1

Over the past decadédnswer-Set ProgramminfASP, for
short)[Marek and Truszczyhski, 1999; Niemela, 1998so

Answer-Set Programming with Bounded Treewidth

Michael Jakl, Reinhard Pichler and Stefan Woltran
Institute of Information Systems, Vienna University of fieology
Favoritenstrasse 9-11; A-1040 Wien; Austria
{jakl, pichler, woltrar} @dbai.tuwien.ac.at

Abstract

In this paper, we present a novel approach to the
evaluation of propositional answer-set programs.
In particular, for programs with bounded treewidth,
our algorithm is capable of (i) computing the num-
ber of answer sets in linear time and (ii) enumerat-
ing all answer sets with linear delay. Our algorithm
relies on dynamic programming. Therefore, our ap-
proach significantly differs from standard ASP sys-
tems which implement techniques stemming from
SAT or CSP, and thus usually do not exploit fixed
parameter properties of the programs. We provide
first experimental results which underline that, for
programs with low treewidth, even a prototypical
implementation is competitive compared to state-
of-the-art systems.

Introduction

results in the area of Al and KR have been recently proven
tractable by Gottlolet al. [2006, among them also the prob-
lem of deciding ASP consistency (i.e. whether a disjunctive
logic program has at least one answer set). Treewidth hereby
has to be adapted suitably, for instance, by using the inci-
dence graph of the program. However, an FPT result itself
does not immediately lead to an efficient algorithm. Indeed,
quite some work has been done within the last years to over-
come this obstacle. We mention here only some recent results
for counting problems: Samer and Szeit2d07 have pro-
posed algorithms foftSAT (counting the number of models

of a CNF formula) which follow the principle of dynamic pro-
gramming; Jakét al. [2004, on the other hand, map different
counting problems to a certain (tractable) datalog fragmen
Both approaches have in common that they use the concept
of tree-decompositions and proceed by a bottom-up traver-
sal of the tree, such that at each nedeertain information
about the subproblem (represented by the subtree rootgd at
is available. Consequently, results for the entire prokdem

be read off the root of the tree decomposition. Algorithnrs fo
counting problems are of particular interest here, sineg th
are closely related to the problem of enumerating solutions

known as A-ProlodBaral, 2002, has become an increas- which is, of course, a central requirement in ASP.

ingly acknowledged paradigm for declarative programming.

In this work, we generalize the dynamic programming ap-

The basic idea of ASP is to encode solutions to a problenproach for#SAT due to Samer and Szeidg007 to the
into the models of a program in such a way that the soluworld of ASP in order to count and enumerate all answer sets
tions are described in terms of rules and constraints. ASPf a given program. We thus provide a novel approach for

enjoys a large collection of successful applications inahe

computing answer sets, which significantly differs froomsta

eas of Al and KR showing the potential of this paradigm.dard ASP systems (s¢&ebseet al,, 2007 for an overview)
However, the underlying complexity of evaluating proposi-that usually do not exploit fixed parameter properties. We im
tional disjunctive programs (which are the objects we deaplemented the proposed method in a prototype system. Our
with here) shows that the problems ASP has to deal with arsystem should not be seen as competitor to general-purpose
highly intractable: the decision problems are located @ th ASP solvers, but as an alternative for application scesario

second level of the polynomial hierarchy (§&iter and Got-

where the problems possess low treewidth; usually the ASP

tlob, 1993), and the problem of counting all answer sets canencodings then have similarly low treewidth. It is gener-
analogously be shown to BeNP-complete.

ally believed that many practically relevant problems have

An interesting approach to dealing with such intractablelow treewidth. Thorugd1994, for instance, shows that the

problems is parameterized complexity. In fact, hard probreewidth of the control-flow graph of structured programs
lems can become tractable if some problem parameter ignore precisely, goto-free C programs) is at most six. A de-
bounded by a fixed constant. Such problems are also calldailed discussion of applications to which treewidth hasrbe
fixed-parameter tractable (FPT). One important paramster isuccessfully applied is given by Bodlaen{i993.

treewidth, which measures the “tree-likeness” of a graph. B Results. Our main contributions are as follows.

using a seminal result due to Courcdll®9d, several FPT

*This work was supported by the Austrian Science Fund (FWF),

project P20704-N18.

e An FPT algorithm for deciding ASP consistencyliin-
ear timew.r.t. the size of the program.

e An FPT algorithm for counting the number of answer

nii{y,r1,75}

sets inlinear timew.r.t. the size of the program (assum-

u
. |
ing unit cost for arithmetic operations). > na: {r1,r5}
. . — ~
e A novel method for enumeratingll answer sets with v na: {r1,rs} ng: {r1,rs}
i T2 | |
linear delay . na: {zr1,ms} n1o: {w,r1,rs}
T
xT
T
Y
T
/
z

e Presentation of a first prototype implementation and ! <N

some preliminary experimental results. 3 noiterd e rnrs} mie {worrs)
ng: {z,r1,m2} ni12: {w,rs} ni7i {w,r1}
| | |
n7:{ry,ra2} nis: {w,z,r5} nig: {v,w,r1}
| | |

