
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 35 (2010) 278–298
0306-43

doi:10.1

$ Thi

[31,32].

project
� Cor

fax: þ4

E-m

pichler@

fwei@in
journal homepage: www.elsevier.com/locate/infosys
Tractable database design and datalog abduction through
bounded treewidth$
Georg Gottlob a, Reinhard Pichler b, Fang Wei c,�

a Computing Laboratory, Oxford University, Oxford OX1 3QD, United Kingdom
b Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria
c Institut für Informatik, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg i. Br., Germany
a r t i c l e i n f o

Article history:

Received 10 October 2008

Received in revised form

8 September 2009

Accepted 30 September 2009
Recommended by: J. Van den Bussche
dependencies have bounded treewidth. For such sets, we develop polynomial-time and
Keywords:

Normal forms

Database design

Tree decomposition

Bounded treewidth

Fixed-parameter tractability

Datalog abduction
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.09.003

s is an extended and enhanced version of r

The work was supported by the Austrian Sc

P20704-N18.

responding author. Tel.: þ49 761 203 8125;

9 761 203 8122.

ail addresses: georg.gottlob@comlab.ox.ac.uk

dbai.tuwien.ac.at (R. Pichler),

formatik.uni-freiburg.de (F. Wei).
a b s t r a c t

Given that most elementary problems in database design are NP-hard, the currently used

database design algorithms produce suboptimal results. For example, the current 3NF

decomposition algorithms may continue further decomposing a relation even though it is

already in 3NF. In this paper we study database design problems whose sets of functional

highly parallelizable algorithms for a number of central database design problems such as:
� primality of an attribute;

� 3NF-test for a relational schema or subschema;

� BCNF-test for a subschema.
ll r

esul

ien

(G. G
In order to define the treewidth of a relational schema, we shall associate a hypergraph

with it. Note that there are two main possibilities of defining the treewidth of a hypergraph

H: One is via the primal graph ofH and one is via the incidence graph ofH. Our algorithms

apply to the case where the primal graph is considered. However, we also show that the

tractability results still hold when the incidence graph is considered instead.

It turns out that our results have interesting applications to logic-based abduction. By

the well-known relationship with the primality problem in database design and the

relevance problem in propositional abduction, our new algorithms and tractability results

can be easily carried over from the former field to the latter. Moreover, we show how these

tractability results can be further extended from propositional abduction to abductive

diagnosis based on non-ground datalog.

& 2009 Elsevier B.V. All rights reserved.
ights reserved.

ts published in

ce Fund (FWF),

ottlob),
1. Introduction

One of the fundamental problems in relational data-
base design is to test whether a schema satisfies the
desired normal form. Unfortunately, most problems
arising in this area are intractable. For instance, among
the following six most important decision problems
�
 PRIMALITY (for a schema or for a subschema);

�
 3NFTEST (for a schema or for a subschema);

�
 BCNFTEST (for a schema or for a subschema);

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.09.003
mailto:georg.gottlob@comlab.ox.ac.uk
mailto:pichler@dbai.tuwien.ac.at
mailto:fwei@informatik.uni-freiburg.de

ARTICLE IN PRESS

A B C

D

h1

h3h2

A B C

D

A

B

C

D

h1

h2

h3

Fig. 1. (Hyper-)graphs from Example 1.2. (a) Hypergraph H; (b) primal

graph PðHÞ; (c) incidence graph IðHÞ.

G. Gottlob et al. / Information Systems 35 (2010) 278–298 279
only BCNFTEST for a schema is tractable [43]. Despite the
intractability of the remaining problems listed above,
there exist efficient algorithms for decomposing a rela-
tional schema into subschemas satisfying 3NF or BCNF
(see e.g. [43,5,46]). However, without the ability of normal
form checking, these decomposition algorithms may
continue further decomposing a schema or subschema
even though the desired normal form has already been
achieved. The following example displays a simple
relational schema, where the well-known 3NF decom-
position algorithm synthesis from [5] keeps decomposing
the schema even though it is already in 3NF.

Example 1.1. Consider the schema ABCD with functional
dependencies (FDs) AB-C, C-D, D-A. This schema is
already in 3NF since all its attributes are prime, i.e., they
are part of a key. However, by using the synthesis
algorithm from [5], we obtain a decomposition into the
subschemas ABC, CD, DA.

The concept of treewidth and related notions have been
successfully applied to many areas of computer science.
Recently, several intractable problems in the database
field and in AI (such as e.g., conjunctive query equivalence
and CSP problems) have been shown to become solvable
in polynomial time or even highly parallelizable if the
underlying graph or hypergraph structure has bounded
treewidth or hypertree-width (see [29]). Hence, the
question naturally arises as to whether one can also
identify such tractable fragments for the aforementioned
decision problems in relational database design. In this
work, we define the treewidth of a relational schema ðR; FÞ
(where F denotes the set of functional dependencies
holding in R) by considering the following hypergraph H:
the attributes of R are the vertices of H and every
hyperedge of H corresponds to the set of attributes
occurring in a functional dependency f 2 F. In order to
define the treewidth of H, one can either consider the
primal graph PðHÞ or the incidence graph IðHÞ. In this paper,
we shall mainly deal with the primal graph (a formal
definition of these concepts will be given in Section 2.2).

Example 1.2. Consider the relational schema from Ex-
ample 1.1. The corresponding hypergraphH consists of the
vertices fA;B;C;Dg and the hyperedges ABC, CD, AD.
The hypergraph H plus the primal graph PðHÞ and the
incidence graph IðHÞ are shown in Fig. 1.

An interesting approach to dealing with such intractable
problems is parameterized complexity. In fact, hard
problems can become tractable if some problem para-
meter is bounded by a fixed constant. Such problems are
also called fixed-parameter tractable. One important
parameter which has served to establish fixed-parameter
tractability results in many areas of computer science is
the treewidth [8], which measures the ‘‘tree-likeness’’ of a
graph.

One possibility to prove the fixed-parameter tractabil-
ity of the above-mentioned decision problems is to show
that these problems can be expressed in terms of monadic
second-order (MSO) formulae over the primal graph
or over the incidence graph, respectively. The fixed-
parameter tractability is thus an immediate consequence
of Courcelle’s Theorem [16] (see Section 5). A concrete
algorithm can then be obtained by constructing a finite
tree automaton (FTA) corresponding to the MSO formula
and by checking whether a tree obtained from the tree
decomposition is accepted by the FTA. However, algo-
rithms resulting from such an MSO-to-FTA transformation
often have two serious shortcomings: First, the intuition
of the algorithm is usually lost when looking at the FTA.
Second (and even more importantly), the FTA resulting
from standard translation methods (see e.g. [21]) often
suffers from a state explosion and tends to be excessively
complicated. It was observed in [22,44] that this
state explosion already occurs for comparatively simple
MSO formulae. For these reasons, it is always preferable to
have a dedicated algorithm rather than just an MSO-
encoding—as was pointed out in [34].

The main contributions of this paper are the following:
�
 For all of the above-mentioned database design
problems (i.e., PRIMALITY, 3NFTEST, and BCNF-
TEST—both for a schema and for a subschema), we
manage to identify tractable fragments via bounded
treewidth. In case of bounded treewidth of the primal
graph, we develop new, dedicated algorithms, from
which the fixed-parameter tractability follows imme-
diately. Actually, even if no tree decomposition is given,
all of these problems are not only tractable but also
highly parallelizable since they are in the class LogCFL

for either notion of bounded treewidth.

�
 For the case of bounded treewidth of the incidence

graph, we establish the fixed-parameter tractability by
providing an MSO-encoding of these problems.

�
 Abduction is a very important technique for ‘‘reverse

inference’’ in artificial intelligence. It is heavily used for
diagnosis, e.g., in medical and technological applica-
tions [17,23]. Unfortunately, as shown in [19], the
major decision and computation problems of abduc-
tion are NP-hard. In fact, the so-called relevance
problem (i.e., deciding if a hypothesis is part of a
possible explanation) is NP hard, even if the system
description consists of propositional, definite Horn
clauses only [23]. It turns out that our new methods
developed in the area of database design can be
naturally carried over to propositional abduction.

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298280
�
 Moreover, abduction is one of the AI processes where
the datalog language has been fruitfully used for
knowledge representation [2,39,12], and where data-
base theory has a clear impact. In this paper, we
present a significant extension of the above-mentioned
tractability results. More precisely, we shall identify
sufficient conditions under which abduction based on
(non-ground!) datalog also becomes tractable.

The rest of the paper is organized as follows: In Section 2,
we recall some basic terminology and results. New
algorithms for the above-mentioned six decision pro-
blems in database design are presented in Sections 3
and 4. In Section 5, we prove the corresponding fixed-
parameter tractability results also for the case of bounded
treewidth of the incidence graph via appropriate MSO-
encodings. The application of these results to normal form
decompositions and to abductive diagnosis is dealt with
in Sections 6 and 7, respectively. We conclude with
Section 8.
2. Preliminaries

2.1. Database design

A relational schema is denoted as ðR; FÞ where R is the
set of attributes, and F the set of functional dependencies
(FDs, for short) over R. If X and Y are sets of attributes and
A is an attribute, then we may write XY , XA, X � A to
abbreviate the set notation X [Y , X [fAg, and X\fAg,
respectively.

Unless explicitly stated otherwise, we only consider
FDs in canonical form here, i.e., FDs where there is only a
single attribute on the right-hand side. The set of all FDs
over the attributes in R that can be derived from F via
Armstrong’s Axioms (see [1]) is denoted as Fþ. We write
FFX-A in order to denote that an FD X-A is in Fþ.
Below, we shall give a characterization of FFX-A in
terms of derivation sequences.

Given a relational schema ðR; FÞ and a subset XDR, we
write closF ðXÞ for the closure of X with respect to F, i.e.,
A 2 closF ðXÞ, iff FFX-A. If FFX-A, then we also say that
‘‘X determines (or decides) A’’. Note that we do not exclude
the special case of FDs X-A with X ¼ |. This simply
means that the attribute A may only have a constant value
in the relational schema ðR; FÞ.

Definition 2.1. If X determines all attributes A 2 R, then X

is called a superkey. If X is minimal with this property,
then X is a key. The set of all keys in ðR; FÞ is denoted as
KðR; FÞ. An attribute A is called prime in ðR; FÞ, if it is
contained in at least one key in KðR; FÞ.

In this paper, we often have to refer to the attributes
occurring in an FD f. Let f be of the form f ¼ X-A. Then we
write lhsðf Þ and rhsðf Þ to refer to X and A, respectively.

A ‘‘derivation sequence’’ of A from X in F is a se-
quence of the form X-X [fA1g-X [fA1;A2g- � � �-X[

fA1; . . . ;Ang, s.t. An ¼ A and for every i 2 f1; . . . ;ng, there
exists an FD fi 2 F with lhsðf ÞDX [fA1; . . . ;Ai�1g and
rhsðf Þ ¼ Ai. Of course, such a derivation sequence exists,
iff A 2 closF ðXÞ. Moreover, FFX-A holds iff A 2 closF ðXÞ.

Definition 2.2. A relational schema ðR; FÞ is in BCNF, if for
every FD f ¼ X-A with FFf and A=2X, the attribute set X is
a superkey. A relational schema ðR; FÞ is in 3NF, if for every
FD f ¼ X-A 2 F with FFf and A=2X, either X is a superkey,
or A is prime.

Testing whether a relational schema ðR; FÞ is in BCNF is
an easy task. In fact, we just have to check that for all FDs
f 2 F, the left-hand side lhsðf Þ is a superkey (see [48]). This
is clearly feasible in polynomial time. In contrast, testing
whether a relational schema is in 3NF is NP-complete,
because the primality test is NP-complete [42].

Definition 2.3. Let ðR; FÞ be a relational schema and XDR.
The schema projection of F over X is defined as

F½X� ¼ fY-ZjFFY-Z and YZDXg

Let R0DR. Then ðR0; F½R0�Þ is referred to as a subschema of
ðR; FÞ. Note that the size of F½R0� can be exponentially
bigger than ðR; FÞ. The ‘‘classical’’ example for this
phenomenon is as follows, see [20,43]:
R ¼ fA1; . . . ;An;B1; . . . ;Bn;C1; . . . ;Cn;Dg

F ¼ fAi-Ci;Bi-Cij1rirng [fC1; . . . ;Cn-Dg

R0 ¼ fA1; . . . ;An;B1; . . . ;Bn;Dg
It is easy to verify that in ðR0; F½R0�Þ all 2n dependencies of
the form Z1; . . . ; Zn-D with Zi 2 fAi;Big hold. Moreover,
F½R0� admits no representation of polynomial size.

For the complexity of an algorithm that deals with
subschemas, it is therefore important to distinguish
whether F½R0� is explicitly given or whether it is only
implicitly given by ðR; FÞ and R0. In all our algorithms in
this paper, we assume that only ðR; FÞ and R0 are given and
that F½R0� is thus specified implicitly. Our algorithms will of
course avoid to compute an explicit representation F½R0�

since, by the above considerations, such an explicit
representation may have exponential size w.r.t. the size
of R, F, and R0.

Let R0DR and ðR0; F½R0�Þ be a subschema of ðR; FÞ. Then
Definitions 2.1 and 2.2 straightforwardly carry over from
schemas to subschemas by taking ðR0; F½R0�Þ rather than
ðR; FÞ. For instance, an attribute A is called prime in
ðR0; F½R0�Þ, if it is contained in at least one key in KðR0; F½R0�Þ.
Moreover, R0 is in BCNF, if for every FD f ¼ X-A 2 F½R0�, X

is a superkey of R0. Likewise, R0 is in 3NF, if for every FD
f ¼ X-A 2 F½R0�, either X is a superkey of R0 or A is prime
in R0.

