to
an algorithm for skeptical or credulous reasoning with PCCs
and PWCs with unary weights. The above upper bounds on
the complexity thus carry over from the consistency problem
to the reasoning problems. We only work out the PCC-case
below:

Theorem 16. Both the skeptical and the credulous rea-
soning problem for PCCs Π can be solved in time
O(22w(log w+4)k4w · ‖Π‖) with w = tw(Π) and k = cw(Π).

Proof. Suppose that we are given a PCC Π and an atom
a. The dynamic programming algorithm for the consistency
problem has to be extended in such a way that we addition-
ally maintain two flags cr(ϑ) and sk(ϑ) for every bag assign-
ment ϑ. These flags may take one of the values {⊥,>} with
the intended meaning that cr(ϑ) = > (resp. sk(ϑ) = >) iff
there exists a partial solution ϑ̂ = (n, M̂, . . .), (resp. iff for
all partial solutions ϑ̂ = (n, M̂, . . .)) the atom a is true in M̂.
Otherwise this flag is set to ⊥. Then a is credulously (resp.
skeptically) implied by Π iff there exists a bag model (resp.
iff for all bag models) ϑ of the root node nroot of T , we have
cr(ϑ) = > (resp. sk(ϑ) = >). Clearly, maintaining the two
flags fits within the desired complexity bound. �

Bounded treewidth and bounded constraint-width. Re-
call that we have proved the fixed-parameter linearity of
the consistency problem of PWCs when treewidth and
constraint-width are taken as parameter (see Theorem 3).
This fixed-parameter linearity result (as well as the analo-
gous result for the skeptical and credulous reasoning prob-
lem which can be easily seen to be expressible in MSO
logic) could also be obtained as a corollary of Theo-
rem 15. Indeed, consider a PWC Π whose treewidth w
and constraint-width k are bounded by some fixed constant.
By previous considerations, we may thus assume that all
weights occurring in Π are bounded by a constant. There-
fore, we can transform all weights and bounds into unary
representation s.t. the size of the resulting PWC with unary
weights differs from ‖Π‖ only by a constant factor (namely
2k). The upper bound on the complexity in Theorem 15 im-
mediately yields the desired fixed-parameter linearity result
since f (w) · O(k2w) is bounded by a constant that is indepen-
dent of the size of Π.

W[1]-Hardness
In this section we will show that it is unlikely that one can
improve the non-uniform polynomial-time result of The-
orem 14 to a fixed-parameter tractability result (without
bounding the constraint-width as in Theorem 3). We will
develop our hardness result within the framework of pa-
rameterized complexity. Therefore we first outline some
of the main concepts of the subject, for an in-depth treat-
ment we refer to other sources (Downey and Fellows 1999;
Flum and Grohe 2006; Niedermeier 2006).

An instance of a parameterized problem is a pair (x, k),
where x is the main part and k (usually a non-negative in-

teger) is the parameter. A parameterized problem is fixed-
parameter tractable if an instance (x, k) of size n can be
solved in time O(f (k)nc) where f is a computable function
and c is a constant independent of k. If c = 1 then we speak
of linear-time fixed-parameter tractability. FPT denotes the
class of all fixed-parameter tractable decision problems. Pa-
rameterized complexity theory offers a completeness theory
similar to the theory of NP-completeness. An fpt-reduction
from a parameterized decision problem P to a parameter-
ized decision problem Q is a transformation that maps an
instance (x, k) of P of size n to an instance (x′, g(k)) of Q in
time O(f (k)nc) (f , g are arbitrary computable functions, c is
a constant) such that (x, k) is a yes-instance of P if and only
if (x′, g(k)) is a yes-instance of Q. A parameterized com-
plexity class is the class of parameterized decision problems
fpt-reducible to a certain parameterized decision problem Q.
Of particular interest is the class W[1] which is considered
as the parameterized analog to NP. For example, the C
problem (given a graph G and an integer k, decide if G con-
tains a complete subgraph on k vertices), parameterized by
k, is a well-known W[1]-complete problem. It is believed
that FPT , W[1], and there is strong theoretical evidence
that supports this belief, for example, FPT = W[1] would
imply that the Exponential Time Hypothesis fails, see (Flum
and Grohe 2006).

In the proof of Theorem 17 below we will devise an fpt-
reduction from the M M O problem
(or MMO, for short). To state this problem we need to intro-
duce some concepts. A (positive integral) edge weighting of
a graph H = (V, E) is a mapping w that assigns to each edge
of H a positive integer. An orientation of H is a mapping
Λ : E → V × V with Λ(uv) ∈ {(u, v), (v, u)}. The weighted
outdegree of a vertex v ∈ V with respect to an edge weight-
ing w and an orientation Λ is defined as

d+
H,w,Λ(v) =

∑
vu∈E with Λ(vu)=(v,u)

w(vu).