. ng: {u,r1,m2} ni1a: {w,x} nig: {v,w}
° | |

4

2 Preliminaries

Throughout the paper, we assume a univérsef proposi-
tional atoms. A literal is either an atom or a negated atom
a. For a set4 of atoms,A denotes{a | a € A}. Clauses
are sets of literals. An interpretatiohis a set of atoms)
and we define, for a clauseand O C U, I |=¢ c iff ~ Figure 1. Incidence grapty» of example progrant (left)
(In0) UW) e # 0. ForaseC of clauses] o C and anormalized tree decompositidnof G p.

holds iff I =0 ¢, for eachc € C. ForO = U, we usually

write |= instead of=o. to decide if a graph has treewidthw and, if so, to compute
Answer-Set Semantics for Logic Programs. A proposi- atree decomposition of width [Bodlaender, 1996

tional disjunctive logic program (or simply, a program) is a Tree Decompositions of ProgramsTo build tree decompo-

nisi {w,z,ra} mno2o: {v,w,r3}

setofrulesi; V- Va; < a1, G, "Amt1, -, "an, sitions for programs, we shall use incidence grap@éven a
(n > 0,n > m > [), where alla; are fromU. Arule programg, such a graph has as verticBsJ At(R), and as
r of this form consists of a head(r) = {ai,...,a} and edges all pairga,) with an atoma appearing in a rule of
a body, given bys*(r) = {ait1,...,am} andB~(r) = R In case of normalized tree decompositions, we distinguish
{am+1,...,an}. By At(R) we denote the set of atoms oc- petween six types of nodes: atom introduction (Al), rule

curring in programz. We often identify a progrank with introduction (RI), atom removal (AR), rule removal (RR),
the clause sefH(r) UB~ (r)UB*(r) | » € R}, and likewise, branch (B), and leaf (L) nodes. The first four types are uguall
define the reducR’ of a programR wrt. an interpretatiod ~ augmented with the elemeaieither an atom or rule) which

as{H(r) UBT(r) | B=(r) NI = 0,7 € R}. Following Gel- IS removed or added compared to the bag of the child node.

fond and Lifschit 1991, an interpretatiod is ananswer set Example 2.2 Figure 1 shows the incidence graphy of pro-
of a programR iff I |= Rand fornoJ C I, J = R'. The gram P and a normalized tree decompositi@nof Gp hav-
set of all answer sets of a prograinis denoted byAS(R). ing width 2. Indeed, we haven(Gp) = 2, so7 has optimal

Example 2.1 We will use as a running example throughout Width. Examples for node types amg as (L) noden7 as

the paper the progran® which consists of the following rules (-AR) nodens as -Al) node,ns as (2-RR) nodey, as
(r5-RI) node, anch, as (B) node.

T] = U V,Y; To = Z << U r3 = U< W;
T4 = W T s = T Y, 2. . .

3 The Dynamic Programming Approach

For this section, lef” = (T, 5) be a normalized tree decom-
Tree Decomposition and Treewidth.A tree decomposition position of the incidence graph of a given progr&n For
ofagraphG = (V, E)isapair(T, 3), whereT isatreean@@ M C RU At(R), we useA,, (resp.Rys) as a shorthand for
maps each node of T' (we usen € T as a shorthand below), At¢(R) N M (resp.R N M). We refer to the root node @f as

to abag 3(n) C 2V, such that the following conditions are rt. Foranode: € T, T,, denotes the subtree dfrooted atn.
met: We useA,, (resp.R(,)) to denote the set of all atoms (resp.

e For eachv € V, there is am € T such that € 5(n). rules) which appear ig),,,c. 6(m) (i.e. in.some bag of the
o Foreachuv,w) € E. thereisam € T, s.tw,w € 3(n). tre€T,); moreoverAy, (resp.Ry,) abbreviatesi,,) \ (n)
e For any three nodes,ns,n3 € T, if n» lies on the (resp.R,) \ B(n)), i.e. the set of atoms (resp. rules) which

- _ appear only in bags “below” the root @f,.
path fromny t0 ng, thenfi(n1) N f(ns) < B(n2) We proceed as follows: First, we define the mathemati-

A tree decompositiorT’, 3) is callednormalized(or nice) c3| objects fee interpretationswhich will underly our algo-
[Kloks, 1994 if (i) each node inT" has at most two chil- rithms. We construct a mappiy-) from tree interpretations

P has a unique answer s¢t, w, x}.

dren; (ii) for each node with two childrenny, ns, 5(n) = to (standard) interpretations and observe that a certéisesu
B(ni) = f(n2); and (iii) for each node: with one childn’, g of the tree interpretations characterizes the answer $ets o
B(n) andp(n') differ in exactly one element. R. However, we never computg-) explicitly. Instead, we

Thewidth of a tree decompOSition is defined as the Cardi-deﬁne a re'atiom,r a|0ng the structure (ﬂ”, in order to ef-

nality of its largest bag/(n) minus one. Itis known thatevery ficiently computeS in a bottom-up manner via so-callége

tree decomposition can be normalized in linear time withouimodels a subset of the tree interpretations. Finally, we show
increasing the width. Thaeewidthof graphG, denoted as

tw(G), is the minimum width over all tree decompositions 'See[Samer and Szeider, 200Tor other possible types of
of G. For arbitrary but fixedv > 1, itis feasible in lineartime graphs and a discussion why incidence graphs are favorable.

how to use this method to count and enumerate the answéry assumptiory € AS(R).

sets of progrank from a given tree decompositiéh for R.