Note that, although the BCNF test for a schema ðR; FÞ is
feasible in polynomial time, to check whether some
subschema R0DR is in BCNF is NP-complete [3]. The
reason for this increase of the complexity is the following:
For the BCNF-problem, we are given a relational schema
ðR; FÞ. In other words, the FDs are part of the input. So we
just have to examine each FD f 2 F and check if lhsðf Þ is a
superkey. For the Subschema-BCNF problem, we are given
a relational schema ðR; FÞ together with a subset R0DR.
Hence, we have no explicit representation of the FDs F½R0�

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 281
holding in R0. As mentioned above, F½R0� is only implicit in
R0, and (as illustrated by the above example) F½R0� might
not admit a representation of polynomial size. Therefore,
in the worst case, we have to go through an exponential
number of FDs holding in R0 and check for each such FD f if
lhsðf Þ is a superkey.
2.2. Tree decompositions and treewidth

A hypergraph is a pair H ¼ /V ;HS consisting of a set V

of vertices and a set H of hyperedges. A hyperedge h 2 H is
a subset of V. The primal graph PðHÞ (also called the
Gaifman graph) has the same set of vertices as H.
Moreover, two vertices vi, vj are connected in PðHÞ if they
jointly occur in some hyperedge h 2 H. On the other hand,
the incidence graph IðHÞ is a bipartite graph with vertices
V [H (i.e., the vertices of IðHÞ are the vertices vi of H plus
the hyperedges hj of H). Two vertices vi and hj are
connected in IðHÞ if in H, the vertex vi occurs in the
hyperedge hj.

A measure for the ‘‘tree-likeness’’ of a graph G ¼
/V ; ES is the treewidth of G, which we shall define below.
A tree decomposition T of G is a pair /T; lS, where T ¼

/N ; ES is a tree (with nodes N and edges E) and l is a
labeling function with lðNÞDV for every node N 2 N , s.t.
the following conditions hold:
1.
 8v 2 V , there exists a node N in T, s.t. v 2 lðNÞ.

2.
 8e 2 E, there exists a node N in T, s.t. eDlðNÞ.

3.
 ‘‘Connectedness condition’’: 8v 2 V , the set of nodes
fNjv 2 lðNÞg induces a connected subtree of T.
ACD

ABC h1h2h3

h1h3A h1h2C h2h3D

h1B

Fig. 2. Tree decompositions of Example 2.6. (a) Tree decomposition of

the primal graph; (b) tree decomposition of the incidence graph.
The sets lðNÞ for the nodes N in T are referred to as bags.
The width of a tree decomposition /T;lS is
maxðfjlðNÞj � 1 : N 2 N gÞ. Let G ¼ /V ; ES be a graph. The
tree-width twðGÞ is the minimum width over all its tree
decompositions. Note that the maximum over jlðNÞj � 1
(rather than just over jlðNÞj) is taken in order to guarantee
that trees (or, more generally, forests) are precisely the
graphs with treewidth ¼ 1. Cycles have treewidth ¼ 2,
and cliques of size n have treewidth ¼ n� 1.

For given treewidth wZ1, it can be decided in linear
time if a graph has treewidth rw. Moreover, in case of a
positive answer, a tree decomposition of width w can be
computed in linear time, see [9]. The practical usefulness
of this linear time algorithm is limited due to a big
multiplicative constant (which is doubly exponential in w)
in the asymptotic time complexity. However, recently, a
lot of progress has been made in developing heuristic
based tree decomposition algorithms which can handle
graphs with moderate size of several hundreds of vertices
[40,10,52,11].

The treewidth twðHÞ of a hypergraph H can be either
defined as the treewidth of the primal graph PðHÞ or of the
incidence graph IðHÞ. We thus set twPðHÞ ¼ twðPðHÞÞ and
twIðHÞ ¼ twðIðHÞÞ, respectively. In order to define the
treewidth of a relational schema ðR; FÞ, we just have to
indicate which hypergraph we are considering.
Definition 2.4. For a relational schema ðR; FÞ, we define
the hypergraph of ðR; FÞ as H ¼ /V ;HS with V ¼ R and H ¼

ffA1; . . . ;An;Bgj ðA1 . . .An-BÞ 2 Fg.

The primal graph and the incidence graph of ðR; FÞ are

simply defined as the corresponding graph of H. Likewise,

the treewidth of ðR; FÞ is defined as twPðHÞ or as twIðHÞ,
respectively.

Let t ¼ fP1; . . . ; Png be a set of predicate symbols. A finite

structure A over signature t is given by a finite domain
A ¼ domðAÞ and relations PA

i DAa, where a denotes the
arity of Pi 2 t. A tree decomposition and the treewidth of a
finite structure A are naturally defined by defining the
hypergraph corresponding to A.

Definition 2.5. Let A be a finite structure with domain A.
The hypergraph corresponding to A is defined as H ¼
/V ;HS with V ¼ A and H ¼ ffa1; . . . ; angjA contains a
relational ground atom Pða1 . . . anÞ for some predicate
symbol Pg.

The primal graph and the incidence graph of A as well

as the notions of tree decomposition and treewidth of A are

then defined in the obvious way via the hypergraph H.

Example 2.6. Consider the relational schema from
Example 1.1, whose hypergraph H plus primal graph
PðHÞ and incidence graph IðHÞ were shown in Fig. 1. In Fig.
2, we show a possible tree decomposition of each of these
graphs. Note that both decompositions have width 2.
Since both graphs contain a cycle and only trees have
treewidth ¼ 1, these tree decompositions have minimal
width. In other words, both graphs, PðHÞ and IðHÞ, have
treewidth ¼ 2.

In this paper, we mainly consider the treewidth via the

primal graph—the only exception being Section 5, which is
devoted to the incidence graph. Hence, outside Section 5,
we shall simply speak about the treewidth (or a tree
decomposition, resp.) of a relational schema ðR; FÞ or a
structure A in order to refer to the treewidth (or a tree
decomposition, resp.) of the primal graph of the corre-
sponding hypergraph H.

Let T be a tree decomposition of the primal graph of H,
N a node in T and h a hyperedge in H. We say that h is
covered by the node N, if hDlðNÞ. Analogously, we say that
an FD f in a relational schema or a ground atom A in a
finite structure is covered by N if the corresponding
hyperedge in the corresponding hypergraph is. The
following proposition is folklore (see e.g. [51]).

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298282
Proposition 2.7. Let H be a hypergraph and let T be a tree

decomposition of the primal graph of H. Then, for every

hyperedge h in H, there exists a node N in T with hDlðNÞ.

In other words, suppose that we have a relational
schema ðR; FÞ and a tree decomposition T of the primal
graph of ðR; FÞ. Then, for every FD f 2 F, there exists a node
N in T , s.t. f is covered by F. As an immediate consequence,
we observe that an FD with many attributes on its left-
hand side results in a high treewidth. Another source of
high treewidth are big cliques in the primal graph. A
clique in the primal graphs corresponds to a set X of
attributes where any two attributes Ai;Aj 2 X jointly occur
in some FD. For the treewidth via the incidence graph, FDs
with many attributes on the left-hand side are harmless.
On the other hand, big subgraphs forming a full bipartite
graph lead to big treewidth. A full bipartite graph
corresponds to a set X of attributes and a set G of FDs
such that every A in X occurs in every FD f in G.

We conclude this section by discussing the intuition of
tree decompositions and the consequences for construct-
ing algorithms based on tree decompositions: Condition 1
in the definition of the labeling function l just makes sure
that no vertex is ‘‘forgotten’’. In a graph G without isolated
vertices, condition 1 is trivially fulfilled whenever condi-
tion 2 is. Conditions 2 and 3 are the essence of this
definition. Condition 2 guarantees that any two adjacent
vertices vi, vj of the graph G jointly occur in the bag lðNÞ of
some node N of the tree decomposition T . Moreover, by
Proposition 2.7, every FD f of a relational schema is
covered by some bag lðNÞ in the tree decomposition of the
corresponding primal graph. Condition 3 makes sure that
in a (bottom-up or top-down) traversal of a tree decom-
position T , the following behavior is guaranteed: Suppose
that along this traversal, we have encountered some
vertex v (resp. some attribute A) in some bag lðNÞ.
Moreover, suppose that when continuing this traversal,
we eventually reach some node N0 such that v (resp. A) in
no longer contained in the bag lðN0Þ. Then we can be sure
that, along this traversal, we shall never encounter v

(resp. A) again.
Algorithms exploiting low treewidth often follow a

dynamic programming approach. Such an algorithm thus
traverses a tree decomposition once in bottom-up direc-
tion and—in every node N of the tree decomposition
TFstores all the relevant information in some data
structure which only depends on lðNÞ (but not on the
entire input and not on the elements that appeared in the
bag of some node N0 below N but not in the bag lðNÞ), see
e.g. [50]. The fact that the relevant information does not
have to take the elements in the bags lðN0Þ of the nodes N0

below N into account is due to conditions 2 and 3 imposed
on the labeling function l: By condition 3, when
continuing the bottom-up traversal, the algorithm will
never encounter again a bag with an element from
lðN0Þ\lðNÞ. Hence, by condition 2, all edges containing
one endpoint in lðN0Þ\lðNÞ must be covered by the bag of
some node N00 below N. These dynamic programming
algorithms usually have to do some processing related to
every edge of the graph. Hence, at every node N of the tree
decomposition, we can be sure that all edges have already
been processed that involve some endpoint in lðN0Þ\lðNÞ
for some node N0 below N.

Our algorithms presented in the subsequent sections
take a slightly different approach in that they are based on
the idea of an alternating Turing machine using ‘‘guesses’’
to express non-determinism. The determinization of these
algorithms would result in a top-down traversal of the
tree decomposition implementing for-loops (rather than
guesses) in each node N. The range of the counter
variables for these for-loops only depends on the size of
each bag lðNÞ (but not on the entire input and not on the
elements that appeared in the bag of some node N0 above
N but not in the bag lðNÞ). Again this is due to conditions 2
and 3 imposed on the labeling function l.

In this paper, we shall prove that five otherwise
intractable database design problems (i.e., PRIMALITY
and 3NFTEST both for a schema and for a subschema as
well as BCNFTEST for a subschema) become tractable
when either the treewidth of the incidence graph or of the
primal graph of the relational schemas under considera-
tion is bounded by a constant. For bounded treewidth of
the primal graph, we establish the tractability by
presenting concrete algorithms in Sections 3 and 4. For
bounded treewidth of the incidence graph, we prove the
tractability by providing monadic-second order (MSO)
encodings of these problems and by applying Courcelle’s
Theorem (see Section 5). It should be noted that these two
kinds of tractability results (i.e., via a concrete algorithm
for bounded treewidth of the primal graph resp. via
Courcelle’s Theorem for bounded treewidth of the in-
cidence graph) are somehow incomparable in strength: On
the one hand, a concrete, polynomial-time algorithm
(where the multiplicative constant in the upper bound
on the time complexity is singly exponential in the
treewidth) is clearly preferable to a tractability result via
Courcelle’s Theorem. Indeed, as was noted in [34],
Courcelle’s Theorem is a valuable tool for detecting
fixed-parameter tractability but algorithms directly de-
rived from Courcelle’s Theorem (e.g., by methods pre-
sented in [21]) are, in general, useless due to excessively
big multiplicative constants. On the other hand, the
following relationship between the treewidth of the
incidence graph and of the primal graph is folklore.
Applied to the problems considered here, it means that
bounded treewidth of the incidence graph (rather than
the primal graph) allows us to identify a strictly bigger
class of relational schemas for which the above-men-
tioned problems become tractable.

Proposition 2.8. Let ðHiÞi2I be a family of hypergraphs

whose treewidth of the primal graph is bounded by some

constant. Then also the treewidth of the incidence graph

of these hypergraphs is bounded by some constant.
More precisely, for every hypergraph H, we have

twIðHÞrtwPðHÞ þ 1.

Proof. Sketch: It suffices to prove the second (stronger)
assertion: Let H be a hypergraph and let T be a tree
decomposition of the primal graph of H of width w. Then
we can extend T to a tree decomposition T 0 of the
incidence graph of H of width rwþ 1 by introducing the

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 283
following additional nodes: For every hyperedge h of H,
we select a node N in T , s.t. h is covered by lðNÞ. By
Proposition 2.7, such an N exists. Then, in T 0, we create an
additional child node Nh of N with label lðNhÞ ¼ lðNÞ [fhg.
Clearly, lðNhÞ covers all edges adjacent to h in the
incidence graph of H. Since we carry out this step for
every hyperedge h in H, T 0 fulfills condition 2. Moreover,
conditions 1 and 3 are not violated by our construction.
Hence, T 0 is indeed a tree decomposition of the incidence
graph of H. Moreover, its width is rwþ 1. &

It will turn out in Sections 3 and 4 that the tree
decomposition of the primal graph makes the construc-
tion of an algorithm easier. The reason for this is that (by
Proposition 2.7) we can be sure that in such a tree
decomposition, every FD is covered by the bag lðNÞ of
some node N in T . Of course, this is not the case for tree
decompositions of the incidence graph. On the other hand,
our MSO-encodings in Section 5 will be based on
predicates on R� F expressing properties like ‘‘attribute
A occurs on the left-hand side (resp. on the right-hand
side) of FD f’’. This kind of information is readily available
in the incidence graph if we consider the edges in this
graph as labeled (thus expressing if the attribute occurs on
the left-hand side or on the right-hand side). In contrast,
this kind of information is not available in the primal
graph. It is, therefore, not obvious how to provide MSO-
encodings also in this case. In summary, both notions of
treewidth are worth considering since, in our case, both
have advantages and disadvantages.

