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Several forms of reasoning in AI – like abduction, closed world reasoning, circumscription,
and disjunctive logic programming – are well known to be intractable. In fact, many of
the relevant problems are on the second or third level of the polynomial hierarchy. In
this paper, we show how the notion of treewidth can be fruitfully applied to this area. In
particular, we show that all these problems become tractable (actually, even solvable in
linear time), if the treewidth of the involved formulae or programs is bounded by some
constant.
Clearly, these theoretical tractability results as such do not immediately yield feasible
algorithms. However, we have recently established a new method based on monadic
datalog which allowed us to design an efficient algorithm for a related problem in the
database area. In this work, we exploit the monadic datalog approach to construct new
algorithms for logic-based abduction.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the nineteen-nineties, several forms of reasoning in AI – like abduction, closed world reasoning, circumscription, and
disjunctive logic programming – were shown to be highly intractable. In fact, many relevant problems in this area are on
the second or even third level of the polynomial hierarchy [20–22].

In recent years, parameterized complexity has evolved as an interesting approach to dealing with intractability [19]. It has
turned out that many hard problems become tractable if some problem parameter is fixed or bounded by a fixed constant.
If a problem enjoys this property we speak of fixed-parameter tractability (FPT, for short). In the arena of graph problems,
an important parameter thus investigated is the so-called treewidth of a graph G , which is a measure of the “tree-likeness”
of G . If the treewidth of the graphs under consideration is bounded by a fixed constant, then many otherwise intractable
problems become tractable, e.g., 3-colorability, Hamiltonicity, etc. More generally, treewidth can be considered for arbitrary
finite structures. Treewidth has also been applied to some areas of AI, notably to constraint satisfaction [2].

A deep result and mathematical tool for deriving new FPT-results is Courcelle’s Theorem [14], which states that if some
property of finite structures is expressible by a Monadic Second Order (MSO, for short) sentence then this property is
decidable in linear time for structures whose treewidth is bounded by a fixed constant. Courcelle’s Theorem has been further
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developed in several works, e.g., in the recent paper [24], where also an efficient algorithm for counting the solutions of a
SAT or Generalized SAT problem is presented.

In this paper, we revisit several intractable problems in AI. Our goal is to harness the powerful machinery of Courcelle’s
Theorem in the area of knowledge representation and reasoning. We show that virtually all decision problems arising in the
context of abduction, closed world reasoning, circumscription, and disjunctive logic programming become tractable if the
treewidth of the involved formulae or programs is bounded by some constant. The central idea for deriving these FPT-results
is to encode the decision problems in terms of MSO sentences.

Clearly, an MSO description as such is not an algorithm and it is a highly non-trivial task to turn a theoretical tractability
result based on Courcelle’s Theorem into a feasible computation. Actually, recipes to devise concrete algorithms based on
Courcelle’s Theorem can be found in the literature, see e.g. [3,12,11,25]. The basic idea of these algorithms is to transform
the MSO evaluation problem into an equivalent tree language recognition problem and to solve the latter via an appropri-
ate finite tree automaton (FTA) [17,46,47]. In theory, this generic method of turning an MSO description into a concrete
algorithm looks very appealing. However, in practice, it has turned out that even relatively simple MSO-formulae may lead
to a “state explosion” of the FTA [26,41]. Hence, it was already stated in [32] that the algorithms derived via Courcelle’s
Theorem are “useless for practical applications”. The main benefit of Courcelle’s Theorem is that it provides “a simple way
to recognize a property as being linear time computable”. In other words, proving the FPT of some problem by showing
that it is MSO expressible is the starting point (rather than the end point) of the search for an efficient algorithm.

In [30], we proposed monadic datalog (i.e., datalog where all intensional predicate symbols are unary) as a practical tool
for devising efficient algorithms in situations where the FPT has been established via Courcelle’s Theorem. Above all, we
proved that if some property of finite structures is expressible in MSO then this property can also be expressed by means
of a monadic datalog program over the decomposed structure: we mean by this that the original structure is augmented with
new elements and new relations that encode one of its tree decompositions. Moreover, this approach was put to work by
designing an efficient algorithm for the PRIMALITY problem (i.e., the problem of deciding if some attribute is part of a key
in a given relational schema). In this paper, we show that this monadic datalog approach can also be applied to difficult
knowledge representation and reasoning tasks. We thus present new algorithms for logic-based abduction and we report on
experimental results with an implementation of these algorithms.

1.1. Summary of results

The main contribution of our paper is twofold: First, we prove the fixed-parameter tractability of many relevant decision
problems arising in abduction, closed world reasoning, circumscription, and disjunctive logic programming. Second, we show
how such theoretical tractability results can be actually turned into feasible computations. We only present new algorithms
for logic-based abduction. However, the ideas underlying the construction of these algorithms are, of course, also applicable
to the hard problems in the other areas mentioned above. Hence, the FPT-results shown here indeed open the grounds for
the development of new parameterized algorithms for these problems.

1.2. Structure of the paper

The rest of the paper is organized as follows. After recalling some basic definitions and results in Section 2, we prove
several new fixed-parameter tractability results via Courcelle’s Theorem in Section 3. In Section 4, we present our new
algorithms for logic-based abduction. Experimental results are discussed in Section 5. A conclusion is given in Section 6.
Appendices A and B are provided in order to encapsulate some lengthy, technical details which are not required for the
understanding of the main body of the text.

2. Preliminaries

2.1. Finite structures and treewidth

Let τ = {R1, . . . , R K } be a set of predicate symbols. A finite structure A over τ (a τ -structure, for short) is given by a
finite domain A = dom(A) and relations R A

i ⊆ Aαi , where αi denotes the arity of Ri ∈ τ . All structures and trees considered
in this work are assumed to be finite. Hence, in the sequel, the finiteness will usually not be explicitly mentioned.

A tree decomposition T of a τ -structure A is defined as a pair 〈T , (At)t∈T 〉 where T is a rooted tree and each At is a
subset of A with the following properties: (1) Every a ∈ A is contained in some At . (2) For every Ri ∈ τ and every tuple
(a1, . . . ,aαi ) ∈ R A

i , there exists some node t ∈ T with {a1, . . . ,aαi } ⊆ At . (3) For every a ∈ A, the set {t | a ∈ At} induces a
subtree of T .

Condition (3) above is usually referred to as the connectedness condition. The sets At are called the bags (or blocks) of T .
The width of a tree decomposition 〈T , (At)t∈T 〉 is defined as max{|At | | t ∈ T } − 1. The treewidth of A is the minimal width
of all tree decompositions of A. It is denoted as tw(A). Note that forests are the simple loop-free graphs of treewidth at
most 1.

For given w � 1, it can be decided in linear time if some structure has treewidth at most w . Moreover, in case of a
positive answer, a tree decomposition of width w can be computed in linear time [8]. Strictly speaking, the result in [8]
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Fig. 1. Tree decomposition T of formula F .

refers to tree decompositions of graphs rather than arbitrary structures. However, we can associate a graph G (the so-called
primal or Gaifman graph) with every structure A by taking the domain elements as the vertices of the graph. Moreover,
two vertices are adjacent in G if and only if the corresponding domain elements jointly occur in some tuple in A. It can be
easily shown that G has precisely the same tree decompositions as A.

Unfortunately, it has been shown that this linear time algorithm is mainly of theoretical interest and its practical use-
fulness is limited [39]. Recently, considerable progress has been made in developing heuristic-based tree decomposition
algorithms which can handle graphs with moderate size of several hundreds of vertices [39,9,49,10]. Moreover, in some
cases, a tree decomposition of low width may be obtained from a given problem in a “natural way”. For instance, in [48],
it was shown that the tree-width of the control-flow graph of any goto-free C program is at most six. A similar result was
shown for Java programs in [33]. These results opened the ground for the efficient implementation of various compiler
optimization tasks like the register allocation problem.

In this paper, we shall constantly have to deal with propositional formulae in CNF or, analogously, with clause sets.
A propositional formula F in CNF (respectively a clause set F ) can be represented as a structure A over the alphabet
τ = {cl(.),var(.),pos(. , .),neg(. , .)} where cl(z) (respectively var(z)) means that z is a clause (respectively a variable) in F
and pos(x, c) (respectively neg(x, c)) means that x occurs unnegated (respectively negated) in the clause c. We define the
treewidth of F as the treewidth of this structure A, i.e., tw(F ) = tw(A).

Example 2.1. Consider the propositional formula F with

F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧ (x2 ∨ ¬x4 ∨ x6).

The corresponding structure A can be identified with the following set of ground atoms

A = {
var(x1),var(x2),var(x3),var(x4),var(x5),var(x6),

cl(c1), cl(c2), cl(c3),

pos(x1, c1),pos(x3, c1),pos(x4, c2),pos(x2, c3),pos(x6, c3),

neg(x2, c1),neg(x1, c2),neg(x5, c2),neg(x4, c3)
}
.

A tree decomposition T of this structure is given in Fig. 1. Note that the maximal size of the bags in T is 3. Hence, the
tree-width is at most 2. On the other hand, it is easy to check that the tree-width of T cannot be smaller than 2. In order
to see this, we consider the ground atoms pos(x1, c1), neg(x2, c1) pos(x2, c3), neg(x4, c3) pos(x4, c2), and neg(x1, c2) in A
as (undirected) edges of a graph. Clearly, these edges form a cycle. However, as we have recalled above, only forests are
the simple loop-free graphs of treewidth at most 1. This tree decomposition is, therefore, optimal and we have tw(F ) =
tw(A) = 2.

In [30], it was shown that any tree decomposition can be transformed into the following normal form in linear time:

Definition 2.2. Let A be a structure with tree decomposition T = 〈T , (At)t∈T 〉 of width w . We call T normalized if T is a
rooted tree and conditions 1–4 are fulfilled: (1) All bags consist of pairwise distinct elements a0, . . . ,ak with 0 � k � w .
(2) Every internal node t ∈ T has either one or two child nodes. (3) If a node t has one child node t′ , then the bag At is
obtained from At′ either by removing one element or by introducing a new element. (4) If a node t has two child nodes
then these child nodes have identical bags as t .

Example 2.3. Recall the tree decomposition T from Fig. 1. Clearly, T is not normalized in the above sense. However, in can
be easily transformed into a normalized tree decomposition T ′ , see Fig. 2.

Let A be a τ -structure with τ = {R1, . . . , R K } and domain A and let w � 1 denote the treewidth. Then we define the
extended signature τtd as

τtd = τ ∪ {root, leaf , child1, child2,bag}
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Fig. 2. Normalized tree decomposition T ′ of formula F .

where the unary predicates root and leaf as well as the binary predicates child1 and child2 are used to represent the tree
T of the (normalized) tree decomposition in the obvious way. For instance, we write child1(s1, s) to denote that s1 is either
the first child or the only child of s. Finally, bag has arity k + 2 with k � w , where bag(t,a0, . . . ,ak) means that the bag at
node t is (a0, . . . ,ak). By slight abuse of notation, we tacitly assume that bag is overloaded for various values of k. Note that
the possible values of k are bounded by a fixed constant w . For any τ -structure A with tree decomposition T = 〈T , (At)t∈T 〉
of width w , we write Atd to denote the decomposed structure or the structure decomposing A. This structure is obtained in
the following way: The domain of Atd is the union of dom(A) and the nodes of T . In addition to the relations R A

i with
Ri ∈ τ , the structure Atd also contains relations for each predicate root, leaf , child1, child2, and bag thus representing the
tree decomposition T . By combining results from [8] and [30], one can compute Atd from A in linear time w.r.t. the size
of A.

Example 2.4. Recall the propositional formula F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧ (x2 ∨ ¬x4 ∨ x6) from Example 2.1.
We have already shown how F can be represented as a structure A over the signature τ = {cl,var,pos,neg}. In order to
represent also the tree decomposition T ′ from Fig. 2 by the structure Atd , we have to add the following ground atoms
to A: {root(t1), child1(t2, t1), child2(t3, t1), child1(t4, t2), . . . , leaf (t16), leaf (t19), leaf (t20),bag(t1, x1, x2, x4),bag(t2, x1, x2, x4),

bag(t3, x1, x2, x4),bag(t4, x1, x2), . . .}. (The numbering of the nodes t1, t2, t3, . . . corresponds to a breadth-first traversal
of T ′ .)

2.2. MSO and monadic datalog

Monadic Second Order logic (MSO) extends First Order logic (FO) by the use of set variables (usually denoted by upper case
letters), which range over sets of domain elements. In contrast, the individual variables (which are usually denoted by lower
case letters) range over single domain elements. Atomic formulae in an MSO-formula ϕ over a τ -structure have one of the
following forms: (i) atoms with some predicate symbol from τ , (ii) atoms whose predicate symbol is a monadic second
order variable (i.e., a set variable), or (iii) equality atoms. It is convenient to use symbols like ⊆, ⊂, ∩, ∪, and → with the
obvious meaning as abbreviations. An MSO-formula ϕ(x) with exactly one free individual variable is called a unary query.
The importance of MSO-formulae in the context of parameterized complexity comes from the following result:

Theorem 2.5. (See [14].) Let ϕ be an MSO-sentence over some signature τ and let A be a τ -structure of treewidth w. Evaluating the
sentence ϕ over the structure A can be done in time O( f (|ϕ(x)|, w) ∗ |A|) for some function f .

In the sequel, we shall simply say that structures “have bounded treewidth” without explicitly mentioning w . Note that
the fixed-parameter linearity according to Theorem 2.5 only applies to the data complexity, i.e. the formula ϕ is fixed. There
is no such FPT-result, if we consider the combined complexity instead (i.e. also ϕ is part of the input).

Datalog programs are function-free logic programs. Each of them has a unique minimal model. Evaluating a datalog pro-
gram P over a structure A comes down to computing the minimal model of P ∧ A. This minimal model coincides with
the set of (ground) facts obtained as the least fixpoint of the immediate consequence operator, for details see e.g. [1]. In the
sequel, we shall refer to a program P together with a structure A as an interpreted program. A datalog program is called
ground if it contains no variables. Evaluating a datalog program P over a structure A is equivalent to evaluating the follow-
ing ground program P ′ over A: For every clause r in P , P ′ contains all possible instances of r that we get by instantiating
every variable in r by a constant occurring either in P or in A (the set of all these constants is referred to as the active
domain). In general, P ′ is exponentially bigger than P . However, in some cases, only a small fraction of the set of possible
ground instances of every rule r is necessary as we shall see, e.g., in the proof of Theorem 4.2.

