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Abstract. Abduction is an important method of non-monotonic reasgmiith
many applications in artificial intelligence and relate@its. In this paper, we
concentrate on propositional abduction, where the backgtdknowledge is
given by a propositional formula. We have recently startestidy the counting
complexity of propositional abduction. However, severaportant cases have
been left open, namely, the cases when we restrict ourstdvsslutions with
minimal cardinality or with minimal weight. These cases -sgibly combined
with priorities — are now settled in this paper. We thus &e&va complete picture
of the counting complexity of propositional abduction.

1 Introduction

Abduction is a method of non-monotonic reasoning which laken a fundamental
importance in artificial intelligence and related topi¢siins at giving explanations for
observed symptoms and is, therefore, widely used in diagrasotably in the medical
domain (see [17]). Other important applications of abducttan be found in planning,
database updates, data-mining and many more areas (sgelel@, 16]).

Logic-based abduction is formally described as follows/e@ia logical theory”,
a setM of manifestations, and a séf of hypotheses, find a solutiof, i.e., a set
S C H suchthafl'U S is consistent and logically entaild . In this paper, we consider
propositional abduction problem(®APs, for short), where the thedfyis represented
by a propositional formula over a Boolean algelira= ({0,1};V, A, -, —, =) and
the setsH and M consist of variables from some st A diagnosis problentan
be represented by a PAP = (V, H, M, T) as follows: The theonf" is the system
description. The hypothesés C V' describe the possibly faulty system components.
The manifestationd/ C V are the observed symptoms, describing the malfunction of
the system. The solutios of P are the possible explanations of the malfunction.

Example 1.Consider the following football knowledge base.

T = { weak_defense N\ weak_attack — match_lost,
match_lost — manager_sad N press_angry
star_injured — manager_sad N press_sad }
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Moreover, let the set of observed manifestations and thef$stpotheses be

M ={ manager_sad }
H ={ star_injured, weak _defense, weak _attack }

This PAP has the following five abductive explanations (dtisons”).

&1 = { star_injured }

Sy = { weak_defense, weak _attack }

S3 = { weak _attack, star_injured }

Sy = { weak_defense, star_injured }

S5 = { weak_defense, weak _attack, star_injured }

Obviously, in the above example, not all solutions are dguiatuitive. Indeed, for
many applications, one is not interestedalhsolutions of a given PARP but only in

all acceptablesolutions ofP. Acceptablédn this context meanminimal with respect
to some preorder on the powerse2” . Two natural preorders are subset-minimality
and cardinality-minimality, where the preorderdsand<, respectively. In Example 1,
both S; and S, are subset-minimal but onl§; is cardinality-minimal. If we have a
weight function on the hypotheses then we may define the taiglepsolutions as the
weight-minimal ones. This preorder (i.e., smaller or equeilyht) is denoted as.

All three criteriaC, <, andC can be further refined by a hierarchical organization
of our hypotheses according to sopréorities (cf. [5]). In this context, priorities may
be used to represent a qualitative version of probabilitye Tesulting preorder is de-
noted byC p, <p, andC p. For instance, suppose that for some reason we know that
(for a specific teamjtar.injured is much less likely to occur thaweakdefenseand
weakattack This judgment can be formalized by assigning lower pryotdt the for-
mer. ThenS, is the only minimal solution with respect to the preordérs and <p.
Actually, in this simple example$; is also the onlyC p-minimal solution indepen-
dently of the concrete weight function. Finally, if indeeltlsolutions are acceptable,
then the corresponding preorder is the syntactic equality

The usually observed algorithmic problem in logic-baseduation is the existence
problem, i.e. deciding whether at least one solufaexists for a given abduction prob-
lem P. Another well-studied decision problem is the so-callddwvance problem, i.e.
Given a PAPP and a hypothesis € H, is h part of at least one acceptable solution?
However, this approach is not always satisfactory. Esfigéradatabase applications,
in diagnosis, and in data-mining there exist situationsreee need to knowall ac-
ceptable solutions of the abduction problem or at least groitant part of them. Con-
sequently, the enumeration problem (i.e., the computatiaall acceptable solutions)
has received much interest (see e.g. [3, 4]). Another nlaquiestion is concerned with
the total number of solutions to the considered problem.|atter problem refers to the
counting complexityf abduction. Clearly, the counting complexity provideowér
bound for the complexity of the enumeration problem. Moerpeounting the num-
ber of abductive explanations can be useful for probaluilsbduction problems (see
e.g.[18]). Indeed, in order to compute the probability dffiee of a given componentin
a diagnosis problem (under the assumption that all prefexplanations are equiprob-
able), we need to count the number of preferred explanaisngell as the number of
preferred explanations that contain a given hypothesis.