2.3. Complexity

LogCFL is the class of decision problems which are log-
space reducible to a context-free language. The relation-
ship between LogCFL and other well-known complexity
classes is summarized as follows:

NC1DLDNLDLogCFLDAC1DNC2DP

By L (resp. NL) we denote the class of problems that can
be decided in deterministic (resp. non-deterministic) log-
space. The class P contains the problems decidable in
deterministic polynomial time. The classes ACi and NCi

are logspace-uniform circuit-based parallel computation
classes. For details on these classes, see e.g. [37]. The class
LogCFL consists of all decision problems that are logspace
reducible to a context-free language. An obvious example
of a problem complete for LogCFL is Greibachs hardest
context-free language [33]. Recently, a number of
interesting natural problems have been shown to be
LogCFL-complete like the evaluation of acyclic Boolean
conjunctive queries [27], (uniform) membership problems
for languages given by tree automata [41], or the
evaluation of CoreXPath queries (a fragment of the XML-
query language XPath) [25].

Since LogCFLDAC1DNC2, the problems in LogCFL are
highly parallelizable. In fact, they are solvable in logarith-
mic time by a concurrent-read, concurrent-write parallel
random access machine (CRCW PRAM) with a polynomial
number of processors, or in log2

�time by an exclusive-
read, exclusive-write (EREW) PRAM with a polynomial
number of processors. Such PRAM algorithms can be
obtained by methods from [38,49].

In this paper, we will use Ruzzo’s characterization [49]
of LogCFL by Alternating Turing machines (ATMs). In
principle, an ATM [15] is defined like a non-deterministic
Turing machine (NTM) with a finite set of states, a finite
set of tape symbols, an initial state, and a transition
relation. However, ATMs extend NTMs in that the states of
an ATM are partitioned into existential and universal
states (an NTM corresponds to the special case of
existential states only). A computation tree of an ATM
on an input string w is a tree whose nodes are labeled
with configurations of M on w, such that the descendants
of any internal node labeled by a universal (resp.
existential) configuration include all (resp. one) of the
successors of that configuration. A computation tree is
accepting if the root is labeled with the initial configura-
tion, and all the leaves are accepting configurations. Thus,
an accepting computation tree yields a certificate that the
input is accepted. A complexity measure considered by
Ruzzo [49] for the computation of an ATM is the tree-size,
i.e. the minimal size of an accepting computation tree.

Definition 2.9 (Ruzzo [49]). A decision problem P is
solved by an alternating Turing machine M within
simultaneous tree-size and space bounds ZðnÞ and SðnÞ if,
for every ‘‘yes’’-instance w of P, there is at least one
accepting computation tree T for M on w, s.t. the number
of nodes in T is rZðnÞ and each node of T represents a
configuration using rSðnÞ space, where n is the size of w.
Moreover, for any ‘‘no’’-instance w of P, there is no
accepting computation tree for M.

Proposition 2.10 (Ruzzo [49]). LogCFLcoincides with those

decision problems, which are recognized by ATMs operating

simultaneously in tree-size OðnOð1ÞÞ and space OðlognÞ.

3. Bounded treewidth and BCNF

Recall from Section 2.1 that it can be tested efficiently
if a given relational schema ðR; FÞ is in BCNF. Indeed, on
just as to inspect all FDs f 2 F and check if the left-hand
side lhsðf Þ is a superkey (see [48]). The situation changes
dramatically if, in addition to the schema ðR; FÞ, we are
given a subschema R0 � R and we want to test if this
subschema is in BCNF. As stated in Section 2.1, to check
whether some subschema R0 � R is in BCNF is NP-
complete. As explained in Section 2.1, the reason for the
intractability is that the FDs F½R0�, which hold in R0, may
only admit representations of exponential size. Hence, in
the worst case, a Subschema-BCNF test has to inspect
exponentially many FDs f from F½R0� and check if the left-
hand side lhsðf Þ is a superkey of R0.

In this section, we present an efficient algorithm (see
Fig. 3) for the Subschema-BCNF problem in case that the
set of FDs has bounded treewidth. Of course, this
algorithm never explicitly computes a representation of
F½R0�. The algorithm in Fig. 3 is given in the style of an
alternating Turing machine (ATM). The universal steps
correspond to the for-each loops with the recursive calls of
the sub-not-bcnf procedure (see step 7 resp. r7). For the

ARTICLE IN PRESS

Fig. 3. Subschema-Not-BCNF test.

G. Gottlob et al. / Information Systems 35 (2010) 278–298284
existential steps, we use the keyword ‘‘Guess’’ to indicate
that at least one such value must exist which ultimately
leads to an ‘‘Accept’’ result value. It is important to note
that (apart from step r0, which is executed only once in
the entire computation) the range of possible values from
which we guess is bounded by a constant (depending on
the treewidth but not on the overall size of the input).
Hence, the guesses do not lead to non-determinism in the
general sense. A corresponding deterministic algorithm
(which replaces the guesses by nested for-loops over all
possible values) would therefore work in polynomial time.
We shall come back to this point at the end of this section
when we discuss in more detail the determinization of the
alternating algorithm.

The Subschema-Not-BCNF algorithm in Fig. 3 proceeds
by a top-down traversal of the tree decomposition T
rooted at any node. This tree traversal is realized via
recursive calls of the procedure sub-not-bcnf. The goal of
the algorithm is to find a BCNF-violation in R0, i.e.,
attributes A;B 2 R0 and a subset YDR0, s.t. Y-FA, A=2Y,
and YQFB. In other words, Y � R0 determines some
attribute A 2 R0\Y even though Y is not a superkey in R0

(since B is not determined by Y). The attributes A and B are
guessed in step r0. The attribute set YDR0 is guessed

ARTICLE IN PRESS

Fig. 4. Tree decomposition of Example 3.2.

G. Gottlob et al. / Information Systems 35 (2010) 278–298 285
during the traversal of the tree decomposition T as
follows: At each node Ni in T , we guess YNi

in step 1 with
the intended meaning YNi

¼ lðNiÞ \ Y. Condition 1.a
guarantees that the guess YNi

at Ni is consistent with the
guess YN at the parent N of Ni.

Step 2 aims at guessing the closure closF ðYÞ of Y. The
intended meaning of ZNi

is ZNi
¼ lðNiÞ \ ðclosF ðYÞ\YÞ. The

conditions 2.a–2.d are straightforward. In particular, con-
dition 2.a makes sure that A is indeed determined by Y. The
conditions 2.c and 2.d make sure that the guesses at any
node Ni are consistent with the guesses at the parent N of
Ni. The purpose of the ordering imposed on ZNi

will
become clear when we discuss the check-not-bcnf
procedure. The ordering that we have in mind here is
the following:

Definition 3.1. Let closF ðYÞ ¼ Y [Z with Y \ Z ¼ |. We
define the ‘‘derivation ordering’’ on Z by considering an
arbitrary derivation sequence D of Z from Y. Suppose
that D has the form D � Y-Y [fC1g-Y [fC1;C2g

- � � �-Y [fC1;C2; . . . ;Czg, where Z ¼ fC1; . . . ;Czg and
CiaCj if iaj. Then we set CioCj if ioj.

In other words, given an attribute set Y, the derivation
ordering o is defined on the attributes which are in the
closure of Y but not in Y itself. The ordering reflects the
order in which these attributes are derived by a particular
derivation sequence D. Of course, in general, there exist
several derivation sequences and the derivation-ordering
depends on the concrete choice of D. In the sequel, we
assume D to be arbitrarily chosen but fixed (for any set Y).

The set ONi
computed at step 3 consists of all attributes

in ZNi
for which it has to be verified yet that they are

indeed determined by Y. The ordering on ONi
can be taken

over from ZNi
since, by condition 3.a, ONi

DZNi
holds. This

condition ensures for all attributes C 2 ON , that the
property C 2 closF ðYÞ is verified as long as C is contained
in lðNÞ.

For C 2 ONi
, the place where the property Y-C shall be

verified is guessed in step 4, namely: For each C 2 ONi
, we

either verify at node Ni that Y-C holds (in this case, we
guess aNi

ðCÞ ¼ 0) or the job to verify this property is
passed on to the ‘�th child of Ni (i.e., we guess aNi

ðCÞ ¼ ‘

with ‘Z1).
The check-not-bcnf procedure called at step 5 has the

following tasks: Check 1 is clear. Check 2 ensures that
ðY [ZÞ is closed w.r.t. the FDs F. Hence, it is ultimately
guaranteed that ðY [ZÞ+closF ðYÞ holds. Conversely, check
3 takes care of the property ðY [ZÞDclosF ðYÞ. More
precisely, it is checked that all attributes in Z can be
derived from Y together with smaller attributes from Z.
Hence, given that Di 2 closF ðYÞ is checked elsewhere for all
i 2 f1; . . . ;mg with Di 2 ZM , we may assume at this place
that C 2 closF ðYÞ holds. It is now also clear why we impose
some ordering on Z, namely: We have to make sure that
there are no cycles in the derivation of the attributes in Z.

In step 7, the procedure sub-not-bcnf is called
recursively for all child nodes M‘ of Ni. The first two
parameters YNi

and ZNi
communicate the guesses at Ni to

each M‘ . The third parameter passes precisely those
attributes C 2 ONi
to the ‘�th child for which we have

guessed aNi
ðCÞ ¼ ‘.

Note that the steps r1 through r7 at the root of T have
exactly the same meaning as the steps 1 through 7 in
procedure sub-not-bcnf. Of course, some tasks are slightly
simpler since the root N has no parent. Step r0 carries out
some initializations. In particular, the attributes A and B

(which will witness the BCNF-violation) are guessed here
and stored in global variables.

In Example 3.2 we illustrate the step by step execution
of the algorithm from Fig. 3. As mentioned above, the
Guess-statements can be realized by exhaustively listing
all possible value combinations the size of which is
bounded by a function that depends on the treewidth k

(which is considered as constant) but not on the size of
the input.

Example 3.2. Consider a relational schema R ¼ CDEF, R0 ¼

CEF with FDs C-D;D-E; F-D. A tree decomposition of
the primal graph is shown in Fig. 4. Its width is 1.

At step r0, we have to guess A;B 2 R0. In the correspond-

ing deterministic algorithm, this means, that we have to

iterate in a loop over all nðn� 1Þ possible value combina-

tions of A and B, where n ¼ jR0j. For our further discussion,

let us assume that A ¼ E and B ¼ F. Of course, this value

combination will eventually be reached by the loop over

all possible values of A and B. Below, we shall continue the

discussion of all ‘‘guesses’’ by assuming that a certain

value is chosen. By this, we mean that each Guess-

statement is implemented in the form of a loop over all

possible values and that the assumed value will be

eventually reached by the loop.

At step r1, we guess YN . There are 22 possible values for

YN , and we assume that we take YN ¼ fCg. At steps r2 and

r3, we guess ZN and ON . Let us assume that we take ZN ¼

fDg and, thus also ON ¼ fDg. At step r4, we have to guess an

assignment for the only element D in ON to either 0 or to

one of the child nodes of N (corresponding to the values 1

and 2). Suppose that we choose aN ¼ D-0, which means,

the task of checking whether D is in the closure of YN is

assigned to the root itself. The call of procedure check-not-

bcnf at step r5 obviously returns Accept, thus we reach

step r7, and call the procedure sub-not-bcnf for the two

child nodes. Let us assume that the left child node is node

1 and the right child node is node 2.

Now we start to run the procedure sub-not-bcnf for

node 1, with the input parameters as follows: YN ¼ fCg,

ZN ¼ fDg, ON ¼ |, and N is the root node. At step 1, we

guess YNi
. Let us assume that we set YNi

¼ |. At step 2, we

guess ZNi
. We assume that ZNi

¼ fD; Eg. Thus at step 3,

ONi
¼ fEg. At step 4, we have to guess an assignment to the

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298286
only element E in ONi
. Since node 1 is a leaf node, the only

possible assignment is aNi
¼ E-0. Moreover, we can

ignore step 7. Clearly, the check at step 5 is successful,

thus the procedure returns Accept.

At node 2, the input parameters for the procedure sub-

not-bcnf are identical to those for node 1. This time,

assume that we guess YNi
to be | and ZNi

to be fDg. Thus,

we get ONi
¼ |. Again, the call of procedure check-not-bcnf

is successful, thus the procedure returns Accept as well.

In total, the Subschema-Not-BCNF algorithm returns

Accept, which means that R0 ¼ CEF is not in BCNF. Indeed,

the above discussion of one computation tree of the

algorithm in Fig. 3 corresponds to the BCNF violation with

Y ¼ fCg, A ¼ E and B ¼ F, such that YDR0, A;B 2 R0, Y-A

and YQB.

In Theorem 3.4, we shall give a formal proof of the
correctness of the Subschema-Not-BCNF algorithm. More
specifically, we shall show that there exists an accepting
computation of the non-deterministic Subschema-Not-
BCNF algorithm if and only if R0 is not in BCNF. To this end,
we first prove a lemma which is crucial for the ‘‘only if’’-
direction of the theorem.

