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Abstract

In this paper, we present a novel approach to the
evaluation of propositional answer-set programs.
In particular, for programs with bounded treewidth,
our algorithm is capable of (i) computing the num-
ber of answer sets in linear time and (ii) enumerat-
ing all answer sets with linear delay. Our algorithm
relies on dynamic programming. Therefore, our ap-
proach significantly differs from standard ASP sys-
tems which implement techniques stemming from
SAT or CSP, and thus usually do not exploit fixed
parameter properties of the programs. We provide
first experimental results which underline that, for
programs with low treewidth, even a prototypical
implementation is competitive compared to state-
of-the-art systems.

1 Introduction
Over the past decade,Answer-Set Programming(ASP, for
short)[Marek and Truszczyński, 1999; Niemelä, 1999], also
known as A-Prolog[Baral, 2002], has become an increas-
ingly acknowledged paradigm for declarative programming.
The basic idea of ASP is to encode solutions to a problem
into the models of a program in such a way that the solu-
tions are described in terms of rules and constraints. ASP
enjoys a large collection of successful applications in thear-
eas of AI and KR showing the potential of this paradigm.
However, the underlying complexity of evaluating proposi-
tional disjunctive programs (which are the objects we deal
with here) shows that the problems ASP has to deal with are
highly intractable: the decision problems are located on the
second level of the polynomial hierarchy (see[Eiter and Got-
tlob, 1995]), and the problem of counting all answer sets can
analogously be shown to be#NP-complete.

An interesting approach to dealing with such intractable
problems is parameterized complexity. In fact, hard prob-
lems can become tractable if some problem parameter is
bounded by a fixed constant. Such problems are also called
fixed-parameter tractable (FPT). One important parameter is
treewidth, which measures the “tree-likeness” of a graph. By
using a seminal result due to Courcelle[1990], several FPT
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results in the area of AI and KR have been recently proven
tractable by Gottlobet al. [2006], among them also the prob-
lem of deciding ASP consistency (i.e. whether a disjunctive
logic program has at least one answer set). Treewidth hereby
has to be adapted suitably, for instance, by using the inci-
dence graph of the program. However, an FPT result itself
does not immediately lead to an efficient algorithm. Indeed,
quite some work has been done within the last years to over-
come this obstacle. We mention here only some recent results
for counting problems: Samer and Szeider[2007] have pro-
posed algorithms for#SAT (counting the number of models
of a CNF formula) which follow the principle of dynamic pro-
gramming; Jaklet al. [2008], on the other hand, map different
counting problems to a certain (tractable) datalog fragment.
Both approaches have in common that they use the concept
of tree-decompositions and proceed by a bottom-up traver-
sal of the tree, such that at each noden, certain information
about the subproblem (represented by the subtree rooted atn)
is available. Consequently, results for the entire problemcan
be read off the root of the tree decomposition. Algorithms for
counting problems are of particular interest here, since they
are closely related to the problem of enumerating solutions,
which is, of course, a central requirement in ASP.

In this work, we generalize the dynamic programming ap-
proach for#SAT due to Samer and Szeider[2007] to the
world of ASP in order to count and enumerate all answer sets
of a given program. We thus provide a novel approach for
computing answer sets, which significantly differs from stan-
dard ASP systems (see[Gebseret al., 2007] for an overview)
that usually do not exploit fixed parameter properties. We im-
plemented the proposed method in a prototype system. Our
system should not be seen as competitor to general-purpose
ASP solvers, but as an alternative for application scenarios
where the problems possess low treewidth; usually the ASP
encodings then have similarly low treewidth. It is gener-
ally believed that many practically relevant problems have
low treewidth. Thorup[1998], for instance, shows that the
treewidth of the control-flow graph of structured programs
(more precisely, goto-free C programs) is at most six. A de-
tailed discussion of applications to which treewidth has been
successfully applied is given by Bodlaender[1993].
Results.Our main contributions are as follows.

• An FPT algorithm for deciding ASP consistency inlin-
ear timew.r.t. the size of the program.
• An FPT algorithm for counting the number of answer



sets inlinear timew.r.t. the size of the program (assum-
ing unit cost for arithmetic operations).
• A novel method for enumeratingall answer sets with

linear delay.
• Presentation of a first prototype implementation and

some preliminary experimental results.