#-Abduction = - Cp < <p C,Cp
General casgf-coNP #-coNP #-IIoP #-Opt,Plog n] #-Opt,P #-Opt,P
Horn #P #P  #.coNP #-OptP[logn] #-OptP #-OptP
definite Horn  #P #P #P  #:-OptPllogn] #-OptP # -OptP
dual Horn | #P #P #P  #:OptPllogn] #:OptP # -OptP
bijunctive #P #P  #-coNP #:OptP[logn] #:-OptP # -OptP

Table 1. Counting complexity of propositional abduction

The study of counting complexity has been initiated by \&l{d 9, 20] and is now
a well-established part of the complexity theory, wherelibst known class igP.
Many counting variants of decision problems have been grgse-complete. Higher
counting complexity classes do exist, but they are not contynknown. A counting
equivalent of the polynomial hierarchy was defined by Heraasdra and Vollmer [8],
whereas generic complete problems for these countingrbleralasses were presented
in [1]. We enlarged in [10] the approach of Hemaspaandra aticher to classes of op-
timization problem, obtaining this way a new hierarchy afsses#-Opt,P[logn] and
#-Opt, P for arbitraryk € N. These classes are sandwiched between the previously
known counting classe#-11;P, i.e., for eachk € N we have

#-11,P C #-Opt;, Pllogn| C #-Opt P C #1111 P.

It was shown in [10] that these inclusions are proper unlesgpblynomial hierarchy
collapses to thé-th level. The most important special caseé:is- 1, where we write
#-OptP[logn] and#-OptP as a short-hand fo#t-Opt, P[log n] and#-Opt,;P. On
the first two levels, we thus have the inclusioh® C #-OptP[logn] C #-OptP C
#-coNP C #-Opt,Pllogn] C #-Opt,P C #-II,P. It will turn out that these new
counting complexity classes are precisely the ones neegedoint the exact counting
complexity of the open cases in propositional abduction.

Results.We considered in [9] propositional abduction counting peats with the three
preorders=, C, andC p. Together with the general case whétean be an arbitrary
propositional formula, we also considered the specialcadeerel” is Horn, definite
Horn, dual Horn, and bijunctive. These are the most fredyestudied subcases of
propositional formulas. Our results from [9] are summatizethe first three columns
of Table 1. In this paper we continue the investigation omtimg complexity of propo-
sitional abduction, focusing on the preordersC, <p, andCp. Note that these are
practically highly relevant cases for the following reasoli the failure of any com-
ponent in a system is independent of the failure of the otberonents and all com-
ponents have equal failure probability, then explanatigitis minimum cardinality are
the ones with highest probability. If we have numeric valaesilable for the repair cost
or for the robustness of each component (e.g., based onuddtas the empirically col-
lected mean time to failure and component age), then werghitmal abduction seeks
for the cheapest repair respectively for the most likelylaxation. If in addition dif-
ferent sets of components can be ranked according to soteeiani that is not well



suited for numeric values (like, e.g., a qualitative ratiiran a quantitative robustness
measure of components, the accessibility of componentswrcritical the failure of

a certain component would be), then this ranking can be sgptkby priorities on the
hypotheses, for both the cardinality and weight minimakc&3ur results obtained in
this work are summarized in the last three columns of Table 1otal, we have thus
achieved a complete picture of the counting complexity oppssitional abduction.

2 Prediminaries

2.1 Propositional Abduction

A propositional abduction problefiPAP) P consists of a tupl¢V, H, M, T'), whereV’
is a finite set ofvariables H C V is the set othypothesesM C V is the set of
manifestationsand T is a consistentheoryin the form of a propositional formula.
A setS C H is asolution(also calledexplanation to P if T'U S is consistent and
T US = M holds.Priorities P = (H,, ..., Hgk) are a stratification of the hypotheses
H = H, U---U Hg into a fixed number of disjoint sets. Thanimal cardinality with
priorities relationA <p B holds if A = B or there exists ane {1,..., K} such that
ANH; =BnH,forall j <iand|AN H;| < |BnN H;|. Theminimal weight with
priorities relationA Cp B holds if A = B or there exists am € {1,..., K} such
that AN H; = BN Hforall j <iand) c.ny w(a) < D ycpnm, w(b), where
w: H — N is the weight function on the hypothesHs

We study the following family of counting problems, whiclegrarameterized by a
preorder< on 2%,

Problem: #-<-ABDUCTION
Input: A propositional abduction problefd = (V, H, M, T').
Output: Number of<-minimal solutions (explanations) &f.