Lemma 3.3. Consider an accepting computation of the

Subschema-Not-BCNF algorithm on input ðR; FÞ, T , and R0.
Moreover, let Y and Z be defined as Y :¼

S
N2T YN and

Z :¼
S

N2T ZN . Then closF ðYÞ ¼ Y [Z holds.

Proof. First consider the inclusion closF ðYÞDY [Z. It
suffices to show that Y [Z is closed w.r.t. F. But this
property follows immediately from check 2 in the check-
not-bcnf procedure.

Now consider the inclusion closF ðYÞ+Y [Z. By the

conditions 2.c and 2.d, the orderings that are guessed for

two subsets ZNDZ and ZN0DZ are consistent for any two

neighboring nodes N;N0 2 T . By the connectedness condi-

tion in the tree decomposition T , this implies that the

orderings guessed for any two subsets ZNDZ and ZN0DZ
for arbitrary nodes N;N0 2 T are consistent. Hence, it is

possible to consistently extend the orderings guessed on

all subsets ZNi
DZ to a total ordering on all of Z. The proof

of the inclusion closF ðYÞ+Y [Z proceeds by induction on

this ordering.1

Induction begin: Let C be minimal in Z and let N denote

the first node (in top-down direction) of T with C 2 ZN . By

step 3 of the algorithm, C is added to ON . Moreover, by

step 7, C remains in ON0 in a sequence of descendants N0 of

N until finally aMðCÞ ¼ 0 is guessed for M ¼ N or for some

descendant M of N. In a successful computation, all checks

in the check-not-bcnf procedure succeed. Hence, by check

3, there exists an FD D1; . . . ;Dm-C in F s.t. 8i 2 f1; . . . ;mg,

ðDi 2 YMÞ3ðDi 2 ZM4DioCÞ holds. The second disjunct
1 Note that we do not assume that the ordering thus constructed is

indeed the derivation ordering defined in Definition 3.1. For the proof of

Lemma 3.3 (and, thus, for the ‘‘) ’’ � part of the proof of Theorem 3.4),

any total ordering does the trick. The derivation ordering is only needed

in the ‘‘(’’ � part of the proof of Theorem 3.4.
cannot be true when C is minimal in Z. Hence, C is indeed

determined by attributes in Y.

Induction step: Now suppose that C is not minimal in Z.

By the same argumentation as above, we may conclude

(for a successful computation), that eventually check 3 of

the check-not-bcnf procedure will be successfully applied

to C. Hence, by check 3, there exists an FD D1; . . . ;Dm-C in

F s.t. 8i 2 f1; . . . ;mg, ðDi 2 YMÞ3ðDi 2 ZM4DioCÞ holds.

Thus, each Di is either in YDclosF ðYÞ or—by the induction

hypothesis—in closF ðYÞ. In other words, C is determined

by attributes in closF ðYÞ. Hence, C itself is in closF ðYÞ. &

Theorem 3.4. Let ðR; FÞ be a relational schema and let R0DR

be a subschema. Moreover, let T be a tree decomposition of

ðR; FÞ. The Subschema-Not-BCNF algorithm in Fig. 3 accepts

input ððR; FÞ; T ;R0Þ if and only if R0 is not in BCNF.

Proof. The following equivalence has to be shown: There
exists an accepting computation of the non-deterministic
Subschema-Not-BCNF algorithm 3 R0 is not in BCNF. &

‘‘) ’’ Let Y :¼
S

N2T YN and let A, B be the attributes
guessed in step r0. We claim that R0 has the following
BCNF-violation: A=2Y, Y-FA, and YQFB.

Let Z :¼
S

N2T ZN . By the connectedness condition of T
and condition 1.a of the algorithm, we may conclude that
the sets YNi

have been consistently guessed for all nodes
Ni. Hence, we have YNi

¼ lðNiÞ \ Y. Likewise, by the
connectedness condition of T and the conditions 2.c and
2.d of the algorithm, we may conclude that the sets ZNi

and the orderings on these sets have also been consis-
tently guessed, i.e., ZNi

¼ lðNiÞ \ Z and the orderings on
the subsets ZNi

DZ can be consistently extended to a total
ordering on Z.

Of course, the following conditions are fulfilled: YDR0

(by step 1), A=2Y (by check 1), A 2 Z (by condition 2.a), B=2Y
(by check 1), and B=2Z (also by check 1). Hence, the
‘‘) ’’ � direction follows immediately from Lemma 3.3.

‘‘(’’ Now suppose that there exists a BCNF-violation
of R0, i.e., (YDR0, (A;B 2 R0, s.t. A=2Y, Y-FA, and YQFB. Let
Z :¼ closF ðYÞ\Y and let D denote an arbitrary derivation
sequence of Z from Y.

We construct a computation tree t of a successful
computation of the Subschema-Not-BCNF algorithm as
follows: The tree structure of the computation tree t is
identical to the tree structure of T . At the root of T , our
algorithm guesses precisely the attributes A;B 2 R0 with
the above mentioned properties. Moreover, at each node
N, the values YN :¼ Y \ lðNÞ and ZN :¼ Z \ lðNÞ are
guessed. The ordering that we have to guess for ZN in
step 2 is the derivation-ordering (for the arbitrarily chosen
derivation sequence D) from Definition 3.1.

It remains to show that it is possible to guess an
appropriate assignment aN at each node N, s.t. the checks
in the check-not-bcnf procedure always succeed. Actually,
for the chosen values of A;B;YN , and ZN , the checks 1 and 2
are clearly successful at any node N. In order to show that
also check 3 always succeeds for appropriately chosen aN ,
it suffices to prove the following Claim A.

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 287
Claim A. Every attribute C 2 Z added to ON at some node N

by the Subschema-Not-BCNF algorithm will be eventually

‘‘eliminated’’ without producing an error, i.e., C is either

eliminated at N (i.e., aNðCÞ ¼ 0) or C is passed on to some

descendant M of N where it is finally eliminated (i.e.,
aMðCÞ ¼ 0).

Proof of Claim A. Let C 2 Z and let N denote the first
node (in top-down direction) of the tree decomposition T
with C 2 lðNÞ. Hence, C is guessed to be in ZN in step 2 and
C is added to ON in step 3 of the algorithm. Now consider
the derivation sequence D of Z from Y. At some point, the
attribute C is derived by D. Let f 2 F denote the FD which
is used in D for deriving C. Then f is of the form f ¼

D1; . . . ;Dm-C and 8irm, Di is either contained in Y or
Di 2 Z and Di has been derived prior to C. Hence, in the
latter case, DioC holds by the definition of our derivation-
ordering.

Of course, there exists a node M in T s.t. lðMÞ covers f.

By the connectedness condition of T , we either have N ¼

M or M is a descendant of N and C occurs in lðN0Þ for all

nodes N0 on the path from N to M. In the former case, we

set aNðCÞ ¼ 0. In the latter case, we choose the values of

aNðCÞ as well as of aN0 ðCÞ for all these nodes N0 in such a

way that C is ‘‘passed on’’ to OM . Here we finally set

aMðCÞ ¼ 0.

It remains to verify that check 3 in the check-not-bcnf

procedure succeeds for the attribute C. The proof goes by

induction on the derivation-ordering. Note that, in con-

trast to the ‘‘) ’’ part of the proof of Theorem 3.4, we now

need precisely the ordering defined in Definition 3.1.

If C is minimal in Z, then C is derived directly from Y,

i.e., all Di’s are in Y and, therefore, also in YM . Hence, the

first disjunct ðDi 2 YMÞ in check 3 is true for each i. Now

suppose that C is not minimal in Z. For every i 2 f1; . . . ;mg,

either ðDi 2 YÞ or ðDi 2 ZÞ and DioC. Hence, the disjunc-

tion ðDi 2 YMÞ3ðDi 2 ZM4DioCÞ in check 3 is again true

for every i.

This concludes the proof of Theorem 3.4. &

For the complexity of testing if a subschema is in BCNF,
we have the following upper bound:

Theorem 3.5. Let kZ1 be a fixed constant. Moreover, let

ðR; FÞ be a relational schema of treewidth rk and let R0DR be

a subschema. Then it can be decided in polynomial time

whether R0 is in BCNF. Moreover, this decision problem is in

LogCFL.

Proof. Note that we do not require in the theorem that a
tree decomposition T of ðR; FÞ with width kZ1 has to be
actually given. However, by [9], a tree decomposition T
can be computed in linear time. Likewise, it has been
shown in [28], that the computation of T is feasible in
LLogCFL and that LLogCFLðLogCFLÞ ¼ LogCFL. Hence, in the
remainder of the proof, we may assume that T is given.

We only show the LogCFL-membership. The polyno-

mial time upper bound follows by the relationship

LogCFLDP. It was shown in [13] that LogCFL is closed

under complement. Hence, in order to establish the
LogCFL-membership of testing whether some subschema

R0 is in BCNF, it suffices to show that testing whether R0 is

not in BCNF is in LogCFL.

Note that the algorithm Subschema-Not-BCNF in Fig. 3

can be regarded as a high-level description of an

alternating Turing machine (ATM). The existential steps

of this ATM are contained in the non-deterministic

guesses of this algorithm. The universal steps are encoded

by the for-each loops with the recursive calls of the sub-

not-bcnf procedure.

Recall that ATMs can be characterized in terms of the

tree-size (i.e, the number of nodes) of the computation tree

t (where each node corresponds to a configuration of M)

and the space required by each configuration. By the

characterization of LogCFL in [49], (which we recalled in

Proposition 2.10) it suffices to show that the size of t is

polynomially bounded and the data manipulated at each

node fit into log-space.

Let n denote the total size of the input and let t denote

the computation tree of a (successful) computation of the

Subschema-Not-BCNF algorithm. On the one hand, the

size of t is polynomially bounded in n. On the other hand,

the data structures needed at each node Ni (i.e., the values

YN ; ZN ;ON guessed at the parent N of Ni plus the values of

YNi
, ZNi

, ONi
, aNi

at Ni can be represented by constantly

many pointers (where this constant clearly depends on the

treewidth k). Thus, the desired LogCFL-result follows

from Ruzzo’s characterization of LogCFL (recalled in

Proposition 2.10). &

Remark. In Section 5, the analogous fixed-parameter
tractability result is shown via an MSO-encoding and by
applying Courcelle’s Theorem—which makes use of the
correspondence between MSO-formulae and finite tree

automata. In fact, our Subschema-Not-BCNF algorithm in
Fig. 3 is closely related to a (non-deterministic top-down)
finite tree automaton whose states correspond to the
(constantly many) possible values of the data structures
YNi

, ZNi
, aNi

, etc. But of course, our dedicated algorithm
essentially differs from an FTA that one would obtain
via a standard MSO-to-FTA transformation (like the one in
[21]).

We conclude this section by a brief discussion of a
polynomial-time, deterministic algorithm corresponding
to the alternating algorithm in Fig. 3: As has already been
mentioned above, such a determinization essentially
consists in replacing every ‘‘Guess’’ by a for-loop over all
possible values. A sequence of several guesses (in steps
r0–r4 resp. steps 1–4) corresponds to nested for-loops. Let
k denote the width of a given tree decomposition T and
let n denote the size of the input. Then the following
number of value combinations have to be considered by
the nested for-loops which are used to determinize the
guesses. We only discuss the steps 1–4 as well as r0. The
steps r1–r4 are analogous to steps 1–4. In step 1, the for-
loop iterates over all possible subsets YNi

DlðNiÞ \ R0. Since
jlðNiÞjrkþ 1, there are at most 2kþ1 possible values for
YNi

. In step 2, we have to iterate over all possible ordered

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298288
sets ZNi
DlðNiÞ and check that conditions 2.a–2.d are

fulfilled. We thus get the upper bound ðkþ 1Þ! on the total
number of values for ZNi

. In step 3, we have to iterate over
all possible mappings from the elements in ONi

to
f0;1; . . . ; ‘g, where ‘ denotes the number of child nodes
of Ni. Actually, w.l.o.g., we may assume that all nodes in a
tree decomposition have at most 2 child nodes. Indeed,
suppose that some node M has mZ3 child nodes
M1
0 ; . . . ;Mm

0 . Then we can introduce m� 2 copies
M1; . . . ;Mm�2 of M (with identical bag as M) and replace
M with its m child nodes by the following tree fragment:
M has 2 children M1 and M1

0 ; for every
j 2 f1; . . . ;m� 3g,Mj has 2 children Mjþ1 and Mjþ1

0 ; finally
Mm�2 has 2 children Mm�1

0 and Mm
0 . This is a standard

technique applied e.g. in [21]. The resulting tree decom-
position (whose size is linearly bounded in the size of the
original tree decomposition) has the desired property that
every node M has at most 2 child nodes. But then we get
the upper bound 3kþ1 on the number of possible assign-
ments aNi

from the elements of each set ONi
to the values

f0;1;2g. In total, the nested for-loops corresponding to the
guesses at steps 1, 2, and 4 thus have to consider 2kþ1

	

ðkþ 1Þ! 	 3kþ1 possible value combinations. Recall that we
are considering the treewidth k as a constant. Hence, the
number of value combinations to be considered by these
for-loops is also bounded by a constant (which is singly
exponential in the treewidth). Of course, in step r0, the
possible values to be processed do depend on the input;
i.e., there are at most n2 possible combinations of
attributes A and B, where n denotes the size of the input.
Finally, the actions carried out at each step of the program
can either be done in time which depends only on the size
kþ 1 of the bags or in linear time w.r.t. the input size (e.g.,
Check 2 in procedure check-not-bcnf which—in a naive
implementation—has to iterate over all FDs in the input
schema. Of course, there is plenty of room for improve-
ment since this check is necessary only once for each FD
and not every time a bag covers an FD). Moreover, the
number of nodes in a tree decomposition is linearly
bounded w.r.t. size n of the input. Hence, in total, even
with a naive implementation, we end up with the upper
bound Oðf ðkÞ 	 n4Þ where n denotes the size of the input
and f ðkÞ is a constant which only depends on the
treewidth k (more precisely, it is singly exponential in k).
4. Bounded treewidth and 3NF

In this section we first present a new algorithm for
checking the primality of an attribute in a subschema. By
combining this primality test with the ideas from Section 3,
we shall ultimately construct an efficient algorithm also
for the 3NF-test of a subschema. Of course, as a special
case, we thus also cover the primality problem and the
3NF-problem in a schema.

