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Abstract. Abduction is an important method of non-monotonic reasoning with
many applications in artificial intelligence and related topics. In this paper, we
concentrate on propositional abduction, where the background knowledge is
given by a propositional formula. We have recently started to study the counting
complexity of propositional abduction. However, several important cases have
been left open, namely, the cases when we restrict ourselvesto solutions with
minimal cardinality or with minimal weight. These cases – possibly combined
with priorities – are now settled in this paper. We thus arrive at a complete picture
of the counting complexity of propositional abduction.

1 Introduction

Abduction is a method of non-monotonic reasoning which has taken a fundamental
importance in artificial intelligence and related topics. It aims at giving explanations for
observed symptoms and is, therefore, widely used in diagnosis – notably in the medical
domain (see [17]). Other important applications of abduction can be found in planning,
database updates, data-mining and many more areas (see e.g.[11,12,16]).

Logic-based abduction is formally described as follows. Given a logical theoryT ,
a setM of manifestations, and a setH of hypotheses, find a solutionS, i.e., a set
S ⊆ H such thatT ∪S is consistent and logically entailsM . In this paper, we consider
propositional abduction problems(PAPs, for short), where the theoryT is represented
by a propositional formula over a Boolean algebraB = ({0, 1};∨,∧,¬,→,≡) and
the setsH andM consist of variables from some setV . A diagnosis problemcan
be represented by a PAPP = 〈V,H,M, T 〉 as follows: The theoryT is the system
description. The hypothesesH ⊆ V describe the possibly faulty system components.
The manifestationsM ⊆ V are the observed symptoms, describing the malfunction of
the system. The solutionsS of P are the possible explanations of the malfunction.

Example 1.Consider the following football knowledge base.

T = {weak defense ∧ weak attack → match lost ,
match lost → manager sad ∧ press angry

star injured → manager sad ∧ press sad }
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Moreover, let the set of observed manifestations and the setof hypotheses be

M ={manager sad }
H = { star injured ,weak defense ,weak attack }

This PAP has the following five abductive explanations (= “solutions”).

S1 = { star injured }
S2 = {weak defense,weak attack }
S3 = {weak attack , star injured }
S4 = {weak defense, star injured }
S5 = {weak defense,weak attack , star injured }

Obviously, in the above example, not all solutions are equally intuitive. Indeed, for
many applications, one is not interested inall solutions of a given PAPP but only in
all acceptablesolutions ofP . Acceptablein this context meansminimal with respect
to some preorder� on the powerset2H . Two natural preorders are subset-minimality
and cardinality-minimality, where the preorder is⊆ and≤, respectively. In Example 1,
bothS1 andS2 are subset-minimal but onlyS1 is cardinality-minimal. If we have a
weight function on the hypotheses then we may define the acceptable solutions as the
weight-minimal ones. This preorder (i.e., smaller or equalweight) is denoted as⊑.

All three criteria⊆, ≤, and⊑ can be further refined by a hierarchical organization
of our hypotheses according to somepriorities (cf. [5]). In this context, priorities may
be used to represent a qualitative version of probability. The resulting preorder is de-
noted by⊆P , ≤P , and⊑P . For instance, suppose that for some reason we know that
(for a specific team)star injured is much less likely to occur thanweakdefenseand
weakattack. This judgment can be formalized by assigning lower priority to the for-
mer. ThenS2 is the only minimal solution with respect to the preorders⊆P and≤P .
Actually, in this simple example,S2 is also the only⊑P -minimal solution indepen-
dently of the concrete weight function. Finally, if indeed all solutions are acceptable,
then the corresponding preorder is the syntactic equality=.

The usually observed algorithmic problem in logic-based abduction is the existence
problem, i.e. deciding whether at least one solutionS exists for a given abduction prob-
lemP . Another well-studied decision problem is the so-called relevance problem, i.e.
Given a PAPP and a hypothesish ∈ H , is h part of at least one acceptable solution?
However, this approach is not always satisfactory. Especially in database applications,
in diagnosis, and in data-mining there exist situations where we need to knowall ac-
ceptable solutions of the abduction problem or at least an important part of them. Con-
sequently, the enumeration problem (i.e., the computationof all acceptable solutions)
has received much interest (see e.g. [3, 4]). Another natural question is concerned with
the total number of solutions to the considered problem. Thelatter problem refers to the
counting complexityof abduction. Clearly, the counting complexity provides a lower
bound for the complexity of the enumeration problem. Moreover, counting the num-
ber of abductive explanations can be useful for probabilistic abduction problems (see
e.g. [18]). Indeed, in order to compute the probability of failure of a given component in
a diagnosis problem (under the assumption that all preferred explanations are equiprob-
able), we need to count the number of preferred explanationsas well as the number of
preferred explanations that contain a given hypothesis.