We considered the abduction counting problems with therpiers of equality=, sub-
set minimality C, and subset minimality with prioritieS p in [9]. In this paper we
consider the preorders of minimal cardinalty minimal weightC, as well as their
versions with priorities<p andC p, respectively. It is clear that an upper bound for
a minimal weight decision or counting abduction problemssubes that for the cor-
responding abduction problem for minimal cardinality. $amy, a lower bound for a
minimal cardinality abduction problem subsumes that fonimal weight abduction.
In both cases, setting the weight of each hypothesis H to w(z) = 1 corresponds
to the cardinality version. Throughout this paper, we folthe formalism of Eiter and
Gottlob [2], allowing only positive literals in the solutis.

Together with the general case whé&te&an be an arbitrary propositional formula,
we consider the special cases whéris Horn, definite Horn, dual Horn, and bijunctive.
A propositional claus€’ is said to beHorn, definite Horn dual Horn, or bijunctiveif it
has at most one positive literal, exactly one positiveditesit most one negative literal,
or at most two literals, respectively. A thedfyis Horn, definite Horn, dual Horn, or
bijunctive if it is a conjunction (or, equivalently, a set) idorn, definite Horn, dual
Horn, or bijunctive, clauses, respectively.



2.2 Counting Complexity

The study ofcounting problemsvas initiated by Valiant in [19, 20]. While decision
problems ask if at least one solution of a given problem msaexists, counting prob-
lems ask for the number of different solutions. The mostnsiteely studied counting
complexity class ig#P, which denotes the functions that count the number of aecept
ing paths of a non-deterministic polynomial-time Turingahime. In other words#P
captures the counting problems corresponding to decisisigms inNP. By allowing
the non-deterministic polynomial-time Turing machineesxto an oracle iNP, X5 P,
3P, ..., we can define an infinite hierarchy of counting compiilesiasses.

Alternatively, acounting problemis presented usingaitnessfunction which for
every inputz returns a set ovitnessegor x. A witnesgunction is a functionv: X* —
P<«(I'*),whereX andl are two alphabets, arfdl<« (1) is the collection of all finite
subsets of . Every such witness function gives rise to the followaaynting problem
given a stringr € X*, find the cardinalityjw(z)| of the witnesssetw(x). According
to [8], if C is a complexity class of decision problems, we defihé€ to be the class of
all counting problems whose witness functiorsatisfies the following conditions.

1. There is a polynomigl(n) such that for every: € X* and everyy € w(z) we
have|y| < p(|z|);
2. The problem “giverx andy, isy € w(z)?”isinC.

It is easy to verify thattP = #-P. The counting hierarchy is ordered by linear inclu-
sion [8]. In particular, we have thgtP C #-coNP C #-1I,P C #-113P, etc

In [10] we introduced new counting complexity classes fourting optimal so-
lutions. We followed the aforementioned approach, wheeecthmplexity clasg€ was
chosen amon@ptP and OptP[logn|, or, more generallyDpt, P and Opt, P[log n)
for arbitraryk € N, respectively. These classes were previously defined byt&IrfL 4,
15]. A large collection of completeness results for thesssgs is given in [7]. As
Krentel observed, the class€ptP[logn] and OptP, which are closely related to
FPNPlegn] andFPNP | contain problems computing optimal solutions with a ldiar
mic and polynomial number of calls to &P-oracle, respectively.

The application of the counting operator to the aforemergiiboptimization classes
allowed us to define in [10] the counting complexity clasge®ptP, #-OptP[logn|
and, more generally-Opt, P, #-Opt, Pllog n] for eachk € N. To formally introduce
these classes, we need some supplementary notions.

A non-deterministic transducel/ is a non-deterministic polynomial-time boun-
ded Turing machine, which writes a binary number on the dudpthe end of every
accepting path. If\/ is equipped with an oracle from the complexity cl@&ghen it
is called anon-deterministic transducer wittroracle A X, P-transducer)/ is a non-
deterministic transducer withX;,_, P oracle. We identify non-deterministic transduc-
ers without oracle anil; P-transducers. Far € X*, we writeopt,,(z) to denote the
optimalvalue, which can be either tmeaximurror theminimum on any accepting path
of the computation of\f onz. If no accepting path exists thept ,, () is undefined.