The Subschema-Primality-Test algorithm in Fig. 5
works as follows: Given a relation ðR; FÞ, a subschema
R0DR, and an attribute A 2 R0, the primality of A in the
subschema ðR0; F 0Þ with F 0 ¼ F½R0� can be tested via the
following criterion: There exists a set XDR0, s.t. A=2closF ðX Þ
and R0DclosF ðX [fAgÞ. This criterion is obviously a
necessary and sufficient criterion for A 2 R0 to be prime
in R0. Moreover, it is clearly equivalent to the following
criterion: There exist sets XDR0;YDR, and ZDR, s.t. the
following conditions hold:
1.
 A=2X , A=2Y, and A=2Z;

2.
 X \ Y ¼ | and closF ðX Þ ¼ X [Y;

3.
 X \ Z ¼ | and closF ðX [fAgÞ ¼ X [fAg [Z;

4.
 R0DX [fAg [Z.
The goal of the Subschema-Primality-Test algorithm in
Fig. 5 is to guess these sets X , Y, and Z similarly to the
Subschema-Not-BCNF algorithm in Fig. 3.

Let T be a tree decomposition of ðR; FÞ, s.t. the width
of T is bounded by some constant kZ1. The algorithm in
Fig. 5 contains a procedure sub-prime-attribute, which is
used to realize a top-down traversal of the tree decom-
position T , where the root can be any node N with
A 2 lðNÞ. Along the top-down traversal of T , the algorithm
tries to successively guess all elements of X , Y, and Z.

The computation at each node Ni of the tree decom-
position T is very similar to the Subschema-Not-BCNF
algorithm in Fig. 3. Again, the algorithm is given in the
style of an ATM. As before, the algorithm can be easily
determinized by replacing the guesses by nested for-
loops.

In step 1, we guess XNi
with the intended meaning

XNi
¼ lðNiÞ \ X . Condition 1.a guarantees that the guess

XNi
at Ni is consistent with the guess XN at the parent N of

Ni. Step 2 aims at guessing the closure closF ðXÞ of X .
The intended meaning of YNi

is YNi
¼ lðNiÞ \ ðclosF ðX Þ\X Þ.

The conditions 2.a–2.c are straightforward. They play the
analogous role to the conditions 2.b–2.d in the Subsche-
ma-Not-BCNF algorithm. In particular, the conditions 2.b
and 2.c make sure that the guesses at any node Ni are
consistent with the guesses at the parent N of Ni. As in the
previous section, the purpose of the ordering imposed on
YNi

is to prevent circular derivations (cf. check 3a in the
check-sub-primality procedure in Fig. 6). The ordering
that we have in mind is precisely the ordering from
Definition 3.1, which we already used in the Subschema-
Not-BCNF algorithm.

In step 3, we guess the closure of X [fAg. The intended
meaning of ZNi

is ZNi
¼ lðNiÞ \ ½closF ðX [fAgÞ\ðX [fAgÞ�.

The conditions 3.a–3.c are clear by the analogy with
step 2.

The set ONi
computed at step 4 consists of all attributes

in YNi
for which it has to be verified yet that they are

indeed determined by X. The ordering on ONi
can be taken

over from YNi
since, by condition 4.a, ONi

DYNi
holds.

Likewise, the set PNi
computed at step 5 consists of all

attributes in ZNi
for which it has to be verified yet that

they are indeed determined by X [fAg. The ordering on PNi

can be taken over from PNi
since, by condition 5.a, PNi

DZNi

holds.
The purpose of the assignment function aNi

guessed in
step 6 is to determine the place where the property X-C

has to be verified for each C 2 ONi
: as in the Subschema-

Not-BCNF algorithm, 0 means the node Ni itself and ‘Z1
means the ‘�th child of Ni. Likewise, the assignment

ARTICLE IN PRESS

Fig. 5. Primality test for a Subschema.

G. Gottlob et al. / Information Systems 35 (2010) 278–298 289
function bNi
guessed in step 7 determines the place where

the property ðX [fAgÞ-C has to be verified for each
C 2 PNi

.
The check-sub-primality procedure called at step 8 is

displayed in the separate Fig. 6. The checks have the
following tasks: Check 1a is clear. Check 1b makes sure
that, ultimately, R0DclosF ðX [fAgÞ holds. Check 2a guar-
antees that ðX [YÞ+closF ðX Þ holds, while check 2b
ensures the property ðX [fAg [ZÞ+closF ðX [fAgÞ.
Finally, check 3a ensures the property ðX [YÞDclosF ðX Þ
while check 3b takes care of the property
ðX [fAg [ZÞDclosF ðX [fAgÞ.

Step 9 is clear. Step 10 serves to control the recursive
descent in the tree decomposition T . The steps r1–r10 at
the root N of T have exactly the same meaning as the
steps 1–10 the procedure check-sub-primality. Of course,
some tasks are slightly simpler since the root N has no
parent. Step r0 makes sure that A 2 lðNÞ holds.

In order to prove the correctness of the Subschema-
Primality-Test algorithm, we have to show the following
equivalence: There exists an accepting computation of the
non-deterministic Subschema-Primality-Test algorithm if
and only if A is prime in R0. Analogously to Lemma 3.3, the
following lemma (which is crucial for the ‘‘only if’’-
direction of this equivalence) can be shown.

Lemma 4.1. Consider an accepting computation of the

Subschema-Primality-Test algorithm on input ðR; FÞ, T , R0,

ARTICLE IN PRESS

Fig. 6. Checks for the primality test.

G. Gottlob et al. / Information Systems 35 (2010) 278–298290
and A. Moreover, let X , Y, and Z be defined as

X :¼
[

N2T
XN ;Y :¼

[

N2T
YN and Z :¼

[

N2T
ZN :

Then the following relations hold:

closF ðX Þ ¼ X [Y and closF ðX [fAgÞ ¼ X [fAg [Z:

The proof uses exactly the same arguments as the proof
of Lemma 3.3 and is therefore omitted. Analogously to
Theorem 3.4, we thus get the following result concerning
the correctness of the Subschema-Primality-Test algo-
rithm.

Theorem 4.2. Let ðR; FÞ be a relational schema and let R0DR

be a subschema, and A 2 R0 an attribute. Moreover, let T be a

tree decomposition of ðR; FÞ. The Subschema-Primality-Test

algorithm in Fig. 5 accepts the input ððR; FÞ; T ;R0;AÞ, if and

only if A is a prime attribute in ðR0; F½R0�Þ.

For the complexity of the Subschema-Primality-Test
algorithm, we get the following upper bound:

Theorem 4.3. Let kZ1 be a fixed constant. Moreover, let

ðR; FÞ be a relational schema of treewidth rk, let R0DR and

A 2 R0. Then it can be decided in linear time whether A is

prime in ðR0; F½R0�Þ. Moreover, this decision problem is in

LogCFL.

Proof. The LogCFL-membership can be shown analo-
gously to Theorem 3.5. We only prove the linear time
upper bound here, which can be seen as follows: First of
all, the data structures guessed in the algorithm Sub-
schema-Primality-Test depend only on the size k of the
labels lðNÞ and lðNiÞ rather than on the size of the entire
input. In order to turn the non-deterministic algorithm
into a deterministic one, we basically loop over all
possible values of XNi

, YNi
, ZNi

, aNi
, bNi

, etc. However, in
order to avoid doing the same computation repeatedly for
some subtree, some care is required. For this purpose, we
have to apply a dynamic programming (or tabling)
approach, by which we store all computation results and
re-use them whenever possible.

Hence, at each node of the tree decomposition T (whose

size is of course linearly bounded), each collection of
guesses of XNi
, YNi

, ZNi
, aNi

, bNi
, etc. has to be processed at

most once. Moreover, almost all of the steps carried out by

the main-program and by the two procedures depend on

the labels lðNÞ and lðNiÞ rather than on the size of the

entire input. The only two places where one has to be

careful are step 10 in the procedure sub-prime-attribute

and the checks 2a and 2b in the procedure check-sub-

primality, which seem to require linear time whenever

they are executed. Note, however, that the overall

complexity of step 10 (in all of the recursive calls of the

procedure prime-attribute) corresponds to the total

number of recursive calls of this procedure—which is in

fact linear w.r.t. the size of the input. As far as the checks

2a and 2b in the procedure check-sub-primality are

concerned, the following slight modification is required:

The very purpose of the algorithm of [9] is to construct a

tree decomposition T such that every hyperedge of the

hypergraph of ðR; FÞ (or, equivalently, every FD f 2 F) is

covered by at least one bag lðNÞ. This algorithm can be

easily extended such that every node N of T is annotated

with the FDs f 2 F that N is meant to cover. Moreover, this

annotation is done in such a way that each f 2 F is used in

the annotation of exactly one node N of T . Then the checks

2a and 2b of the procedure check-sub-primality can be

modified in that they are only applied to those FDs f which

occur in the annotation of the node M of T . The overall

complexity of all calls of the procedure check-

sub-primality is thus linearly bounded. &

Finally, we sketch an algorithm ‘‘Subschema-Not-3NF’’,
which tests whether some subschema R0DR is not in 3NF.
Suppose that we are given a relational schema ðR; FÞ, a
subschema R0DR, and a tree decomposition T of ðR; FÞ, s.t.
the width of T is bounded by some constant kZ1. Our
Subschema-Not-3NF algorithm is obtained by the follow-
ing modification of the Subschema-Not-BCNF algorithm
from Fig. 3: When guessing the attribute A in step r0, we
have to check that A is not prime in ðR0; F½F 0�Þ. By Theorem
4.3 and by the fact that LogCFL is closed under comple-
ment (see [13]), this check can be done by a LogCFL-
algorithm. But then, since LLogCFLðLogCFLÞ ¼ LogCFL

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 291
(see [28]), the whole test that R0DR is not in 3NF, is in
LogCFL. Making once more use of the closure of LogCFL

under complement, we thus get

Theorem 4.4. Let kZ1 be a fixed constant. Moreover, let

ðR; FÞ be a relational schema of treewidth rk and let R0DR be

a subschema. Then it can be decided in polynomial time

whether R0 is in 3NF. Moreover, this decision problem is in

LogCFL.

5. Incidence graph

In this section, we prove the fixed-parameter
tractability for the six decision problems considered
so far (i.e., PRIMALITY, 3NFTEST, and BCNFTEST—both
for a schema and for a subschema) by considering the
treewidth of the incidence graph of the relational
schema as our problem parameter. For this purpose,
we show that these six decision problems can be
expressed by monadic second-order (MSO) sentences.
The fixed-parameter tractability results are then an
immediate consequence of Courcelle’s Theorem.

Monadic second-order logic extends first-order (FO)
logic by the use of set variables (usually denoted by
upper case letters), which range over sets of domain
elements. In contrast, the individual variables (which
are usually denoted by lower case letters) range over
single domain elements. Suppose that we are consider-
ing structures over some signature t of predicate
symbols. An FO-formula j over t has as atomic
formulae either atoms with some predicate symbol
from t or equality atoms. An MSO-formula j over t
may additionally have atoms whose predicate symbol
is a monadic predicate variable. For the sake of
readability, we denote such an atom usually as a 2 X

rather than XðaÞ. Likewise, we use set operators D and
� with the obvious meaning. Courcelle’s Theorem can
be stated as follows:

Theorem 5.1 (Courcelle [16]). Let j be a fixed MSO-

sentence and kZ1 a fixed constant. Deciding whether j
holds for an input graph G (more generally, for an input

structure A) can be done in linear time if the treewidth of the

graphs (resp. of the structures) under consideration is

bounded by k.

Let ðR; FÞ be a relational schema, and H be the
hypergraph of ðR; FÞ (see Definition 2.4). We denote
the treewidth of the incidence graph of ðR; FÞ as twIðHÞ.
The schema ðR; FÞ can be represented in a straightfor-
ward way by means of a finite structure AðR; FÞ over the
signature t ¼ fatt; fd; lh; rhg. The predicates in t have the
following intended meaning: attðaÞ means that a is an
attribute in R, and fdðhÞ means that h is a functional
dependency in F. Moreover, rhða;hÞ (resp. lhða;hÞ) means
that a occurs on the right-hand side (resp. on the left-
hand side) of the FD h. Let HA be the hypergraph of
AðR; FÞ (see Definition 2.5), It is obvious that
twIðHÞ ¼ twIðHAÞ.

Recall that we only consider FDs in canonical form

here, i.e., FDs where there is only a single attribute on the
right-hand side. Next we introduce the MSO formulae
encoding superkey, key and some auxiliary predicates.