#-Abduction = ⊆ ⊆P ≤ ≤P ⊑,⊑P

General case#·coNP #·coNP #·Π2P #·Opt
2
P[log n] #·Opt

2
P #·Opt

2
P

Horn #P #P #·coNP #·OptP[log n] #·OptP #·OptP

definite Horn #P #P #P #·OptP[log n] #·OptP #·OptP

dual Horn #P #P #P #·OptP[log n] #·OptP #·OptP

bijunctive #P #P #·coNP #·OptP[log n] #·OptP #·OptP

Table 1. Counting complexity of propositional abduction

The study of counting complexity has been initiated by Valiant [19, 20] and is now
a well-established part of the complexity theory, where thebest known class is#P.
Many counting variants of decision problems have been proved #P-complete. Higher
counting complexity classes do exist, but they are not commonly known. A counting
equivalent of the polynomial hierarchy was defined by Hemaspaandra and Vollmer [8],
whereas generic complete problems for these counting hierarchy classes were presented
in [1]. We enlarged in [10] the approach of Hemaspaandra and Vollmer to classes of op-
timization problem, obtaining this way a new hierarchy of classes#·OptkP[logn] and
#·OptkP for arbitraryk ∈ N. These classes are sandwiched between the previously
known counting classes#·ΠkP, i.e., for eachk ∈ N we have

#·ΠkP ⊆ #·Optk+1P[logn] ⊆ #·Optk+1P ⊆ #·Πk+1P.

It was shown in [10] that these inclusions are proper unless the polynomial hierarchy
collapses to thek-th level. The most important special case isk = 1, where we write
#·OptP[logn] and#·OptP as a short-hand for#·Opt1P[logn] and#·Opt1P. On
the first two levels, we thus have the inclusions#P ⊆ #·OptP[logn] ⊆ #·OptP ⊆
#·coNP ⊆ #·Opt2P[logn] ⊆ #·Opt2P ⊆ #·Π2P. It will turn out that these new
counting complexity classes are precisely the ones needed to pinpoint the exact counting
complexity of the open cases in propositional abduction.

Results.We considered in [9] propositional abduction counting problems with the three
preorders=, ⊆, and⊆P . Together with the general case whereT can be an arbitrary
propositional formula, we also considered the special cases whereT is Horn, definite
Horn, dual Horn, and bijunctive. These are the most frequently studied subcases of
propositional formulas. Our results from [9] are summarized in the first three columns
of Table 1. In this paper we continue the investigation on counting complexity of propo-
sitional abduction, focusing on the preorders≤, ⊑, ≤P , and⊑P . Note that these are
practically highly relevant cases for the following reasons: If the failure of any com-
ponent in a system is independent of the failure of the other components and all com-
ponents have equal failure probability, then explanationswith minimum cardinality are
the ones with highest probability. If we have numeric valuesavailable for the repair cost
or for the robustness of each component (e.g., based on data such as the empirically col-
lected mean time to failure and component age), then weight-minimal abduction seeks
for the cheapest repair respectively for the most likely explanation. If in addition dif-
ferent sets of components can be ranked according to some criterion that is not well



suited for numeric values (like, e.g., a qualitative ratherthan a quantitative robustness
measure of components, the accessibility of components, orhow critical the failure of
a certain component would be), then this ranking can be expressed by priorities on the
hypotheses, for both the cardinality and weight minimal case. Our results obtained in
this work are summarized in the last three columns of Table 1.In total, we have thus
achieved a complete picture of the counting complexity of propositional abduction.

2 Preliminaries

2.1 Propositional Abduction

A propositional abduction problem(PAP)P consists of a tuple〈V,H,M, T 〉, whereV
is a finite set ofvariables, H ⊆ V is the set ofhypotheses, M ⊆ V is the set of
manifestations, andT is a consistenttheory in the form of a propositional formula.
A setS ⊆ H is a solution (also calledexplanation) to P if T ∪ S is consistent and
T ∪ S |= M holds.Priorities P = 〈H1, . . . , HK〉 are a stratification of the hypotheses
H = H1 ∪ · · · ∪HK into a fixed number of disjoint sets. Theminimal cardinality with
priorities relationA ≤P B holds ifA = B or there exists ani ∈ {1, . . . ,K} such that
A ∩Hj = B ∩ Hj for all j < i and|A ∩Hi| < |B ∩Hi|. Theminimal weight with
priorities relationA ⊑P B holds if A = B or there exists ani ∈ {1, . . . ,K} such
thatA ∩ Hj = B ∩ Hj for all j < i and

∑
a∈A∩Hi

w(a) <
∑

b∈B∩Hi
w(b), where

w : H → N is the weight function on the hypothesesH .
We study the following family of counting problems, which are parameterized by a

preorder� on2H .

Problem: #-�-ABDUCTION

Input: A propositional abduction problemP = 〈V,H,M, T 〉.
Output:Number of�-minimal solutions (explanations) ofP .