We say that a counting problega- A: ¥* — N is in the class#-Opt, P for some
k € N, if there is aX;P-transduceM, such that#-A(zx) is the number of accept-
ing paths of the computation a¥/ on z yielding the optimum valuept,,(z). If



no accepting path exists theh A(z) = 0. If the length of the binary number writ-
ten by M is bounded byO(log|z|), then#-A is in the class#-Opt,P[logn]. For
k = 1, we write #-OptP[log n] and#-OptP as a short-hand fo#-Opt, P[log n] and
#-Opt, P, respectively. It was shown in [10] that these new clags€¥pt, P[logn] and
#-Opt, P are robust, i.e., they do not collapse to already known éograomplexity
classes unless the polynomial hierarchy collapses as kiedlly, these new counting
classes were shown to be sandwiched between the clgssb®, i.e., we obtained
the inclusions#P C #-OptP[logn] C #-OptP C #:coNP C #-Opt,P[logn] C
#-Opt,P C #-11,P, etc.

The prototypicakt 11, P-complete problem fok € N is #11;, SAT [1], defined as
follows. Given a formula

e(X) =vY13Ys - QY (X, Y1,...,Y)

where is a Boolean formula and’, Y1, ..., Y} are sets of propositional variables,
count the number of truth assignments to the variableX ithat satisfyp. We ob-
tain the prototypical-Opt,, , ; P[logn]-complete problem #Mi-CARD-1I; SAT and
the prototypical#-Opt, ., P-complete problem #M -WEIGHT-II, SAT [10] by ask-
ing for the number of cardinality-minimal and weight-mirahmodels ofp(X). In
the latter case, there exists a weight functionX — N assigning positive values
to each variable: € X. As usual, the counting problems #M CARD-I1,SAT and
#MIN-WEIGHT-IISAT are just denoted by #M-CARD-SAT and #MN-WEIGHT-
SAT, being respectivelyt-OptP[log n]- and#-OptP-complete.

3 General Case

Theorem 2. #-<-ABDUCTION is #-Opt,P[logn]-complete and #=-ABDUCTION is
#-Opt, P-complete.

Proof. In order to prove the membership, we show that these probtambe solved
by an appropriat&,;P-transducen\/, i.e., M works in non-deterministic polynomial
time with access to aNP-oracle and, in case of #-ABDUCTION, the output ofM is
logarithmically bounded. We give a high-level descriptafn)/: It takes an arbitrary
PAPP = (V, H, M, T) as input and non-deterministically enumerates all sulf$ets
H, such that every computation path bf corresponds to exactly ong C H. By
two calls to anNP-oracle,M checks on every path wheth&ru S is consistent (i.e.,
satisfiable) and ifl’ U S | M holds. If both oracle calls answer “yes”, théhis
a solution of P and the computation path is accepting. The output writterdbwn
each path is the cardinality of the correspondingsétesp. the sum of the weights of
the elements itf) for the #<-ABDUCTION problem (resp. for the #-ABDUCTION
problem). Finally, we define the optimal value df to be the minimum. Obviously,
the accepting paths d¥/ outputting the optimal value correspond one-to-one to the
cardinality-minimal (resp. weight-minimal) solutionstbie PAPP.

The hardness of #-ABDUCTION (resp. of #£-ABDUCTION) is shown by re-
duction from #MN-CARD-II; SAT (resp. from #MN-WEIGHT-II; SAT). Let an ar-
bitrary instance of #WN-CARD-II; SAT (resp. of #MN-WEIGHT-I1; SAT) be given



by the quantified Boolean formula(X) = VY ¢(X,Y) with X = {z4,..., 2} and

Y = {y1,...,u}. In case of #MN-WEIGHT-II; SAT, we additionally have a weight
functionw defined on the variables ii. Let X’ = {z/,... 2} }, X" = {«,..., 2} },
Q={q,---,qx}, R={r1,...,r}, andt be fresh variables. Then we define the PAP
P =(V,H,M,T) as follows.

V=XUXUX"UYUQURU{t}, H=XUX'UX", M=QURU/{t}
T={Y(X,Y) =t} U{~a; Vi, x; = ¢z, > q|i=1,...,k}

/ 1 / 1 .
U {-a; V—al o, —raf —r|i=1,...,k}.

In case of #=-ABDUCTION, we leave the weights of the variablesXnunchanged. For
the remaining hypotheses, we sgtr;) = w(z}) = w(z}) foreveryi € {1,...,k}.