3.1 Tree interpretations

Definition 3.1 A tree interpretation fof (7 -interpretation
for short) is a tuple(n, M, C) wheren € T is a node,M C
B(n) is calledassignmentandC C 2°(" is calledcertificate

The basic intuition behind -interpretations is as follows:
the assignment/ of a7 -interpretatior(n, M, C) contains an
interpretationA ; over A,y (implicitly it refers to interpre-
tationsI over A,,)) together with rules € R, satisfied
byl,ie.l Ea,,
of assignments and carries interpretations (together seith

For (ii), we haveRy; = R,
by definition. We show that for eacN € C, Ry C R
holds. Suppose this is not the case, i.e.Nete C, such
that Ry = R,:. By definition of re,+(N,), there exists
aJ C I, such that for each € R = R, U Ry, either

JErors=(r)NI #0. HenceJ = R!, a contradiction to
I € AS(R). O
3.2 Tree models

Theorem 3.6 tells us that tree interpretatiénshich satisfy
E(8) # 0 are of particular interest.

r. CertificateC can be understood as a set Definition 3.7 A7 -interpretationd is calledtree modebf 7

(7-model| for short) iff€(0) # . AT-model that is also a

isfied rules in(R;(,,)") which are in a certain subset-relation 00 model for7 is called7 -root-model

to M. The following definitions make this more precise.
Definition 3.2 Givenn € T and I,J C A, define
SAT,(I) = {r | r € R),I Fa, 7} andRsAT,(J,I) =
{rlr€RuystJEa, rors=(r)NI#0}.

Roughly speakingsArT,, (1) yields those rules oR which
occur in bags of the subtrdg, and are satisfied hf. Analo-

gously,RsAT, (J, I) yields such rules which are either satis-

fied by.J or not contained in the redué&t’ (thus we can view
them as satisfied hy in a trivial way).

Definition 3.3 Letd = (n, M, C) be aT -interpretation,l C
Any, and letR* = Ry U Ry,). We define

en(M) = {A]\4UK|K§A[H],SATn(AMUK)ZR*};
Ten(M, I) = {A1\4UK|KQA[n], RSATn(AI\,{UK, I):R*}

Moreover(is calledvalid wrt. I in 6, if, for eachN C g(n),
it holds thatN € C iff there exists/ € re, (N, I)s.t.J C 1.

The rationale behind,, (1) is to yield those extensions of
the interpretationd,, stored in the assignmedt/ of a 7-
interpretatiory = (n, M,C) to an interpretatior over A,
(i.e. over all atoms occurring in bags f,), such that the
rulesR), plusall rules inRy,, (i.e. all rules occurring in bags
of T,,, but belown) are satisfied by. A similar idea is fol-

lowed byre,, (M, I') which additionally takes the concept of

reduct into account.
We are now prepared to define the mappéig) and we
shall see that for certaifi-interpretationd, £(9) C AS(R).

Definition 3.4 For a T -interpretationd = (n, M,C), let
EO@)={I|I¢ce,(M)andCisvalidwrt.Tin@}.

Definition 3.5 A T -interpretation(n, M, C) is called aroot
modelfor 7 iff n = rt, Ryy = Rg(,) and, for eachV € C,
Ry C Ry

Theorem 3.6 Let© be the set of all root models f@r. Then,
AS(R) = Ugeo €(0).

Proof. We only show theC-direction. TheD-direction is
proved analogously. We writd,; as shorthand for g,
and likewiseR,; for Rg.. Letl € AS(R) and let) =
(rt, M,C)with M = (INA,;)UR,; andC = {N C §(rt) |
3J € re(N,I)s.t.J C I}t. Note thatC is thus valid wrt.
I'in 6. It remains to show (iY € e (M) and (i) 6 € ©.
(i) holds sinceR), U R[rt] =R, U R[rt] = R,andl = R

For leaf nodes, tree models can be determined as follows.
For everyM C §(n), we either have, (M) = A, in case
Ry = {r | 7 € Rgm), Am Fay,, T} ore,(M) = 0,
otherwise. Hence, to compute <models for a leaf node
n, one considers eachy; C Ag(,) and determinesty, =
{r|re€ Rgwmy,Am ':A;a(m r}; thenAy; U Ry yields the
assignmend/ for a7 -model(n, M, C). CertificateC is given
by all J C Ay together with the rules € Rg,,, for which

eitherJ =4, 7 orB=(r) N Ay # 0 holds.

Example 3.8 Take our example tree-decomposition in Fig-
ure 1 and consider leaf nodes. We haveB(ng) =
{u,r1,72}. Recallry = v «— v,yandrs = z «— u.
We first setu to true. This satisfies;, i.e. {u} (.3 1.