We considered the abduction counting problems with the preorders of equality=, sub-
set minimality⊆, and subset minimality with priorities⊆P in [9]. In this paper we
consider the preorders of minimal cardinality≤, minimal weight⊑, as well as their
versions with priorities≤P and⊑P , respectively. It is clear that an upper bound for
a minimal weight decision or counting abduction problem subsumes that for the cor-
responding abduction problem for minimal cardinality. Similarly, a lower bound for a
minimal cardinality abduction problem subsumes that for minimal weight abduction.
In both cases, setting the weight of each hypothesisx ∈ H to w(x) = 1 corresponds
to the cardinality version. Throughout this paper, we follow the formalism of Eiter and
Gottlob [2], allowing only positive literals in the solutions.

Together with the general case whereT can be an arbitrary propositional formula,
we consider the special cases whereT is Horn, definite Horn, dual Horn, and bijunctive.
A propositional clauseC is said to beHorn, definite Horn, dual Horn, orbijunctiveif it
has at most one positive literal, exactly one positive literal, at most one negative literal,
or at most two literals, respectively. A theoryT is Horn, definite Horn, dual Horn, or
bijunctive if it is a conjunction (or, equivalently, a set) of Horn, definite Horn, dual
Horn, or bijunctive, clauses, respectively.



2.2 Counting Complexity

The study ofcounting problemswas initiated by Valiant in [19, 20]. While decision
problems ask if at least one solution of a given problem instance exists, counting prob-
lems ask for the number of different solutions. The most intensively studied counting
complexity class is#P, which denotes the functions that count the number of accept-
ing paths of a non-deterministic polynomial-time Turing machine. In other words,#P
captures the counting problems corresponding to decision problems inNP. By allowing
the non-deterministic polynomial-time Turing machine access to an oracle inNP, Σ2P,
Σ3P, . . . , we can define an infinite hierarchy of counting complexity classes.

Alternatively, acounting problemis presented using awitnessfunction which for
every inputx returns a set ofwitnessesfor x. A witnessfunction is a functionw : Σ∗ →
P<ω(Γ ∗), whereΣ andΓ are two alphabets, andP<ω(Γ ∗) is the collection of all finite
subsets ofΓ ∗. Every such witness function gives rise to the followingcounting problem:
given a stringx ∈ Σ∗, find the cardinality|w(x)| of thewitnesssetw(x). According
to [8], if C is a complexity class of decision problems, we define#·C to be the class of
all counting problems whose witness functionw satisfies the following conditions.

1. There is a polynomialp(n) such that for everyx ∈ Σ∗ and everyy ∈ w(x) we
have|y| ≤ p(|x|);

2. The problem “givenx andy, is y ∈ w(x)?” is in C.

It is easy to verify that#P = #·P. The counting hierarchy is ordered by linear inclu-
sion [8]. In particular, we have that#P ⊆ #·coNP ⊆ #·Π2P ⊆ #·Π3P, etc

In [10] we introduced new counting complexity classes for counting optimal so-
lutions. We followed the aforementioned approach, where the complexity classC was
chosen amongOptP andOptP[logn], or, more generally,OptkP andOptkP[logn]
for arbitraryk ∈ N, respectively. These classes were previously defined by Krentel [14,
15]. A large collection of completeness results for these classes is given in [7]. As
Krentel observed, the classesOptP[logn] and OptP, which are closely related to
FPNP[log n] andFPNP, contain problems computing optimal solutions with a logarith-
mic and polynomial number of calls to anNP-oracle, respectively.

The application of the counting operator to the aforementioned optimization classes
allowed us to define in [10] the counting complexity classes#·OptP, #·OptP[logn]
and, more generally,#·OptkP, #·OptkP[logn] for eachk ∈ N. To formally introduce
these classes, we need some supplementary notions.

A non-deterministic transducerM is a non-deterministic polynomial-time boun-
ded Turing machine, which writes a binary number on the output at the end of every
accepting path. IfM is equipped with an oracle from the complexity classC, then it
is called anon-deterministic transducer withC-oracle. A ΣkP-transducerM is a non-
deterministic transducer with aΣk−1P oracle. We identify non-deterministic transduc-
ers without oracle andΣ1P-transducers. Forx ∈ Σ∗, we writeoptM (x) to denote the
optimalvalue, which can be either themaximumor theminimum, on any accepting path
of the computation ofM onx. If no accepting path exists thenoptM (x) is undefined.