2 Preliminaries
Throughout the paper, we assume a universeU of proposi-
tional atoms. A literal is either an atom or a negated atom
a. For a setA of atoms,A denotes{a | a ∈ A}. Clauses
are sets of literals. An interpretationI is a set of atoms
and we define, for a clausec and O ⊆ U , I |=O c iff
((I ∩O)∪ (O \ I))∩ c 6= ∅. For a setC of clauses,I |=O C
holds iff I |=O c, for eachc ∈ C. For O = U , we usually
write |= instead of|=O.
Answer-Set Semantics for Logic Programs. A proposi-
tional disjunctive logic program (or simply, a program) is a
set of rulesa1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an,
(n > 0, n ≥ m ≥ l), where allai are fromU . A rule
r of this form consists of a headH(r) = {a1, . . . , al} and
a body, given byB+(r) = {al+1, . . . , am} and B−(r) =
{am+1, . . . , an}. By At(R) we denote the set of atoms oc-
curring in programR. We often identify a programR with
the clause set{H(r)∪ B−(r)∪ B+(r) | r ∈ R}, and likewise,
define the reductRI of a programR wrt. an interpretationI
as{H(r) ∪ B+(r) | B−(r) ∩ I = ∅, r ∈ R}. Following Gel-
fond and Lifschitz[1991], an interpretationI is ananswer set
of a programR iff I |= R and for noJ ⊂ I, J |= RI . The
set of all answer sets of a programR is denoted byAS(R).

Example 2.1 We will use as a running example throughout
the paper the programP which consists of the following rules

r1 = u← v, y; r2 = z ← u; r3 = v ← w;
r4 = w ← x; r5 = x← ¬y,¬z.

P has a unique answer set{v, w, x}.

Tree Decomposition and Treewidth.A tree decomposition
of a graphG = (V, E) is a pair(T, β), whereT is a tree andβ
maps each noden of T (we usen ∈ T as a shorthand below),
to a bagβ(n) ⊆ 2V , such that the following conditions are
met:

• For eachv ∈ V , there is ann ∈ T such thatv ∈ β(n).
• For each(v, w) ∈ E. there is ann ∈ T , s.t.v, w ∈ β(n).
• For any three nodesn1, n2, n3 ∈ T , if n2 lies on the

path fromn1 to n3, thenβ(n1) ∩ β(n3) ⊆ β(n2).

A tree decomposition(T, β) is callednormalized(or nice)
[Kloks, 1994] if (i) each node inT has at most two chil-
dren; (ii) for each noden with two childrenn1, n2, β(n) =
β(n1) = β(n2); and (iii) for each noden with one childn′,
β(n) andβ(n′) differ in exactly one element.

Thewidth of a tree decomposition is defined as the cardi-
nality of its largest bagβ(n) minus one. It is known that every
tree decomposition can be normalized in linear time without
increasing the width. Thetreewidthof graphG, denoted as
tw(G), is the minimum width over all tree decompositions
of G. For arbitrary but fixedw ≥ 1, it is feasible in linear time
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Figure 1: Incidence graphGP of example programP (left)
and anormalized tree decompositionT of GP .

to decide if a graph has treewidth≤ w and, if so, to compute
a tree decomposition of widthw [Bodlaender, 1996].

Tree Decompositions of Programs.To build tree decompo-
sitions for programs, we shall use incidence graphs.1 Given a
programR, such a graph has as verticesR ∪ At(R), and as
edges all pairs(a, r) with an atoma appearing in a ruler of
R. In case of normalized tree decompositions, we distinguish
between six types of nodes: atom introduction (AI), rule
introduction (RI), atom removal (AR), rule removal (RR),
branch (B), and leaf (L) nodes. The first four types are usually
augmented with the elemente (either an atom or rule) which
is removed or added compared to the bag of the child node.

Example 2.2 Figure 1 shows the incidence graphGP of pro-
gramP and a normalized tree decompositionT of GP hav-
ing width 2. Indeed, we havetw(GP ) = 2, soT has optimal
width. Examples for node types aren8 as (L) node,n7 as
(u-AR) node,n6 as (z-AI) node,n5 as (r2-RR) node,n4 as
(r5-RI) node, andn2 as (B) node.

3 The Dynamic Programming Approach
For this section, letT = (T, β) be a normalized tree decom-
position of the incidence graph of a given programR. For
M ⊆ R ∪ At(R), we useAM (resp.RM ) as a shorthand for
At(R)∩M (resp.R ∩M ). We refer to the root node ofT as
rt . For a noden ∈ T , Tn denotes the subtree ofT rooted atn.
We useA(n) (resp.R(n)) to denote the set of all atoms (resp.
rules) which appear in

⋃

m∈Tn
β(m) (i.e. in some bag of the

treeTn); moreover,A[n] (resp.R[n]) abbreviatesA(n) \ β(n)
(resp.R(n) \ β(n)), i.e. the set of atoms (resp. rules) which
appear only in bags “below” the root ofTn.

We proceed as follows: First, we define the mathemati-
cal objects (tree interpretations) which will underly our algo-
rithms. We construct a mappingE(·) from tree interpretations
to (standard) interpretations and observe that a certain subset
S of the tree interpretations characterizes the answer sets of
R. However, we never computeE(·) explicitly. Instead, we
define a relation≺T along the structure ofT , in order to ef-
ficiently computeS in a bottom-up manner via so-calledtree
models, a subset of the tree interpretations. Finally, we show

1See [Samer and Szeider, 2007] for other possible types of
graphs and a discussion why incidence graphs are favorable.
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how to use this method to count and enumerate the answer
sets of programR from a given tree decompositionT for R.