For the corresponding certificate, there is only one possi-
bility: We setu to false and observe that this satisfies
Hence(ns, {u,r1}, {{r2}}) isa7-model. Anothe? -model

is (ns, {r2}, %) and these are the onl§y-models foms.

We next define a relatior s between7 -interpretations.
The concrete definition depends on the node type. We first
give the definition for the removal and introduction nodes.

Definition 3.9 For T -interpretationsé = (n,M,C) and
0 = (n',M',C"), we haved’ < 0 iff n has a single child
n/, and (depending on the node typergfthe conditions as
depicted in the table of Figure 2 are fulfilléd.

Example 3.10 Recall7-modelfs = (ns, {u,r1},{{r2}}).

To obtain7-models forn; (which is a ¢:-AR) node) from
fs we have to remove all occurrenceswfn dg, i.e. we get
0s <1 (n7,{r1},{{r2}}) = 07. Next, we considets which

is a (z-Al) node. We have two possibilities. First, we set the
new atomz to true, i.e. we get as assignment, 1,72} =
{r1} +ns z (for the definition of operators as$,,, see Fig-
ure 2). The certificate consists 8f = {r1} = {r1} xn, 2,
Ny ={z,r9} = {ro} +ns z@nd N3 = {ra} = {ra} Xn, 2.
Hence,0; <1 (ne,{z,71,7m2},{N1, N2, N3}) = 6} (also
note here thatR_, =). Second, we set the new atom
z to false, which yield9? = (ng, {r1},{Ns}). For the
next nodens, which is of type #2-RR), thus onlyd} plays

a role since its assignment containsand we obtairfj <+
(ns,{z,r1},{{z},0}) = 05 (the set{r,} from the certifi-
cate off} also drops out, since it does not contais). Fi-
nally, we usef; to computeZ-models ofns, an (5-RI)

2Note that in case: is an (Al)-node, there are two ways h@
andé can be related to each other.

node-type of. | conditions

(a-AR) M =M\ {a} C={C\{a}|CeCl}

(r-RR) reM M=M\{r} C={C\{r}|Cel,reC

(a-Al) M=M+,a C={(M"xpa)UR, }U{(C+,a)UR,,, (Cx,a)UR,, |CecC('}

(a-Al) M=M x,a C={Cxpa|Cel}
) _ _J{cu{r}|Ccec} fB(r)NM#0

(r-R1) M =M, r ¢= { {Cw,r|CeC'} otherwise
M+na = MU{a}U{re€Rsm|acr} Mu,r = % U {r} gtﬁ(?rvg/iég U (A \ Anr)) # 0
Mxna = MU{réeRgu|acr} R.,., = {reRgm|acB (r)}

Figure 2: Conditions fo(n’, M’,C") <1 (n, M,C).

node. We observe thdt,r,r5} = {z,71} W,, 75 since definition ofC, » € N’ has to hold. We know € re,, (N, I)
rs = x < -,z containsz negated. For the same rea- iff J € re,/ (N’,I). Butthen, forN = N’ \ {r}, either
son, 5 is added to all sets of the certificate. We obtain N € C or there exists & < re,(N,I), such that/ C I.
05 <1 (na,{z,7m1,75},{{z, 75}, {rs}}). We refer already This yields thaC is not valid wrt. in 6. A contradiction to

to Figure 4 (which is explained in detail later) to follow hi
sequence dof -models.

For branch nodes, we partially extend (with a slight abus
of notation)< 7 to a ternary relation as follows.

Definition 3.11 For 7 -interpretationsd = (n, M,C), 61 =
(nl,Ml,Cl), 0y = (ng,Mg,Cg) we have(91,92) <7 0 iff
the following conditions hold: (1); andn, are the two chil-
drenofn; (2) Ay, = Ay, andM = M;UMs; (3) Cis given
by the se{C; X C3) U ({M1} X C3) U (C1 X {M>}); where
CX (' isdefinedagCuUC’ | CeC,C" €l Ac = Acr}.
Example 3.12 Considerd’ = (ni1,{w,rs},{0,{w}}) and
0" = (nig, {w}, {0,{r1}}). Both are7-models. We deter-
mine af for branch noden, such that¢’,6”) <7 6. Such
6 exists (sincev is true in the assignment of bothand 6”),
and is of the form{nyg, {w, r5},C) withC = {0, {w}, {r1}}
obtained as follows:{0), {w}} X {0,{r:}} = {0,{r1}};
{{w,rs}} 0 {0, {r:}} = 0; {0, {w}} = {{w}} = {{w}}.
The following lemma is central.

Lemma 3.13 Letd = (n, M,C) be aT -interpretation. Ifn
is of type (RR), (RI), (AR), or of type-Al) anda ¢ M, then
E(0) = Uy, 9 E(0"). lf nis of type ¢-Al) anda € M, then
E(0) = Ugr2,9(E(0") U {a}). If nis a branch node, then
5(9) = U(91,92)<70{Il Ul | I € 5(6‘1),[2 S 5(92)}

Proof (Sketch). Due to space reasons, we only show the caﬁp

of an (~-RR) node here. The other cases are similar.