We say that a counting problem#·A : Σ∗ → N is in the class#·OptkP for some
k ∈ N, if there is aΣkP-transducerM , such that#·A(x) is the number of accept-
ing paths of the computation ofM on x yielding the optimum valueoptM (x). If



no accepting path exists then#·A(x) = 0. If the length of the binary number writ-
ten byM is bounded byO(log |x|), then#·A is in the class#·OptkP[logn]. For
k = 1, we write#·OptP[logn] and#·OptP as a short-hand for#·Opt1P[logn] and
#·Opt1P, respectively. It was shown in [10] that these new classes#·OptkP[logn] and
#·OptkP are robust, i.e., they do not collapse to already known counting complexity
classes unless the polynomial hierarchy collapses as well.Finally, these new counting
classes were shown to be sandwiched between the classes#·ΠkP, i.e., we obtained
the inclusions#P ⊆ #·OptP[logn] ⊆ #·OptP ⊆ #·coNP ⊆ #·Opt2P[logn] ⊆
#·Opt2P ⊆ #·Π2P, etc.

The prototypical#·ΠkP-complete problem fork ∈ N is #ΠkSAT [1], defined as
follows. Given a formula

ϕ(X) = ∀Y1∃Y2 · · ·QkYk ψ(X,Y1, . . . , Yk)

whereψ is a Boolean formula andX , Y1, . . . , Yk are sets of propositional variables,
count the number of truth assignments to the variables inX that satisfyϕ. We ob-
tain the prototypical#·Optk+1P[logn]-complete problem #MIN-CARD-ΠkSAT and
the prototypical#·Optk+1P-complete problem #MIN-WEIGHT-ΠkSAT [10] by ask-
ing for the number of cardinality-minimal and weight-minimal models ofϕ(X). In
the latter case, there exists a weight functionw : X → N assigning positive values
to each variablex ∈ X . As usual, the counting problems #MIN-CARD-Π0SAT and
#MIN-WEIGHT-Π0SAT are just denoted by #MIN-CARD-SAT and #MIN-WEIGHT-
SAT, being respectively#·OptP[logn]- and#·OptP-complete.

3 General Case

Theorem 2. #-≤-ABDUCTION is #·Opt2P[logn]-complete and #-⊑-ABDUCTION is
#·Opt2P-complete.

Proof. In order to prove the membership, we show that these problemscan be solved
by an appropriateΣ2P-transducerM , i.e.,M works in non-deterministic polynomial
time with access to anNP-oracle and, in case of #-≤-ABDUCTION, the output ofM is
logarithmically bounded. We give a high-level descriptionof M : It takes an arbitrary
PAPP = 〈V,H,M, T 〉 as input and non-deterministically enumerates all subsetsS ⊆
H , such that every computation path ofM corresponds to exactly oneS ⊆ H . By
two calls to anNP-oracle,M checks on every path whetherT ∪ S is consistent (i.e.,
satisfiable) and ifT ∪ S |= M holds. If both oracle calls answer “yes”, thenS is
a solution ofP and the computation path is accepting. The output written byM on
each path is the cardinality of the corresponding setS (resp. the sum of the weights of
the elements inS) for the #-≤-ABDUCTION problem (resp. for the #-⊑-ABDUCTION

problem). Finally, we define the optimal value ofM to be the minimum. Obviously,
the accepting paths ofM outputting the optimal value correspond one-to-one to the
cardinality-minimal (resp. weight-minimal) solutions ofthe PAPP .

The hardness of #-≤-ABDUCTION (resp. of #-⊑-ABDUCTION) is shown by re-
duction from #MIN-CARD-Π1SAT (resp. from #MIN-WEIGHT-Π1SAT). Let an ar-
bitrary instance of #MIN-CARD-Π1SAT (resp. of #MIN-WEIGHT-Π1SAT) be given



by the quantified Boolean formulaϕ(X) = ∀Y ψ(X,Y ) with X = {x1, . . . , xk} and
Y = {y1, . . . , yl}. In case of #MIN-WEIGHT-Π1SAT, we additionally have a weight
functionw defined on the variables inX . LetX ′ = {x′1, . . . , x

′

k},X ′′ = {x′′1 , . . . , x
′′

k},
Q = {q1, . . . , qk},R = {r1, . . . , rk}, andt be fresh variables. Then we define the PAP
P = 〈V,H,M, T 〉 as follows.

V = X ∪X ′ ∪X ′′ ∪ Y ∪Q ∪R ∪ {t}, H = X ∪X ′ ∪X ′′, M = Q ∪R ∪ {t}

T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬x′i, xi → qi, x
′

i → qi | i = 1, . . . , k}

∪ {¬x′i ∨ ¬x′′i , x
′

i → ri, x
′′

i → ri | i = 1, . . . , k}.

In case of #-⊑-ABDUCTION, we leave the weights of the variables inX unchanged. For
the remaining hypotheses, we setw(xi) = w(x′i) = w(x′′i ) for everyi ∈ {1, . . . , k}.