For each;, the clausesz; V—a}, z; — ¢;, i — ¢; InT ensure that every solutiah
of P contains exactly one dfx;, 2} }. Similarly, the clausesz) v -z, } — r;, 2} —

r; ensure that every solution contains exactly onéagf 2/ }. The sets of variableX’
and X" both represent the complemeXit~ A, but X" is there to get the cardinalities
right, since without it, the cardinalityd U (X ~ A)’| would be the same for afi.

For a subset of variable$ C X, let A" and A” be defined asl’ = {2/ | x € A}
andA” = {z” | x € A}. Then, the effect of the conjungt(X,Y) — tin T is that,
for every subsel C X the following equivalence holds: The assignméwnin X with
I71(1) = Aisamodel ofp(X) ifand only if AU (X ~ A) U{w(X,Y) — t} E {t}.
Thus, for everyAd C X, we have the following equivalences. The assignnieon X
with I=1(1) = Ais amodel ofp(X) if and only if AU(X ~\ A)’UA" is a solution ofP.
Moreover, the previous assignmenis cardinality-minimal (resp. weight-minimal) if
and only if A U (X ~ A) U A” is a cardinality-minimal (resp. a weight-minimal)
solution of P. This accomplishes a parsimonious reduction t&-#ABDUCTION (resp.
#-C-ABDUCTION). a

#-<p-ABDUCTION with no restriction on the number of priorities requires som
preparatory work. For this purpose, we first consider the@mate version of AT.

Problem: #MIN-LEX-II;, SAT

Input: A quantified Boolean formule(X) = VY;3Y5 - - - QY (X, Y1,...,Y;)and a
subsetX’ = {x1,...,2¢} C X, such that) =V (resp.Q = 3 andy(X, Y1,...,Y%)

is in DNF (resp. in CNF) ift is odd (respk is even).

Output: Number of satisfying assignments X — {0, 1} of the formulap(X), such
that(I(z1),...,I(x,)) is lexicographically minimal.

As usual, #MN-LEX—II,SAT represents the aforementioned problem for unquantified
formulas, therefore we denote it as #MLEX-SAT.

Theorem 3. #MIN-LEX-II; SAT is #-Opt,, ; P-complete. In particular, ¥ IN-LEX-
SAT is #-OptP-complete.

Proof. We only give the proof for #MN-LEX-SAT, since the generalization to higher
levels of the hierarchy is obvious.



In order to prove the membership, we show thati#M.EX-SAT can be solved
by an appropriat&P-transducetM . We give a high-level description df/: It takes
as input an arbitrary propositional formulawith variables inX plus a subseX’ =
{z1,...,2¢} C X of distinguished variables/ non-deterministically enumerates all
possible truth assignmenfs X — {0, 1}, such that every computation path bf
corresponds to exactly one assignmén®n each path)/ checks in polynomial time
if I is a model ofp. If this is the case, then the computation path is accepfihg.
output written byM on each path is the binary striig(z1), ..., I(x,)). Finally, we
define the optimal value a¥/ to be the minimum. Obviously, the accepting pathdbf
outputting the optimal value correspond one-to-one todltisfying assignmentsof ¢,
such tha{(x1),...,I(xy)) is lexicographically minimal.

For the hardness proof, Idt be an arbitraryminimumproblem in#-OptP. We
show that there exists a parsimonious reduction fioho #MIN-LEX-SAT. SinceL
is in #-OptP, there exists alNP-transduceiV/ for L. On inputw, the transducei/
produces an output of length p(|w|) on every branch for some polynomjalwithout
loss of generality, we may assume thatactually produces an output of length exactly
= p(|w|). Now letw be an arbitrary instance éfand letN = p(|w|) denote the length
of the output on every computation path. Analogously to Cotlkeorem (see [6]),
there exists a propositional formufawith variablesX, such that there is a one-to-one
correspondence between the satisfying truth assignmentof the successful com-
putations ofA onw. Moreover,X andy can be extended in such a way that the output
on each successful computation path is encoded by the lesi&b = {x1,..., 25},
i.e., for every successful computation pattthe truth value$(z1),...,I(xy)) of the
corresponding moddl of ¢ represent exactly the output on the patBut then there
is indeed a one-to-one correspondence between the conepuiaths ofA/ onw, such
that M outputs the minimum on these paths and the satisfying asgigts of the (ex-
tended) formulap, such that the truth values dn,...,xy) are lexicographically
minimal. a

We also need the usual restriction of the previous problethrée literals per clause.