3.1 Tree interpretations
Definition 3.1 A tree interpretation forT (T -interpretation,
for short) is a tuple(n, M, C) wheren ∈ T is a node,M ⊆
β(n) is calledassignment, andC ⊆ 2β(n) is calledcertificate.

The basic intuition behindT -interpretations is as follows:
the assignmentM of aT -interpretation(n, M, C) contains an
interpretationAM overAβ(n) (implicitly it refers to interpre-
tationsI overA(n)) together with rulesr ∈ Rβ(n) satisfied
by I, i.e.I |=A(n)

r. CertificateC can be understood as a set
of assignments and carries interpretations (together withsat-
isfied rules in(Rβ(n))

I ) which are in a certain subset-relation
to M . The following definitions make this more precise.

Definition 3.2 Given n ∈ T and I, J ⊆ A(n), define
SATn(I) = {r | r ∈ R(n), I |=A(n)

r} and RSATn(J, I) =

{r | r ∈ R(n) s.t.J |=A(n)
r or B−(r) ∩ I 6= ∅}.

Roughly speaking,SATn(I) yields those rules ofR which
occur in bags of the subtreeTn and are satisfied byI. Analo-
gously,RSATn(J, I) yields such rules which are either satis-
fied byJ or not contained in the reductRI (thus we can view
them as satisfied byJ in a trivial way).

Definition 3.3 Letθ = (n, M, C) be aT -interpretation,I ⊆
A(n), and letR∗ = RM ∪R[n]. We define

en(M) = {AM∪K |K⊆A[n], SATn(AM∪K)=R∗};

ren(M, I) = {AM∪K |K⊆A[n], RSATn(AM∪K, I)=R∗}.

Moreover,C is calledvalid wrt. I in θ, if, for eachN ⊆ β(n),
it holds thatN ∈ C iff there existsJ ∈ ren(N, I) s.t.J ⊂ I.

The rationale behinden(M) is to yield those extensions of
the interpretationAM stored in the assignmentM of a T -
interpretationθ = (n, M, C) to an interpretationI overA(n)

(i.e. over all atoms occurring in bags ofTn), such that the
rulesRM plusall rules inR[n] (i.e. all rules occurring in bags
of Tn, but belown) are satisfied byI. A similar idea is fol-
lowed byren(M, I) which additionally takes the concept of
reduct into account.

We are now prepared to define the mappingE(·) and we
shall see that for certainT -interpretationsθ, E(θ) ⊆ AS(R).

Definition 3.4 For a T -interpretationθ = (n, M, C), let

E(θ) = {I | I ∈ en(M) andC is valid wrt.I in θ}.

Definition 3.5 A T -interpretation(n, M, C) is called aroot
modelfor T iff n = rt , RM = Rβ(n) and, for eachN ∈ C,
RN ⊂ RM .

Theorem 3.6 LetΘ be the set of all root models forT . Then,
AS(R) =

⋃

θ∈Θ E(θ).

Proof. We only show the⊆-direction. The⊇-direction is
proved analogously. We writeArt as shorthand forAβ(rt)

and likewiseRrt for Rβ(rt). Let I ∈ AS(R) and letθ =
(rt , M, C) with M = (I∩Art )∪Rrt andC = {N ⊆ β(rt) |
∃J ∈ rert (N, I) s.t.J ⊂ I}. Note thatC is thus valid wrt.
I in θ. It remains to show (i)I ∈ ert (M) and (ii) θ ∈ Θ.
(i) holds sinceRM ∪ R[rt ] = Rrt ∪ R[rt] = R, andI |= R

by assumptionI ∈ AS(R). For (ii), we haveRM = Rrt

by definition. We show that for eachN ∈ C, RN ⊂ Rrt

holds. Suppose this is not the case, i.e. letN ∈ C, such
that RN = Rrt . By definition of rert (N, I), there exists
a J ⊂ I, such that for eachr ∈ R = Rrt ∪ R[rt], either
J |= r or B−(r) ∩ I 6= ∅. Hence,J |= RI , a contradiction to
I ∈ AS(R). 2

3.2 Tree models
Theorem 3.6 tells us that tree interpretationsθ which satisfy
E(θ) 6= ∅ are of particular interest.

Definition 3.7 AT -interpretationθ is calledtree modelofT
(T -model, for short) iffE(θ) 6= ∅. A T -model that is also a
root model forT is calledT -root-model.

For leaf nodesn, tree models can be determined as follows.
For everyM ⊆ β(n), we either haveen(M) = AM in case
RM = {r | r ∈ Rβ(n), AM |=Aβ(n)

r}, or en(M) = ∅,
otherwise. Hence, to compute allT -models for a leaf node
n, one considers eachAM ⊆ Aβ(n) and determinesRM =
{r | r ∈ Rβ(n), AM |=Aβ(n)

r}; thenAM ∪ RM yields the
assignmentM for aT -model(n, M, C). CertificateC is given
by all J ⊂ AM together with the rulesr ∈ Rβ(n), for which
eitherJ |=Aβ(n)

r or B−(r) ∩AM 6= ∅ holds.