For eachi, the clauses¬xi∨¬x
′

i,xi → qi,x′i → qi in T ensure that every solutionS
of P contains exactly one of{xi, x

′

i}. Similarly, the clauses¬x′i ∨¬x′′i , x′i → ri, x′′i →
ri ensure that every solution contains exactly one of{x′i, x

′′

i }. The sets of variablesX ′

andX ′′ both represent the complementX rA, butX ′′ is there to get the cardinalities
right, since without it, the cardinality|A ∪ (X rA)′| would be the same for allS.

For a subset of variablesA ⊆ X , letA′ andA′′ be defined asA′ = {x′ | x ∈ A}
andA′′ = {x′′ | x ∈ A}. Then, the effect of the conjunctψ(X,Y ) → t in T is that,
for every subsetA ⊆ X the following equivalence holds: The assignmentI onX with
I−1(1) = A is a model ofϕ(X) if and only ifA∪ (X rA)′ ∪ {ψ(X,Y ) → t} |= {t}.
Thus, for everyA ⊆ X , we have the following equivalences. The assignmentI onX
with I−1(1) = A is a model ofϕ(X) if and only ifA∪(XrA)′∪A′′ is a solution ofP .
Moreover, the previous assignmentI is cardinality-minimal (resp. weight-minimal) if
and only ifA ∪ (X r A)′ ∪ A′′ is a cardinality-minimal (resp. a weight-minimal)
solution ofP . This accomplishes a parsimonious reduction to #-≤-ABDUCTION (resp.
#-⊑-ABDUCTION). ⊓⊔

#-≤P -ABDUCTION with no restriction on the number of priorities requires some
preparatory work. For this purpose, we first consider the appropriate version of #SAT.

Problem: #MIN-LEX–ΠkSAT
Input: A quantified Boolean formulaϕ(X) = ∀Y1∃Y2 · · ·QYk ψ(X,Y1, . . . , Yk) and a
subsetX ′ = {x1, . . . , xℓ} ⊆ X , such thatQ = ∀ (resp.Q = ∃) andψ(X,Y1, . . . , Yk)
is in DNF (resp. in CNF) ifk is odd (resp.k is even).
Output:Number of satisfying assignmentsI : X → {0, 1} of the formulaϕ(X), such
that(I(x1), . . . , I(xℓ)) is lexicographically minimal.

As usual, #MIN-LEX–Π0SAT represents the aforementioned problem for unquantified
formulas, therefore we denote it as #MIN-LEX-SAT.

Theorem 3. #M IN-LEX–ΠkSAT is #·Optk+1P-complete. In particular, #M IN-LEX-
SAT is #·OptP-complete.

Proof. We only give the proof for #MIN-LEX-SAT, since the generalization to higher
levels of the hierarchy is obvious.



In order to prove the membership, we show that #MIN-LEX-SAT can be solved
by an appropriateNP-transducerM . We give a high-level description ofM : It takes
as input an arbitrary propositional formulaϕ with variables inX plus a subsetX ′ =
{x1, . . . , xℓ} ⊆ X of distinguished variables.M non-deterministically enumerates all
possible truth assignmentsI : X → {0, 1}, such that every computation path ofM
corresponds to exactly one assignmentI. On each path,M checks in polynomial time
if I is a model ofϕ. If this is the case, then the computation path is accepting.The
output written byM on each path is the binary string(I(x1), . . . , I(xℓ)). Finally, we
define the optimal value ofM to be the minimum. Obviously, the accepting paths ofM

outputting the optimal value correspond one-to-one to the satisfying assignmentsI ofϕ,
such that(I(x1), . . . , I(xℓ)) is lexicographically minimal.

For the hardness proof, letL be an arbitraryminimumproblem in#·OptP. We
show that there exists a parsimonious reduction fromL to #MIN-LEX-SAT. SinceL
is in #·OptP, there exists anNP-transducerM for L. On inputw, the transducerM
produces an output of length≤ p(|w|) on every branch for some polynomialp. Without
loss of generality, we may assume thatM actually produces an output of length exactly
= p(|w|). Now letw be an arbitrary instance ofL and letN = p(|w|) denote the length
of the output on every computation path. Analogously to Cook’s theorem (see [6]),
there exists a propositional formulaϕ with variablesX , such that there is a one-to-one
correspondence between the satisfying truth assignment ofϕ and the successful com-
putations ofM onw. Moreover,X andϕ can be extended in such a way that the output
on each successful computation path is encoded by the variablesX ′ = {x1, . . . , xN},
i.e., for every successful computation pathπ, the truth values(I(x1), . . . , I(xN )) of the
corresponding modelI of ϕ represent exactly the output on the pathπ. But then there
is indeed a one-to-one correspondence between the computation paths ofM onw, such
thatM outputs the minimum on these paths and the satisfying assignments of the (ex-
tended) formulaϕ, such that the truth values on(x1, . . . , xN ) are lexicographically
minimal. ⊓⊔

We also need the usual restriction of the previous problem tothree literals per clause.