In what follows, letn’ be the child of: andM’ = MU{r}.
First, note thatl € e, (M) iff I € e, (M’). Indeed, since
{T} = R[n] \R[n/] = Ry \RM, Ry U R[n/] =Ry U R[n]
and thussaT,,(I) = sAT,/(I). Similarly, one can show that
Jere, (M, I)iff J€re,u(M',I),foranyl,J C Ag,).

Let I € £(0) and®’ = (n',M’',C; UCs), whereC; =
{Cu{r}|CeC}andCo ={N C3(n)|r ¢ N,3J C
Ist.J € rey(N,I)}. Infact, 0’ <7 6 holds. We show
I € £(9"). By the observation above, we hales ¢, (M’).
To show thatC; U Cs is valid wrt. I in ¢, suppose it is not
the case, i.e. there exists Aff C 5(n’) such that eitheN’
C1UCy orthere exists d € re,(N',I), suchthat/ C I. By

Iec&9).
Letl € £(¢") forad’ = (n',M’,C’), such that’ <1 .

By definition of <7, M" is of the formM U {r}. Using our

previous observation, we géte e, (M). Sincel € £(0"),C’
isvalid wrt. I in ¢, and we know = {C\{r} |C € (' ,r €
C}, sincetd’ <7 6. We show that is valid wrt. I in 6, which
will imply I € £(0). Again, suppos€ is not valid wrt.1 in
0, i.e. there exists atW C ((n), such that eithe®V e C or
there exists/ € re, (N, I), such that/ C I. We know that
thenJ € re, (N’, I) as well, which is in contradiction to the
assumption thaf’ is valid valid wrt. I in ¢'. O

Corollary 3.14 Let6,6’,60” be T-interpretations, such that
0" <1 6 (resp.(0',0") <7 0). Theng is a7-model iff¢’ is
T-model (resp. both’ and6” are 7-models).

Theorem 3.15 Deciding AS(R) # () can be done in time
O(f(w)-|R]|), wherew denotes the treewidth é¢f and f is a
function that only depends an but not onR.

Proof (Sketch). Corollary 3.14 suggests the following algo-
rithm: first, we establish th&-models of leaf nodes, then
we compute all remainin@ -models via<7 in a bottom-up
manner. As soon as we have themodels for the root node,
we check whether they include also a root modelZfor

The effort needed for processing a leaf node as well as for
the transition from the child node(s) to the parent only de-
ends on the treewidth but not éh Moreover, the size of
§ linearly bounded by the size @. Hence, this algorithm
has the desired time bound. The correctness of this algorith
immediately follows from Theorem 3.6, i.e AS(R) # 0
holds iff there exists at least oféroot-model. O

Theorem 3.15 is the desired FPT result for the ASP consis-
tency problem. Indeed, if the treewidth is bounded by a
constant, thetdS(R) # 0 can be decided in linear time.

Example 3.16 The 7-models for our running example are
depicted in Figure 4, where we grouped them wrt. their nodes
and along the structure of the tree @f. 7-models which
contribute to the singl€ -root-model(ny, {r1,r2},{{r1}})

are marked with “+". Following the branches and using the
T-models marked with “+”, one can see that the used atoms

arewv, w, z which exactly yields the answer set of our example-unction getAS(6, I, flag)
program P. For illustration, we depict for thos& -models? input (7 -interpretatiord = (n, M, C), interpretation, Boolean)
also the se£ (6) in the last column (as mentioned before, this return: (interpretation, Boolean)
set is not explicitly computed). Finally: refers to a function begin
which we define in the next section for counting answer sets. if n is leaf-nodethen return (1, flag);
if n is branch nodéhen
3.3 Counting and Enumerating Answer Sets ge’, 0") = get_current(6);

n o ’ .
The following observation is important and together with (g(’fll,fl’g ?,)*:getejsi(se(é,{’ﬁ‘ﬁg’,).
Lemma 3.13 lays the foundation for our counting algorithm. 119 8 < J10g):

else
Lemma 3.17 For two distinct 7-interpretations 6, = 0' = (n', M',C") = get_current(0);
(n, My,C1) andfy = (n, Ma,Cy), £(61) N E(62) = 0 holds. (K. flag”) = getAS(6", I, flag);

if n is of type €-AR) ande € M’ then K = K U {e};
Proof (Sketch). Suppose to the contrary that there exists an endif
assignmenf € £(61) N £(A2). We show that thefi; = 0. if flag” then return (K, get_next(6));
By definition of £(-), Ay, = An,. Moreover, there exists ~ retum (K, 0);
ak C Ay, such thasaT,(Ay, UK) = R, U Ry,. By g“d A
RJ\L- N R[n] =0 al"ldRM1 U R[n] = RM2 U R[n] we conclude rogram enumerate

i begin
Ry, = Rar,. ThusMy = M. Finally,Cy = {N C B(n) | for each 7 -root-modeld = (rt, M,C) do
3J € re,(N,I), st.J C I} = C, follows by definition. initialize;
Hencef; = 6s. O repeat

Next, we recursively define a mapping frafrinterpre- (, flag) = getAS(0, A, 1);

. output 7;
tations to numbers. until flag:
Definition 3.18 Let 6 be a7 -interpretation for nodea. If 6 done
is not a7-model, let#(6) = 0, otherwise let end
if n is leaf node Figure 3: ProgramnumerateAS.