MSO encodings of superkey, key and some auxiliary predicates
XDR � ð8aÞa 2 X-attðaÞ

RDX � ð8aÞattðaÞ-a 2 X

X � R � XDR4ð(aÞðattðaÞ4a=2XÞ

ClosedðXÞ � ð8hÞ½fdðhÞ-ð(aÞ½ðrhða;hÞ4a 2 XÞ3ðlhða; hÞ4a=2XÞ��

ClosureðX;YÞ � XDY4ClosedðYÞ4:ð(Y 0Þ½Y 0 � Y4XDY 04ClosedðY 0Þ�

SKðX;YÞ � XDY4ð(ZÞ½ClosureðX; ZÞ4YDZ�

KðX;YÞ � SKðX;YÞ4:ð(X 0Þ½X0 � X4SKðX0 ;YÞ�

LhsðX; hÞ � ð8aÞ½a 2 X2lhða; hÞ�

The predicates defined above have the following meaning:
ClosedðXÞ: X is closed w.r.t. F;
ClosureðX;YÞ: Y is the closure of X w.r.t. F;
SKðX;YÞ: X is a superkey of the schema ðY ; F½Y �Þ;
KðX;YÞ: X is a key of the schema ðY ; F½Y�Þ;
LhsðX;hÞ: X is the lhs of the FD h.
With the above auxiliary predicates, the following MSO
encodings are straightforward.

MSO encodings of PRIMALITY, BCNF and 3NF

PrimeðaÞ � ð(XÞ½KðX;RÞ4a 2 X�

BCNFðÞ � ð8h;XÞ½ðfdðhÞ4LhsðX; hÞÞ-SKðX;RÞ�

3NFðÞ � ð8h;XÞ½ðfdðhÞ4LhsðX; hÞÞ- ½SKðX;RÞ3ð(bÞ½rhðb; hÞ4PrimeðbÞ���

The predicates defined above have the obvious meaning:
PrimeðaÞ: a is prime in the schema ðR; FÞ.
BCNFðÞ: The schema ðR; FÞ is in BCNF.
3NFðÞ: The schema ðR; FÞ is in 3NF.
Now we consider the problems PRIMALITY, BCNF, and
3NF for a subschema. Let ðR; FÞ be the relational schema
and ðR0; F½R0�Þ be the subschema of ðR; FÞ, where R0DR. We
construct a finite structure A

0ðR; F;R0Þ, which contains
AðR; FÞ and a new relation att0ð�Þ, where att0ðaÞ means that
a is an attribute in R0. Let HA0 be the hypergraph of
A
0ðR; F;R0Þ. Since att0 is a unary relation and so does not

affect the treewidth of the incidence graph, we have
twIðHA0 Þ ¼ twIðHAÞ. Moreover, auxiliary predicates related
to R0 (rather than R), such as XDR0, can be easily
constructed by replacing att with att0 in the definition of
the predicates related to R. Then the properties PRIM-
ALITY, BCNF and 3NF of a subschema can be expressed via
the following MSO encoding.
MSO encodings of PRIMALITY, BCNF and 3NF in a subschema
a 2 Y \ R0 � a 2 Y4att0ðaÞ

PrimeSubða;R0Þ � ð(XÞ½KðX;R0Þ4a 2 X�

BCNFSubðR0Þ � ð8X;YÞ½½XDR04ClosureðX;YÞ4ð(aÞða=2X4a 2 Y \ R0Þ�

-SKðX;R0Þ�

3NFSubðR0Þ � ð8X;Y ; aÞ½½XDR04ClosureðX;YÞ4a=2X4a 2 Y \ R0 �

-½SKðX;R0Þ3PrimeSubða;R0Þ��
The predicates defined above have the obvious meaning:

PrimeSubða;R; F;R0Þ: the attribute a is prime in the
subschema ðR0; F½R0�Þ of ðR; FÞ.
BCNFSubðR; F;R0Þ: the subschema ðR0; F½R0�Þ of the
relational schema ðR; FÞ is in BCNF.
3NFSubðR; F;R0Þ: the subschema ðR0; F½R0�Þ is in 3NF.

ARTICLE IN PRESS

Fig. 7. 3NF-Decomposition algorithm.

G. Gottlob et al. / Information Systems 35 (2010) 278–298292
Since all the decision problems considered in
this paper can be expressed by means of MSO sentences,
the following fixed-parameter tractability result is an
immediate consequence of Courcelle’s Theorem
(Theorem 5.1).

Theorem 5.2. The decision problems PRIMALITY, 3NFTEST,
and BCNFTEST (both for a schema and for a subschema) can

be solved in linear time, if the treewidth of the incidence

graph of the relational schemas ðR; FÞ under consideration is

bounded by a constant.

6. NF-decomposition revisited

The intractability of the decision problems recalled in
the introduction is a severe obstacle to satisfactory normal
form decomposition algorithms for 3NF and BCNF. In
particular, as was illustrated in Example 1.1, without the
ability to recognize the normal form, one inevitably runs
the risk of further decomposing a schema even though the
desired normal form has already been reached. However,
in many situations, the relational schema under investiga-
tion has low treewidth. In this case, our algorithms
presented in the previous sections open the grounds for
a completely new approach to normal form decomposi-
tion. Rather than starting from the FDs and defining
subschemas bottom-up so to speak, one can start from the
schema itself, check for normal form violations and define
appropriate subschemas top-down. In this section we
present a simple 3NF decomposition algorithm based on
this new approach, see Fig. 7.

The 3NF-Decomposition algorithm obviously com-
putes a lossless join decomposition into 3NF subsche-
mas. Moreover, by Theorem 4.4, it works in polynomial
time (note that our NF-algorithms from Sections 3 and
4 can be easily extended so as to output a concrete NF-
violation rather than just answering ‘‘Accept’’ or
‘‘Reject’’). Of course, there is ample space for improve-
ments and extensions of this algorithm. We conclude
this section by outlining just a few directions for
further refining this algorithm and for extending it to a
BCNF decomposition algorithm:
(1)
 One is normally interested in an FD-preserving

decomposition. Hence, as a post-processing step, one
should check for all FDs in F whether they are
embedded in the resulting set of subschemas. For
every FD A1; . . . ;Am-B not embedded in S3NF , we can
simply add the subschema fA1; . . . ;Am;Bg to S3NF . All
this can be done in polynomial time (see [4]).
(2)
 When a 3NF-violation A1; . . . ;Am-B has been de-
tected, one should not only split off the single
attribute B from R0. Instead, one should search for
further attributes B1; . . . ;B‘ which are also determined
by A1; . . . ;Am and split off all these attributes together.
Actually, the resulting subschema S ¼ fA1; . . . ;Am;

B;B1; . . . ;B‘g is not necessarily in 3NF. But this is no
problem. We just have to check whether the sub-
schema S already is in 3NF and, otherwise, apply the
3NF decomposition recursively to this subschema. By
Theorem 4.4, also the 3NF-test in a subschema S of
ðR; FÞ can be done efficiently in case of bounded
treewidth.
(3)
 Similarly, when we use the idea of the 3NF-Decom-
position algorithm for a BCNF decomposition, then the
subschemas produced are not necessarily in BCNF. But
again, this can be efficiently detected (see Theorem
3.5) and we just have to apply the BCNF decomposi-
tion recursively to the subschema. Unfortunately,
there is no way to guarantee that we actually find an
FD-preserving decomposition into BCNF. However, by
results shown in [3] (a lossless join, FD-preserving
BCNF decomposition does not necessarily exist and it
is coNP-hard to decide whether one exists), this can
hardly be helped.
7. Logic-based abduction

In this section, we show how our new algorithms and
fixed-parameter tractability results can be carried over

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 293
from our database design problems to an important class
of problems in artificial intelligence, namely the relevance
problem of logic-based abduction.

Abductive diagnosis aims at an explanation of some
observed symptoms in terms of minimal sets of hypoth-
eses (like failing components) which may have led to
these symptoms [17]. Unfortunately, most of the decision
problems in logic-based abduction are intractable [19]. For
instance, the relevance problem (i.e., deciding if a given
hypothesis is part of a possible explanation) is NP hard,
even if the system description consists of propositional,
definite Horn clauses only [23]. Hence, it is an important
task to search for sufficient conditions under which
these practically important problems become efficiently
solvable.

By the close relationship with the PRIMALITY problem,
we make our new algorithms also applicable to the
relevance problem of propositional abduction. In particu-
lar, we show that the relevance problem becomes
tractable if the system description is given by a set of
propositional, definite Horn clauses with bounded tree-
width.

Moreover, in this paper, we also present an extension
of these results to abductive diagnosis via datalog. It is
thus possible to actually tackle many real-world problems
in AI with these methods. Suppose that a system
description (e.g., of an electronic circuit) is given in form
of a finite structure (i.e., the ‘‘extensional database’’, EDB)
of bounded treewidth and a guarded non-ground datalog
program that describes the propagation of faulty behavior.
We will show that, also in this case, it can be determined
efficiently whether the misbehavior of some system
component is a possible cause for the observed symp-
toms. It should be noted that this extension to the non-
ground case is by no means obvious, notwithstanding the
clear analogy between the functional dependencies in
database design and propositional abduction. The difficulty
in proving our new result consists in showing that the
abductive datalog problem is equivalent to a propositional
abduction problem and the bounded treewidth of the EDB
indeed propagates to the propositional rules.

7.1. Propositional abduction

In this work, we study propositional abduction problems

(PAPs) of the following form.

Definition 7.1. A propositional abduction problem (a PAP,
for short) P consists of a tuple /V ;Hyp;Obs; SDS, where V

is a finite set of variables, HypDV is the set of hypotheses,
ObsDV is the set of observed symptoms, and SD is a system

description in the form of a set of definite, propositional
Horn clauses with SD [HypFObs. Moreover, we assume
that jObsj is bounded by some fixed constant k.

A set DDHyp is a diagnosis (also called solution) to P if D
is minimal s.t. SD [DFObs holds. A hypothesis h 2 Hyp is

called relevant if h is contained in at least one diagnosis D
of P.

Note that the restriction on the cardinality of Obs is not
a severe one since jObsj is often even assumed to be 1 (e.g.,
an alarm bell ringing, a bulb lighting up, etc.). The
condition SD [HypFObs is a prerequisite to ensure that
there exists at least one diagnosis. This condition can be
checked in linear time, see [18,45].

As was already mentioned above, deciding the rele-
vance of a hypothesis h in a PAP P is NP-complete even
with the above restrictions on SD, Hyp, and Obs [23].

Example 7.2. Consider the following PAP describing
problems of a football team [35].

SD ¼ fweak_defense3weak_attack-match_lost;match_lost

-manager_sad4press_angrystar_injured

-manager_sad4press_sadg

Obs ¼ fmanager_sad;press_angryg

Hyp ¼ fweak_defense;weak_attack; star_injuredg:

It is convenient to abbreviate the propositional variables
weak_defense, weak_attack, star_injured, match_lost,
manager_sad, press_angry, and press_sad in this order as
A1, A2, A3, A4, A5, A6, A7. Obviously, SD is equivalent to the
following set of definite Horn clauses:

SD0 ¼ fA4’A1;A4’A2;A5’A4;A6’A4;A5’A3;A7’A3g:

This PAP has two diagnoses, D1 ¼ fA1g and D2 ¼ fA2g (i.e.,
weak_defense and weak_attack, respectively).

Concerning the treewidth of a PAP, we proceed
analogously to the treewidth of a relational schema in
Definition 2.4.

Definition 7.3. For a PAP P ¼ /V ;Hyp;Obs; SDS, we define
the hypergraph of P as H ¼ /V ;HS with

H ¼ ffA1; . . . ;An;BgjðB’A1 . . .AnÞ 2 SDg:

The primal graph and the incidence graph of P are

simply defined as the corresponding graph of H. Likewise,

the treewidth of P is defined as twPðHÞ or as twIðHÞ,
respectively.

Recall that outside Section 5, we only consider the
treewidth of the primal graph unless explicitly stated
otherwise. Hence, we shall simply speak about the
treewidth (or a tree decomposition, resp.) below in order
to refer to twPðHÞ (or a tree decomposition of the primal
graph, resp.).

We are now ready to show that one may indeed carry
over the fixed-parameter linearity and the LogCFL-
membership from PRIMALITY to propositional abduction.

Theorem 7.4. Let kZ1 be a fixed constant. Moreover, let

P ¼ /V ;Hyp;Obs; SDS be a PAP where SD has treewidth rk

and let h 2 Hyp. It can be decided in linear time whether h is

relevant in P. Moreover, this decision problem is in LogCFL.

Proof. By Theorem 4.3, it suffices to show that there is a
linear-time, log-space reduction from the relevance
problem to the PRIMALITY problem in a subschema s.t.
the increase of the treewidth is bounded by a constant. By
slight abuse of notation, we identify any definite Horn rule
B’A1; . . . ;An with the FD A1; . . . ;An-B. Then we reduce
an arbitrary PAP P ¼ /V ;Hyp;Obs; SDS to the relational
schema ðR; FÞ with R ¼ V and F ¼ SD [fObs-BjB 2 Hypg.
Moreover, we set R0 ¼ Hyp.

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298294
This reduction is clearly feasible in log-space. Moreover,

we can obtain a tree decomposition of F from a tree

decomposition of SD by adding Obs to every bag. Since we

are only considering PAPs with jObsjrk for some constant

k, we have twðFÞrtwðSDÞ þ k. It remains to prove the

correctness of this reduction, i.e. h 2 Hyp is relevant in the

PAP P iff h is prime in the subschema ðR0; F½R0�Þ. It suffices

to show that, for every DDHyp, the following equivalence

holds:

D is a diagnosis of P 3 D is a key of ðR0; F½R0�Þ:

Before we prove the two directions of this equivalence, we

comment on the notation used below. Recall that we are

identifying the set of definite Horn rules SD with the set of

functional dependencies SD and vice versa. Hence, we

shall write SD [DFA in order to denote that the

propositional atom A is implied by the propositional logic

program SD [D. Alternatively, we shall write SDFD-A in

order to denote that the FD D-A can be derived from the

FDs SD. It is easy to check that these two conditions are

equivalent.