Predicates occurring only in the body of rules are called extensional, while predicates occurring also in the head of some
rule are called intensional.
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Let A be a τ -structure with domain A and relations R A
1 , . . . , R A

K with R A
i ⊆ Aαi , where αi denotes the arity of Ri ∈ τ .

In the context of datalog, it is convenient to think of the relations R A
i as sets of ground atoms. The set of all such ground

atoms of a structure A is referred to as the extensional database (EDB) of A, i.e.: a ground atom Ri(ā) is in the EDB if and
only if ā ∈ R A

i .
In [30], the following connection between unary MSO queries over structures with bounded treewidth and monadic

datalog was established:

Theorem 2.6. Let τ be a signature and let w � 1. Every unary MSO-query ϕ(x) over τ -structures of treewidth w is also definable by
a monadic datalog program over τtd.

Moreover, for every τ -structure A, the resulting program can be evaluated in time O( f (|ϕ(x)|, w) ∗ |A|) for some function f ,
where |A| denotes the size of A.

Note that the connection between logic programming (with functions) and tree automata has already been studied much
earlier, see e.g. [40,23]. As far as the upper bound on the complexity is concerned, the above theorem is a special case of
Theorem 4.12 in [25].

3. Fixed-parameter tractability via Courcelle’s Theorem

In this section, we show the fixed-parameter tractability w.r.t. the treewidth for many decision problems in the area
of disjunctive logic programming, closed world reasoning, circumscription, and abduction. Fundamental to these problems
is the evaluation of a propositional formula in an interpretation. We therefore start our exposition with the SAT problem,
whose fixed-parameter tractability for various parameters (including cliquewidth and treewidth) was already shown in [15].

3.1. SAT problem

A propositional formula F is built up from propositional variables denoted as Var(F ) and the logical connectives ∨, ∧,
and ¬. An interpretation of F is a mapping that assigns one of the truth values true or false to each variable occurring in
F . It is convenient to identify interpretations with subsets X of Var(F ) with the intended meaning that the variables in
X evaluate to true, while all other variables evaluate to false. If F evaluates to true in X , then X is called a model of F .
Moreover, X is called a minimal model, if there exists no model X ′ of F with X ′ ⊂ X . We write F1 |� F2 if the formula
F1 → F2 is valid, i.e., F1 → F2 is true in every interpretation X ⊆ Var(F1) ∪ Var(F2). Likewise, if F = {F1, . . . , Fm} is a set of
formulae and F a single formula, we write F |� F if the formula F1 ∧ · · · ∧ Fm → F is valid. The following result is folklore
[5,44].

Theorem 3.1. For every propositional formula F , there exists a formula F ′ in CNF, with Var(F ) ⊆ Var(F ′), s.t. the following properties
hold:

(1) For every interpretation X, s.t. X is a model of F , there exists an interpretation Y with X ⊆ Y and (Y \ X) ⊆ (Var(F ′) \ Var(F )),
s.t. Y is a model of F ′ .

(2) For every interpretation Y , s.t. Y is a model of F ′ , the interpretation Y ∩ Var(F ) is a model of F .

Moreover, such an F ′ can always be found in linear time and, thus, also the size of F ′ is linearly bounded by the size of F .

Proof. Given a propositional formula F with variables in V , we first compute the parse tree T of F . This is clearly feasible
in linear time. This parse tree can be considered as a Boolean circuit where each node in the tree corresponds to a gate,
the leaf nodes (labeled with variables) are the input gates, the root node is the output gate and each edge of the parse tree
is oriented from the child to its parent. The construction of a CNF follows the well-known reduction from the CIRCUIT SAT
problem to the SAT problem, see e.g. [44], Example 8.3:

In addition to the variables V , our CNF F ′ contains one additional variable for each internal node g of the parse tree T .
For leaf nodes, we may simply use the corresponding propositional variable x as the name of this node. The clauses of F ′
are obtained for each internal node g of T by a case distinction over the possible operations represented by this node:

(1) Suppose that g corresponds to a NOT-operation. Then g has precisely one incoming arc, say from node h. Then we
add the two clauses (¬g ∨ ¬h) and (g ∨ h) to F ′ . That is, these clauses express the condition g ↔ (¬h).

(2) Suppose that g corresponds to an AND-operation. Then g has two incoming arcs, say from nodes h1 and h2. Then
we add the three clauses (¬g ∨ h1), (¬g ∨ h2), and (¬h1 ∨ ¬h2 ∨ g) to F ′ . That is, these clauses express the condition
g ↔ (h1 ∧ h2).

(3) Suppose that g corresponds to an OR-operation. Then g has two incoming arcs, say from nodes h1 and h2. Then
we add the three clauses (g ∨ ¬h1), (g ∨ ¬h2), and (h1 ∨ h2 ∨ ¬g) to F ′ . That is, these clauses express the condition
g ↔ (h1 ∧ h2).

Finally, for the root node r of T , we also add the one-literal clause r to F ′ . Clearly, F ′ is in CNF. The desired properties
of F ′ (in particular, the sat-equivalence with F ) are easily verified. �
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Note that the CNF F ′ constructed in the proof of Theorem 3.1 is uniquely determined (up to variable renaming) by the
parse tree of F and hence by the form of F itself. We shall refer to F ′ as the canonical CNF of F . It can be represented by
a τ -structure A(F ) with τ = {var(.), cl′(.), var′(.), pos′(. , .),neg′(. , .)}, s.t. var(.) is used to identify the variables occurring
in F and cl′(.), var′(.), pos′(. , .),neg′(. , .) are used to represent the CNF F ′ in the usual way. In Section 2.1, we have defined
the treewidth of a propositional formula F in CNF (or, analogously, of a clause set) as the treewidth of the structure
representing F . Likewise, we can define the treewidth of an arbitrary propositional formula F as the treewidth of the
canonical CNF F ′ of F or, equivalently, as the treewidth of the τ -structure A(F ).

The notion of treewidth can be naturally extended to more than one formula in CNF, e.g., let F1 and F2 be two propo-
sitional formulae in CNF. Then (F1, F2) can be represented by a τ -structure A(F1, F2) with τ = {cli(.),vari(.),posi(. , .),

negi(. , .) | 1 � i � 2}. We define the treewidth of F1 and F2 as the treewidth of the structure A. We thus have
tw(F1, F2) = tw(A(F1, F2)) = tw(F1 ∧ F2). If F1 and F2 are not in CNF, then we can represent these formulae by a structure
A over the signature τ = {vari(.), cl′i(.), var′

i(.), pos′i(. , .),neg′
i(. , .) | 1 � i � 2}, where vari(.) is used to identify the variables

occurring in Fi and cl′i(.), var′
i(.), pos′i(. , .),neg′

i(. , .) are used to represent the CNF F ′
i in the usual way. Again, the treewidth

of F1 and F2 is defined as the treewidth of the structure A.
From results in [15], the following relationship between CNF-formulae and MSO can be easily derived:

Theorem 3.2. Let F be a propositional formula in CNF which is given by a τ -structure A with τ = {cl,var,pos,neg}. Moreover, let X
denote a set of the variables with X ⊆ Var(F ). Then the property that X is a model of F can be expressed by an MSO-formula – referred
to as model(X, F ) – over the signature τ .

Proof. We define the MSO-formula model(X, F ) as follows:

model(X, F ) := (∀c) cl(c) → (∃z)
[(

pos(z, c) ∧ z ∈ X
) ∨ (

neg(z, c) ∧ z /∈ X
)]

.

This MSO-formula expresses the following equivalence: F is true in X if and only if every clause of F is true in X . This in
turn is the case if and only if every clause contains a positive occurrence of a variable z ∈ X or a negative occurrence of a
variable z /∈ X . �

Clearly, Theorem 3.2 together with Courcelle’s Theorem immediately yields the fixed-parameter tractability of the SAT
problem w.r.t. the treewidth of the τ -structure A (with τ = {cl,var,pos,neg}) representing the propositional formula [15].

Actually, even if F is not in CNF, the property that X is a model of F can be expressed in terms of MSO:

Theorem 3.3. Let F be a propositional formula with canonical CNF F ′ and let F be given by a τ -structure A with τ =
{var, cl′,var′,pos′,neg′}. Moreover, let X denote a set of the variables with X ⊆ Var(F ). Then the property that X is a model of F
can be expressed by an MSO-formula – referred to as model′(X, F ) – over the signature τ .

Proof. We define the MSO-formula model′(X, F ) as follows:

ExtF (X, X ′) := X ⊆ X ′ ∧ (∀z)
[
(z ∈ X ′ ∧ z /∈ X) → (

var′(z) ∧ ¬var(z)
)]

,

model′(X, F ) := (∃X ′)
[
ExtF (X, X ′) ∧ (

model(X ′, F ′)
)]

.

The auxiliary formula ExtF (X, X ′) means that X ′ is an extension of the interpretation X to the variables in F ′ . Moreover,
the subformula model(X ′, F ′) is precisely the CNF-evaluation from Theorem 3.2. �

Finally, we also provide an MSO-formula expressing that F1 |� F2 holds for two propositional formulae F1 and F2.

Theorem 3.4. Let F1 , F2 be propositional formulae with canonical CNFs F ′
1 , F ′

2 and let F1 , F2 be given by a τ -structure A with
τ = {vari(.), cl′i(.),var′

i(.),pos′i(. , .),neg′
i(. , .) | 1 � i � 2}. Then the property that F1 |� F2 holds can be expressed by means of an

MSO-formula – referred to as implies(F1, F2) – over the signature τ .

Proof. We define the MSO-formula implies(F1, F2) as follows:

(∀X)
[
model′(X, F1) → (

model′(X, F2)
)]

.

The subformulae model′(X, Fi) with i ∈ {1,2} are the MSO-formulae expressing the evaluation of propositional formulae Fi
according to Theorem 3.3. �
3.2. Disjunctive logic programming

A disjunctive logic program (DLP, for short) P is a set of DLP clauses a1 ∨ · · · ∨ an ← b1, . . . ,bk,¬bk+1, . . . ,¬bm . Let I be
an interpretation. Then the Gelfond–Lifschitz reduct P I of P w.r.t. I contains precisely the clauses a1 ∨ · · · ∨ an ← b1, . . . ,bk ,
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s.t. for all i ∈ {k + 1, . . . ,m}, bi /∈ I . An interpretation I is called a disjunctive stable model (DSM, for short) if and only if I is
a minimal model of P I [27,45].

Without any restrictions, the following problems are all on the second level of the polynomial hierarchy [22]:

• Consistency: Does P have a DSM?
• Brave Reasoning: Is a propositional formula F true in at least one DSM of P (written as P |�b F )?
• Cautious Reasoning: Is a propositional formula F true in all DSMs of P (written as P |�c F )?

The intuition of stable models is as follows: Consider the reduct of a program P with respect to some interpretation I .
We can think of I as making an assumption about what is true and what is false. Consequently, we may delete those rules
from the program whose body is definitely false under this assumption, thus arriving at the reduct P I . Now we can compute
the positive information derivable from P I . If the result is I itself, then I is called a stable model.

Negation under the stable model semantics has received a lot of interest since it significantly increases the expressive
power of logic programs. For instance, even without making use of disjunctions in the rule heads, we can express the classi-
cal NP-complete 3-colorability problem by the following program: Let G = (V , E) be a graph with vertices V = {v1, . . . , vn}
and edges E . Then G can be represented by a logic program consisting of the following facts:

{ei, j | 1 � i, j � n and there exists an edge between vi and v j}.
The 3-colorability of G is expressed by adding the following clauses to the program (note that the commas on the right-hand
side of the rules stand for logical “and”):

{ri ← ¬gi,¬bi; gi ← ¬ri,¬bi; bi ← ¬ri,¬gi | 1 � i � n},
{ ← ei, j, ri, r j; ← ei, j, gi, g j; ← ei, j,bi,b j | 1 � i, j � n}.

The stable models of this program correspond to the proper 3-colorings of the graph G . Intuitively, the first collection
of clauses makes sure that, in every stable model, exactly one of the variables ri, gi,bi is true for each i ∈ {1, . . . ,n}. The
second collection of clauses excludes those “colorings” which would assign identical colors to the endpoints of some edge.
In particular, the question if a given graph has at least one proper 3-coloring is equivalent to the consistency problem of
the above described program, i.e., does the program have at least one stable model?

Suppose that we want to ask if there exists at least one proper 3-coloring in which the vertices v1, v2, and v3 have
the same color. This question corresponds to the brave reasoning problem P |�b F , where P is the above program and
F = (r1 ∧ r2 ∧ r3) ∨ (g1 ∧ g2 ∧ g3) ∨ (b1 ∧ b2 ∧ b3). Likewise, the question if v1, v2, and v3 have the same color in
every proper 3-coloring corresponds to the cautious reasoning problem P |�c F with P and F as before. Many more ex-
amples of (disjunctive) logic programs with negation for solving problems in diverse application areas can be found at
http://www.kr.tuwien.ac.at/research/projects/WASP/.

Below, we show that, if the treewidth of the programs P and formulae F under consideration is bounded by a constant,
then we get much more favorable complexity results than in the general case. Suppose that a DLP P is given by a τ -
structure with τ = {varP (.), clP (.), H(. , .), B+(. , .), B−(. , .)}, s.t. varP (.) and clP (.) encode the variables and clauses of P .
Moreover, H(x, c) means that x occurs in the head of c and B+(x, c) (respectively B−(x, c)) means that x occurs unnegated
(respectively negated) in the body of c. Then we have:

Theorem 3.5. Consider the signatures τ1 = {varP , clP , H, B+, B−} as above and τ2 = {var, cl′,var′,pos′,neg′} as in Theorem 3.3. The
Consistency problem of DLPs can be expressed by means of an MSO-sentence over the signature τ1 . Likewise, the Brave Reasoning

and Cautious Reasoning problem of DLPs can be expressed by means of MSO-sentences over the signature τ1 ∪ τ2 .

Proof. Recall from Theorem 3.3 that the property that X is a model of F can be expressed by the MSO-formula model′(X, F )

over the signature τ2. We thus have:

GL(X, Y ) := (∀c)clP (c) → (∃z)
[(

H(z, c) ∧ z ∈ X
) ∨ (

B+(z, c) ∧ z /∈ X
) ∨ (

B−(z, c) ∧ z ∈ Y
)]

,

DSM(X) := GL(X, X) ∧ (∀Z)
[

Z ⊂ X → ¬GL(Z , X)
]
,

Consistency: (∃X)DSM(X),

Brave Reasoning: (∃X)
[
DSM(X) ∧ model′(X, F )

]
,

Cautious Reasoning: (∀X)
[
DSM(X) → model′(X, F )

]
.