Example 3.8 Take our example tree-decomposition in Fig-
ure 1 and consider leaf noden8. We haveβ(n8) =
{u, r1, r2}. Recall r1 = u ← v, y and r2 = z ← u.
We first setu to true. This satisfiesr1, i.e. {u} |={u} r1.
For the corresponding certificate, there is only one possi-
bility: We setu to false and observe that this satisfiesr2.
Hence,(n8, {u, r1}, {{r2}}) is aT -model. AnotherT -model
is (n8, {r2}, ∅) and these are the onlyT -models forn8.

We next define a relation≺T betweenT -interpretations.
The concrete definition depends on the node type. We first
give the definition for the removal and introduction nodes.

Definition 3.9 For T -interpretationsθ = (n, M, C) and
θ′ = (n′, M ′, C′), we haveθ′ ≺T θ iff n has a single child
n′, and (depending on the node type ofn) the conditions as
depicted in the table of Figure 2 are fulfilled.2

Example 3.10 RecallT -modelθ8 = (n8, {u, r1}, {{r2}}).
To obtainT -models forn7 (which is a (u-AR) node) from
θ8 we have to remove all occurrences ofu in θ8, i.e. we get
θ8 ≺T (n7, {r1}, {{r2}}) = θ7. Next, we considern6 which
is a (z-AI) node. We have two possibilities. First, we set the
new atomz to true, i.e. we get as assignment{z, r1, r2} =
{r1} +n6 z (for the definition of operators as+n, see Fig-
ure 2). The certificate consists ofN1 = {r1} = {r1} ×n6 z,
N2 = {z, r2} = {r2} +n6 z andN3 = {r2} = {r2} ×n6 z.
Hence,θ7 ≺T (n6, {z, r1, r2}, {N1, N2, N3}) = θ1

6 (also
note here thatR−

z,n6
= ∅). Second, we set the new atom

z to false, which yieldsθ2
6 = (n6, {r1}, {N3}). For the

next noden5, which is of type (r2-RR), thus onlyθ1
6 plays

a role since its assignment containsr2 and we obtainθ1
6 ≺T

(n5, {z, r1}, {{z}, ∅}) = θ5 (the set{r1} from the certifi-
cate ofθ1

6 also drops out, since it does not containr2). Fi-
nally, we useθ5 to computeT -models ofn4, an (r5-RI)

2Note that in casen is an (AI)-node, there are two ways howθ′

andθ can be related to each other.
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node-type ofn conditions
(a-AR) M = M ′ \ {a} C = {C \ {a} | C ∈ C′}
(r-RR) r ∈M ′, M = M ′ \ {r} C = {C \ {r} | C ∈ C′, r ∈ C}
(a-AI) M = M ′ +n a C = {(M ′ ×n a) ∪R−

a,n} ∪ {(C +n a) ∪R−
a,n, (C ×n a) ∪R−

a,n | C ∈ C
′}

(a-AI) M = M ′ ×n a C = {C ×n a | C ∈ C′}

(r-RI) M = M ′ ⊎n r C =

{

{C ∪ {r} | C ∈ C′} if B−(r) ∩M 6= ∅
{C ⊎n r | C ∈ C′} otherwise

M +n a = M ∪ {a} ∪ {r ∈ Rβ(n) | a ∈ r} M ⊎n r =

{

M ∪ {r} if r ∩ (AM ∪ (Aβ(n) \ AM )) 6= ∅
M otherwise

M ×n a = M ∪ {r ∈ Rβ(n) | ā ∈ r} R−
a,n = {r ∈ Rβ(n) | a ∈ B−(r)}

Figure 2: Conditions for(n′, M ′, C′) ≺T (n, M, C).

node. We observe that{z, r1, r5} = {z, r1} ⊎n4 r5 since
r5 = x ← ¬y,¬z containsz negated. For the same rea-
son, r5 is added to all sets of the certificate. We obtain
θ5 ≺T (n4, {z, r1, r5}, {{z, r5}, {r5}}). We refer already
to Figure 4 (which is explained in detail later) to follow this
sequence ofT -models.

For branch nodes, we partially extend (with a slight abuse
of notation)≺T to a ternary relation as follows.

Definition 3.11 For T -interpretationsθ = (n, M, C), θ1 =
(n1, M1, C1), θ2 = (n2, M2, C2) we have(θ1, θ2) ≺T θ iff
the following conditions hold: (1)n1 andn2 are the two chil-
dren ofn; (2) AM1 = AM2 andM = M1∪M2; (3) C is given
by the set(C1 1 C2) ∪ ({M1} 1 C2) ∪ (C1 1 {M2}); where
C 1 C′ is defined as{C ∪C′ | C ∈ C, C′ ∈ C′, AC = AC′}.