‘‘) ’’ Suppose that DDHyp is a solution of the PAP P.

We show that then (i) D is a superkey in ðR0; F½R0�Þ and

(ii) D is minimal with this property.

(i) Since D is a solution of P, we have SD [DFA for

every atom A 2 Obs. Hence, in ðR; FÞ, the FD D-A can be

derived for every attribute A 2 Obs. Thus, by the additional

FDs Obs-B, we can derive in ðR; FÞ also the FD D-B for

every B 2 Hyp. Note that DDHyp and B 2 Hyp. Hence, we

actually have F½R0�FD-B for all B 2 Hyp. Thus, D is a

superkey in ðR0; F½R0�Þ.

(ii) We prove the minimality of D indirectly. Suppose to

the contrary that there exists a strictly smaller key D0 � D
of ðR0; F½R0�Þ. Exactly as in part (i) of the ‘‘(’’ � direction

treated below, one can show that then SD [D0FObs holds,

contradicting the minimality of the solution D of P.

‘‘(’’ Suppose that DDHyp is a key of ðR0; F½R0�Þ. We

show that then (i) SD [DFObs and (ii) D is minimal with

this property.

(i) By assumption, F½R0�FD-B for all B 2 Hyp. First

suppose that for at least one B, the rule Obs-B is used in

the derivation of B from D. This means that all FDs D-A

for all A 2 Obs can be derived from SD. In terms of the PAP

P, we thus have the desired implication SD [DFObs. On

the other hand, suppose that all of the attributes B can be

derived from D by only using the FDs in SD, i.e., SDFD-B

for every B 2 Hyp or, equivalently, SD [DFHyp. Recall

from Definition 7.1 that, in any PAP, the condition SD [

HypFObs holds. Hence, in total, we have the desired

implication SD [DFObs.

(ii) It remains to show the minimality of D. Suppose to

the contrary that there exists a strictly smaller solution

D0 � D of the PAP P. Exactly as in part (i) of the

‘‘) ’’ � direction, one can show that then D0 is also a

superkey of ðR0; F½R0�Þ, which contradicts the minimality of

the key D of ðR0; F½R0�Þ. &
Note that the above proof can also be applied to the
situation where the treewidth of the incidence graphs is
bounded by a constant. Together with Theorem 5.2, we
thus obtain the corresponding fixed-parameter linearity
for propositional abduction. Alternatively, one can of
course proceed analogously to Section 5 and provide
directly an MSO-encoding of the relevance problem of
propositional abduction (see [30] for related results).

Example 7.5. Let us revisit the PAP P from Example 7.2.
By the proof of Theorem 7.4, we can reduce P to the
relational schema ðR; FÞ with R ¼ V ¼ fA1; . . . ;A7g and

F ¼ fA1-A4;A2-A4;A4-A5;A4-A6;A3-A5;A3-A7;A5A6

-A1;A5A6-A2;A5A6-A3g:

Moreover, let R0 ¼ fA1;A2;A3g. The subschema ðR0; F½F 0�Þ has
two keys, namely K1 ¼ fA1g and K2 ¼ fA2g, which corre-
spond to the diagnoses of the PAP P.

7.2. Datalog abduction

In recent years, the datalog language has been
successfully applied as a knowledge representation me-
chanism in the area of abductive diagnosis [2,39,12]. In
this paper, we will restrict our attention to the so-called
guarded fragment of datalog:

Definition 7.6 (Gottlob et al. [24]). A guard of a datalog
rule is an atom A whose predicate symbol occurs in the
input structure (i.e., the ‘‘EDB’’) s.t. all variables of the rule
occur in A. A datalog rule is guarded if its body contains a
guard. A guarded datalog program is a datalog problem
whose rules are guarded.

Then we define datalog abduction as follows.

Definition 7.7. A datalog abduction problem consists of a
tuple P ¼ /EDB; P;Hyp;ObsS, where EDB is an input
structure (i.e., set of ground atoms), P is a set of guarded,
definite Horn datalog rules, Hyp and Obs are sets of ground
atoms with EDB [P [HypFObs. As in the propositional
case, we assume jObsjrk for some constant k. Moreover,
we consider the set of predicate symbols occurring in P as
arbitrarily chosen but fixed.

A diagnosis is a minimal subset DDHyp with

EDB [P [DFObs. An atom h 2 Hyp is called relevant, if

there exists at least one diagnosis D with h 2 D.

Note that in a datalog abduction problem, the system
description consists of an input structure (the EDB) and a
(normally non-ground) datalog program P. A PAP as
defined in the previous section corresponds to the special
case where the EDB is omitted and P contains only ground
rules.

Example 7.8. Consider the full-adder in Fig. 8, which has
faulty output bits (indicated by *). We describe this
diagnosis problem by a datalog abduction problem:

EDB ¼ foneðaÞ; zeroðbÞ; oneðcÞ; xorða;b; s; xor1Þ; xorðs; c;

sum; xor2Þ; andða; b; c1; and1Þ; andðs; c; c2; and2Þ;

orðc1; c2; carry; or1Þg:

ARTICLE IN PRESS

Fig. 8. Full-adder with incorrect output values.

G. Gottlob et al. / Information Systems 35 (2010) 278–298 295
The guarded datalog program P contains rules that model
the normal and the faulty behavior for each gate type (i.e.,
and, or, and xor). We only show the datalog rules for the
gate type xor. The other types are handled analogously. For
the normal behavior, we have the folowing four rules:

zeroðOÞ’xorðI1; I2;O;GÞ; oneðI1Þ; oneðI2Þ;

oneðOÞ’xorðI1; I2;O;GÞ; oneðI1Þ; zeroðI2Þ;

oneðOÞ’xorðI1; I2;O;GÞ; zeroðI1Þ; oneðI2Þ;

zeroðOÞ’xorðI1; I2;O;GÞ; zeroðI1Þ; zeroðI2Þ;

where the atom xorðI1; I2;O;GÞ is the guard in all rules. The
faulty behavior is modeled by another collection of four
rules:

oneðOÞ’xorðI1; I2;O;GÞ; oneðI1Þ;oneðI2Þ; faultyðGÞ;

zeroðOÞ’xorðI1; I2;O;GÞ; oneðI1Þ; zeroðI2Þ; faultyðGÞ;

zeroðOÞ’xorðI1; I2;O;GÞ; zeroðI1Þ; oneðI2Þ; faultyðGÞ

oneðOÞ’xorðI1; I2;O;GÞ; zeroðI1Þ; zeroðI2Þ; faultyðGÞ:

Finally, we define the sets Obs and Hyp as follows:

Obs :¼ foneðsumÞ; zeroðcarryÞg and

Hyp :¼ ffaultyðxor1Þ; faultyðxor2Þ; faultyðand1Þ; faultyðand2Þ;

faultyðor1Þg:

Of course, if one has already verified that some
component c works properly, then one will remove the
atom faultyðcÞ from Hyp.

This abduction problem has three diagnoses, namely

D1 ¼ ffaultyðxor1Þg, D2 ¼ ffaultyðxor2Þ; faultyðor1Þg, and D3 ¼

ffaultyðxor2Þ; faultyðand2Þg.

As in the propositional case, we concentrate on the
relevance problem. Note that the knowledge as to whether
the malfunction of a given component is part of a possible
explanation of the observed symptoms (i.e., this compo-
nent is relevant) is of big practical value. For instance,
consider executing the diagnosis of an electronic circuit
with thousands of gates. The distinction between relevant
and irrelevant components can help to drastically reduce
the effort for the diagnosis task.

We now extend the fixed-parameter tractability result
of the relevance problem from propositional abduction to
datalog abduction.

Theorem 7.9. Let kZ1 be a fixed constant. Moreover, let

P ¼ /EDB; P;Hyp;ObsS be a datalog abduction problem, s.t.

the input structure EDB has treewidth (of the primal graph)
rk. Then, for any h 2 Hyp, it can be decided in polynomial

time whether h is relevant in P.
Proof. By Theorem 7.4, it suffices to show the following
two facts: First we have to show that the datalog program
P is equivalent to a ground program of polynomial size,
and second we have to show that the bounded treewidth
propagates from the input structure to the ground
program.
1.
 Size of an equivalent ground program. The grounding of a
datalog program P relatively to some structure A is
obtained by computing all possible instantiations of
the variables occurring in P by all constants in the
active domain [14]. The resulting program groundðPÞ is
equivalent to P, i.e., for any atom A, we have P [AFA

3 groundðPÞ [AFA. In general, the program
groundðPÞ is exponentially big. However, if P is a
guarded datalog program, then one can restrict
groundðPÞ to an equivalent set ground0ðPÞ which can
be computed in quadratic time and whose size is also
quadratically bounded, namely OðjAj � jPjÞ [24]. Intui-
tively, this can be seen as follows: For each rule r in P,
there are at most jAj instantiations for the guard of r

which actually exist in A. On the other hand, all ground
rules where the guard is instantiated to an atom
outside A can be simply deleted (because this body
will never be true).
2.
 Bounded treewidth of the ground program. By assump-
tion, there exists a tree decomposition T of EDB of
width ok for some constant k. Note that the bags lðNÞ
in T are sets of domain elements. It is convenient to
denote the domain elements in a ground atom A as
domðAÞ. Moreover, we refer to the ground atoms
obtained by instantiating a guard atom as ‘‘ground
guards’’. For every ground guard A, we may assume
w.l.o.g., that T has a leaf node N s.t. lðNÞ ¼ domðAÞ,
since we may clearly append a new leaf node N with
this property to a node N0 with lðNÞ+domðAÞ. Then we
construct a tree decomposition T 0 of the ground
program ground0ðPÞ as follows.

T 0 has the same tree structure as T . Note that now the

bags l0ðNÞ consist of ground atoms occurring in ground0ðPÞ.

Let N be a leaf node with lðNÞ ¼ domðAÞ for some ground

guard A. Then we insert into l0ðNÞ the atom A plus

all ground atoms B that occur in at least one

rule r 2 ground0ðPÞ, s.t. A is the ground guard of r. By

construction, we have lðNÞ ¼ domðAÞ and domðBÞDdomðAÞ.

Hence, domðBÞDlðNÞ holds as well.

Suppose that now a ground atom B occurs in two

distinct bags l0ðN1Þ and l0ðN2Þ. In order to preserve the

connectedness condition, we thus also have to add B to

any bag l0ðMÞ on the path from N1 to N2. As we have

argued above, we know that domðBÞDlðN1Þ and

domðBÞDlðN2Þ holds. Thus, by the connectedness condi-

tion on the tree decomposition T , we may conclude that

also domðBÞDlðMÞ holds for all nodes M on the path from

N1 to N2. In other words, the following implication holds

for every ground atom B: If B 2 l0ðNÞ then domðBÞDlðNÞ.
Hence, as a (very rough) upper bound on the width of T 0,

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298296
we get m 	 kl, where m is the number of predicate symbols

in EDB and l is their maximum arity. &

We conclude this section with some heuristics which will
normally lead to a much more efficient reduction from
datalog abduction to propositional abduction (even
though the worst-case complexity from the proof of
Theorem 7.9 is not affected).
1.
 Further simplification of ground0ðPÞ. In the proof of
Theorem 7.9 we were contented with deleting all
ground rules where the ground guard is not contained
in the EDB. Of course, this idea can be extended to any
ground atoms with an EDB-predicate symbol. We thus
apply the following simplification. Let r be a ground
rule in ground0ðPÞ and let A be an atom occurring in
the body of r. Moreover suppose that A has a predicate
symbol from the EDB. Then we may apply the
following simplifications: If A 2 EDB, then A may be
deleted from the rule (since it is clearly true). If A=2EDB

then r may be deleted from ground0ðPÞ (since the body
of r will never be true).
2.
 Simplification of the tree decomposition T 0. In the proof
of Theorem 7.9 we started off with a tree decomposi-
tion T of EDB and constructed a tree decomposition T 0
of the ground logic program ground0ðPÞ. A close
inspection of the proof reveals that we could have
started off with a tree decomposition of the subset
EDB0DEDB with

EDB0 ¼ fA 2 EDBjA is a ground guardg

Moreover, the tree decomposition will in general
become much simpler if we first apply the above
simplifications to ground0ðPÞ.