Problem: #MIN-LEX-3SAT
Input: A propositional formulap in conjunctive normal form over the variabl&swith

at most three literals per clause and a subSet {z1,...,z,} C X.
Output: Number of satisfying assignments X — {0, 1} of the formulay, such that
(I(z1),...,I(z,)) is lexicographically minimal.

Since there exists a parsimonious reduction frammto #3sAT (see [13]), the same
reduction implies the following consequence of Theorem 3.

Corollary 4. #MIN-LEX-3SAT is #-OptP-complete.

Theorem 5. #-<p-ABDUCTION without restriction on the number of priorities and #-
C p-ABDUCTION with or without restriction on the number of priorities afe Opt, P-
complete. #< p-ABDUCTION is #-Opt,P[log n]-complete if the number of priorities
is bounded by a constant.



Proof. For the membership proof, we slightly modify thig P-transduce/ from the
membership proof of Theorem 2. Agaih/ non-deterministically enumerates all sub-
setsS C H, such that every computation path/af corresponds to exactly odeC H.

By two calls to arlNP-oracle,M checks on every path whetHBiJ S is consistent (i.e.,
satisfiable) and wheth@ U S = M holds. If both oracle calls answer “yes”, th&ris

a solution ofP and the computation path is accepting. Only the outputevritty A/ on
each path has to be modified with respect to the proof of Time@:eSuppose that the
input PAPP hasK priorities Hy, ..., Hx. ThenM computes on every computation
path the vectofcy, . . ., cx ), wherec; is the cardinality (resp. the total weight) 8N H;
for everyi. Without loss of generality we may assume for evetlyat, on all paths, the
binary representation of the numbesshas identical length (by adding appropriately
many leading zeros). Thel simply outputs this vectofcs, . . ., cx ), considered as a
single number in binary. Finally, we again define the optiwedle of M as the min-
imum. Obviously, the accepting paths &f outputting the optimal value correspond
one-to-one to thed p-minimal (resp Z p-minimal) solutions of the PAPP. If there are
no restrictions on the numbéf of priorities or if we consider weight-minimality, then
the output ofM has polynomial length. Indeed, Sinée < |H| always holds, because
in the extremal case each hypothesis has its own priorigsclae need at mosH |
bits. The length of each; is bounded bylog | H| bits, sincec; < |H| holds. We need
O(K log|H]|) bits to represent the vectés,, ..., ck). If K is constant, this becomes
O(log |H]).

For the hardness part, only the Opt,P-hardness of #< p-ABDUCTION without
restriction on the number of priorities has to be shown. Témaaining cases follow
from the corresponding hardness result without prioritieBheorem 2. We reduce the
#MIN-LEX-II; SAT problemto #< p-ABDUCTION. Let an arbitrary instance of #W-
Lex-II; SAT be given by the quantified Boolean formyléX ) = VY ¢(X,Y") with
X ={x1,...,2,} and the subseX’ = {z1,...,2¢} C X. Lett, Q = {q1,...,qn}
R={r,...;r¢}, Z ={z,...,z.},andZ’ = {z{,..., 2} be fresh variables. Then
we define the PARP = (V, H, M, T) as follows:

V=XUYUZUZ' UQURU{t}
H=XUZUZ with

Hy ={z},....,H = {x;}, andHp; = (X~ X)uZUZ
M=QURU{t}
T={Y(X,)Y) =t} U{~2;V-zi,2; = ¢,z = ¢ | 1 <i<n}

U{~z V2l zs—rz —r | 1<i <[t}

The idea of the variables i, R, Z, andZ’ is similar to the the variableQ, R, X',
and X" in the proof of Theorem 2. They ensure that every solufoof P contains
exactlyn variables out of thén variables inH,, ;. This can be seen as follows. By
the clausesz; V —z;,x; — ¢;, 2 — ¢; withi € {1,...,n}, every solution contains
exactly one of z;, z; }. Of course, the variables with i € {1,...,¢} are notinH,;.
However, the clausesz; V -z, z; — 1, 2z} — r; with ¢ € {1,...,¢} ensure that every
solution contains exactly one ¢£;, z.}. In other words, for every e {1,..., ¢} every
solution contains eithefrz;, 2.} or {z;}.



There is a one-to-one correspondence between the mode(sXofwhich are lex-
icographically minimal onX’ and the< p-minimal solutions ofP. Indeed, letl be a
model of (X)) which is lexicographically minimal oX’. Then! can be extended to
exactly one< p-minimal solutionS of P, namelyS = I-1(1) U {z; | 1 <i < nand
I(x;)) =0} U{zl |1 <i<{landl(xz;) =1}.