Example 3.12 Considerθ′ = (n11, {w, r5}, {∅, {w}}) and
θ′′ = (n16, {w}, {∅, {r1}}). Both areT -models. We deter-
mine aθ for branch noden10, such that(θ′, θ′′) ≺T θ. Such
θ exists (sincew is true in the assignment of bothθ′ andθ′′),
and is of the form(n10, {w, r5}, C) with C = {∅, {w}, {r1}}
obtained as follows:{∅, {w}} 1 {∅, {r1}} = {∅, {r1}};
{{w, r5}} 1 {∅, {r1}} = ∅; {∅, {w}} 1 {{w}} = {{w}}.

The following lemma is central.

Lemma 3.13 Let θ = (n, M, C) be aT -interpretation. Ifn
is of type (RR), (RI), (AR), or of type (a-AI) anda /∈M , then
E(θ) =

⋃

θ′≺T θ E(θ
′). If n is of type (a-AI) anda ∈M , then

E(θ) =
⋃

θ′≺T θ(E(θ
′) ∪ {a}). If n is a branch node, then

E(θ) =
⋃

(θ1,θ2)≺T θ{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}.

Proof (Sketch). Due to space reasons, we only show the case
of an (r-RR) node here. The other cases are similar.

In what follows, letn′ be the child ofn andM ′ = M∪{r}.
First, note thatI ∈ en(M) iff I ∈ en′(M ′). Indeed, since
{r} = R[n] \R[n′] = RM ′ \RM , RM ′ ∪R[n′] = RM ∪R[n]

and thusSATn(I) = SATn′(I). Similarly, one can show that
J ∈ ren(M, I) iff J ∈ ren′(M ′, I), for anyI, J ⊆ A(n).

Let I ∈ E(θ) and θ′ = (n′, M ′, C1 ∪ C2), whereC1 =
{C ∪ {r} | C ∈ C} andC2 = {N ⊆ β(n′) | r /∈ N, ∃J ⊂
I s.t.J ∈ ren′ (N, I)}. In fact, θ′ ≺T θ holds. We show
I ∈ E(θ′). By the observation above, we haveI ∈ en′(M ′).
To show thatC1 ∪ C2 is valid wrt. I in θ′, suppose it is not
the case, i.e. there exists anN ′ ⊆ β(n′) such that eitherN ′ ∈
C1∪C2 or there exists aJ ∈ ren′(N ′, I), such thatJ ⊂ I. By

definition ofC2, r ∈ N ′ has to hold. We knowJ ∈ ren(N, I)
iff J ∈ ren′(N ′, I). But then, forN = N ′ \ {r}, either
N ∈ C or there exists aJ ∈ ren(N, I), such thatJ ⊂ I.
This yields thatC is not valid wrt.I in θ. A contradiction to
I ∈ E(θ).

Let I ∈ E(θ′) for a θ′ = (n′, M ′, C′), such thatθ′ ≺T θ.
By definition of≺T , M ′ is of the formM ∪ {r}. Using our
previous observation, we getI ∈ en(M). SinceI ∈ E(θ′), C′

is valid wrt.I in θ′, and we knowC = {C \{r} | C ∈ C′, r ∈
C}, sinceθ′ ≺T θ. We show thatC is valid wrt.I in θ, which
will imply I ∈ E(θ). Again, supposeC is not valid wrt.I in
θ, i.e. there exists anN ⊆ β(n), such that eitherN ∈ C or
there existsJ ∈ ren(N, I), such thatJ ⊂ I. We know that
thenJ ∈ ren′(N ′, I) as well, which is in contradiction to the
assumption thatC′ is valid valid wrt.I in θ′. 2

Corollary 3.14 Let θ, θ′, θ′′ beT -interpretations, such that
θ′ ≺T θ (resp.(θ′, θ′′) ≺T θ). Then,θ is aT -model iffθ′ is
T -model (resp. bothθ′ andθ′′ areT -models).

Theorem 3.15 DecidingAS(R) 6= ∅ can be done in time
O(f(w) · |R|), wherew denotes the treewidth ofR andf is a
function that only depends onw but not onR.

Proof (Sketch). Corollary 3.14 suggests the following algo-
rithm: first, we establish theT -models of leaf nodes, then
we compute all remainingT -models via≺T in a bottom-up
manner. As soon as we have theT -models for the root node,
we check whether they include also a root model forT .

The effort needed for processing a leaf node as well as for
the transition from the child node(s) to the parent only de-
pends on the treewidth but not onR. Moreover, the size ofT
is linearly bounded by the size ofR. Hence, this algorithm
has the desired time bound. The correctness of this algorithm
immediately follows from Theorem 3.6, i.e.:AS(R) 6= ∅
holds iff there exists at least oneT -root-model. 2

Theorem 3.15 is the desired FPT result for the ASP consis-
tency problem. Indeed, if the treewidthw is bounded by a
constant, thenAS(R) 6= ∅ can be decided in linear time.