The predicates defined above have the following meaning:
GL(X, Y ) = “X is a model of the Gelfond–Lifschitz reduct of the program P w.r.t. the interpretation Y ”.
DSM(X) = “X is a disjunctive stable model of P ”. �

http://www.kr.tuwien.ac.at/research/projects/WASP/
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Fig. 3. Tree decomposition of structure A(P ) in Example 3.6.

Example 3.6. Consider the following DLP:

P = {c1 : p ∨ q ← ¬r, c2 : q ← ¬p ∧ ¬s, c3 : s ∨ t ← q}.
Clearly, P is consistent since, for instance, {p} is a DSM.
The DLP P can be represented by the structure A(P ), which consists of the following ground atoms:

A(P ) = {
varP (p),varP (q),varP (r),varP (s),varP (t),

clP (c1), clP (c2), clP (c3),

H(p, c1), H(q, c1), H(q, c2), H(s, c3), H(t, c3),

B−(r, c1), B−(p, c2), B−(s, c2), B+(q, c3)
}
.

A tree decomposition T of A(P ) is given in Fig. 3. The MSO-formula GL(X, Y ) from the proof of Theorem 3.5 clearly
evaluates to true over A(P ) for X = {p} and Y = {p}. Moreover, for X = {} and Y = {p}, it evaluates to false. Hence, DSM(X)

evaluates to true for X = {p} and, therefore, the consistency of P is correctly established via the MSO-formula (∃X)DSM(X).

The following complexity result is an immediate consequence of Courcelle’s Theorem and Theorem 3.5.

Theorem 3.7. Consider the signatures τ1 = {varP , clP , H, B+, B−} as above and τ2 = {var, cl′,var′,pos′,neg′} as in Theorem 3.5. Let
an instance of the Consistency problem of DLPs be given by a τ1-structure A of width w. Then this problem can be solved in time
O( f (w) ∗ |A|) for some function f .

Likewise, let an instance of Brave Reasoning problem or the Cautious Reasoning of DLPs be given by a (τ1 ∪ τ2)-structure A of
width w. Then this problem can be solved in time O( f ′(w) ∗ |A|) for some function f ′ .

3.3. Closed world reasoning and circumscription

Several forms of closed world reasoning (CWR, for short) are proposed in the literature, namely CWA (Closed World
Assumption), GCWA (Generalized CWA), EGCWA (Extended GCWA), CCWA (Careful CWA), and ECWA (Extended CWA). They
are defined in terms of the following terminology: Let T (a “theory”) and F be propositional formulae and let 〈P ; Q ; Z〉
be a partition of Var(T ). Then we write M(T ) (respectively MM(T )) to denote the set of all models (respectively of all
minimal models) of T . Moreover, we write MM(T ; P ; Q ; Z) to denote the set of 〈P ; Q ; Z〉-minimal models of T , i.e.: X ∈
MM(T ; P ; Q ; Z) if and only if X is a model of T and there exists no model Y of T with (Y ∩ P ) ⊂ (X ∩ P ) and (Y ∩ Q ) =
(X ∩ Q ).

In [13], several equivalent characterizations of the closure of a theory T under the various CWR rules are provided.
Below, we recall those characterizations which are best suited for our purposes here:

• CWA(T ) = T ∪ {¬K | K is a positive literal s.t. T �|� K }.
• GCWA(T ) = T ∪ {¬K | K is a positive literal and for every X ∈ MM(T ), K is false in X}.
• EGCWA(T ) |� F if and only if for every X ∈ MM(T ), X is a model of F .
• CCWA(T ; P ; Q ; Z ) = T ∪ {¬K | K is a positive literal from P and for every X ∈ MM(T ; P ; Q ; Z), K is false in X}.
• ECWA(T ; P ; Q ; Z ) |� F if and only if, for every X ∈ MM(T ; P ; Q ; Z), X is a model of F .

The Deduction problem of CWR-rule C with C ∈ {CWA,GCWA,EGCWA,CCWA,ECWA} is as follows: Given T and F (and
possibly P , Q , Z ), does C(T ) |� F (respectively C(T ; P ; Q ; Z) |� F ) hold? In [20], this problem is shown to be Π

p
2 -complete

or even harder for all rules C �= CWA. In [28] it was shown that, in the propositional case, Circumscription coincides with
the ECWA-rule.

The above formalisms of closed world reasoning provide a formal basis of various kinds of inferences of facts which are
not explicitly specified in a knowledge base. They give rise to non-monotonic reasoning in the sense that new information
may invalidate previously derived conclusions. In [13], the classical Tweety example is used to highlight some differences
between the above formalisms. Consider the formula, which represents the propositional version of the Tweety example:(

(b ∧ ¬a) → f
) ∧ b.

The intended meaning is as follows: If Tweety is a bird (i.e., b) and Tweety is not abnormal (i.e., ¬a), then Tweety can fly
(i.e., f ). Moreover, we know that Tweety is a bird. We get the following closure under the various CWR-formalisms. For
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the CCWA- and ECWA-rule, we assume P = {a} (i.e., P should be minimized), Q = {b} (i.e., Q is fixed), and Z = { f } (i.e., Z
varies).

• CWA(T ) = T ∪ {¬a,¬ f }.
• GCWA(T ) = T .
• EGCWA(T ) = T ∪ {¬(a ∧ f )}.
• CCWA(T ; P ; Q ; Z ) = T ∪ {¬a}.
• ECWA(T ; P ; Q ; Z ) = T ∪ {¬a}.

The CWA-rule is the only rule which may lead to inconsistency. This is indeed the case in the above example. Only the
CCWA- and ECWA-rule allow us to derive the atom f , i.e., Tweety can fly. By the EGCWA-rule, the formula ¬(a ∧ f ) may
be inferred, i.e., Tweety is not abnormal or Tweety cannot fly.

Again, for bounded treewidth, we get much better complexity results than in the general case. Let T and F be propo-
sitional formulae with canonical CNFs T ′ and F ′ , respectively. Moreover, suppose that the Deduction problem of CWR-rule
C with C ∈ {CWA,GCWA,EGCWA,CCWA,ECWA} is given by a τ -structure with τ = {varT (.),varF (.),varT ′(.),varF ′ (.), clT ′(.),
clF ′ (.), . . .}∪{P , Q , Z}. The predicates varT (.) and varF (.) are used to identify the variables in the original formulae T and F .
The CNFs are encoded as usual by means of the predicates varT ′(.), varF ′(.), clT ′(.), clF ′(.), etc. Finally, the partition 〈P ; Q ; Z〉
of Var(T ) is encoded by the unary predicates P , Q , Z . Of course, for the CWR-rules CWA, GCWA, and EGCWA, the predicates
P , Q , Z may be omitted. Then we have:

Theorem 3.8. Consider the signature τ = {varT ,varF , varT ′ , varF ′ , clT ′ , clF ′ , posT ′ ,posF ′ ,neg′
T ′ ,F ′ , P , Q , Z} as described above. For

all of the CWR-rules CWA, GCWA, EGCWA, CCWA, and ECWA, the Deduction problem (and, hence, also Circumscription) can be
expressed by MSO sentences over the signature τ (of course, for CWA, GCWA, EGCWA, the predicates P , Q , and Z are not needed).

Proof. GCWA and EGCWA are special cases of CCWA and ECWA with Q = Z = ∅. Moreover, as mentioned above, Circum-

scription is equivalent to the ECWA-rule. The remaining cases are expressed by the following MSO-sentences, which make
use of the formulae model′(X, F ) and implies(F1, F2) according to Theorems 3.3 and 3.4, respectively:

MM(X) := model′(X, T ) ∧ ¬(∃Y )
[
(Y ∩ P ) ⊂ (X ∩ P ) ∧ (Y ∩ Q ) = (X ∩ Q ) ∧ model′(Y , T )

]
,

var(z) := varT (z) ∨ varF (z),

clo1(¬z) := var(z) ∧ ¬implies(T , z),

clo2(¬z) := var(z) ∧ z ∈ P ∧ (∀Y )
[
MM(Y ) → ¬(z ∈ Y )

]
.

Deduction with CWA-rule and CCWA-rule:

(∀X)
[
model′(X, T ) ∧ (∀z)

(
cloi(¬z) → implies(X,¬z)

) → model′(X, F )
]
.

Deduction with ECWA-rule:

(∀X)
[
MM(X) → model′(X, F )

]
.

The above predicates have the following meaning:
cloi(¬z) with i ∈ {1,2} means that ¬z is in the closure of T w.r.t. the CWA-rule (for i = 1) or CCWA-rule (for i = 2),

respectively. MM(X) means X ∈ MM(T ; P ; Q ; Z). �
Analogously to the previous section, we immediately get the following complexity result by Courcelle’s Theorem together

with Theorem 3.5.

Theorem 3.9. Consider the signature τ = {varT ,varF , varT ′ , varF ′ , clT ′ , clF ′ , posT ′ ,posF ′ ,neg′
T ′ ,F ′ , P , Q , Z} as in Theorem 3.8. Let

an instance of Circumscription or of the Deduction problem T |�C F for any of the CWR-rules C ∈ {CWA, GCWA, EGCWA, CCWA,
ECWA} be given by a τ -structure A. Then all these problems can be solved in time O( f (w) ∗ |A|) for some function f .

3.4. Propositional abduction

A propositional abduction problem (PAP, for short) consists of a tuple 〈V , H, M, C〉, where V is a finite set of propositional
variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of manifestations, and C is a consistent theory in the form of a
clause set. A set S ⊆ H is a solution to P if C ∪ S is consistent and C ∪ S |� M holds. In an abductive diagnosis problem,
the manifestations M are the observed symptoms (e.g. describing some erroneous behavior of the system) and the clausal
theory C constitutes the system description. The solutions S ⊆ H are the possible explanations for the observed symptoms.

Given a PAP P , the basic problems of propositional abduction are the following:
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• Solvability: Does there exist a solution of P ?
• Relevance: Given h ∈ H , is h contained in at least one solution of P ?
• Necessity: Given h ∈ H , is h contained in every solution of P ?

In [21], the former two problems were shown to be Σ
p
2 -complete while the latter is Π

p
2 -complete.

The following example from [34] should help to illustrate these definitions. Consider the following football knowledge
base:

C = {weak_defense ∧ weak_attack → match_lost,

match_lost → manager_sad ∧ press_angry

star_injured → manager_sad ∧ press_sad}.
Moreover, let the set of observed manifestations and the set of hypotheses be

M = {manager_sad},
H = {star_injured,weak_defense,weak_attack}.

This PAP has the following five abductive explanations (= “solutions”):

S1 = {star_injured},
S2 = {weak_defense,weak_attack},
S3 = {weak_attack, star_injured},
S4 = {weak_defense, star_injured},
S5 = {weak_defense,weak_attack, star_injured}.

For bounded treewidth of C , we establish below the fixed-parameter tractability of the Solvability, Relevance, and
Necessity problem. A PAP P can be represented as a τ -structure with τ = {cl,var,pos,neg, H, M}, where the predi-
cates cl,var,pos,neg represent the clause set C and the unary predicates H and M identify the hypotheses and man-
ifestations. In order to represent an instance of the Relevance and Necessity problem, we extend the signature τ to
τ ′ = {cl,var,pos,neg, H, M,Dist}, where Dist is a unary relation used for distinguishing some domain element, i.e., in ad-
dition to the τ -predicates for expressing the PAP, the structure contains a fact Dist(h) to express that we want to test
hypothesis h for Relevance respectively necessity. Then we have:

Theorem 3.10. Consider the signature τ ′ = {cl,var,pos,neg, H, M,Dist}. The problems Solvability, Relevance, and Necessity of
propositional abduction can be expressed by means of MSO sentences over the signature τ ′ (of course, for solvability, the predicate Dist
is not used).

Proof. Recall from Theorem 3.2 that the property that X is a model of a clause set (or, equivalently, a formula in CNF) C ,
can be expressed by the MSO-formula model(X, F ) using the predicates cl,var,pos,neg. We construct MSO-sentences for
the above three decision problems as follows:

Sol(S) := S ⊆ H ∧ (∃X)
[
model(X, C) ∧ S ⊆ X

] ∧ (∀Y )
[(

model(Y , C) ∧ S ⊆ Y
) → M ⊆ Y

]
,

Solvability: (∃S)Sol(S),

Relevance: (∃S)
[
Sol(S) ∧ Dist ⊆ S

]
,

Necessity: (∀S)
[
Sol(S) → Dist ⊆ S

]
.

The predicate Sol(S) is a straightforward formulation of the property “S is a solution of the PAP represented by A”, namely
(i) S is a subset of the propositional variables in H , (ii) (C ∪ S) has at least one model X , and (iii) every model Y of (C ∪ S)

is also a model of M . �
Usually, a refined version of the Relevance (respectively Necessity) problem is considered. Rather than asking whether h

is contained in some (respectively every) solution, one is interested if h is contained in some (respectively every) acceptable
solution. In this context, “acceptable” means “minimal” w.r.t. some preorder � on the powerset 2H . Consequently, one
speaks of �-Relevance (respectively �-Necessity). The above treated basic abduction problems Relevance and Necessity

correspond to the special case where � is the equality. The other preorders studied are the following:

• subset-minimality “⊆”,
• prioritization “⊆P ” for a fixed number p of priorities: H is partitioned into “priorities” H1, . . . , H p . Then A ⊆P B if and

only if A = B or there exists a k s.t. A ∩ Hi = B ∩ Hi for all i < k and A ∩ Hk ⊂ B ∩ Hk ,
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• minimum cardinality “�”: A � B if and only if |A| � |B|,
• penalization “�p” (also referred to as “weighted abduction”): To each element h ∈ H , a weight w(h) is attached. Then

A �p B if and only if
∑

h∈A w(h) �
∑

h∈B w(h).

To illustrate the various notions of minimality in abduction, we revisit the football example from [34], which was recalled
above. S1 and S2 are ⊆-minimal, but only S1 is �-minimal. Priorities may be used to represent a qualitative version of
probability. For instance, suppose that for some reason we know that (for a specific team) star_injured is much less likely
to occur than weak_defense and weak_attack. This judgment can be formalized by assigning lower priority to the former.
Then S2 is the only minimal solution with respect to the preorder ⊆P . If we have numeric values available for the repair
cost or for the robustness of each component (e.g., based on data such as the empirically collected mean time to failure and
component age), then the �p-minimal solutions correspond to the cheapest repair respectively the most likely explanation.