An instance of MMO consists of a graph H, an edge weight-
ing w of H, and a positive integer r; the question is whether
there exists an orientation Λ of H such that d+

H,w,Λ(v) ≤ r for
each v ∈ V . Szeider (2008b) has shown that the MMO prob-
lem with edge weights (and therefore also r) given in unary
is W[1]-hard when parameterized by the treewidth of H.
Theorem 17. The consistency problem for PCCs is W[1]-
hard when parameterized by treewidth.

Proof. Let (H,w, r) be an instance of MMO of treewidth t,
H = (V, E). We may assume that no edge is of weight
larger than r since otherwise we can reject the instance. Let
≺ be an arbitrary linear ordering of V . We form a PWC
Π = (A,C,R) with unary weights as follows: The set A
contains an atom auv = avu for each edge uv ∈ E; C con-
tains a constraint cv = (S v, 0, r) for each vertex v ∈ V where
S v = { (auv,w(vu)) : uv ∈ E, v ≺ u } ∪ { (¬auv,w(vu)) : uv ∈
E, u ≺ v }; R contains a rule rv = (cv, ∅) for each v ∈ V .

Claim 1. tw(Π) ≤ max(2, t). Let (T, χ) be a tree decom-
position of H of width t. We extend (T, χ) to a tree decom-
position of Π as follows. For each edge uv ∈ E we pick a
node nuv of T with u, v ∈ χ(nuv) and for each vertex v ∈ V

we pick a node nv of T with v ∈ χ(nv) (such nodes exist by
the definition of a tree decomposition). We attach to nuv a
new neighbor n′uv (of degree 1) and put χ(n′uv) = {u, v, auv},
and we attach to nv a new neighbor n′v (of degree 1) and
put χ(n′v) = {v, rv}. It is easy to verify that we obtain this
way a tree decomposition of Π of width max(t, 2), hence
the claim follows. We note in passing that in fact we have
tw(Π) ≤ tw(H) since H is a graph minor of the incidence
graph of Π.

Claim 2. H has an orientation Λ with maxv∈V d+
H,w,Λ(v) ≤

r iff Π has a model. We associate with an orientation Λ the
subset AΛ = { auv ∈ AΛ : u ≺ v and Λ(uv) = (u, v) }. This
gives a natural one-to-one correspondence between orienta-
tions of H and subsets of A. We observe that for each v ∈ V ,
the sum of weights of the literals in constraint cv satisfied by
AΛ is exactly the weighted outdegree of v with respect to Λ.
Hence AΛ is a model of Π iff d+

H,w,Λ(v) ≤ r for all v ∈ V .
Claim 3. All models of Π are stable. This claim follows

by exactly the same argument as in the proof of Theorem 2.
Π can certainly be obtained from (H,w, r) in polynomial

time. We can even encode the weights of literals in unary
since we assumed that that the edge weighting w is given
in unary. Hence, by Claims 1-3 we have an fpt-reduction
from MMO to the consistency problem for PWCs with unary
weights. Using the construction as described in the proof of
Theorem 15, we can transform Π in polynomial time into a
decision-equivalent PCC Π′ by increasing the treewidth at
most by a small constant. In total we have an fpt-reduction
from MMO to the consistency problem for PCCs (both prob-
lems parameterized by treewidth). The theorem now follows
by the W[1]-hardness of MMO for parameter treewidth. �

Discussion
In this work, we have proved several results for PWCs and
PCCs of bounded treewidth without addressing the problem
of actually computing a tree decomposition of appropriate
width. As has been mentioned earlier, Bodlaender (1996)
showed that deciding if a graph has treewidth ≤ w and, if
this is the case, computing a tree decomposition of width
w is fixed-parameter linear w.r.t. the treewidth. Unfortu-
nately, this linear time algorithm is only of theoretical inter-
est and the practical usefulness is limited (Koster, Bodlaen-
der, and van Hoesel 2001). However, considerable progress
has been recently made in developing heuristic-based tree
decomposition algorithms which can handle graphs with
moderate size of several hundreds of vertices (Koster, Bod-
laender, and van Hoesel 2001; Bodlaender and Koster 2006;
van den Eijkhof, Bodlaender, and Koster 2007; Bodlaender
and Koster 2008). Moreover, in some cases, a tree decom-
position of low width may be obtained from a given problem
in a “natural way”.

In (Szeider 2008a), a meta-theorem for MSO problems on
graphs with cardinality and weight constraints was shown.
This meta-theorem allows to handle cardinality constraints
with respect to sets that occur as free variables in the corre-
sponding MSO formula. It provides a polynomial time algo-
rithm for checking whether a PCC (or a PWC with weights
in unary) of bounded treewidth has a model. However, in

order to check whether a PCC has a stable model, one needs
to handle cardinality constraints with respect to sets that oc-
cur as quantified variables in the MSO formula, which is not
possible with the above mentioned meta-theorem.