Conversely, letS be a<p-minimal solution of P. Then we obtain a lexicograph-
ically minimal modell of ¢(X) simply by restrictingS to X, i.e. I(xz) = 1 for all
x € SN X andI(x) = 0 otherwise. O

4 Special Cases

We consider the special cases of propositional abductiobl@ms, where the theory is
presented by Horn, definite Horn, dual Horn, or bijunctiverialas. Recall the follow-
ing counting problem introduced in [10].

Problem: #MIN-CARD-VERTEX-COVER (RESR #MIN-WEIGHT-VERTEX-COVER)
Input: GraphG = (V, E) (plus a weight functionv: V' — N in case of #MN-
WEIGHT-VERTEX-COVER).

Output: Number of vertex covers aff with minimal cardinality (resp. with minimal
weight), i.e., cardinality-minimal (resp. weight-minithaubsetsC C V such that
(u,v) € E impliesu € Corv € C.

In [10], it was shown that #Mi-CARD-VERTEX-COVER is #-OptP[log n]-com-
plete while #MN-WEIGHT-VERTEX-COVER is #-OptP-complete.

Theorem 6. #-<-ABDUCTION is #-OptP[logn]-complete and #=-ABDUCTION is
#-OptP-complete for Horn, definite Horn, dual Horn, or bijunctivesbries.

Proof. For the membership part, we construct a transdiéexactly as in the proof of
Theorem 2. The only difference is that we can now chealldterministic polynomial
time whetherT U S is consistent (i.e., satisfiable) and whetfieu S = M holds.
Hence, we end up with the desirdid-transducer (rather thana P-transducer) since
we no longer need aNP-oracle.

The hardness is shown by a reduction from #MCARD-VERTEX-COVER
(resp. #MN-WEIGHT-VERTEX-COVER). Let an arbitrary instance of #M-CARD-
VERTEX-COVER be given by the graplir = (V,E) with V' = {vy,...,v,} and
E = {ey,...,en}. By slight abuse of notation, we consider the elements ind £
also as propositional variables and ét= {v1,...,v,} andR = {e1,...,en}. In
case of #MN-WEIGHT-VERTEX-COVER, we additionally have a weight function
defined on the variables i. Then we define the PAP = (W, H, M, T') as follows.

W=XUR, H=X, M=R
T=A{v,—ej|vce;,1<i<n1<j<m}

The resulting theory contains only clauses which are, atstme time, Horn, defi-
nite Horn, dual Horn, and bijunctive. Obviously, for evemybsetX’ C X = V



the following equivalence holdsX’ is a solution ofP if and only if X’ is a ver-
tex cover ofG. But then there exists also a one-to-one correspondeneséetthe
cardinality-minimal (resp. weight-minimal) solutionsBfand the cardinality-minimal
(resp. weight-minimal) vertex covers 6f. a

Again, #< p-ABDUCTION with no restriction on the number of priorities requires
some preparatory work. For this purpose, we first considesporopriate variant of
counting the vertex covers of a graph.

Problem: #MIN-LEX-VERTEX-COVER

Input: GraphG = (V, E) and a subsét”’ = {vy,...,v,} C V.

Output: Number of vertex cover§' of G, such thai{x(v1), ..., x(v¢)) is lexicograph-
ically minimal, wherey is the characteristic function of the vertex co¢ér

Theorem 7. #MIN-LEX-VERTEX-COVERIs #-OptP-complete.

Proof. In order to prove the membership, we show thati#M. EX-VERTEX-COVER
can be solved by the followinyP-transducet\/. It takes as input an arbitrary graph
G = (V, E) with distinguished vertice¥”’ = {v1,...,v,}. M non-deterministically
enumerates all subsetS C V, such that every computation path af cor-
responds to exactly one such subsgét If C is a vertex cover ofG, then the
computation path is accepting. The output written ki on each path is the bi-
nary vector(xc(v1), ..., xc(ve)). Obviously, the accepting paths af outputting
the minimal value correspond one-to-one to the vertex @¢erof G, such that
(xc(v1),...,xc(ve)) is lexicographically minimal.