Example 3.16 The T -models for our running example are
depicted in Figure 4, where we grouped them wrt. their nodes
and along the structure of the tree ofT . T -models which
contribute to the singleT -root-model(n1, {r1, r2}, {{r1}})
are marked with “+”. Following the branches and using the
T -models marked with “+”, one can see that the used atoms
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arev, w, x which exactly yields the answer set of our example
programP . For illustration, we depict for thoseT -modelsθ
also the setE(θ) in the last column (as mentioned before, this
set is not explicitly computed). Finally,# refers to a function
which we define in the next section for counting answer sets.

3.3 Counting and Enumerating Answer Sets
The following observation is important and together with
Lemma 3.13 lays the foundation for our counting algorithm.

Lemma 3.17 For two distinct T -interpretations θ1 =
(n, M1, C1) andθ2 = (n, M2, C2), E(θ1) ∩ E(θ2) = ∅ holds.

Proof (Sketch). Suppose to the contrary that there exists an
assignmentI ∈ E(θ1) ∩ E(θ2). We show that thenθ1 = θ2.
By definition ofE(·), AM1 = AM2 . Moreover, there exists
a K ⊆ A[n] such thatSATn(AMi

∪ K) = RMi
∪ R[n]. By

RMi
∩R[n] = ∅ andRM1 ∪R[n] = RM2 ∪R[n] we conclude

RM1 = RM2 . ThusM1 = M2. Finally,C1 = {N ⊆ β(n) |
∃J ∈ ren(N, I), s.t. J ⊆ I} = C2 follows by definition.
Hence,θ1 = θ2. 2

Next, we recursively define a mapping fromT -interpre-
tations to numbers.

Definition 3.18 Let θ be aT -interpretation for noden. If θ
is not aT -model, let#(θ) = 0, otherwise let

#(θ)=







1 if n is leaf node
∑

θ′≺T θ #(θ′) if n has one child
∑

(θ′,θ′′)≺T θ #(θ′)·#(θ′′) if n is branch node

Using Theorem 3.6 and Lemma 3.13 and 3.17, we obtain

Theorem 3.19 LetΘ be the set of all root models ofT . Then,
|AS(R)| =

∑

θ∈Θ #(θ).

Using the same algorithm as sketched in the proof of The-
orem 3.15, plus keeping track of the# values forT -models,
we immediately obtain the following result.

Theorem 3.20 Assuming unit cost for arithmetic operations,
|AS(R)| can be computed in timeO(f(w) · |R|), wherew =
tw(R) andf is a function depending onw but not onR.

For the enumeration problem, we provide in Figure 3 an
algorithm which, given aT -root-modelθ = (n, M, C), com-
putes the setE(θ) step by step, such that each new element in
E(θ) requires only linear delay.

To this end, we consider for a givenT -modelθ, all θ′ such
that θ′ ≺T θ (resp. all(θ′, θ′′) such that(θ′, θ′′) ≺T θ) as
stored in an ordered list, and for each such list we use an in-
ternal pointerpθ. Functioninitialize resets all pointers to the
first θ′ (resp. to the first pair(θ′, θ′′)) in such a list. Func-
tion get current(θ) yields the objectpθ currently refers to.
Functionget next(θ) either moves the pointer to the nextθ′

(resp. to the next pair(θ′, θ′′)) in the list and returns0; or
in case the last element was already reached, it resetspθ to
the first element in the list and returns1. Due to the space
restrictions, we cannot discuss the algorithm in detail. How-
ever, we note that in general oneT -root-model may refer to
multiple answer sets. Thus we have to reconstruct all possible
such models by traversing the tree downwards – and collect
all atoms set to true in at least some assignment – for all pos-
sible combinations ofT -models related via≺T .

Function getAS(θ, I,flag)

input: (T -interpretationθ = (n, M, C), interpretation, Boolean)
return: (interpretation, Boolean)

begin
if n is leaf-nodethen return(I,flag);
if n is branch nodethen
(θ′, θ′′) = get current(θ);
(J,flag ′) = getAS(θ′, I,flag);
(K,flag ′′) = getAS(θ′′, J,flag ′);

else
θ′ = (n′, M ′, C′) = get current(θ);
(K,flag ′′) = getAS(θ′, I,flag);
if n is of type (e-AR) ande ∈ M ′ then K = K ∪ {e};

endif
if flag ′′ then return (K, get next(θ));
return (K, 0);

end
Program enumerateAS
begin

for eachT -root-modelθ = (rt , M, C) do
initialize;
repeat
(I,flag) = getAS(θ, AM , 1);
output I ;

until flag ;
done

end

Figure 3: ProgramenumerateAS.

Our ASP algorithm first computes allT -models as sket-
ched in the proof of Theorem 3.15 (within this algorithm, we
already keep track of the information used later by the point-
erspθ). Then the programenumerateAS iterates through all
T -root-models and outputs the corresponding answer sets.