We have already mentioned the dynamic programming al-
gorithm for answer-set programming (ASP) presented by
Jakl, Pichler, and Woltran (2009). This algorithm works
for programs without cardinality or weight constraints, but
possibly with disjunction in the head of the rules. The data
structure manipulated at each node for this ASP algorithm is
conceptually much simpler than the one used here: Potential
models of the given program are represented by so-called
tree-models. A tree-model consists of a subset of the atoms
in a bag (the ones which are true in the models thus repre-
sented) and a subset of the rules in a bag (the ones which
are validated by the models thus represented). However, to
handle the minimality condition on stable models, it is not
sufficient to propagate potential models along the bottom-
up traversal of the tree decomposition. In addition, it is re-
quired, for each potential model M, to keep track of all those
models of the reduct w.r.t. M which would prevent M from
being minimal. Those models are represented by a set of
tree-models accompanying each tree-model. Hence, despite
the simplicity of the data structure, the time complexity of
the algorithm from (Jakl, Pichler, and Woltran 2009) is dou-
ble exponential in the treewidth, since it has to handle sets
of subsets of the bag at each node. Hence, rather than ex-
tending that algorithm by mechanisms to handle weight or
cardinality constraints, we have presented here an algorithm
based on a completely different data structure – in particular,
keeping track of orderings of the atoms. We have thus man-
aged to obtain an algorithm whose time complexity is single
exponential in the treewidth.

Conclusion
In this paper we have shown how the notion of bounded
treewidth can be used to identify tractable fragments of
answer-set programming with weight constraints. However,
by proving hardness results, we have also shown that a
straightforward application of treewidth is not sufficient to
achieve the desired tractability.

For future work, we plan to extend the parameterized
complexity analysis and the development of efficient algo-
rithms to further problems where weights or cardinalities
play a role. Note that weights are a common feature in
KR & R, e.g., to express costs or probabilities. Of particular
interest would be extensions of Courcelle’s Theorem such
as presented by Szeider (2008a). We thus aim at a meta-
theorem that yields an alternative proof of our non-uniform
polynomial-time tractability result for PCCs and that can be
used as a tool in proving further tractability results of this
kind in the KR & R domain.

The upper bounds on the time complexity of our dynamic
programming algorithms were obtained by very coarse esti-
mates (see Theorems 14, 15, 16). In particular, we assumed
straightforward methods for storing and manipulating bag
assignments. For an actual implementation of our algorithm,
more sophisticated methods and data structures have to be

developed. This should also lead to a further improvement
of the upper bounds on the time complexity.

References
Bodlaender, H. L., and Koster, A. M. C. A. 2006. Safe sep-
arators for treewidth. Discrete Mathematics 306(3):337–
350.
Bodlaender, H. L., and Koster, A. M. C. A. 2008. Com-
binatorial optimization on graphs of bounded treewidth.
Comput. J. 51(3):255–269.
Bodlaender, H. L. 1996. A linear-time algorithm for find-
ing tree-decompositions of small treewidth. SIAM J. Com-
put. 25(6):1305–1317.
Courcelle, B. 1987. Recognizability and second-order de-
finability for sets of finite graphs. Technical Report I-8634,
Université de Bordeaux.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer Verlag.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer Verlag.
Gottlob, G.; Pichler, R.; and Wei, F. 2006. Bounded
treewidth as a key to tractability of knowledge represen-
tation and reasoning. In Proc. AAAI’06, 250–256.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. In Proc. IJCAI’09,
816–822.
Kloks, T. 1994. Treewidth, Computations and Approxima-
tions. Springer Verlag.
Koster, A. M. C. A.; Bodlaender, H. L.; and van Hoesel,
S. P. M. 2001. Treewidth: Computational experiments.
Electronic Notes in Discrete Mathematics 8:54–57.
Liu, G. 2009. Level mapping induced loop formulas for
weight constraint and aggregate programs. In Proc. LP-
NMR’09, volume 5753 of LNCS, 444–449. Springer.
Marek, V. W., and Truszczyński, M. 1999. Stable mod-
els and an alternative logic programming paradigm. In
The Logic Programming Paradigm: A 25-Year Perspective,
375–398. Springer.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Al-
gorithms. Oxford University Press.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
model semantics of weight constraint rules. In Proc. LP-
NMR’99, volume 1730 of LNCS, 317–331. Springer.
Szeider, S. 2008a. Monadic second order logic on graphs
with local cardinality constraints. In Proc. MFCS’08, vol-
ume 5162 of LNCS, 601–612. Springer.
Szeider, S. 2008b. Not so easy problems for tree decom-
posable graphs (invited talk). In Proc. ICDM’08, 2nd Inter-
national Conference on Discrete Mathematics, 161–171.
van den Eijkhof, F.; Bodlaender, H. L.; and Koster, A. M.
C. A. 2007. Safe reduction rules for weighted treewidth.
Algorithmica 47(2):139–158.