In all of the above cases, the resulting �-Relevance (respectively �-Necessity) problem is on the second or third level
of the polynomial hierarchy [21]. Again, we show that the computational complexity decreases significantly if the clausal
theories C under consideration have bounded treewidth. The last two cases turn out to be a bit tricky. Below, we establish
the desired FPT-result for the first two ones:

Theorem 3.11. Consider the signature τ ′ = {cl,var,pos,neg, H, M,Dist}. For � ∈ {⊆,⊆P }, both the �-Relevance problem and the
�-Necessity problem can be expressed by means of MSO sentences over the signature τ ′ .

Proof. It suffices to provide an MSO encoding of the predicates Acc⊆(S) and Acc⊆P (S), which mean that S is an acceptable
solution for the preorders ⊆ and ⊆P , respectively:

Acc⊆(S) := Sol(S) ∧ (∀X)
[
(X ⊂ S) → ¬Sol(X)

]
,

X ⊂P S := (X ∩ H1 ⊂ S) ∨ (X ∩ H1 ⊆ S ∧ X ∩ H2 ⊂ S) ∨ (X ∩ H1 ⊆ S ∧ X ∩ H2 ⊆ S ∧ X ∩ H3 ⊂ S),

Acc⊆P (S) := Sol(S) ∧ (∀X)
[
(X ⊂P S) → ¬Sol(X)

]
.

By X ⊂P S we mean that X ⊆P S and X �= S . Note that we are only considering 3 priority levels H1, H2, and H3 above. The
generalization to an arbitrary but fixed number p of priority levels is clear. �

By Courcelle’s Theorem and Theorems 3.10 and 3.11 above, we immediately get the following FPT-result:

Theorem 3.12. Consider the signature τ ′ = {cl,var,pos,neg, H, M,Dist}. Let � ∈ {⊆,⊆P } and let an instance of the �-Relevance

or �-Necessity problem be given by a τ ′-structure A of width w. Then these problems can be solved in time O( f ′(w)∗ |A|) for some
function f ′ .

It remains to consider the cases � ∈ {�,�p}. Actually, � is a special case of �p , where every h ∈ H is assigned the
same weight. Unfortunately, MSO is not powerful enough to express the cardinality-comparison � (cf. the discussion in [3]).
Nevertheless, also for � ∈ {�,�p}, it is possible to establish the FPT-property in case of bounded treewidth via an extension
of Courcelle’s Theorem proved in [3,16]. To this end, we have to recall the definition of extremum problems via an extension
of MSO (the definition in [3] is more general than our definition below; however, for our purposes, this restricted form is
sufficient).

Definition 3.13. Let τ be a signature and ϕ(X1, . . . , Xm) an MSO formula over signature τ with free set variables X1, . . . , Xm .
Moreover, let F : N

m → N be a linear function. Then the linear extended MSO extremum problem of ϕ and F is defined as
follows:

Instance. A τ -structure A together with functions g A
1 , . . . , gA

m : dom(A) → N.
Question. Find the extremum (either min or max) of

F

( ∑
a∈A1

gA
1 (a), . . . ,

∑
a∈Am

gA
m (a)

)

over all tuples of sets A1, . . . , Am over the domain of A with A |� ϕ(A1, . . . , Am).

Theorem 3.14. (See [3].) Let a linear extended MSO extremum problem be given by a linear objective function F and an MSO formula
ϕ(X1, . . . , Xm) over some signature τ . Moreover, let an instance of this extremum problem be given by a τ -structure A of treewidth
w together with functions g A

1 , . . . , gA
m : dom(A) → N. Assuming unit cost for arithmetic operations, this extremum problem can be

solved in time O( f (|ϕ(x)|, F , w) ∗ |(A, gA
1 , . . . , gA

m )|) for some function f .

This additional expressive power suffices for expressing the acceptability of PAP-solutions w.r.t. � and �p :
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Theorem 3.15. Consider the signature τ ′ = {cl,var,pos,neg, H, M,Dist}. Let � ∈ {�,�p} and let an instance of the �-Relevance or
�-Necessity problem be given by a τ ′-structure A of width w. In case of �p-abduction, the problem instance additionally contains
a weight function gA . Assuming unit cost for arithmetic operations, these problems can be solved in time O( f (w) ∗ |A|) (for the
preorder �), respectively, in time O( f (w) ∗ |(A, gA)|) ( for the preorder �p) for some function f .

Proof. It suffices to show that these problems can be decided by solving linear extended MSO extremum problems. We only
consider the case of �p , since � is a special case.

Let an instance of the �p-Relevance or �p -Necessity problem be given as a τ ′-structure A with τ ′ = {cl,var,pos,neg, H,

M,Dist}. Moreover, let Sol(S) denote the MSO-formula from the proof of Theorem 3.10, expressing that S is a solution of the
PAP represented by A. Clearly, the task of computing the minimal total weight over all solutions of this PAP corresponds
to the linear extremum (i.e., minimum) problem defined by the MSO-formula Sol(S) and taking the identity function as
objective function F . The instances of this extremum problem are given as τ ′-structure A together with the function gA

being the weight function on the domain elements of A.
Now let Sol′(S) and Sol′′(S) be defined as Sol′(S) := Sol(S) ∧ Dist ⊆ S and Sol′′(S) := Sol(S) ∧ Dist �⊆ S , i.e., Sol′(S) (respec-

tively Sol′′(S)) expresses the property that S is a solution containing h (respectively not containing h). Then h is relevant if
and only if the following properties hold: A |� (∃S)Sol′(S) and the minimal weight over all sets S fulfilling A |� (∃S)Sol′(S)

is the same as the minimal weight over all sets S fulfilling A |� (∃S)Sol(S). Both minimum-problems can be expressed
as linear extended MSO extremum problems and are therefore solvable in the desired time bound. Likewise, the decision
problem A |� (∃S)Sol′(S) fits into this time bound.

Similarly, h is necessary if and only if the following properties hold: Either A �|� (∃S)Sol′′(S) holds or all of the following
conditions are fulfilled: A |� (∃S)Sol′(S), A |� (∃S)Sol′′(S), and the minimal weight over all sets S with A |� (∃S)Sol′(S) is
strictly smaller than the minimal weight over all sets S with A |� (∃S)Sol′′(S), i.e., all solutions of minimal weight actually
do contain h. These decision problems as well as the minimum-problems can solved in the desired time bound. �
4. New algorithms via datalog

In this section, we show how the monadic datalog approach from [30] can be exploited in order to construct concrete,
efficient algorithms for the problems whose fixed-parameter tractability was established in Section 3. We shall present new
algorithms for the Solvability problem (i.e., does a given PAP have at least one solution) and for the Relevance enumeration
problem (i.e., enumerate all relevant hypotheses of a given PAP) of propositional abduction. We believe that this approach
is also applicable to other problems discussed in Section 3. Indeed, recently similar algorithms have been presented for
circumscription and for disjunctive logic programming, see [36,37].

It is convenient to consider a PAP P to be given as a τ -structure with τ = {cl,var, pos,neg,hyp,man}. Note that, in
contrast to Section 3.4, we denote the unary predicates for the hypotheses and manifestations as hyp and man rather
than H and M . This change of notation should help to increase readability of the datalog programs by conforming to the
convention that predicate names are normally written in lower-case letters. As in Section 3, we again start our exposition
with the SAT problem in order to illustrate the basic ideas before we tackle the harder problems in the area of abduction.
Note that an efficient algorithm for exploiting bounded treewidth in the context of the SAT problem has been recently
presented in [24]. The algorithm presented there is based on recursive splitting. In [24], the authors also outline how their
method can be extended to other NP-complete problems (or their #P-complete counting variants). However, our goal is to
tackle also problems on the second level of the polynomial hierarchy like abduction.

4.1. SAT problem

Suppose that a clause set together with a tree decomposition T of width w is given as a τtd-structure with τtd =
{cl,var,pos,neg, root, leaf , child1, child2,bag}. Of course, we do not need the predicates hyp and man for the SAT problem.
Without loss of generality, we may assume that T is in the normal form given in Definition 2.2. Note that now the domain
elements are either variables or clauses. Consequently, a node t in the tree decomposition T is called a variable removal
node, a clause removal node, a variable introduction node, or a clause introduction node, respectively, depending on the kind of
element that is removed or replaced – comparing the bag at node t with the bag at the child node of t . Additionally, as in
Definition 2.2, a node t can be a branch node or a leaf node (if it has two respectively no child nodes).

In Fig. 4, we describe a datalog program which decides the SAT problem. Some words on the notation used in this
program are in order: We are using lower case letters v , c, and x (possibly with subscripts) as datalog variables for a single
node in T , for a single clause, or for a single propositional variable, respectively. In contrast, upper case letters are used
as datalog variables denoting sets of variables (in the case of X, P , N) or sets of clauses (in the case of C ). Note that the
sets are not sets in the general sense, since their cardinality is restricted by the maximal size w + 1 of the bags, where
w is a fixed constant. Indeed, we have implemented these “fixed-size” sets by means of k-tuples with k � (w + 1) over
{0,1}. The SAT-program in Fig. 4 could therefore be said “quasi-monadic”, since all but one variable in the head atoms have
bounded instantiations. For instance, in the atom solve(v, P , N, C), the sets P , N, C are subsets of the bag of v . Hence, each
combination P , N, C could be represented by 3 subsets r1, r2, r3 over {0, . . . , w} referring to indices of elements in the bag
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Program SAT

/* leaf node. */
solve(v, P , N, C1) ← leaf (v), bag(v, X, C), P ∪ N = X , P ∩ N = ∅,

true(P , N, C1, C).

/* variable removal node. */
solve(v, P , N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, P � {x}, N, C1).

solve(v, P , N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve(v1, P , N � {x}, C1).

/* clause removal node. */
solve(v, P , N, C1) ← bag(v, X, C), child1(v1, v), bag(v1, X, C � {c}),

solve(v1, P , N, C1 � {c}).

/* variable introduction node. */
solve(v, P � {x}, N, C1 ∪ C2) ← bag(v, X � {x}, C), child1(v1, v),

bag(v1, X, C), solve(v1, P , N, C1), true({x},∅, C2, C).

solve(v, P , N � {x}, C1 ∪ C2) ← bag(v, X � {x}, C), child1(v1, v),
bag(v1, X, C), solve(v1, P , N, C1), true(∅, {x}, C2, C).

/* clause introduction node. */
solve(v, P , N, C1 ∪ C2) ← bag(v, X, C � {c}), child1(v1, v), bag(v1, X, C),

solve(v1, P , N, C1), true(P , N, C2, {c}).

/* branch node. */
solve(v, P , N, C1 ∪ C2) ← bag(v, X, C), child1(v1, v), bag(v1, X, C),

solve(v1, P , N, C1), child2(v2, v), bag(v2, X, C), solve(v2, P , N, C2).

/* result (at the root node). */
success ← root(v),bag(v, X, C), solve(v, P , N, C).

Fig. 4. SAT test.

of v . Since w is considered as a fixed constant, solve(v, P , N, C) is simply a succinct representation of constantly many
monadic predicates of the form solve〈r1,r2,r3〉(v).

For the sake of readability, we are using non-datalog expressions involving the set operators � (disjoint union), ∪, and ∩.
Of course, they could be easily replaced by “proper” datalog expressions. For instance, P ∪ N = X can be replaced by union
(P , N, X).

In order to facilitate the discussion, we introduce the following notation. Let C denote the input clause set with variables
in V and tree decomposition T . For any node v in T , we write Tv to denote the subtree of T rooted at v . By Cl(v) we
denote the set of clauses in the bag of v while Cl(Tv) denotes the set of clauses that occur in any bag in Tv . Analogously,
we write Var(v) and Var(Tv) as a short-hand for the set of variables occurring in the bag of v respectively in any bag in Tv .
Finally, the restriction of a clause c to the variables in some set U ⊆ V will be denoted by c|U .

The SAT-program contains three intensional predicates solve, true, and success. The crucial predicate is solve(v, P , N, C)

with the following intended meaning: v denotes a node in T . P and N form a partition of Var(v) representing a truth
value assignment on Var(v), s.t. all variables in P take the value true and all variables in N take the value false. C denotes
a subset of Cl(v). For all values of v, P , N, C , the ground fact solve(v, P , N, C) shall be true in the minimal model of the
interpreted program if and only if the following condition holds:

Property A. There exists an extension J of the assignment (P , N) to Var(Tv), s.t. (Cl(Tv) \ Cl(v)) ∪ C is true in J while for all clauses
c ∈ Cl(v) \ C, the restriction c|Var(Tv ) is false in J .

The main task of the program is the computation of all facts solve(v, P , N, C) by means of a bottom–up traversal of the
tree decomposition. The other predicates have the following meaning: true(P , N, C1, C) means that C1 contains precisely
those clauses from C which are true in the (partial) assignment given by (P , N). We do not specify the implementation
of this predicate here. It can be easily achieved via the extensional predicates pos and neg. The 0-ary predicate success
indicates if the input structure is the encoding of a satisfiable clause set.

The SAT-program has the following properties.

Lemma 4.1. The solve-predicate has the intended meaning described above, i.e., for all values v, P , N, and C , the ground fact
solve(v, P , N, C) is true in the minimal model of the interpreted SAT-program if and only if Property A holds.

Proof idea. The lemma can be shown by structural induction on T . The induction step goes via a case distinction over all
possible types of nodes. The proof is lengthy but straightforward. The details are worked out in Appendix A. �
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Table 1
SAT example.