Theorem 3.21 Program enumerateAS works in space
O(f(w) · |R|) and outputs all elements inAS(R) with de-
lay O(f(w) · |R|), wherew denotes the treewidth ofR andf
is a function that only depends onw but not onR.

4 Implementation and Results
For our implementation, we have chosen Haskell, a program-
ming language with lazy semantics[Josephs, 1989], thus the
desired linear delay is implicit in the evaluation strategyof
the language (a computation is only executed when needed).
We call our prototypeLAPS (lazy answer-set programming
system).

The performance of our straightforward implementation is
unprecedented for counting, and is very competitive at low
treewidths (up to six) for enumerating the answer sets. Given
its early stage of development,LAPS has a high potential for
further improvements. We split the evaluation into four steps:
(1) parse a disjunctive logic program and generate the data
structures for our target language. (2) build the incidence
graph of the program and decompose the graph using heuris-
tic methods[Dermakuet al., 2005]. The decomposition is
then provided as a data structure for the target language. (3)
all parts are merged with the algorithm, compiled and (4) ex-
ecuted. Figure 5 summarizes the runtime behavior ofLAPS
(assuming the tree decomposition is already given) compared
to DLV on a set of randomly generated programs. The first
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n1 : yr1r5

j i M C # E

1 3 r1 ∅ 1
2 1,2 r1 r1 2

+3 6 r1r5 r1 1 vwx
4 4,5,7 r1r5 r1r5 8
5 3 yr1r5 r1r5 1
6 4 yr1r5 r1r5 , yr1r5 2
7 5 yr1r5 r1r5 , yr1r5, yr5 3
8 2 yr5 r1r5 , yr1r5 1
9 1,6,7 yr5 r1r5 , yr1r5, yr5 5

n2 : r1r5

j (i, k) M C # E

1 (1,1) ǫ ǫ, r1 1
2 (1,2) ǫ r1 1
3 (1,3) r1 ∅ 1
4 (2,3) (3,3) r1r5 r1r5 2
5 (2,1) (2,2) (2,4)r1r5 r1r5, r5 3

+6 (1,4) r5 ǫ,r1 1 vwx
7 (3,1) (3,2) (3,4)r5 r1r5, r5 3

n3 : r1r5

j i M C # E

+1 1 ǫ ∅ 1 ǫ

2 2 r1r5 r5 1
3 3 r5 r5 1

n4 : zr1r5

j i M C # E

+1 1 ǫ ∅ 1 ǫ

2 3 zr1r5 r5, zr5 1
3 2 zr5 r5 1

n5 : zr1

j i M C # E

+1 2 ǫ ∅ 1 ǫ

2 4 z ǫ 1
3 3 zr1 ǫ, z 1

n6 : zr1r2

j i M C # E

1 1 r1 r2 1
+2 2 r2 ∅ 1 ǫ

3 1 zr1r2 r1, r2, zr2 1
4 2 zr2 r2 1

n7 : r1r2

j i M C # E

1 1 r1 r2 1
+2 2 r2 ∅ 1 ǫ

n8 : ur1r2

j M C # E

1 ur1 r2 1
+2 r2 ∅ 1 ǫ

n9 : r1r5

j i M C # E

1 3 ǫ ǫ, r1 1
2 1 ǫ r1 1
3 2 r1 ∅ 1

+4 4 r5 ǫ,r1 1 vwx

n10 : wr1r5

j (i, k) M C # E

1 (1,1) ǫ r1 1
2 (1,2) r1 ∅ 1
3 (2,3) w ǫ, r1 1

+4 (3,3) wr5 ǫ,r1 , w 1 vwx

n11 : wr1r5

j i M C # E

1 1 ǫ ∅ 1
2 2 w ǫ 1

+3 3 wr5 ǫ,w 1 wx

n12 : wr5

j i M C # E

1 1 ǫ ∅ 1
2 2 w ǫ 1

+3 3 wr5 ǫ,w 1 wx

n13 : wxr5

j i M C # E

1 1 ǫ ∅ 1
2 2 w ǫ 1

+3 3 wxr5 ǫ,w 1 wx

n14 : wx

j i M C # E

1 1 ǫ ∅ 1
2 2 w ǫ 1

+3 3 wx ǫ,w 1 wx

n15 : wxr4

j M C # E

1 r4 ∅ 1
2 wr4 r4 1

+3 wxr4 r4, wr4, x 1 wx
4 x r4 1

n16 : wr1r5

j i M C # E

1 1 ǫ r1 1
2 2 r1 ∅ 1

+3 3 w ǫ,r1 1 vw

n17 : wr1

j i M C # E

1 2 ǫ r1 1
2 1 r1 ∅ 1

+3 3 w ǫ,r1 1 vw

n18 : vwr1

j i M C # E

1 1 r1 ∅ 1
2 2 v r1 1

+3 3 vw r1, v 1 vw

n19 : vw

j i M C # E

1 1 ǫ ∅ 1
2 2 v ǫ 1

+3 3 vw ǫ,v 1 vw

n20 : vwr3

j M C # E

1 r3 ∅ 1
2 vr3 r3 1

+3 vwr3 r3, vr3, w 1 vw
4 w r3 1

Figure 4: TheT -models of the tree decompositionT for our
running example programP . We abbreviate sets of atoms and
rules via strings. A list of string stands for a set of sets, e.g.
r4, wr4, x denotes{{r4}, {w, r4}, {x}}. The≺T relation for
θn′

i ≺T θn
j (resp. for(θn′

i , θn′′

k ) ≺T θn
j ) can be read off

columns “j” and “i” (resp. “(i, k)”) in the table of noden.