1
#(0)=4 2o<r0#(0) if n has one child

Z(G’-ﬂ”)we #(6")-#(0") if n is branch node Our ASP algorithm first computes all-models as sket-

ched in the proof of Theorem 3.15 (within this algorithm, we
already keep track of the information used later by the point
Theorem 3.19 Let© be the set of all root models @f. Then, erspy). Then the programnumerateAS iterates through all

JAS(R)| = > gco #(0). T -root-models and outputs the corresponding answer sets.

Using Theorem 3.6 and Lemma 3.13 and 3.17, we obtain

Using the same algorithm as sketched in the proof of TheTheorem 3.21 Program enumerateAS works in space
orem 3.15, plus keeping track of tgevalues forZ7-models, O(f(w) - |R|) and outputs all elements iAS(R) with de-
we immediately obtain the following result. lay O(f(w) - |R|), wherew denotes the treewidth & and f

Theorem 3.20 Assuming unit cost for arithmetic operations, is a function that only depends anbut not onz.

|AS(R)| can be computed in tim@(f(w) - |R|), wherew =
tw(R) and f is a function depending om but not onR. 4 Implementation and Results

For the enumeration problem, we provide in Figure 3 anFor our implementation, we have chosen Haskell, a program-
algorithm which, given & -root-model) = (n, M,C), com- ming language with lazy semantit¥sephs, 1949thus the
putes the sef () step by step, such that each new element irdesired linear delay is implicit in the evaluation stratedy
£(9) requires only linear delay. the language (a computation is only executed when needed).

To this end, we consider for a giveirmodeld, all ¢’ such ~ We call our prototype. APs (lazy answer-set programming
thatd’ <7 6 (resp. all(¢’,6”) such that(¢’,0”) <7 #) as system).
stored in an ordered list, and for each such list we use an in- The performance of our straightforward implementation is
ternal pointempy. Functioninitialize resets all pointers to the unprecedented for counting, and is very competitive at low
first 8’ (resp. to the first paifd’, ")) in such a list. Func- treewidths (up to six) for enumerating the answer sets. IGive
tion get_current(6) yields the objecpy currently refers to. its early stage of developmentps has a high potential for
Functionget_next(6) either moves the pointer to the neékt further improvements. We split the evaluation into foupste
(resp. to the next paiff’, ")) in the list and return®; or (1) parse a disjunctive logic program and generate the data
in case the last element was already reached, it regets structures for our target language. (2) build the incidence
the first element in the list and returiis Due to the space graph of the program and decompose the graph using heuris-
restrictions, we cannot discuss the algorithm in detailwHo tic methods[Dermakuet al, 2003. The decomposition is
ever, we note that in general offieroot-model may refer to then provided as a data structure for the target language. (3
multiple answer sets. Thus we have to reconstruct all plessib all parts are merged with the algorithm, compiled and (4) ex-
such models by traversing the tree downwards — and colleacuted. Figure 5 summarizes the runtime behaviarasts
all atoms set to true in at least some assignment — for all pogassuming the tree decomposition is already given) conapare
sible combinations of -models related via 7. to DLV on a set of randomly generated programs. The first

n1:yrirs
i | M C
3|r1 0
1,2[ry r1

<.
=,

+

© 00 ~NO O wNE
w

6|rirs |71 VWX
457 rirs [ri7s
YriTs|T17T5

Alyrirs |TiTs,yriTs
5|yrirs|TiTs, YriTs, yrs
2|lyrs |T17T5,YT1TS
16,7yrs |rirs,yrirs.yrs

nolTITH
(i, k)M |c
(1.1)|e €,ry
(1,2)|e 1
1,3)|r1 0
2,3)(33)\r1irs|rirs
1) (2.2) (24)r1r5|r1i7rs, 75
1.4)|rs €ry
(31)(3,2) (34)rs 1T, TS

O F WN R RN P|H#

DU s WN PS.

+

WE WN PP e[

\
/

nio: Wrirs

ilG, k)M | #E
1 (1,1)e 1 1
2l @2)lry |0 1
3| 23w |erp |1
+4| (3,3)|wrs|€e,r1, W|1|vwx
ns. Zry e
jli| M |c |#|E ni11:Wrirs nie. Wrirs
+12le [0 [1]e jlilar | |#|€ jli|Mm|c |#e
2\4|z e |1 1|1]e 0 |1 1|1lle |r1 |1
3|3|zry |e, 2|1 22lw |e |1 2|12|r [0 |2
‘ +3|3|wrs | e,w|1|wx +3|3|w |e,rq |1|vw
neg. Zrira
j|i|]W |C |#|5 nig: Wrg mni7. Wry
1|1|ry T2 1 jli|M |C |#|€ jli|M|C |#|E
+2(2|7rg 0 1le 1|1|e 0 |1 1{2]e |1 |1
3|1|zrira|ry, ro, zra |1 212w |e |1 2|1|ry |0 1
412|zrg r9 1 +3|3|wrs | e,w|1|wx +3|3|w |e,ry |1|vw
\
T2 ’VL13:‘WX’I‘5 n1g: VWry
JI;MCTS jli|M e |#e jli|Mle |#e
+22:;E;216 ife [0 |T im0 |2
2|2|w e |1 2|12|v |rp |1
‘ +3[3[wxrs | e,w|1|wx +3|3|vw|ry, v|1|vw
ng:urirg ‘
ilMm |c |# & n14: WX nig: VW
1ury [ra |1 jli|lm|c |#|e jli|m|c |#|€
+2|ro [0 |1]€
2|12|w |e (1 2|12|v |e (1
+3| 3| wx [e,w|1|wx +3|3[vw |[e,v|1|vw
nis ‘er4 n20 ‘vwr3
ijM ¢ |#€ ilM ¢ [#|€
1ry 0 1 1|r3 0 1
2lwry |7rg 1 2|vrg |r3 1
+3|Wxry |74, Wrg, X| 1] WX +3|vwrg 73, vrg, wll|vw
4[x T4 1 4w T3 1

