
A Dynamic-Programming Based ASP-Solver?

Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Institut für Informationssysteme E184/2, Technische Universität Wien
Favoritenstr. 9–11, 1040 Wien, Austria

Abstract. We present a novel system for propositional Answer-Set Pro-
gramming (ASP). This system, called dynASP, is based on dynamic pro-
gramming and thus significantly differs from standard ASP-solvers which
implement techniques stemming from SAT or CSP.

1 Introduction

Answer-Set Programming (ASP, for short) [6,7] is nowadays a well acknowledged
paradigm for declarative problem solving as witnessed by many successful appli-
cations in the areas of AI and KR. Evaluating ASP-programs relies on two steps,
the grounding (which instantiates the variables in the program’s rules) and the
solving process itself which works on ground (i.e. propositional) programs. For
the latter task, many different solvers (see [1] for an overview) exist nowadays,
and also the system presented here falls into this category.

Solving ground programs still is an intractable problem. More precisely, de-
cision problems for disjunctive programs (DLPs) are located on the second level
of the polynomial hierarchy, but also decision problems defined over disjunction-
free programs — usually called normal programs (NLPs) — are NP- or coNP-
complete. The same complexity as for NLPs holds if a certain restriction on
the usage of disjunction (head-cycle free programs, HCFPs) is assumed. Due to
these intractability results, standard-ASP solvers use techniques stemming from
SAT or CSP, where intractability has been successfully tackled in practice.

Our solver, which we present here, relies on a more theoretical approach to
deal with intractable problems, namely parameterized complexity theory where
the idea is to bound a certain parameter by a constant in order to obtain tractable
fragments for the problems under consideration. One important such parameter
is treewidth, which measures the “tree-likeness” of a graph. For instance, the
problem of deciding ASP consistency (i.e. whether a disjunctive logic program
has at least one answer set) has been shown tractable [3] for programs having
an incidence graph of bounded treewidth. Treewidth is defined over so-called
tree decompositions which in turn can be used by dynamic programming (DP)
methods to solve the considered problem. One such algorithm for disjunctive
ASP has been presented recently [4]. We refer to [4] also for details how concepts
as incidence graphs, treewidth, tree decomposition, etc. are defined in terms of
ASP programs. It is however important to note that such DP algorithms can

? Supported by the Austrian Science Fund (FWF), project P20704-N18.



Parsing

Ground Program

Preprocessing
Tree Decom-

position Normalization
dynASP

Algorithm

Answer Sets

Fig. 1. Architecture of dynASP.

be applied to an arbitrary program as soon as a tree decomposition is found for
that program. The running time of the DP algorithms however heavily depends
on the width of the supplied tree decomposition.

To evaluate this new DP-based approach for ASP, we have implemented two
such methods: one for DLPs, cf. [4]; and another one applicable to HCFPs which
relies on a rather different idea1. Thus, we call our solver dynASP, which first
finds a tree decomposition for the given program, and then uses the aforemen-
tioned DP methods to evaluate the program. This entire process underlying our
approach is hidden from the user. In fact, dynASP presents itself like a standard-
ASP solver.

The main aim of this paper is to announce the release of the first prototype
of our ASP-solver and to present some implementation details as well as some
preliminary experiments. Ongoing and future work will carefully evaluate the
potential of this novel approach for solving ASP programs.

2 Architecture

Figure 1 gives an overview of the overall architecture of the system. Generally
the system works in five discrete steps:

– Parsing DLV-style programs is done via a lex/yacc parser.
– Preprocessing is done after successfully reading the input. This task is

twofold: Firstly, it performs equivalence-preserving transformations for the
provided program (for the moment, this just takes care of some special cases
like tautological and empty rules in order to circumvent problems which
might arise if such rules are present in the later steps; for future versions
this task can be extended to find simplifications in terms of reducing the
tree-width of the program without changing its semantics), second it con-
structs the incidence graph of the program which is then passed to the Tree
Decomposition module.

– For computing the tree decomposition, we use an algorithm based on heuris-
tics [2]. This algorithm does not guarantee to find a tree decomposition of
minimal width. But it usually finds a tree decomposition of width close to
the minimum at comparatively low computational cost. An implementation
of this algorithm is freely available from http://www.dbai.tuwien.ac.at/
proj/hypertree/downloads.html.

1 Basically, the HCFP algorithm follows the ideas underlying a DP algorithm for
weight-constraints programs introduced in [8].