Problem: #MIN-LEX-3SAT
Input: A propositional formulaϕ in conjunctive normal form over the variablesX with
at most three literals per clause and a subsetX ′ = {x1, . . . , xℓ} ⊆ X .
Output:Number of satisfying assignmentsI : X → {0, 1} of the formulaϕ, such that
(I(x1), . . . , I(xℓ)) is lexicographically minimal.

Since there exists a parsimonious reduction from #SAT to #3SAT (see [13]), the same
reduction implies the following consequence of Theorem 3.

Corollary 4. #M IN-LEX-3SAT is #·OptP-complete.

Theorem 5. #-≤P -ABDUCTION without restriction on the number of priorities and #-
⊑P -ABDUCTION with or without restriction on the number of priorities are#·Opt2P-
complete. #-≤P -ABDUCTION is #·Opt2P[logn]-complete if the number of priorities
is bounded by a constant.



Proof. For the membership proof, we slightly modify theΣ2P-transducerM from the
membership proof of Theorem 2. Again,M non-deterministically enumerates all sub-
setsS ⊆ H , such that every computation path ofM corresponds to exactly oneS ⊆ H .
By two calls to anNP-oracle,M checks on every path whetherT ∪S is consistent (i.e.,
satisfiable) and whetherT ∪ S |= M holds. If both oracle calls answer “yes”, thenS is
a solution ofP and the computation path is accepting. Only the output written byM on
each path has to be modified with respect to the proof of Theorem 2: Suppose that the
input PAPP hasK prioritiesH1, . . . , HK . ThenM computes on every computation
path the vector(c1, . . . , cK), whereci is the cardinality (resp. the total weight) ofS∩Hi

for everyi. Without loss of generality we may assume for everyi that, on all paths, the
binary representation of the numbersci has identical length (by adding appropriately
many leading zeros). ThenM simply outputs this vector(c1, . . . , cK), considered as a
single number in binary. Finally, we again define the optimalvalue ofM as the min-
imum. Obviously, the accepting paths ofM outputting the optimal value correspond
one-to-one to the≤P -minimal (resp.⊑P -minimal) solutions of the PAPP . If there are
no restrictions on the numberK of priorities or if we consider weight-minimality, then
the output ofM has polynomial length. Indeed, SinceK ≤ |H | always holds, because
in the extremal case each hypothesis has its own priority class, we need at most|H |
bits. The length of eachci is bounded bylog |H | bits, sinceci ≤ |H | holds. We need
O(K log |H |) bits to represent the vector(c1, . . . , cK). If K is constant, this becomes
O(log |H |).

For the hardness part, only the#·Opt2P-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow
from the corresponding hardness result without prioritiesin Theorem 2. We reduce the
#MIN-LEX–Π1SAT problem to #-≤P -ABDUCTION. Let an arbitrary instance of #MIN-
LEX–Π1SAT be given by the quantified Boolean formulaϕ(X) = ∀Y ψ(X,Y ) with
X = {x1, . . . , xn} and the subsetX ′ = {x1, . . . , xℓ} ⊆ X . Let t, Q = {q1, . . . , qn}
R = {r1, . . . , rℓ}, Z = {z1, . . . , zn}, andZ ′ = {z′1, . . . , z

′

ℓ} be fresh variables. Then
we define the PAPP = 〈V,H,M, T 〉 as follows:

V = X ∪ Y ∪ Z ∪ Z ′ ∪Q ∪R ∪ {t}

H = X ∪ Z ∪ Z ′ with

H1 = {x1}, . . . , Hℓ = {xℓ}, andHℓ+1 = (X rX ′) ∪ Z ∪ Z ′

M = Q ∪R ∪ {t}

T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬zi, xi → qi, zi → qi | 1 ≤ i ≤ n}

∪ {¬zi ∨ ¬z′i, zi → ri, z
′

i → ri | 1 ≤ i ≤ ℓ}

The idea of the variables inQ, R, Z, andZ ′ is similar to the the variablesQ, R, X ′,
andX ′′ in the proof of Theorem 2. They ensure that every solutionS of P contains
exactlyn variables out of the2n variables inHℓ+1. This can be seen as follows. By
the clauses¬xi ∨ ¬zi, xi → qi, zi → qi with i ∈ {1, . . . , n}, every solution contains
exactly one of{xi, zi}. Of course, the variablesxi with i ∈ {1, . . . , ℓ} are not inHℓ+1.
However, the clauses¬zi ∨¬z′i, zi → ri, z

′

i → ri with i ∈ {1, . . . , ℓ} ensure that every
solution contains exactly one of{zi, z

′

i}. In other words, for everyi ∈ {1, . . . , ℓ} every
solution contains either{xi, z

′

i} or {zi}.