LAPS DLV

Figure 5: Comparison of the runtime behavior.

row shows the time required tocount the number of answer
sets with increasing number of answer sets (here we fixed the
treewidth to 5). ClearlyDLV ’s runtime is dependent on the
number of answer sets, whereasLAPS’ runtime is not affected
(excluding time required to handle very large integers). The
second row shows the runtime required for enumerating the
answer sets (time per answer set) with increasing treewidth.
Here,LAPS’ runtime increases quickly with larger treewidth
whereasDLV even seems to benefit from larger treewidth.
The latter effect is due to the fact that our randomly generated
programs tend to have more answer sets when the treewidth
increases which – in case ofDLV – decreases the average cost
per answer set. Tests using smodels instead ofDLV resulted
in a very similar runtime behavior.

5 Related Work and Conclusion
Another FPT result for ASP is due to Lin and Zhao[2004],
who use the number of cycles in the (directed) dependency
graph as parameter. A further interesting parameter here isthe
number of loops[Ferrariset al., 2006] of a program. We note
that programs with an unbounded number of cycles and/or
loops can still have low treewidth. ConsiderP1 = {ai ←
¬bi; bi ← ¬ai | 1 ≤ i ≤ n} or P2 = {an+1 ← a1, ai ←
ai+1 | 1 ≤ i ≤ n}. Both have treewidth 2, but the number of
cycles (P1), or loops (P2), clearly depends onn.

The work most closely related to ours is by Samer and
Szeider[2007], where the#SAT problem in case of bounded
treewidth was solved by dynamic programming. We extend
their approach to the counting problem (and also the enumer-
ation problem) of ASP. To this end, we have to introduce so-
phisticated, additional data structures, which ultimately allow
us to distinguish between arbitrary and minimal (wrt. to the
reduct) models of a given program. Two related problems
are constraint satisfaction problems (CSPs) and conjunctive
query (CQ) evaluation, for which, apart from treewidth, fur-
ther methods based on structural decomposition have been
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used to construct efficient algorithms[Gottlob et al., 2000;
Chekuri and Rajaraman, 2000]. These methods usually also
work by a bottom-up traversal of a tree structure. As with
#SAT, the data propagated up the tree structure is much sim-
pler than in case of ASP solving. On the other hand, the idea
of postprocessing by a top-down traversal in order to com-
pute all solutions is also present in the context of CQ evalua-
tion. Recently, dynamic programming has also been applied
to logic programming in the context of query answering over
Semantic Web data[Ruckhauset al., 2008]. In this work, dy-
namic programming is applied to the computation of an opti-
mal join order for CQ evaluation over deductive databases.

To summarize, we introduced in this work novel algorithms
for ASP consistency, as well as for counting and enumerating
answer sets. The algorithm runs in linear time (resp. with lin-
ear delay) if the treewidth of the logic programs is bounded by
a constant. Our experiments indicate that this technique may
lead to a promising alternative for evaluating ASP programs,
if the treewidth remains low. Since tree decompositions of the
logic programs are required for the algorithm, our approach
will greatly profit from any future progress in the research for
efficient tree-decomposition algorithms.

Future research concerns investigations to improve the per-
formance of the proposed method. This includes concepts
like balanced and non-normalized tree-decompositions. As
well, we plan to study methods for parallelization, which
should be easily applicable to the tree-like structure of the re-
quired computations. Finally, we want to use lower-level lan-
guages (instead of Haskell, where we rely on the compiler to
do adequate optimizations automatically) for our algorithms
and perform optimizations by hand.
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Answer Set Programming system competition. InPro-
ceedings of the 9th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 ofLNCS, pages 3–17. Springer, 2007.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386,
1991.

[Gottlobet al., 2000] G. Gottlob, N. Leone, and F. Scarcello.
A comparison of structural CSP decomposition methods.
Artif. Intell., 124(2):243–282, 2000.

[Gottlobet al., 2006] G. Gottlob, R. Pichler, and F. Wei.
Bounded treewidth as a key to tractability of knowledge
representation and reasoning. InProceedings of the 21st
National Conference on Artificial Intelligence (AAAI’06),
pages 250–256. AAAI Press, 2006.

[Jaklet al., 2008] M. Jakl, R. Pichler, S. Rümmele, and
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