Node solve facts

7 solve(7, {x3},∅, {c1}), solve(7,∅, {x3},∅)

13 solve(13,∅, {x5}, {c2}), solve(13, {x5},∅, c2)

19 solve(19, {x6},∅, {c3}), solve(19,∅, {x3},∅)

6 solve(6, {x1, x3},∅, {c1}), solve(6,∅, {x1, x3},∅),
solve(6, {x1}, {x3}, {c1}), solve(6, {x3}, {x1}, {c1})

5 solve(5, {x1},∅, {c1}), solve(5,∅, {x1},∅), solve(5,∅, {x1}, {c1})
4 solve(4, {x1, x2},∅, {c1}), solve(4, {x1}, {x2}, {c1}), solve(4, {x2}, {x1},∅),

solve(4,∅, {x1, x2}, {c1}), solve(4, {x2}, {x1}, {c1})
3 solve(3, {x1, x2},∅,∅), solve(3, {x1}, {x2},∅),

solve(3, {x2}, {x1},∅), solve(3,∅, {x1, x2},∅)

1 solve(1, {x1, x2, x4},∅,∅), solve(1, {x1, x2}, {x4},∅),
solve(1, {x1, x4}, {x2},∅), solve(1, {x1}, {x2, x4},∅),
solve(1, {x2, x4}, {x1},∅), solve(1, {x2}, {x1, x4},∅),
solve(1, {x4}, {x1, x2},∅), solve(1,∅, {x1, x2, x4},∅)

2 solve(2, {x1, x2, x4},∅,∅), solve(2, {x1, x2}, {x4},∅),
solve(2, {x1, x4}, {x2},∅), solve(2, {x1}, {x2, x4},∅),
solve(2, {x2, x4}, {x1},∅), solve(2, {x2}, {x1, x4},∅),
solve(2, {x4}, {x1, x2},∅), solve(2,∅, {x1, x2, x4},∅)

0 solve(0, {x1, x2, x4},∅,∅), solve(0, {x1, x2}, {x4},∅),
solve(0, {x1, x4}, {x2},∅), solve(0, {x1}, {x2, x4},∅),
solve(0, {x2, x4}, {x1},∅), solve(0, {x2}, {x1, x4},∅),
solve(0, {x4}, {x1, x2},∅), solve(0,∅, {x1, x2, x4},∅)

Theorem 4.2. The datalog program in Fig. 4 decides the SAT problem, i.e., the fact “success” is true in the minimal model of the
interpreted SAT-program if and only if the input structure Atd encodes a satisfiable clause set C together with a tree decomposition T
of C . Moreover, for any clause set C and tree decomposition T of width at most w, the program can be evaluated in time O(2w ∗ |C|).

Proof. By Lemma 4.1, the solve-predicate has the meaning according to Property A. Thus, the rule with head success reads
as follows: success is true in the minimal model if and only if v denotes the root of T and there exists an assignment (P , N)

on the variables in Var(v), s.t. for some extension J of (P , N) to Var(Tv), all clauses in Cl(Tv) = (Cl(Tv) \ Cl(v)) ∪ C are true
in J . But this simply means that J is a satisfying assignment of C = Cl(Tv).

For the upper bound on the time complexity, we observe that, in all facts solve(v, P , N, C) derived by the program, the
sets P , N, C are disjoint subsets of the bag at v (which contains at most w + 1 elements). Suppose that the bag at node
v consists of k variables and l clauses with k + l � w + 1. Then there are at most 2k ∗ 2l = 2w+1 possible instantiations of
these two arguments.

Hence, the datalog program P in Fig. 4 is equivalent to a ground program P ′ where each rule of P is replaced by
O(2w ∗ |C|) ground rules, which can be computed in time O(2w ∗ |C|). In total, we can evaluate the program P in Fig. 4
over an input formula C in CNF together with a tree decomposition T (given as a τtd-structure Atd , whose size is linear
w.r.t. the size of C ) as follows: we first compute the equivalent ground program P ′ with O(2w ∗ |C|) rules and then evaluate
P ′ in linear time [18,42] w.r.t. the size of P ′ and the size of Atd , i.e., in time O(2w ∗ |C| + |Atd|) = O(2w ∗ |C|). �
Example 4.3. Let F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧ (x2 ∨ ¬x4 ∨ x6) be the propositional formula from Example 2.1
and consider the normalized tree decomposition T in Fig. 2. We shall run the SAT-program on the structure representing
F and T . We process the tree nodes in a bottom–up manner. The solve-facts derived at each tree node are presented in
Table 1.

We start with the leaf nodes 7, 13, and 19. At node 7, the variable x3 can be assigned either the value true or false. If x3
is assigned the value true (P = {x3} and N = ∅), then clause c1 is true. Hence, we obtain the fact solve(7, {x3},∅, {c1}). If x3
is assigned the value false (P = ∅ and N = {x3}), then clause c1 (restricted to the variable x3) evaluates to false. Thus, we
obtain the second fact solve(7,∅, {x3},∅). By analogous arguments, we obtain the solve-facts for the leaf nodes 13 and 19.

Node 6 is a variable introduction node, which introduces the variable x1 (which is not present in node 7). Again, x1 can
be either set to true or false. For each of the assignments, we test whether c1 evaluates true. Therefore, at node 6, we obtain
four solve-facts with all possible truth assignments for x1 and x3.

Node 5 is a variable removal node, which removes the variable x3 (which was present in node 6). We remember the
effect of the truth assignment to the removed variable (in this case x3) by maintaining different sets of clauses in the solve-
facts. Thus, at node 5, there exist two facts for the truth assignment P = ∅ and N = {x1}, namely one with C = {c1} and one
with C = ∅ – see the second and the third solve-fact in Table 1.
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Program Solvability

/* leaf node. */
solve(v, S,0, P , N, C1,d) ← leaf (v), bag(v, X, C), svar(v, S), S ⊆ P ,

P ∪ N = X , P ∩ N = ∅, check(P , N, C1, C,d).

/* variable removal node. */
aux(v, S, i,0, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),

solve(v1, S, i, P � {x}, N, C1,d), x /∈ S .

aux(v, S, i,0, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve(v1, S, i, P , N � {x}, C1,d).

aux(v, S, i,1, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve(v1, S � {x}, i, P � {x}, N, C1,d).

/* clause removal node. */
solve(v, S, i, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X, C � {c}),

solve(v1, S, i, P , N, C1 � {c},d).

/* variable introduction node. */
solve(v, S, i, P � {x}, N, C1 ∪ C2,d1) ← bag(v, X � {x}, C), child1(v1, v),

bag(v1, X, C), solve(v1, S, i, P , N, C1,d1), check({x},∅, C2, C,d2).

solve(v, S, i, P , N � {x}, C1 ∪ C2,d1 or d2) ← bag(v, X � {x}, C), child1(v1, v),
bag(v1, X, C), solve(v1, S, i, P , N, C1,d1), check(∅, {x}, C2, C,d2).

solve(v, S � {x}, i, P � {x}, N, C1 ∪ C2,d1) ← bag(v, X � {x}, C), child1(v1, v),
bag(v1, X, C), solve(v1, S, i, P , N, C1,d1), check({x},∅, C2, C,d2), hyp(x).

/* clause introduction node. */
solve(v, S, i, P , N, C1 ∪ C2,d1) ← bag(v, X, C � {c}), child1(v1, v),

bag(v1, X, C), solve(v1, S, i, P , N, C1,d1), check(P , N, C2, {c},d2).

/* branch node. */
aux(v, S, i1, i2, P , N, C1 ∪ C2,d1 or d2) ← bag(v, X, C),

child1(v1, v), bag(v1, X, C), child2(v2, v), bag(v2, X, C),
solve(v1, S, i1, P , N, C1,d1), solve(v2, S, i2, P , N, C2,d2).

/* variable removal and branch node: aux ⇒ solve */
solve(v, S, i, P , N, C,d) ← aux(v, S, i1, i2, P , N, C,d), reduce(v, S, i, i1, i2).

/* result (at the root node). */
success ← root(v),bag(v, X, C), solve(v, S, i, P , N, C, ‘n’), not solve′(v, S, i).

solve′(v, S, i) ← bag(v, X, C), solve(v, S, i, P , N, C, ‘y’).

Fig. 5. Solvability test.

The variable introduction node 4 follows the same principles as node 6. Note however that the number of solve-facts is
not doubled by the introduction of variable x2. Indeed, the facts solve(5,∅, {x1},∅) and solve(5,∅, {x1}, {c1}) both give rise
to the fact solve(4, {x2}, {x1}, {c1}). Hence, we have only 5 solve-facts at node 4.

Node 3 is a clause removal node where the clause c1 is removed (comparing the bag of node 3 with node 4). Only those
truth assignments in solve-facts from node 4 “survive”, where the clause c1 evaluates to true. Actually, in this example, only
the fact solve(4, {x2}, {x1},∅) violates this condition. However, there also exists a fact solve(4, {x2}, {x1}, {c1}) at node 4. The
latter gives rise to the fact solve(3, {x2}, {x1},∅).

The traversal from node 3 to 1 introduces the new variable x4, which is trivial, because there does not exist any clause
in node 1. Thus for each of the eight truth assignments there is a solve-fact in node 1. The traversal from node 13 to 8, as
well as from 19 to 14 are almost identical to those from node 7 to 1. Hence we do not illustrate the solve-facts explicitly.

Finally, at the root node 0, we check whether there is a truth assignment of the variables that makes all the clauses in
the root true. This is trivial in our example. In fact, we obtain that all possible truth assignments to the variables x1, x2 and
x4 are solutions, since they can all be extended to models of F by choosing appropriate truth values for x3, x5, and x6.

4.2. Solvability problem

The SAT-program from the previous section can be extended to a Solvability program via the following idea: Recall that
S ⊆ H is a solution of a PAP P = 〈V , H, M, C〉 if and only if C ∪ S is consistent and C ∪ S |� M holds. We can thus think of
the abduction problem as a combination of SAT and UNSAT problems, namely C ∪ S has to be satisfiable and all formulae
C ∪ S ∪ {¬m} for any m ∈ M have to be unsatisfiable. Suppose that we construct such a set S along a bottom–up traversal
of T . Initially, S is empty. In this case, C ∪ S = C is clearly satisfiable (otherwise the abduction problem makes no sense)
and C ∪ S ∪{¬m} is also satisfiable for at least one M (otherwise the abduction problem is trivial). In other words, C ∪ S has
many models – among them are also models where some m ∈ M is false. The effect of adding a hypothesis h to S is that
we restrict the possible number of models of C ∪ S and of C ∪ S ∪ {¬m} in the sense that we eliminate all models where h
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is false. Hence, the goal of our Solvability algorithm is to find (by a bottom–up traversal of the tree decomposition T ) a set
S which is small enough so that at least one model of C ∪ S is left while all models of C ∪ S ∪ {¬m} for any m ∈ M are
eliminated.

The program in Fig. 5 realizes this SAT/UNSAT-intuition. For the discussion of this program, it is convenient to introduce
the following additional notation. We shall write H(v), M(v), H(Tv) and M(Tv) to denote the restriction of H and M to the
variables in the bag of v or in any bag in Tv , respectively. Of course, the unary predicates hyp and man are now contained
in τtd .

The predicate solve(v, S, i, P , N, C,d) has the following intended meaning: At every node v , we consider choices S ⊆
H(v). (P , N) again denotes an assignment on the variables in Var(v) and C ⊆ Cl(v) denotes a clause set, s.t. (Cl(Tv) \
Cl(v))∪ C is true in some extension J of (P , N) to Var(Tv). But now we have to additionally consider the chosen hypotheses
in H(Tv) and the manifestations in M(Tv) which decide whether J is a candidate for the SAT and/or UNSAT problem. As
far as H is concerned, we have to be careful as to how S ⊆ H(v) is extended to S̄ ⊆ H(Tv). For a different extension S̄ ,
different assignments J on Var(Tv) are excluded from the SAT/UNSAT problems, since we only keep track of assignments
J where all hypotheses in S̄ are true. Hence, we need a counter i ∈ {0,1,2, . . .} as part of the solve-predicate in order to
distinguish between different extensions of S ⊆ H(v) to S̄ ⊆ H(Tv). As far as M is concerned, we have the argument d with
possible values ‘y’ and ‘n’ indicating whether some manifestation m ∈ M(Tv) is false in J . For the UNSAT problem, we take
into account only those assignments J where at least one m ∈ M is false.

Then the program has the following meaning: For all values of v, S, i, and for any extension S̄ of S with S̄ ⊆ (H(Tv ) \
H(v)) ∪ S , we define:

Property B. Property B For all values of P , N, C, and u, the fact solve(v, S, i, P , N, C, u) is true in the minimal model of the interpreted
program if and only if there exists an extension J of the assignment (P , N) to Var(Tv), s.t. (Cl(Tv) \ Cl(v)) ∪ S̄ ∪ C is true in J while
for all clauses c ∈ Cl(v) \ C, the restriction c|Var(Tv ) is false in J . Moreover, u = ‘y’ if and only if some m ∈ M(Tv) is false in J .

The predicate svar in Fig. 5 is used to select sets of hypotheses, i.e., svar(v, S) is true for every subset S ⊆ H(v). The
predicate check extends the predicate true from the SAT-program by additionally setting the d-bit, i.e., check(P , N, C1, C,d)

if and only if true(P , N, C1, C). Moreover, d = ‘y’ if and only if N contains some manifestation.
Finally, the predicates aux and reduce have the following purpose: As was mentioned above, the index i in

solve(v, S, i, P , N, C,d) is used to keep different extensions S̄ ⊆ H(Tv) of S apart. Without further measures, we would
thus loose the fixed-parameter tractability since the variable elimination nodes and branch nodes lead to an exponen-
tial increase (w.r.t. the number of hypotheses in H(Tv)) of the number of extensions S̄ . The predicates aux and reduce
remedy this problem as follows: In the first place, we compute facts aux(v, S, i1, i2, P , N, C,d), where different exten-
sions S̄ of S are identified by pairs of indices (i1, i2). Now let v and S be fixed and consider for each pair (i1, i2) the
set F (i1, i2) = {(P , N, C,d) | aux(v, S, i1, i2, P , N, C,d) is true in the minimal model}. The predicate reduce(v , S, i, i1, i2)

maps pairs of indices (i1, i2) to a unique index i. However, if there exists a lexicographically smaller pair ( j1, j2) with
F (i1, i2) = F ( j1, j2), then (i1, i2) is skipped. In other words, if two extensions S̄ with index (i1, i2) and ( j1, j2) are not
distinguishable at v (i.e., they give rise to facts aux(v, S, i1, i2, P , N, C,d) and aux(v, S , j1, j2, P , N, C,d) with exactly the
same sets of values (P , N, C,d)), then it is clearly sufficient to keep track of exactly one representative. The predicate reduce
could be easily implemented in datalog (with negation), see Appendix B. However, we prefer to consider it as a built-in
predicate which can be implemented very efficiently via appropriate hash codes.

Analogously to Lemma 4.1 and Theorem 4.2, the Solvability program has the following properties.

Lemma 4.4. The solve-predicate has the intended meaning described above, i.e., for all values v, S, i, and for any extension S̄ of S with
S̄ ⊆ (H(Tv ) \ H(v)) ∪ S, Property B holds.

Proof sketch. The lemma can be shown by structural induction on T . We restrict ourselves here to outlining the ideas
underlying the various rules of the Solvability program. The induction itself is then obvious and therefore omitted.