There is a one-to-one correspondence between the models ofϕ(X) which are lex-
icographically minimal onX ′ and the≤P -minimal solutions ofP . Indeed, letI be a
model ofϕ(X) which is lexicographically minimal onX ′. ThenI can be extended to
exactly one≤P -minimal solutionS of P , namelyS = I−1(1) ∪ {zi | 1 ≤ i ≤ n and
I(xi) = 0} ∪ {z′i | 1 ≤ i ≤ ℓ andI(xi) = 1}.

Conversely, letS be a≤P -minimal solution ofP . Then we obtain a lexicograph-
ically minimal modelI of ϕ(X) simply by restrictingS to X , i.e. I(x) = 1 for all
x ∈ S ∩X andI(x) = 0 otherwise. ⊓⊔

4 Special Cases

We consider the special cases of propositional abduction problems, where the theory is
presented by Horn, definite Horn, dual Horn, or bijunctive formulas. Recall the follow-
ing counting problem introduced in [10].

Problem: #MIN-CARD-VERTEX-COVER (RESP. #MIN-WEIGHT-VERTEX-COVER)
Input: GraphG = (V,E) (plus a weight functionw : V → N in case of #MIN-
WEIGHT-VERTEX-COVER).
Output: Number of vertex covers ofG with minimal cardinality (resp. with minimal
weight), i.e., cardinality-minimal (resp. weight-minimal) subsetsC ⊆ V such that
(u, v) ∈ E impliesu ∈ C or v ∈ C.

In [10], it was shown that #MIN-CARD-VERTEX-COVER is #·OptP[logn]-com-
plete while #MIN-WEIGHT-VERTEX-COVER is #·OptP-complete.

Theorem 6. #-≤-ABDUCTION is #·OptP[logn]-complete and #-⊑-ABDUCTION is
#·OptP-complete for Horn, definite Horn, dual Horn, or bijunctive theories.

Proof. For the membership part, we construct a transducerM exactly as in the proof of
Theorem 2. The only difference is that we can now check indeterministic polynomial
time whetherT ∪ S is consistent (i.e., satisfiable) and whetherT ∪ S |= M holds.
Hence, we end up with the desiredNP-transducer (rather than aΣ2P-transducer) since
we no longer need anNP-oracle.

The hardness is shown by a reduction from #MIN-CARD-VERTEX-COVER

(resp. #MIN-WEIGHT-VERTEX-COVER). Let an arbitrary instance of #MIN-CARD-
VERTEX-COVER be given by the graphG = (V,E) with V = {v1, . . . , vn} and
E = {e1, . . . , em}. By slight abuse of notation, we consider the elements inV andE
also as propositional variables and setX = {v1, . . . , vn} andR = {e1, . . . , em}. In
case of #MIN-WEIGHT-VERTEX-COVER, we additionally have a weight functionw
defined on the variables inX . Then we define the PAPP = 〈W,H,M, T 〉 as follows.

W = X ∪R, H = X, M = R

T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

The resulting theory contains only clauses which are, at thesame time, Horn, defi-
nite Horn, dual Horn, and bijunctive. Obviously, for every subsetX ′ ⊆ X = V



the following equivalence holds:X ′ is a solution ofP if and only if X ′ is a ver-
tex cover ofG. But then there exists also a one-to-one correspondence between the
cardinality-minimal (resp. weight-minimal) solutions ofP and the cardinality-minimal
(resp. weight-minimal) vertex covers ofG. ⊓⊔

Again, #-≤P -ABDUCTION with no restriction on the number of priorities requires
some preparatory work. For this purpose, we first consider anappropriate variant of
counting the vertex covers of a graph.

Problem: #MIN-LEX-VERTEX-COVER

Input: GraphG = (V,E) and a subsetV ′ = {v1, . . . , vℓ} ⊆ V .
Output:Number of vertex coversC of G, such that(χ(v1), . . . , χ(vℓ)) is lexicograph-
ically minimal, whereχ is the characteristic function of the vertex coverC.

Theorem 7. #M IN-LEX-VERTEX-COVER is #·OptP-complete.

Proof. In order to prove the membership, we show that #MIN-LEX-VERTEX-COVER

can be solved by the followingNP-transducerM . It takes as input an arbitrary graph
G = (V,E) with distinguished verticesV ′ = {v1, . . . , vℓ}. M non-deterministically
enumerates all subsetsC ⊆ V , such that every computation path ofM cor-
responds to exactly one such subsetC. If C is a vertex cover ofG, then the
computation path is accepting. The output written byM on each path is the bi-
nary vector(χC(v1), . . . , χC(vℓ)). Obviously, the accepting paths ofM outputting
the minimal value correspond one-to-one to the vertex covers C of G, such that
(χC(v1), . . . , χC(vℓ)) is lexicographically minimal.