2



– Normalization guarantees that the difference between a node and its pre-
decessor in the tree decomposition is at most one variable or rule. Our algo-
rithms require tree decompositions of this particular form.

– The actual algorithm is run. Depending on the supplied program options,
this is either the ASP algorithm for general DLPs or the algorithm for
HCFPs, as described earlier.

3 System Specifics

An executable version of dynASP is available under

http://www.dbai.tuwien.ac.at/research/project/tractability/dynasp/

dynASP is invoked via command line and provides the following options:

dynasp [-b] [-t] [-s <seed>] [-f <file>] -a <alg> -o <output>

-b print benchmark information
-t perform only tree decomposition step
-s seed initialize random number generator with “seed”
-f file the file to read from
-a alg the algorithm to use, one of {sat, minsat, asp, hcfasp}
-o output the output-type, one of {enum, count, yesno}

The benchmark information consists of timing information being printed to the
screen containing information about CPU time used for the tree decomposition,
normalization, algorithm and evaluation steps and of course the overall time.

Depending on whether a file option is given, input is either read from a file
or from standard input. Depending on the algorithm, the input has to be in a
certain format. For the DLP algorithm and its HCF pendant the file has to come
in the core language of dlv [5], i.e. restricted to ground disjunctive programs.
The algorithm and output options specify which algorithm to use and what the
output should be (i.e. enumeration, counting or consistency checking).

dynASP is written in C++ using lex/yacc for parsing the input. In its current
version dynASP has nearly 6700 lines of code written in C++ (including the
tree decomposition functionality). The core algorithm for DLPs has around 600
lines of C++ code, the algorithm for head-cycle-free programs has about 200
more. Certain auxiliary functionality used by both algorithms is implemented in
another 200 lines.

dynASP uses an extensible class structure, allowing for code re-use and easy
implementation of various algorithms based on tree decompositions. Both the
DLP algorithm and the one for head-cycle-free programs are implemented us-
ing this class structure, with the two implementations sharing much of the code
used for consistency checking and answer-set enumeration. To illustrate the abil-
ity to implement other types of algorithms based on tree decompositions, DP
algorithms for SAT and MINSAT have also been implemented using the same
framework, however reading files in DIMACS CNF format.

3



4 Discussion

First experiments with our system on logic programs of low treewidth have
resulted in competitive performance compared with state-of-the-art ASP solvers.
The performance of our system is particularly favorable in situations where only
one pass of the tree decomposition is required (i.e., to check consistency or for
counting the answer sets). The evaluation of HCF programs with the dedicated
HCFP algorithm tends to display a better performance than the algorithm for
general programs. However, in its current implementation, our HCFP algorithm
is quite sensitive to the particular form of the tree decomposition. In contrast,
the algorithm for general DLPs is rather robust in this respect. Its performance
is mainly determined by the treewidth. Up to treewidth 5 – 7, this performance
is comparable to that of the DLV system.

Work on our system is ongoing. Major goals for the near future are further
performance improvements, e.g., by introducing better “data structures” or by
simplifying the programs to reduce the treewidth (without changing the seman-
tics of the programs). Eliminating the sensitivity of the HCFP algorithm to the
particular form of the tree decomposition also falls into this category. Moreover,
we plan to extend this framework by implementing further algorithms like e.g.,
for programs with weight/cardinality constraints, as well as support for input in
the SMODELS solver syntax.

References

1. M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. The second
answer set programming competition. In Proc. LPNMR’09, volume 5753 of LNCS,
pages 637–654. Springer, 2009.

2. A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer.
Heuristic methods for hypertree decomposition. In Proc. MICAI’08, volume 5317
of LNCS, pages 1–11. Springer, 2008.

3. G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. In Proc. AAAI’06, pages 250–256. AAAI
Press, 2006.

4. M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded
treewidth. In Proc. IJCAI’09, pages 816–822. AAAI Press, 2009.

5. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7(3):499–562, 2006.

6. V. W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Pro-
gramming Paradigm. In The Logic Programming Paradigm – A 25-Year Perspective,
pages 375–398. Springer Verlag, 1999.

7. I. Niemelä. Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

8. R. Pichler, S. Rümmele, S. Szeider, and S. Woltran. Tractable answer-set program-
ming with weight constraints: Bounded treewidth is not enough. In Proc. KR’10,
pages 508–517. AAAI Press, 2010.

4