(1) Leaf nodes. The rule for a leaf node v realizes two “guesses” so to speak: (i) a subset S of the hypotheses in H(v)

and (ii) a truth assignment (P , N) on the variables in Var(v). The values of S, P , N have to fulfill several conditions,
namely S ⊆ P , P ∪ N = X , and P ∩ N = ∅. The remaining variables in this rule are fully determined. In particular, the
atom check(P , N, C1, C,d) is used to compute the set of clauses C1 ⊆ C which are true in the assignment (P , N) and the
d-bit is set depending on whether some manifestation is set to false by this assignment or not.

(2) Variable removal node. The three rules distinguish, in total, 3 cases, which may arise when a variable x is removed
from the bag at the child node v1 of v , namely: was x set to true or false and was x part of the solution or not. Of course,
if x was part of the solution then its truth value must be true. The three rules for a variable removal node treat these cases
in the order (true, not solution), (false, not solution), (true, solution).

The removal of x may have the effect that the solve-facts which are true in the minimal model for some values (v, S, i)
and (v, S, j) become identical even if they were different for (v1, S, i) and (v2, S, i). Hence, the rule for variable removal
nodes first generates aux-facts. The corresponding solve-facts are then generated only after the duplicate elimination via the
reduce-predicate.
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Recall that the index i in the solve-facts solve(v, S, i, . . .) is used to keep different extensions S̄ ⊆ H(Tv) of S apart.
Analogously, in the aux-facts aux(v, S, i1, i2, . . .), the pair (i1, i2) does this job. Therefore, the aux-facts for the first two
cases (where x /∈ S̄) and in the third case (where x ∈ S̄) have different pairs of indices (i,0) and (i,1), respectively.

(3) Clause removal node. The rule for a clause removal node v checks if the clause c that is removed at v evaluates to true
in an extension J of (P , N). This check is carried out here because (by the connectedness condition) only at the removal of
c we can be sure that c|Var(Tv ) is identical to c. Hence, if c evaluates to false in an extension J of (P , N) to Var(Tv), then
there is no way to turn the truth value of c into true by an appropriate assignment to the variables elsewhere in the tree
decomposition.

(4) Variable introduction node. Analogously to the variable removal node, the three rules distinguish, in total, 3 cases,
which may arise when a variable x is introduced at the node v , namely: is x set to true or false and is x part of the solution
or not. Of course, if x is part of the solution then its truth value must be true. The three rules for a variable introduction
node treat these cases in the order (true, not solution), (false, not solution), (true, solution).

The third rule has the additional atom hyp(x) in the body to make sure that x indeed is a hypothesis when it is added
to the solution. In all three cases, the check-predicate in the rule body checks (i) if additional clauses C2 evaluate to true
because of the chosen truth value of x, and (ii) if some manifestation is thus set to false. Of course, the check (ii) is only
relevant if x is set to false.

(5) Clause introduction node. When a new clause c is introduced, we have to check if c evaluates to true in the assignment
(P , N) or not. This is done by the atom check(P , N, C2, {c},d2) in the rule body. The variable C2 thus has one of the values
{c} or ∅. Clearly, by the connectedness condition, no variables occurring in c can occur in Var(Tv) \ Var(v). Hence, it plays
no role which extension J of (P , N) to Var(Tv) is considered.

(6) Branch node. The rule for a branch node v combines the solve-facts for the child nodes v1 and v2 provided that they
have identical values for S, P , N . By the connectedness condition, we can be sure that the variables and clauses occurring
both in Tv1 and Tv2 also occur in the bags of v1, v2, and v . Hence the extensions S̄1 and S̄2 (respectively, J1 and J2) are
consistent if and only if S̄1 ∩ H(v) = S = S̄2 ∩ H(v) holds (respectively, if and only if J1 and J2 restricted to Var(v) coincide
with (P , N)).

Note that it may happen that combining the solve-facts for some values (v1, S, i1) and (v2, S, i2) yields the same values
of (P , N, C,d) as if we combine the solve-facts for some values (v1, S, j1) and (v2, S, j2). Hence, the rule for branch nodes
first generates aux-facts. The corresponding solve-facts are then generated only after the duplicate elimination via the reduce-
predicate. �
Theorem 4.5. The datalog program in Fig. 5 decides the Solvability problem of PAPs, i.e., the fact “success” is true in the minimal model
of the interpreted program if and only if Atd encodes a solvable PAP P = 〈V , H, M, C〉 together with a tree decomposition T of the
clause set C . Moreover, for any PAP P = 〈V , H, M, C〉 and tree decomposition T of width at most w, the program can be evaluated in
time O(25∗3w+2 ∗ |P |).

Proof sketch. By Lemma 4.4, the solve-predicate indeed has the meaning according to Property B. Thus, the rule with head
success reads as follows: The PAP P has a solution S if and only if there exists a set S ⊆ H(v) (i.e., S = S ∩ H(v)) and there
exists an extension S̄ of S to H(Tv) (i.e., S̄ = S ; this extension is identified by the index i), s.t. the following conditions
hold:

(1) Cl(Tv) ∪ S̄ has a model, i.e., there exists an assignment (P , N) on Var(v) which can be extended to J on Var(Tv), s.t.
Cl(Tv) ∪ S̄ is true in J , and

(2) Cl(Tv) ∪ S̄ does not have a model in which some m ∈ M is false, i.e., there does not exists an assignment (P , N) on
Var(v) which can be extended to J on Var(Tv), s.t. Cl(Tv) ∪ S̄ is true in J and at least one m ∈ M is false in J .

As in the proof of Theorem 4.2, the upper bound on the time complexity is obtained via an upper bound on the possible
ground instantiations of each rule in the Solvability program. First consider the solve(v, S, i, P , N, C,d)-predicates: Suppose
that the bag at some node v consists of k variables and l clauses with k + l � w + 1. Then we get the following upper bound
on the possible value combinations:

For (S, P , N), we have at most 3k possibilities, i.e., a variable can either occur in N (i.e., it is set to false) or both in S
and P (i.e., it is set to true and added to the solution S) or in P but not in S (i.e., it is set to true and but not added to
the solution S). For C , we have the upper bound 2l , and for d there are at most 2 possible values. In total, the number
of combinations of (S, P , N, C,d) is bounded by 3k ∗ 2l ∗ 2 � 3k ∗ 3l ∗ 3 = 3w+2. For the possible values of i, recall from
the above considerations that, for every pair i, j of distinct “indices”, the set of facts solve(v, S, i, . . .) and the set of facts
solve(v, S, j, . . .) must be different. Hence, for every value of v and S , there are at most 23w+2

possible values of i. In total,
we thus get the upper bound O(3w+2 ∗ 23w+2 ∗ |P |) on the possible ground instantiations of the solve(v, S, i, P , N, C,d)-
predicate.

For the remaining predicates used in the program in Fig. 5 (in particular, the aux-predicate but also the remaining
auxiliary predicates like the reduce-predicate detailed in Appendix B), the worst situation that can happen is that a predicate
contains two indices i, j. Hence, the program in Fig. 5 is equivalent to a ground program with O(3w+2 ∗23w+2 ∗23w+2 ∗|P |) =
O(25∗3w+2 ∗ |P |) rules. The Solvability program can thus be evaluated by first computing the equivalent ground program
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Table 2
Solvability Example (1).

Node solve facts

7 solve(7,0,∅, {x3},∅, {c1}, ‘n’), solve(7,0,∅,∅, {x3},∅, ‘n’)

6 solve(6,0,∅, {x1, x3},∅, {c1}, ‘n’), solve(6,0,∅, {x1}, {x3}, {c1}, ‘n’),
solve(6,0,∅, {x3}, {x1}, {c1}, ‘n’), solve(6,0,∅,∅, {x1, x3},∅, ‘n’),
solve(6,0, {x1}, {x1, x3},∅, {c1}, ‘n’), solve(6,0, {x1}, {x1}, {x3}, {c1}, ‘n’)

5 solve(5,0,∅, {x1},∅, {c1}, ‘n’),
solve(5,0,∅,∅, {x1}, {c1}, ‘n’), solve(5,0,∅,∅, {x1},∅, ‘n’),
solve(5,0, {x1}, {x1},∅, {c1}, ‘n’)

4 solve(4,0,∅, {x1, x2},∅, {c1}, ‘n’), solve(4,0,∅, {x1}, {x2}, {c1}, ‘n’),
solve(4,0, {x2}, {x1, x2},∅, {c1}, ‘n’), solve(4,0,∅, {x2}, {x1}, {c1}, ‘n’),
solve(4,0,∅,∅, {x1, x2}, {c1}, ‘n’), solve(4,0, {x2}, {x2}, {x1}, {c1}, ‘n’),
solve(4,0,∅, {x2}, {x1},∅, ‘n’), solve(4,0, {x2}, {x2}, {x1},∅, ‘n’),
solve(4,0, {x1}, {x1, x2},∅, {c1}, ‘n’), solve(4,0, {x1}, {x1}, {x2}, {c1}, ‘n’),
solve(4,0, {x1, x2}, {x1, x2},∅, {c1}, ‘n’)

3 solve(3,0,∅, {x1, x2},∅,∅, ‘n’), solve(3,0,∅, {x1}, {x2},∅, ‘n’),
solve(3,0, {x2}, {x1, x2},∅,∅, ‘n’), solve(3,0,∅, {x2}, {x1},∅, ‘n’),
solve(3,0,∅,∅, {x1, x2},∅, ‘n’), solve(3,0, {x2}, {x2}, {x1},∅, ‘n’),
solve(3,0, {x1}, {x1, x2},∅,∅, ‘n’), solve(3,0, {x1}, {x1}, {x2},∅, ‘n’),
solve(3,0, {x1, x2}, {x1, x2},∅,∅, ‘n’)

1 solve(1,0,∅, {x1, x2, x4},∅,∅, ‘n’), solve(1,0,∅, {x1, x2}, {x4},∅, ‘n’),
solve(1,0,∅, {x1, x4}, {x2},∅, ‘n’), solve(1,0,∅, {x1}, {x2, x4},∅, ‘n’),
solve(1,0, {x2}, {x1, x2, x4},∅,∅, ‘n’), solve(1,0, {x2}, {x1, x2}, {x4},∅, ‘n’),
solve(1,0,∅, {x2, x4}, {x1},∅, ‘n’), solve(1,0,∅, {x2}, {x1, x4},∅, ‘n’),
solve(1,0,∅, {x4}, {x1, x2},∅, ‘n’), solve(1,0,∅,∅, {x1, x2, x4},∅, ‘n’),
solve(1,0, {x2}, {x2, x4}, {x1},∅, ‘n’), solve(1,0, {x2}, {x2}, {x1, x4},∅, ‘n’),
solve(1,0, {x1}, {x1, x2, x4},∅,∅, ‘n’), solve(1,0, {x1}, {x1, x2}, {x4},∅, ‘n’),
solve(1,0, {x1}, {x1, x4}, {x2},∅, ‘n’), solve(1,0, {x1}, {x1}, {x2, x4},∅, ‘n’),
solve(1,0, {x1, x2}, {x1, x2, x4},∅,∅, ‘n’),
solve(1,0, {x1, x2}, {x1, x2}, {x4},∅, ‘n’)

and then evaluating the latter in linear time [18,42] w.r.t. the size of the ground program and the size of Atd . Analogously
to the proof of Theorem 4.2, all this is feasible within the time bound O(25∗3w+2 ∗ |P |). �
Example 4.6. Consider the PAP P = 〈V , H, M, C〉 where C is the clause set corresponding to the CNF-formula F from
Example 2.1, i.e., C = {(x1 ∨ ¬x2 ∨ x3), (¬x1 ∨ x4 ∨ ¬x5), (x2 ∨ ¬x4 ∨ x6)}. Additionally, we assume that H = {x1, x2} and
M = {x5, x6}. Finally, we have V = {x1, x2, x3, x4, x5, x6}. The tree decomposition T in Fig. 2 is also a tree decomposition of
the structure representing this PAP. We shall run the Solvability program on this PAP. Again, we process the tree nodes of
T in a bottom–up manner.

Table 2 shows the solve-facts derived at nodes 1, 3, 4, 5, 6 and 7. In principle, the processing is very similar to the
SAT-program, except that we have to maintain the additional parameters S , i, and d. Below, we highlight some differences
compared with the run of the SAT-program discussed in Example 4.3.

The number of solve-facts at the variable introduction node 6 is now three times the number of solve-facts at node 7.
The reason for this is that we have 3 possibilities how to proceed with the new variable x1 (which we assume to be a
hypothesis): We can set x1 to false (i.e., it is added to N) or we can set it to true without adding it to S (i.e., it is added
to P ) or we can set it to true and also add it to S (i.e., it is added to P and S). Node 4 is a variable introduction node
with new variable 4. Note that we only get 11 (rather than 12) solve-facts at node 4. The reason for this is that both
facts, solve(5,0,∅,∅, {x1}, {c1}, ‘n’) and solve(5,0,∅,∅, {x1},∅, ‘n’) give rise to the fact solve(4,0,∅,∅, {x1, x2}, {c1}, ‘n’). When
traversing from node 4 to node 3, the number of solve-facts decreases from 11 to 9 due to the two solve-facts at node 4
where the parameter C has the value ∅ (in particular, C does not contain clause c1 even though node 3 is a clause removal
node with the removal of clause c1). Finally, when traversing from node 3 to node 1, the number of solve-facts is multiplied
by 2 (rather than by 3 as in node 6) since x4 is not a hypothesis. Hence, there are only two possibilities how to proceed
with x4: We either add it to P or to N . At tree node 1, we thus end up with 18 solve-facts.

The traversal from node 13 to 9 is illustrated in Table 3. This time we have a manifestation variable x5, which has to be
taken care of by the value of the parameter d. We leave out the illustration for the traversal from node 19 to 15, because
it follows almost exactly the same pattern as that from node 13 to 9. We only present the solve-facts at node 15 (which
are very similar to node 9). We very briefly discuss the derivation of the solve-facts at these nodes: At node 13, the d-value
indicates if a manifestation (in this x5) is set to false (i.e., d = ‘y’) or not (i.e., d = ‘n’). The transition from node 13 to 12 is
analogous to the transition from node 7 to 6 in Table 2. At the variable removal node 11, the number of solve-facts is not
decreased compared with node 12, since we now also have to take the d-value into account. At the variable introduction
node 10, we double the number of solve-facts (since the new variable x4 is not a hypothesis). When traversing from node
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Table 3
Solvability Example (2).