Figure 4: TheT-models of the tree decompositi@nfor our
running example prograifl. We abbreviate sets of atoms and
rules via strings. A list of string stands for a set of setg, e.
rq, wry, x denote{r4s}, {w, r4}, {x}}. The<7 relation for
07" <7 07 (resp. for(67,07") <7 67) can be read off
columns %" and “i” (resp. “(4, k)") in the table of noden.

LAPS DLV

1.0

| ﬁimu;,;ﬂ-‘.&-%.ﬁl;:.'r-'-.«-:;s;;#-.ﬁ-l-._

0.0

3 75 450 1620 5670 13608 51480 257904 1621620 3 75 450 1620 5670 13608 51480 257904 1621620

o o - o o o
=

0.008

0.20
I

0.006
I

o

0.004

o o o

o
- o

o

8

0.05
I
0.002

) .
. 8 o g o
R
= 3 o2 i § i &gl 3 88 4 . .
T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 5: Comparison of the runtime behavior.

0.00
I

row shows the time required tmuntthe number of answer
sets with increasing number of answer sets (here we fixed the
treewidth to 5). ClearlypLv’s runtime is dependent on the
number of answer sets, wherea$ s’ runtime is not affected
(excluding time required to handle very large integers)e Th
second row shows the runtime required for enumerating the
answer setstifne per answer sgwith increasing treewidth.
Here,LAPS runtime increases quickly with larger treewidth
whereasDLV even seems to benefit from larger treewidth.
The latter effect is due to the fact that our randomly gemerat
programs tend to have more answer sets when the treewidth
increases which —in case bfv — decreases the average cost
per answer set. Tests using smodels insteaniefresulted

in a very similar runtime behavior.

5 Related Work and Conclusion

Another FPT result for ASP is due to Lin and Zhi904,

who use the number of cycles in the (directed) dependency
graph as parameter. A further interesting parameter hére is
number of loop$Ferrariset al., 2004 of a program. We note
that programs with an unbounded number of cycles and/or
loops can still have low treewidth. ConsidBy = {a; —

—bi; by — —a; |1 <@ <nporPy = {app1 — a1,a; —

ai+1 | 1 <14 < n}. Both have treewidth 2, but the number of
cycles (1), or loops (), clearly depends on.

The work most closely related to ours is by Samer and
Szeidef2007, where the#SAT problem in case of bounded
treewidth was solved by dynamic programming. We extend
their approach to the counting problem (and also the enumer-
ation problem) of ASP. To this end, we have to introduce so-
phisticated, additional data structures, which ultimasiow
us to distinguish between arbitrary and minimal (wrt. to the
reduct) models of a given program. Two related problems
are constraint satisfaction problems (CSPs) and conjmcti
query (CQ) evaluation, for which, apart from treewidth-fur
ther methods based on structural decomposition have been

used to construct efficient algorithrbGottlob et al, 2000; [Ferrariset al, 2004 P. Ferraris, J. Lee, and V. Lifschitz. A
Chekuri and Rajaraman, 2000These methods usually also generalization of the Lin-Zhao Theorenn. Math. Artif.
work by a bottom-up traversal of a tree structure. As with Intell., 47(1-2):79-101, 2006.

#SAT, the data propagated up the tree structure is much sinfGebseet al, 2007 M. Gebser, L. Liu, G. Namasivayam,
pler than in case of ASP solving. On the other hand, the idea A. Neumann, T. Schaub, and M. Truszczyhski. The first
of postprocessing by a top-dowr_l traversal in order to com- Answer Set Programming system competition. Fro-
pute all solutions is also present in the context of CQ evalua ceedings of the 9th International Conference on Logic Pro-
tion. Recently, dynamic programming has also been applied gramming and Nonmonotonic Reasoning (LPNMR’07)
to logic _programming in the context of query answering over volume 4483 oL NCS pages 3-17. Springer, 2007.
Semantic Web daRuckhaust al, 200d. In this work, dy- _ [Gelfond and Lifschitz, 1991M. Gelfond and V. Lifschitz.
namic programming is applied to the computation of an opti- ~ ¢|assical negation in logic programs and disjunctive

mal join order for CQ evaluation over deductive databases. gstapases. New Generation Comput9(3/4):365—-386
To summarize, we introduced in this work novel algorithms 1991 '

for ASP consistency, as well as for counting and enumeratingGottlob'et al, 2004 G. Gottlob, N. Leone, and F. Scarcello

answer sets. The algorithm runs in linear time (resp. with li ; o
. ,) \ A comparison of structural CSP decomposition methods.
ear delay) if the treewidth of the logic programsis bounded b Artif. Intell., 124(2):243—282, 2000.