The hardness proof is by a parsimonious reduction fromNHUMEX-3SAT. In
fact, this is the same reduction as in the stand@Pdcompleteness proof ofERTEX
COVER by reduction from 3AT to VERTEX COVER, see e.g. [6]. Lep(z1,...,zx) be
a propositional formula in CNF with three literals per claugVe construct the graph
G = (V, E) as follows. For each variable, we construct an edge = (x;,z}). For
each clause; = I} v [2 v I3 we construct three edgé€g, [2), (12,12), (I3,1}) forming
a trianglet;. Finally, we connect each positive literain the trianglet; to its counter-
partz in an edgez; = (z, 2’) , as well as each negative literat in the trianglet; to its
counterpart’. The set of distinguished variablég from #MIN-LEX-3SAT becomes
the set of distinguished vertic&8 in #MIN-LEX-VERTEX-COVER. O

Theorem 8. #-<p-ABDUCTION without restriction on the number of priorities and #-
C p-ABDUCTION with or without restriction on the number of priorities age- OptP-
complete for Horn, definite Horn, dual Horn, or bijunctivetiries. #< p-ABDUCTION
for Horn, definite Horn, dual Horn, or bijunctive theories#s OptP[log n]-complete
if the number of priorities is restricted by a constant.

Proof. For the membership part, we construct a transd¢egxactly as in the proof
of Theorem 5. The only difference is that we gedR-transducer (rather thanda, P-
transducer) since we no longer needNdP-oracle for checking whethdr U S is con-
sistent (i.e., satisfiable) and whetiéty S = M holds.

For the hardness part, only the OptP-hardness of # p-ABDUCTION without
restriction on the number of priorities has to be shown. Témaaining cases follow



from the corresponding hardness result without prioriti€eheorem 6. Let an arbitrary
instance of #MN-LEX-VERTEX-COVER be given by the grapti = (V, E) with V' =
{v1,... v} andE = {eq,...,en} and letV’ = {vy,..., v} with £ < n. Asin the
proof of Theorem 6, we consider the elementgiandE also as propositional variables
and setX = {v1,...,v,}andR = {eq, ..., e }. Inaddition, letQ = {qgr41,-..,qn},
andZ = {z¢y1, ..., 2, } be fresh variables. Then we define the PRR- (V, H, M, T')
as follows.

V=XURUQUZ M=RUQ
H=XUZwith H; = {v1},..., H, = {v)}, andHpy, = (X V) U Z
T={v,—ejlv€e;,1<i<n1<j<m}uU

{vi = qi,zi = qi | L+1<i<n}

The resulting theory contains only clauses which are, as#imee time, Horn, definite
Horn, dual Horn, and bijunctive. The variabl@sand Z realize the familiar idea that
in every<p-minimal solutionS of P, for everyi € {¢ + 1,...,n}, exactly one of;
andz; is contained irS. It can then be easily shown that there is a one-to-one qmres
dence between the lexicographically minimal vertex coeéi§ and the< p-minimal
solutions ofP. a

5 Conclusion

In this paper, we have completed the analysis of the coutimgplexity of proposi-
tional abduction. Together with previous results presmtg9], we have thus achieved
a full picture. Recall from [19] that counting problems magplay a significantly
different complexity behavior from the corresponding demi problems. Hence, the
complexity of a class of problems is better understood wheramalyse the counting
complexity in addition to the decision complexity. By corplenting the complexity
results of Eiter and Gottlob [2] on decision problems redat® propositional abduc-
tion with our counting complexity results in Table 1, we halras arrived at a better
understanding of the complexity of propositional abduttiovarious settings.

From a complexity theoretic point of view, there is anothnteiesting aspect to the
counting complexity results shown here. The cl#$shas been studied intensively and
many completeness results for this class can be found intéretlure. In contrast, for
the higher counting complexity classgsII;P, #-Opt,P[logn], and#-Opt,P (with
k > 1) very few problems had been shown to be complete. Our rezultise counting
complexity of propositional abduction thus also lead to @igvainderstanding of these
counting complexity classes.

For future work, we plan to extend the complexity analysisnainy more fami-
lies of decision problems in the artificial intelligence daim(like, e.g., closed-world
reasoning in various settings) to counting problems. Megeove would also like to
extend the abduction cases studied in this paper to yetancdise, namely the case of
affine theories, i.e.: the theofly is an affine systeml X = b overZ,. This case was in
fact dealt with in [9] for #=<-abduction with=xe {=, C, Cp}. There are obvious upper
and lower bounds also for #-abduction with affine theories when the preordes in



{<,C, <p,Cp}. However, proving tight complexity bounds also for thesgesshas to
be left as an open problem for future work.
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