Node solve facts

13 solve(13,0,∅,∅, {x5}, {c2}, ‘y’), solve(13,0,∅, {x5},∅,∅, ‘n’)

12 solve(12,0,∅, {x1}, {x5}, {c2}, ‘y’), solve(12,0,∅,∅, {x1, x5}, {c2}, ‘y’),
solve(12,0, {x1}, {x1}, {x5}, {c2}, ‘y’), solve(12,0,∅, {x1, x5},∅,∅, ‘n’),
solve(12,0,∅, {x5}, {x1}, {c2}, ‘n’), solve(12,0, {x1}, {x1, x5},∅,∅, ‘n’)

11 solve(11,0,∅, {x1},∅, {c2}, ‘y’), solve(11,0,∅,∅, {x1}, {c2}, ‘y’),
solve(11,0, {x1}, {x1},∅, {c2}, ‘y’), solve(11,0,∅, {x1},∅,∅, ‘n’),
solve(11,0,∅,∅, {x1}, {c2}, ‘n’), solve(11,0, {x1}, {x1},∅,∅, ‘n’)

10 solve(10,0,∅, {x1, x4},∅, {c2}, ‘y’), solve(10,0,∅, {x1}, {x4}, {c2}, ‘y’),
solve(10,0,∅, {x4}, {x1}, {c2}, ‘y’), solve(10,0,∅,∅, {x1, x4}, {c2}, ‘y’),
solve(10,0, {x1}, {x1, x4},∅, {c2}, ‘y’),
solve(10,0, {x1}, {x1}, {x4}, {c2}, ‘y’),
solve(10,0,∅, {x1, x4},∅, {c2}, ‘n’), solve(10,0,∅, {x1}, {x4},∅, ‘n’),
solve(10,0,∅, {x4}, {x1}, {c2}, ‘n’), solve(10,0,∅,∅, {x1, x4}, {c2}, ‘n’),
solve(10,0, {x1}, {x1, x4},∅, {c2}, ‘n’), solve(10,0, {x1}, {x1}, {x4},∅, ‘n’)

9 solve(9,0,∅, {x1, x4},∅,∅, ‘y’), solve(9,0,∅, {x1}, {x4},∅, ‘y’),
solve(9,0,∅, {x4}, {x1},∅, ‘y’), solve(9,0,∅,∅, {x1, x4},∅, ‘y’),
solve(9,0, {x1}, {x1, x4},∅,∅, ‘y’), solve(9,0, {x1}, {x1}, {x4},∅, ‘y’),
solve(9,0,∅, {x1, x4},∅,∅, ‘n’),
solve(9,0,∅, {x4}, {x1},∅, ‘n’), solve(9,0,∅,∅, {x1, x4},∅, ‘n’),
solve(9,0, {x1}, {x1, x4},∅,∅, ‘n’)

15 solve(15,0,∅, {x2, x4},∅,∅, ‘n’), solve(15,0,∅, {x2}, {x4},∅, ‘n’),
solve(15,0,∅, {x4}, {x2},∅, ‘n’), solve(15,0,∅,∅, {x2, x4},∅, ‘n’),
solve(15,0, {x2}, {x2, x4},∅,∅, ‘n’), solve(15,0, {x2}, {x2}, {x4},∅, ‘n’),
solve(15,0,∅, {x2, x4},∅,∅, ‘y’),
solve(15,0,∅, {x2}, {x4},∅, ‘y’), solve(15,0,∅,∅, {x2, x4},∅, ‘y’),
solve(15,0, {x2}, {x2}, {x4},∅, ‘y’), solve(15,0, {x2}, {x2, x4},∅,∅, ‘y’)

10 to node 9, the number of solve-facts is reduced by 2 since there are two solve-facts in node 10 with parameter value
C = ∅. Node 15 is very similar to node 9; the role of x6, x2, and c3 on the path from 19 up to 15 essentially corresponds to
the role of x5, x1, and c2 on the path from 13 up to 9. The most significant difference between these two paths is that x1
and x5 occur in c2 negatively while x2 and x6 occur in c3 positively. By the different sign of x5 and x6, the d-values ‘y’ and
‘n’ are swapped when we compare the solve-facts at node 9 with the solve-facts at node 15. The different sign of x1 and x2
has the effect that there is one more solve-facts at node 15 than at node 9. The reason for this is, that at node 15, only the
fact solve(15,0,∅, {x4}, {x2},∅, ‘y’) is missing (i.e., if x4 and x6 are set to true and x2 to false, then c3 evaluates to false). On
the other hand, at node 9, the two facts solve(9,0,∅, {x1}, {x4},∅, ‘n’) and solve(9,0, {x1}, {x1}, {x4},∅, ‘n’) are missing (i.e.,
when x1 is set to true and x4 and x5 are set to false, then c2 evaluates to false; since the hypothesis x1 is true, it can be
either added to S or not).

The solve-facts at node 8 and 14 are presented in Table 4. We obtain these facts from the solve facts at node 9 (respec-
tively 19) and allowing for x2 (respectively x1) the three possible cases that this new variable is added to P only or N only
or to both N and P and S . We do not explicitly present the facts at the root node. However, it can now be easily verified
that the success-fact cannot be derived because the solve′-predicate will be true for any value of (i, S). Note that i = 0 in all
solve-facts at the root, since all hypotheses appear in the bag at node 0. Hence, for every value of S at node 0, there exists
exactly 1 extension to the hypotheses at bags below node 0 (namely S itself). Intuitively, the solve′-predicate is true for
any value of (i, S) with i = 0 and S ∈ {∅, {x1}, {x2}, {x1, x2}}, because any truth assignment on {x1, x2, x4} can be extended
to the remaining variables by setting x3 and x6 to true and x5 to false, s.t. all clauses in C are true but one manifestation
(namely x5) is false.

Formally, this property can be seen as follows: Note that there are 18 facts in node 8 where the d-value is ‘y’. These 18
facts correspond to all possible values of the parameters S, P , N for the variables x1, x2, and x4. The d-value indicates that
on the considered extensions of these truth assignments, some manifestation (namely x5) is assigned the truth value false.
At node 2, through the datalog rule for branch nodes, we will again get 18 facts with all possible assignments of x1, x2
and x4, whose d-value is ‘y’. This same set of value combinations will also be present in the solve-facts at the root node 0.
But then, for every value of S , the solve′-predicate will be true. Thus, the success-fact cannot be derived by the program and
we conclude that the PAP P has no solution.

4.3. Relevance enumeration problem

The problem of computing all relevant hypotheses can be clearly expressed as a unary MSO-query and, thus, by a
monadic datalog program. Indeed, it is straightforward to extend our Solvability program to a program for the Relevance
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Table 4
Solvability Example (3).

Node solve facts

8 solve(8,0,∅, {x1, x2, x4},∅,∅, ‘y’), solve(8,0,∅, {x1, x4}, {x2},∅, ‘y’),
solve(8,0, {x2}, {x1, x2, x4},∅,∅, ‘y’), solve(8,0,∅, {x1, x2}, {x4},∅, ‘y’),
solve(8,0,∅, {x1}, {x2, x4},∅, ‘y’), solve(8,0, {x2}, {x1, x2}, {x4},∅, ‘y’),
solve(8,0,∅, {x2, x4}, {x1},∅, ‘y’), solve(8,0,∅, {x4}, {x1, x2},∅, ‘y’),
solve(8,0, {x2}, {x2, x4}, {x1},∅, ‘y’), solve(8,0,∅, {x2}, {x1, x4},∅, ‘y’),
solve(8,0,∅,∅, {x1, x2, x4},∅, ‘y’), solve(8,0, {x2}, {x2}, {x1, x4},∅, ‘y’),
solve(8,0, {x1}, {x1, x2, x4},∅,∅, ‘y’), solve(8,0, {x1}, {x1, x4}, {x2},∅, ‘y’),
solve(8,0, {x1, x2}, {x1, x2, x4},∅,∅, ‘y’), solve(8,0, {x1}, {x1, x2}, {x4},∅, ‘y’),
solve(8,0, {x1}, {x1}, {x2, x4},∅, ‘y’), solve(8,0, {x1, x2}, {x1, x2}, {x4},∅, ‘y’),
solve(8,0,∅, {x1, x2, x4},∅,∅, ‘n’), solve(8,0,∅, {x1, x4}, {x2},∅, ‘n’),
solve(8,0, {x2}, {x1, x2, x4},∅,∅, ‘n’), solve(8,0,∅, {x2, x4}, {x1},∅, ‘n’),
solve(8,0,∅, {x4}, {x1, x2},∅, ‘n’), solve(8,0, {x2}, {x2, x4}, {x1},∅, ‘n’),
solve(8,0,∅, {x2}, {x1, x4},∅, ‘n’), solve(8,0,∅,∅, {x1, x2, x4},∅, ‘n’),
solve(8,0, {x2}, {x2}, {x1, x4},∅, ‘n’), solve(8,0, {x1}, {x1, x2, x4},∅,∅, ‘n’),
solve(8,0, {x1}, {x1, x4}, {x2},∅, ‘n’), solve(8,0, {x1, x2}, {x1, x2, x4},∅,∅, ‘n’)

14 solve(14,0,∅, {x1, x2, x4},∅,∅, ‘n’), solve(14,0,∅, {x2, x4}, {x1},∅, ‘n’),
solve(14,0, {x1}, {x1, x2, x4},∅,∅, ‘n’), solve(14,0,∅, {x1, x2}, {x4},∅, ‘n’),
solve(14,0,∅, {x2}, {x1, x4},∅, ‘n’), solve(14,0, {x1}, {x1, x2}, {x4},∅, ‘n’),
solve(14,0,∅, {x1, x4}, {x2},∅, ‘n’), solve(14,0,∅, {x4}, {x1, x2},∅, ‘n’),
solve(14,0, {x1}, {x1, x4}, {x2},∅, ‘n’), solve(14,0,∅, {x1}, {x2, x4},∅, ‘n’),
solve(14,0,∅,∅, {x1, x2, x4},∅, ‘n’), solve(14,0, {x1}, {x1}, {x2, x4},∅, ‘n’),
solve(14,0, {x2}, {x1, x2, x4},∅,∅, ‘n’), solve(14,0, {x2}, {x2, x4}, {x1},∅, ‘n’),
solve(14,0, {x1, x2}, {x1, x2, x4},∅,∅, ‘n’), solve(14,0, {x2}, {x1, x2}, {x4},∅, ‘n’),
solve(14,0, {x2}, {x2}, {x1, x4},∅, ‘n’), solve(14,0, {x1, x2}, {x1, x2}, {x4},∅, ‘n’),
solve(14,0,∅, {x1, x2, x4},∅,∅, ‘y’), solve(14,0,∅, {x2, x4}, {x1},∅, ‘y’)
solve(14,0, {x1}, {x1, x2, x4},∅,∅, ‘y’), solve(14,0,∅, {x1, x2}, {x4},∅, ‘y’)
solve(14,0,∅, {x2}, {x1, x4},∅, ‘y’), solve(14,0, {x1}, {x1, x2}, {x4},∅, ‘y’),
solve(14,0,∅, {x1}, {x2, x4},∅, ‘y’), solve(14,0,∅,∅, {x1, x2, x4},∅, ‘y’),
solve(14,0, {x1}, {x1}, {x2, x4},∅, ‘y’), solve(14,0, {x2}, {x1, x2}, {x4},∅, ‘y’),
solve(14,0, {x2}, {x2}, {x1, x4},∅, ‘y’), solve(14,0, {x1, x2}, {x1, x2}, {x4},∅, ‘y’),
solve(14,0, {x2}, {x1, x2, x4},∅,∅, ‘y’), solve(14,0, {x2}, {x2, x4}, {x1},∅, ‘y’),
solve(14,0, {x1, x2}, {x1, x2, x4},∅,∅, ‘y’)

enumeration problem: Suppose that some hypothesis h occurs in the bag of the root r of T . Then h is relevant if and only
if there exists a subset S ⊆ H(r) and an index i, s.t. h ∈ S and S can be extended to a solution S̄ i ⊆ H(Tr) of the PAP P .
Naively, one can compute all relevant hypotheses by considering the tree decomposition T as rooted at various nodes, s.t.
each h ∈ H is contained in the bag of at least one such root node. Obviously, this method has quadratic time complexity
w.r.t. the data size.

However, one can do better by computing the solve-facts at each node v in T simultaneously both for a bottom–up
traversal of T and for a top–down traversal of T (by means of a new predicate solve ↓). The tree decomposition can of
course be modified in such a way that every hypothesis h ∈ H occurs in at least one leaf node of T . Moreover, for every
branch node v in the tree decomposition, we insert a new node u as new parent of v , s.t. u and v have identical bags.
Hence, together with the two child nodes of v , each branch node is “surrounded” by three neighboring nodes with identical
bags. It is thus guaranteed that a branch node always has two child nodes with identical bags – no matter where T is
rooted.

Then the relevant hypotheses can be obtained via the solve ↓ (v, . . .) facts which are true in the minimal model of the
interpreted program for all leaf nodes v of T (since these facts correspond precisely to the solve(v, . . .) facts if T were
rooted at v). The details of the additional datalog rules required compared with the Solvability test are given in Fig. 6. Of
course, we now also need a new predicate aux ↓, which plays the analogous role for the definition of the solve ↓-predicate as
the aux-predicate in Fig. 5 did for the definition of solve. Further analogies between the definition of solve ↓ and solveconcern
the various node types: For a top–down traversal, the root node plays the role that the leaf node formerly played. The child
node of a variable (respectively clause) introduction node plays in the top–down traversal the role of a variable (respectively
clause) removal node in the bottom–up traversal, i.e.: the bag at such a node has one variable (respectively clause) less than
the bag of the previously visited node. Likewise, the child node of a variable (respectively clause) removal node plays in the
top–down traversal the role of a variable (respectively clause) introduction node. The only tricky case is that of a branch
node. Note that our program in Fig. 6 does not derive any solve ↓-facts for the branch nodes themselves. For deriving the
solve D-facts at the child nodes of a branch node, we distinguish two cases: If the top–down traversal continues with the
first child v of a branch node b, then the parent of b plays the role of v1 and the second child of b plays the role of v2.
Care has to be taken that the solve ↓-predicate at node v is defined in terms of the solve ↓-predicate at the parent of b
but in terms of the solve ↓-predicate at the second child of b. Analogously, the solve ↓-predicate at v is defined if v is the
second child of a branch node.
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Program Relevance

/* root node. */
solve ↓ (v, S,0, P , N, C1,d) ← root(v), bag(v, X, C), svar(v, S), S ⊆ P ,

P ∪ N = X , P ∩ N = ∅, check(P , N, C1, C,d).