a constant. Our experiments indicate that this technique m . _
lead to a promising alternative for evaluating ASP programs|Gottlobet al, 2008 G. Gottlob, R. Pichler, and F. Wei.
if the treewidth remains low. Since tree decompositiongef t rBec;)urgg:gt;rt?(?r\]N;jrwtg ?esagoﬁ?r)]lgtOF?Ur[)aé:ézgIilrl:élsof)fkt%%wéii?e
logic programs are required for the algorithm, our approach . g)

gic prog aul gon Ur app National Conference on Atrtificial Intelligence (AAAI'Q6)

will greatly profit from any future progress in the researah f
efficient tree-decomposition algorithms. pages 250-256. AAAI Press, 2006.

Future research concerns investigations to improve the pefJaklet al, 200§ M. Jakl, R. Pichler, S. Rummele, and
formance of the proposed method. This includes concepts S.Woltran. Fast counting with bounded treewidthPro-
like balanced and non-normalized tree-decompositions. As ceedings of the 15th International Conference on Logic
well, we plan to study methods for parallelization, which ~ for Programming, Artificial Intelligence, and Reason-
should be easily applicable to the tree-like structure efrth ing (LPAR’08) volume 5330 ofLNCS pages 436—450.
quired computations. Finally, we want to use lower-levatla Springer, 2008.
guages (instead of Haskell, where we rely on the compiler tgJosephs, 1989M. Josephs. The semantics of lazy func-
do adequate optimizations automatically) for our algonish tional languagesTCS 68(1):105-111, 1989.

and perform optimizations by hand. [Kloks, 1994 T. Kloks. Treewidth, Computations and Ap-
proximationsvolume 842 ol.NCS Springer, 1994.
Acknowledgement [Lin and Zhao, 200K F. Lin and X. Zhao. On odd and
We are very grateful to Stefan Rimmele for valuable com- even cycles in normal logic programs. Rroceedings
ments on a preliminary version of this paper. of the 19th National Conference on Artificial Intelligence
(AAAI'04), pages 80—85. AAAI Press, 2004.
References [Marek and Truszczyhski, 1999V. Marek and

M. Truszczyhski. Stable models and an alternative
logic programming paradigm. Mhe Logic Programming
sity Press, 2002. Paradigm — A 25-Year Perspectivepages 375-398.

[Bodlaender, 1993H. Bodlaender. A tourist guide through _Spnn_g_]er, 1999. .) . . .
treewidth.Acta Cybern. 11(1-2):1-22, 1993. [Niemela, 1999 I. Niemela. Logic programming with stable
[Bodlaender, 1996H. Bodlaender. A linear-time algorithm QOde&seﬁqim-l?S' asIlazcggstga'lgzjr-)r%g?r;l?gggg paradigm.
for finding tree-decompositions of small treewidtBLAM nkr;]. at .I rit. Intetl (k_h):241~) d. idal
J. Comput, 25(6):1305-1317, 1996. [Ruckhaust al, 2004 E. Ruckhaus, E. Ruiz, and M. Vidal.
[Chekuri and Rajaraman 20D(0£ Chekuri and A. Rajara- _(IQFL)JE;)ygéa;lggtéozggdzgggmlzatlon in the Semantic Web.
?S%n('z),gfﬂgg%“\é%géjery containment revisited CS [Samer and Szeider, 200®M. Samer and S. Szeider. Algo-

[c ”' 199D B, c ’ le. Graph tina: An al rithms for propositional model counting. Rroceedings of
%ur(;e e'd i ourcehe. Ihlra%brevlzn Ifn'?'h n atl'gel_ the 14th International Conference on Logic for Program-
CI?IJT? ?J?er gggnggp\f/g?cﬁé esalg3—%cé)12 OEIsev(?(e)rrellggo ming, Artificial Intelligence, and Reasoning (LPAR'07)

P » VOl pag ' ' * volume 4790 oLNCS pages 484-498, Springer, 2007.
[D?(;Lnaé("'e,\zgl\;éﬁgf ﬁ Iaﬁ;rl?uak;ﬁd-r'l\/l Gggﬁ?é"r' (I;-ieSr(i);tt}c [Thorup, 1998 M. Thorup. All structured programs have
1 B » N ' L vl C small tree-width and good register allocatidnformation
ggm?gs_f%gg_%%”?g siee(i]onfgpggggns- Technical Report 454 Computation142(2):159-181, 1998.

[Eiter and Gottlob, 1995T. Eiter and G. Gottlob. On the

computational cost of disjunctive logic programming:
Propositional caseAnn. Math. Artif. Intell, 15(3/4):289—
323, 1995.

[Baral, 2002 C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solvin@€ambridge Univer-