The hardness proof is by a parsimonious reduction from #MIN-LEX-3SAT. In
fact, this is the same reduction as in the standardNP-completeness proof ofVERTEX

COVER by reduction from 3SAT to VERTEX COVER, see e.g. [6]. Letϕ(x1, . . . , xk) be
a propositional formula in CNF with three literals per clause. We construct the graph
G = (V,E) as follows. For each variablexi we construct an edgeei = (xi, x

′

i). For
each clauseci = l1i ∨ l2i ∨ l3i we construct three edges(l1i , l

2
i ), (l2i , l

3
i ), (l3i , l

1
i ) forming

a triangleti. Finally, we connect each positive literalz in the triangleti to its counter-
partz in an edgeej = (z, z′) , as well as each negative literal¬z in the triangleti to its
counterpartz′. The set of distinguished variablesX ′ from #MIN-LEX-3SAT becomes
the set of distinguished verticesV ′ in #MIN-LEX-VERTEX-COVER. ⊓⊔

Theorem 8. #-≤P -ABDUCTION without restriction on the number of priorities and #-
⊑P -ABDUCTION with or without restriction on the number of priorities are#·OptP-
complete for Horn, definite Horn, dual Horn, or bijunctive theories. #-≤P -ABDUCTION

for Horn, definite Horn, dual Horn, or bijunctive theories is#·OptP[logn]-complete
if the number of priorities is restricted by a constant.

Proof. For the membership part, we construct a transducerM exactly as in the proof
of Theorem 5. The only difference is that we get anNP-transducer (rather than aΣ2P-
transducer) since we no longer need anNP-oracle for checking whetherT ∪ S is con-
sistent (i.e., satisfiable) and whetherT ∪ S |= M holds.

For the hardness part, only the#·OptP-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow



from the corresponding hardness result without prioritiesin Theorem 6. Let an arbitrary
instance of #MIN-LEX-VERTEX-COVER be given by the graphG = (V,E) with V =
{v1, . . . , vn} andE = {e1, . . . , em} and letV ′ = {v1, . . . , vℓ} with ℓ ≤ n. As in the
proof of Theorem 6, we consider the elements inV andE also as propositional variables
and setX = {v1, . . . , vn} andR = {e1, . . . , em}. In addition, letQ = {qℓ+1, . . . , qn},
andZ = {zℓ+1, . . . , zn} be fresh variables. Then we define the PAPP = 〈V,H,M, T 〉
as follows.

V = X ∪R ∪Q ∪ Z, M = R ∪Q

H = X ∪ Z with H1 = {v1}, . . . , Hℓ = {vℓ}, andHℓ+1 = (X r V ′) ∪ Z

T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪

{vi → qi, zi → qi | ℓ+ 1 ≤ i ≤ n}

The resulting theory contains only clauses which are, at thesame time, Horn, definite
Horn, dual Horn, and bijunctive. The variablesQ andZ realize the familiar idea that
in every≤P -minimal solutionS of P , for everyi ∈ {ℓ + 1, . . . , n}, exactly one ofvi

andzi is contained inS. It can then be easily shown that there is a one-to-one correspon-
dence between the lexicographically minimal vertex coversof G and the≤P -minimal
solutions ofP . ⊓⊔

5 Conclusion

In this paper, we have completed the analysis of the countingcomplexity of proposi-
tional abduction. Together with previous results presented in [9], we have thus achieved
a full picture. Recall from [19] that counting problems may display a significantly
different complexity behavior from the corresponding decision problems. Hence, the
complexity of a class of problems is better understood when we analyse the counting
complexity in addition to the decision complexity. By complementing the complexity
results of Eiter and Gottlob [2] on decision problems related to propositional abduc-
tion with our counting complexity results in Table 1, we havethus arrived at a better
understanding of the complexity of propositional abduction in various settings.

From a complexity theoretic point of view, there is another interesting aspect to the
counting complexity results shown here. The class#P has been studied intensively and
many completeness results for this class can be found in the literature. In contrast, for
the higher counting complexity classes#·ΠkP, #·OptkP[logn], and#·OptkP (with
k ≥ 1) very few problems had been shown to be complete. Our resultson the counting
complexity of propositional abduction thus also lead to a better understanding of these
counting complexity classes.

For future work, we plan to extend the complexity analysis ofmany more fami-
lies of decision problems in the artificial intelligence domain (like, e.g., closed-world
reasoning in various settings) to counting problems. Moreover, we would also like to
extend the abduction cases studied in this paper to yet another case, namely the case of
affine theories, i.e.: the theoryT is an affine systemAX = b overZ2. This case was in
fact dealt with in [9] for #-�-abduction with�∈ {=,⊆,⊆P}. There are obvious upper
and lower bounds also for #-�-abduction with affine theories when the preorder� is in



{≤,⊑,≤P ,⊑P }. However, proving tight complexity bounds also for these cases has to
be left as an open problem for future work.
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