Example 7.10. Consider again the PAP P from Example
7.8. If we first ground P and then apply the above
simplifications, then we get the following ground program
(which is equivalent to EDB [P):
oneðsÞ,
 zeroðsÞ’faultyðxor1Þ,
zeroðc1Þ,
 oneðc1Þ’faultyðand1Þ,
oneðsumÞ’zeroðsÞ,
 oneðsumÞ’oneðsÞ; faultyðxor2Þ,
zeroðsumÞ’oneðsÞ,
 zeroðsumÞ’zeroðsÞ; faultyðxor2Þ,
zeroðc2Þ’zeroðsÞ,
 zeroðc2Þ’oneðsÞ; faultyðand2Þ,
oneðc2Þ’oneðsÞ,
 oneðc2Þ’zeroðsÞ; faultyðand2Þ,
oneðcarryÞ’oneðc1Þ; zeroðc2Þ,
 zeroðcarryÞ’oneðc1Þ; zeroðc2Þ; faultyðor1Þ,
oneðcarryÞ’zeroðc1Þ;oneðc2Þ,
 zeroðcarryÞ’zeroðc1Þ;oneðc2Þ; faultyðor1Þ,
oneðcarryÞ’oneðc1Þ; oneðc2Þ,
 zeroðcarryÞ’oneðc1Þ; oneðc2Þ; faultyðor1Þ,
zeroðcarryÞ’zeroðc1Þ; zeroðc2Þ,
 oneðcarryÞ’zeroðc1Þ; zeroðc2Þ; faultyðor1Þ.
As we have seen in the proof of Theorem 7.9, a guarded
datalog program P is very close to a ground program.
Hence, for a given extensional database EDB, one could
right from the beginning specify the system description by
a ground program, whose size is at most jEDBj � jPj.
Nevertheless, we consider guarded datalog as a useful tool
from a modeling point of view: For instance, in the
diagnosis example of the Boolean circuit in Example 7.8,
the system description in guarded datalog (with a fixed
set of rules per gate type, e.g., eight rules in total for the
gate type xor) seems much clearer than if we considered
the corresponding ground program. In particular, we thus
achieve a separation between the general behavior of a
problem class (specified by the datalog rules which hold
for any circuit and have to be set up ‘‘once and for all’’) and
the concrete Boolean circuit (given by the extensional
database). In this section, we have shown that the
separation between general behavior and concrete pro-
blem instances can also be maintained for identifying
fixed-parameter tractable fragments: Indeed, by Theorem
7.9, it suffices to inspect the treewidth of the extensional
databases under consideration for identifying fixed-para-
meter tractability.
8. Conclusion

In this paper, we have presented new algorithms for six
fundamental decision problems in database design,
namely PRIMALITY, 3NFTEST, and BCNFTEST (both for a
schema and for a subschema). These algorithms work in
polynomial time in case that the input relational schema
has bounded treewidth. To the best of our knowledge,
these are the first results on tractable fragments of
decision problems in database design via bounded
treewidth and we are planning to further investigate the
potential benefit of the concept of treewidth in this area.

The algorithms presented in this work are based on the
definition of treewidth via the primal graph of a
hypergraph H. For the case that the treewidth is defined
via the incidence graph, we have proved the correspond-
ing fixed-parameter tractability results via appropriate
MSO encodings. Dedicated algorithms also in the latter
case are left for future work. Likewise, applying other
notions of treewidth (like directed treewidth, see e.g.
[7,6,47,36]) to the problems studied here is an interesting
target for future research.

It would be tempting to try to identify tractable
fragments of these problems directly via the hypergraph
of relational schemas (rather than via the primal or
incidence graph corresponding to the hypergraph). The
first candidate for such investigations would be the notion
of hypertree-width which has been successfully used to
identify tractable fragments of conjunctive query evalua-
tion and of constraint satisfication problems [26,29].
However, the hypertree-width does not seem to be
applicable in our context. The reason for this is that the
hypertree-width of a hypergraph becomes low in the
presence of big hyperedges. In the extreme case, any
hypergraph H can be transformed into a hypergraph H0 of
hypertree-width 1 by adding a hyperedge which contains
all vertices of H. For the hypergraph corresponding to a
relational schema ðR; FÞ, this effect can be easily achieved
by adding the trivial FD R-A for some attribute A. Of
course, this syntactic trick does not make any of the
decision problems considered here any easier.

In this paper, we have also pointed out that these
results can be carried over to propositional abduction and
further extended to abductive datalog. Again, we re-
stricted ourselves to the treewidth defined via the primal
graph of a hypergraph H. In a recent paper (see [30]) we

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298 297
proved many more fixed-parameter tractability results
in the area of non-monotonic reasoning and know-
ledge representation for bounded treewidth of the
incidence graph. These results were shown—similarly to
Section 5—via appropriate MSO encodings by making use
of Courcelle’s Theorem. As mentioned above, dedicated
algorithm for these problems would be much more
desirable than the MSO-encoding. The search for such
dedicated algorithm is left for future work in this area.
Acknowledgements

We are grateful to the anonymous reviewers who
helped substantially improve the paper.

References

[1] W. Armstrong, Dependency structures of data base relationships, in:
IFIP Congress, 1974, pp. 580–583.

[2] J. Balsa, V. Dahl, J.P. Lopes, Datalog grammars for abductive
syntactic error diagnosis and repair, in: Proceedings of the
NLULP’95, International Workshop on Natural Language Under-
standing and Logic Programming, 1995.

[3] C. Beeri, P.A. Bernstein, Computational problems related to the
design of normal form relational schemas, ACM Trans. Database
Syst. 4 (1) (1979) 30–59.

[4] C. Beeri, P. Honeyman, Preserving functional dependencies, SIAM J.
Comput. 10 (3) (1981) 647–656.

[5] P.A. Bernstein, Synthesizing third normal form relations from
functional dependencies, ACM Trans. Database Syst. 1 (4) (1976)
277–298.

[6] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, DAG-width
and parity games, in: Proceedings of the STACS’06, Lecture Notes
in Computer Science, vol. 3884, Springer, Berlin, 2006.
pp. 524–536.

[7] D. Berwanger, E. Grädel, Entanglement—a measure for the com-
plexity of directed graphs with applications to logic and games, in:
Proceedings of the LPAR’04, Lecture Notes in Computer Science, vol.
3452, Springer, Berlin, 2005, pp. 209–223.

[8] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybern. 11
(1–2) (1993) 1–22.

[9] H.L. Bodlaender, A linear-time algorithm for finding tree-decom-
positions of small treewidth, SIAM J. Comput. 25 (6) (1996)
1305–1317.

[10] H.L. Bodlaender, A.M.C.A. Koster, Safe separators for treewidth,
Discrete Math. 306 (3) (2006) 337–350.

[11] H.L. Bodlaender, A.M.C.A. Koster, Combinatorial optimization on
graphs of bounded treewidth, Comput. J. 51 (3) (2008) 255–269.

[12] P. Bonatti, P. Samarati, Regulating service access and information
release on the web, in: Proceedings of the CCS ’00: ACM conference
on Computer and Communications Security, ACM Press, New York,
2000, pp. 134–143.

[13] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, M. Tompa, Two
applications of inductive counting for complementation problems,
SIAM J. Comput. 18 (3) (1989) 559–578.

[14] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases,
Springer, New York, USA, 1990.

[15] A.K. Chandra, D. Kozen, L.J. Stockmeyer, Alternation, J. ACM 28 (1)
(1981) 114–133.

[16] B. Courcelle, Graph rewriting: an algebraic and logic approach, in:
Handbook of Theoretical Computer Science, vol. B, Elsevier Science
Publishers, 1990, pp. 193–242.

[17] J. de Kleer, A.K. Mackworth, R. Reiter, Characterizing diagnoses and
systems, Artif. Intell. 56 (2–3) (1992) 197–222.

[18] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the
satisfiability of propositional Horn formulae, J. Log. Program. 1 (3)
(1984) 267–284.

[19] T. Eiter, G. Gottlob, The complexity of logic-based abduction, J. ACM
42 (1) (1995) 3–42.

[20] P.C. Fischer, J.H. Jou, D.-M. Tsou, Succinctness in dependency
systems, Theor. Comput. Sci. 24 (1983) 323–329.

[21] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decomposi-
tions, J. ACM 49 (6) (2002) 716–752.
[22] M. Frick, M. Grohe, The complexity of first-order and monadic
second-order logic revisited, in: Proceedings of the LICS’02, IEEE
Computer Society, 2002, pp. 215–224.

[23] G. Friedrich, G. Gottlob, W. Nejdl, Hypothesis classification,
abductive diagnosis and therapy, in: Proceedings of the Interna-
tional Workshop on Expert Systems in Engineering: Principles and
Applications, Lecture Notes in Computer Science, vol. 462, Springer,
Berlin, 1990, pp. 69–78.

[24] G. Gottlob, E. Grädel, H. Veith, Datalog lite: a deductive query
language with linear time model checking, ACM Trans. Comput.
Logic 3 (1) (2002) 42–79.

[25] G. Gottlob, C. Koch, R. Pichler, L. Segoufin, The complexity of XPath
query evaluation and XML typing, J. ACM 52 (2) (2005)
284–335.

[26] G. Gottlob, N. Leone, F. Scarcello, A comparison of structural CSP
decomposition methods, Artif. Intell. 124 (2) (2000) 243–282.

[27] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic
conjunctive queries, J. ACM 48 (3) (2001) 431–498.

[28] G. Gottlob, N. Leone, F. Scarcello, Computing LOGCFL certificates,
Theor. Comput. Sci. 270 (1–2) (2002) 761–777.

[29] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and
tractable queries, J. Comput. Syst. Sci. 64 (3) (2002) 579–
627.

[30] G. Gottlob, R. Pichler, F. Wei, Bounded treewidth as a key to
tractability of knowledge representation and reasoning, in: Pro-
ceedings of the AAAI’06, AAAI Press, New York, 2006, pp.
250–256.

[31] G. Gottlob, R. Pichler, F. Wei, Tractable database design through
bounded treewidth, in: Proceedings of the PODS’06, ACM Press,
New York, 2006, pp. 124–133.

[32] G. Gottlob, R. Pichler, F. Wei, Efficient datalog abduction through
bounded treewidth, in: Proceeings of the AAAI’07, AAAI Press, New
York, 2007, pp. 1626–1631.

[33] S.A. Greibach, The hardest context-free language, SIAM J. Comput. 2
(4) (1973) 304–310.

[34] M. Grohe, Descriptive and parameterized complexity, in: Procee-
digns of the CSL’99, Lecture Notes in Computer Science, vol. 1683,
Springer, Berlin, 1999, pp. 14–31.

[35] M. Hermann, R. Pichler, Counting complexity of propositional
abduction, in: Proceedings of the IJCAI-07, 2007, pp. 417–422.

[36] P. Hunter, S. Kreutzer, Digraph measures: Kelly decomposi-
tions, games, and ordering, Theor. Comput. Sci. 399 (2008)
206–219.

[37] D.S. Johnson, A catalog of complexity classes, in: Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity
(A), Elsevier Science Publishers B.V., North-Holland, 1990, pp.
67–161.

[38] R.M. Karp, V. Ramachandran, Parallel algorithms for shared-
memory machines, in: Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity (A), Elsevier, MIT Press,
1990, pp. 869–942.

[39] H. Koshutanski, F. Massacci, An access control framework for
business processes for web services, in: Proceedings of the XMLSEC
’03: ACM Workshop on XML Security, 2003, pp. 15–24.

[40] A.M.C.A. Koster, H.L. Bodlaender, S.P.M. van Hoesel, Treewidth:
computational experiments, Electronic Notes Discrete Math. 8
(2001) 54–57.

[41] M. Lohrey, On the parallel complexity of tree automata, in:
Proceedings of the RTA’01, Lecture Notes on Computer Science,
vol. 2051, Springer, Berlin, 2001, pp. 201–215.

[42] C.L. Lucchesi, S.L. Osborn, Candidate keys for relations, J. Comput.
Syst. Sci. 17 (2) (1978) 270–279.

[43] H. Mannila, K.-J. Räihä, The Design of Relational Databases,
Addison-Wesley, Reading, MA, 1992.

[44] H. Maryns, On the implementation of tree automata: limitations of
the naive approach, in: Proceedings of the TLT’06: International
Treebanks and Linguistic Theories Conference, 2006, pp.
235–246.

[45] M. Minoux, LTUR: a simplified linear-time unit resolution algorithm
for horn formulae and computer implementation, Inf. Process. Lett.
29 (1) (1988) 1–12.

[46] K.K. Nambiar, B. Gopinath, T. Nagaraj, Manjunath, Boyce–Codd
normal form decomposition, J. Comput. Math. Appl.
33 (4) (1997).

[47] J. Obdržálek, DAG-width: connectivity measure for directed graphs,
in: Proceedings of the SODA’06, ACM Press, New York, 2006, pp.
814–821.

[48] S.L. Osborn, Testing for existence of a covering Boyce–Codd normal
form, Inf. Process. Lett. 8 (1) (1979) 11–14.

ARTICLE IN PRESS

G. Gottlob et al. / Information Systems 35 (2010) 278–298298
[49] W.L. Ruzzo, Tree-size bounded alternation, J. Comput. Syst. Sci. 21
(2) (1980) 218–235.

[50] M. Samer, S. Szeider, Algorithms for propositional model counting,
in: Proceedings of the LPAR’07, Lecture Notes in Computer Science,
vol. 4790, 2007, pp. 484–498.
[51] S. Szeider, On fixed-parameter tractable parameterizations of SAT,
in: Proceedings of the SAT’03, Selected Revised Papers, Lecture
Notes in Computer Science, vol. 2919, 2004, pp. 188–202.

[52] F. van den Eijkhof, H.L. Bodlaender, A.M.C.A. Koster, Safe reduction
rules for weighted treewidth, Algorithmica 47 (2) (2007) 139–158.

	Tractable database design and datalog abduction through bounded treewidth
	Introduction
	Preliminaries
	Database design
	Tree decompositions and treewidth
	Complexity

	Bounded treewidth and BCNF
	Bounded treewidth and 3NF
	Incidence graph
	NF-decomposition revisited
	Logic-based abduction
	Propositional abduction
	Datalog abduction

	Conclusion
	Acknowledgements
	References