/* child of variable introduction node. */
aux ↓ (v, S, i,0, P , N, C1,d) ← bag(v, X, C), child1(v, v1), bag(v1, X � {x}, C),

solve ↓ (v1, S, i, P � {x}, N, C1,d), x /∈ S .

aux ↓ (v, S, i,0, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve ↓ (v1, S, i, P , N � {x}, C1,d).

aux ↓ (v, S, i,1, P , N, C1,d) ← bag(v, X, C), child1(v1, v), bag(v1, X � {x}, C),
solve ↓ (v1, S � {x}, i, P � {x}, N, C1,d).

/* child of clause introduction node. */
solve ↓ (v, S, i, P , N, C1,d) ← bag(v, X, C), child1(v, v1), bag(v1, X, C � {c}),

solve ↓ (v1, S, i, P , N, C1 � {c},d).

/* child of variable removal node. */
solve ↓ (v, S, i, P � {x}, N, C1 ∪ C2,d1) ← bag(v, X � {x}, C), child1(v, v1),

bag(v1, X, C), solve ↓ (v1, S, i, P , N, C1,d1), check({x},∅, C2, C,d2).

solve ↓ (v, S, i, P , N � {x}, C1 ∪ C2,d1 or d2) ← bag(v, X � {x}, C), child1(v, v1),
bag(v1, X, C), solve ↓ (v1, S, i, P , N, C1,d1), check(∅, {x}, C2, C,d2).

solve ↓ (v, S � {x}, i, P � {x}, N, C1 ∪ C2,d1) ← bag(v, X � {x}, C), child1(v, v1),
bag(v1, X, C), solve ↓ (v1, S, i, P , N, C1,d1), check({x},∅, C2, C,d2), hyp(x).

/* child of clause removal node. */
solve ↓ (v, S, i, P , N, C1 ∪ C2,d1) ← bag(v, X, C � {c}), child1(v, v1),

bag(v1, X, C), solve ↓ (v1, S, i, P , N, C1,d1), check(P , N, C2, {c},d2).

/* first child of branch node. */
aux ↓ (v, S, i1, i2, P , N, C1 ∪ C2,d1 or d2) ← bag(v, X, C),

child1(v,b), child1(b, v1), bag(v1, X, C), child2(v2,b), bag(v2, X, C),
solve ↓ (v1, S, i1, P , N, C1,d1), solve(v2, S, i2, P , N, C2,d2).

/* second child of branch node. */
aux ↓ (v, S, i1, i2, P , N, C1 ∪ C2,d1 or d2) ← bag(v, X, C),

child2(v,b), child1(b, v1), bag(v1, X, C), child1(b, v2), bag(v2, X, C),
solve ↓ (v1, S, i1, P , N, C1,d1), solve(v2, S, i2, P , N, C2,d2).

/* child nodes of variable introduction and branch nodes: aux ⇒ solve */
solve ↓ (v, S, i, P , N, C,d) ← aux ↓ (v, S, i1, i2, P , N, C,d), reduce ↓ (v, S, i, i1, i2).

/* result (at leaf nodes). */

relevant(h) ← leaf (v), bag(v, X, C), solve ↓ (v, S, i, P , N, C, ‘n’),
not solve′ ↓ (v, S, i), h ∈ S .

solve′ ↓ (v, S, i) ← bag(v, X, C), solve ↓ (v, S, i, P , N, C, ‘y’).

Fig. 6. Relevance enumeration program.

The resulting algorithm works in linear time since it essentially just doubles the computational effort of the Solvability
program. In total, we thus get the following result.

Theorem 4.7. The datalog program in Fig. 6 solves the Relevance enumeration problem of PAPs, i.e.: Suppose that the program is
applied to a τtd-structure Atd encoding a PAP P = 〈V , H, M, C〉 together with a tree decomposition T of the clause set C . Then,
for every h ∈ H, the fact relevant(h) is true in the minimal model of this program and the input τtd-structure Atd if and only if the
hypothesis h is relevant in the PAP P . Moreover, for any PAP P = 〈V , H, M, C〉 and tree decomposition T of width at most w, the
program can be evaluated in time O(25∗3w+2 ∗ |P |).

Note that in all programs presented in Section 4, we consider the tree decomposition as part of the input. It has already
been mentioned in Section 2.1 that, in theory, for every given value w � 1, it can be decided in linear time (w.r.t. the
size of the input structure), if some structure has treewidth at most w . Moreover, in case of a positive answer, a tree
decomposition of width w can also be computed in linear time, see [8]. We have also mentioned in Section 2.1, that the
practical usefulness of this linearity is limited due to excessively big constants [39]. At any rate, the improvement of tree
decomposition algorithms is an area of very active research and considerable progress has recently been made in developing
heuristic-based tree decomposition algorithms [39,9,49,10].
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Table 5
Processing time in ms for the SAT problem.

tw #V #Cl #tn MD (ms) MiniSat (ms)

3 5 9 24 0.04 < 10
3 31 48 195 0.2 < 10
3 347 522 2157 0.8 < 10
3 3955 5934 23 793 8.1 < 10
3 32 765 49 149 207 438 65.5 40
3 337 859 506 790 2 120 361 643.9 430

Table 6
Processing time in ms for the Solvability problem.

tw #H #M #V #Cl #tn MD MONA

3 1 1 3 1 3 0.3 870
3 2 2 6 2 12 0.5 1710
3 3 3 9 3 21 0.6 12 160
3 4 4 12 4 34 0.9 –
3 7 7 21 7 69 1.5 –
3 11 11 33 11 105 2.3 –
3 15 15 45 15 141 2.9 –
3 19 19 57 19 193 3.9 –
3 23 23 69 23 229 4.7 –
3 27 27 81 27 265 5.3 –
3 31 31 93 31 301 6.1 –

5. Implementation and experimental results

5.1. Datalog approach

To test the performance and, in particular, the scalability of our new algorithms, we have implemented our SAT and
Solvability programs in C++.

The SAT experiments were conducted on a PC with Intel(R) Pentium(R) D 3.00 GHz CPU, 1 GB of main memory, 2 GB
of virtual memory, running Linux (Ubuntu) with kernel 2.6.22-14-generic. The experiments of the Solvability program were
conducted on Linux kernel 2.6.17 with a 1.60 GHz Intel Pentium(M) processor and 512 MB of memory. We measured the
processing time on different input parameters such as the number of variables, clauses, hypotheses, and manifestations. The
treewidth in all the test cases was 3.

Due to the lack of available test data, we generated a balanced normalized tree decomposition and test data sets with
increasing input parameters by expanding the tree in a breadth-first style. We have ensured that all different kinds of nodes
occur evenly in the tree decomposition.

We compared the performance of our program with the open-source SAT solver MiniSat, see http://minisat.se/. The
outcome of the tests for the SAT problem are shown in Table 5. In the table, #V, #Cl and #tn represent the number of
variables, the number of clauses and the number of tree nodes, respectively. Note that the time measurement for MiniSat is
restricted to the unit of seconds, thus the time consumption under 10 ms could not be obtained.

The results show that, for low treewidth of the underlying formulae, the performance of our method is comparable
with an up-to-date SAT solver – with the SAT solver being faster by a factor of approximately 1.5 in most cases. Of course,
this comparison should take into account that the current SAT solvers have evolved from intensive research and numerous
competitions over 20 years, whereas our system is just a prototype implementation. Moreover, it has been recently observed
that SAT solvers actually do take advantage of low treewidth without being specifically tuned for such instances, see [4]. The
potential of our datalog-based approach is therefore not to be seen as a competitor of up-to-date SAT solvers but rather as
a method that is applicable to problems that go far beyond SAT. In particular, our method is not restricted to NP-problems.
This is illustrated by the application to abduction in our paper or to circumscription and disjunctive logic programming in
[36,37]. Without the restriction to bounded treewidth, all these problems lie on the second level of the polynomial hierarchy.

The outcome of the tests for the Solvability problem is shown in Table 6 where tw stands for the treewidth; #H, #M,
#V, #Cl and #tn stand for the number of hypotheses, manifestations, all variables, clauses and tree nodes, respectively. The
processing time (in ms) obtained with our implementation of the monadic datalog approach are displayed in the column
labeled “MD”. The measurements nicely reflect an essentially linear increase of the processing time with the size of the
input. Moreover, there is obviously no “hidden” constant which would render the linearity useless.

We also wanted to compare our implementation with the standard MSO-to-FTA approach [3,25]. For this purpose, we
carried out some experiments with a prototype implementation using MONA [38] for the MSO model checking. The time
measurements of these experiments are shown in the last column of Table 6. Due to problems discussed in Section 5.2,
MONA does not ensure linear data complexity. Hence, all tests below line 3 of the table failed with “out-of-memory” errors.

http://minisat.se/
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General Generic MSO-to-FTA approach
Input: MSO-formula ϕ , treewidth w , structure A
Output: if tw(A) � w then output “Yes” / “No”, else output “tw(A) > w”.

Transformation of the MSO-formula ϕ .
I. from ϕ and w , compute the MSO-formula ϕ∗;

Computation of a colored, binary tree T ∗ .
II. compute a tree decomposition T of A with width w;

if tw(A) > w then HALT with result “tw(A) > w”;
III. from A and T , compute a colored, binary tree T ∗;

MSO-model checking.
IV. check if ϕ∗ evaluates to true over T ∗:

(a) compute an FTA equivalent to ϕ∗;
(b) check if the FTA accepts the tree T ∗;

Fig. 7. Generic MSO-to-FTA approach.

Fig. 8. System architecture of MSO-to-FTA approach.

Moreover, also in cases where the exponential data complexity does not yet “hurt”, our datalog approach outperforms the
MSO-to-FTA approach by a factor of 100 or even more.

5.2. MSO-to-FTA approach

Recipes to devise concrete algorithms based on Courcelle’s Theorem can be found in the literature, see e.g. [3,12,11,25].
The principal steps of these approaches are described in Fig. 7.

The problem of evaluating an MSO-formula ϕ over a finite structure A of treewidth at most w is transformed into an
equivalent problem of evaluating an MSO-formula ϕ∗ over colored, binary trees T ∗ . To this end, the formula ϕ∗ , which
depends on the original formula ϕ and the fixed treewidth w , has to be computed (step I). The computation of the colored,
binary tree T ∗ proceeds in two steps: First, a tree decomposition T of the input structure A with width w is computed
(step II). Then a colored, binary tree T ∗ corresponding to A and T is computed (step III). In particular, T ∗ has the same
tree structure as T . The final step is the actual model-checking (step IV). The problem of evaluating the MSO-formula over
the tree T ∗ is thus reduced to an equivalent tree language recognition problem. To this end, the formula ϕ∗ is transformed
into an equivalent FTA (step IVa). Then it is checked if T ∗ is accepted by this FTA (step IVb).

We have implemented the Solvability problem of propositional abduction based on the MSO-formula ϕ in the proof of
Theorem 3.10. This MSO-formula was transformed into ϕ∗ in an ad hoc manner – depending on the chosen treewidth w .
Rather than computing explicitly the tree decomposition T , we simply considered the tree decomposition as an additional
part of the input. Our transformation of T into T ∗ essentially implements the algorithm from [25] – apart from some
simplifications which are possible here (e.g., due to the fact that we have no predicates over sets of constants in the input
database). For the last step, we decided to take advantage of an existing MSO model checking tool, namely MONA [38]. To
the best of our knowledge, MONA is the only existing such tool.

Experimental results with our prototype implementation on several instances of the Solvability problem are reported
in the last column of Table 6. The observed runtime is in sharp contrast to the linear time behavior according to the
theoretical results shown in Section 3. An analysis of the various components of our prototype has revealed that the way
how MONA evaluates an MSO-formula ϕ∗ over a tree T ∗ is very problematical in that it combines the MSO-formula ϕ∗ and
(a representation of) the tree T ∗ to a single formula whose validity is then checked. The correct way of handling this model
checking problem according to [25] is depicted in Fig. 8. The steps I, II, and III are clear. However, it is crucial to divide step
IV into two substeps: step IVa, which computes a finite tree automaton from the MSO-formula ϕ∗ , and step IVb, which runs
the FTA on every tree T ∗ . The important point to notice is that steps I and IVa (depicted on the left-hand side of Fig. 8)
are carried out once and for all while the steps II, III, and IVb (shown on the right-hand side) are repeated for every single
input structure Ai .
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In contrast, MONA also considers the ground atoms encoding T ∗ as part of the formula and then compiles the resulting
MSO-formula (consisting of ϕ∗ and the encoding of T ∗) into an FTA. In other words, the size of the FTA grows (exponen-
tially!) with the size of T ∗ . Consequently, on the one hand, the runtime needed by MONA is exponential. On the other
hand, the state explosion of the FTA led to an “out-of-memory” error of MONA already for very small problem sizes. In
the experiments described in Table 6, this negative effect already happened for problem instances with 12 variables and
4 clauses.

In fact, we have also used the algorithm of transforming the MSO formulae together with the ground atoms of the
finite structure into finite tree automata. Surprisingly, the transformation failed with an “out-of-memory” error. This is
counter-intuitive because the formula itself should is clearly smaller than the formula together with the ground atoms of
the structure. According to our test results, it worked at least for instances with small sizes. The reason was that, with
a very small set of ground atoms, the optimization module of MONA managed to remove many useless states during the
transformation. However, when using MONA with the MSO-formula only, the optimization approach seems to be not in
effect.

We therefore made another attempt following the MSO-to-FTA approach by implementing step IVa in Fig. 8 ourselves.
Alas, this attempt led to failure yet before we were able to feed any input data to the program. The principal problem with
the MSO-to-FTA approach is the “state explosion” of the resulting FTA (cf. [26,41]), which tends to occur even if one wants
to evaluate comparatively simple MSO-formulae over trees. The situation gets even worse if we consider MSO on structures
with bounded treewidth, since the original (possibly simple) MSO-formula ϕ over a finite structure first has to be transformed
into an equivalent MSO-formula ϕ∗ over trees. Hence, this transformation (e.g., by the algorithm in [25]) leads to a much
more complex formula (in general, even with additional quantifier alternations) than the original formula. In summary, we
have come to the same conclusion as Grohe in [32], namely, that the algorithms derived via Courcelle’s Theorem are “useless
for practical applications” and that the main benefit of Courcelle’s Theorem is that it provides “a simple way to recognize a
property as being linear time computable”.

6. Conclusions and future work

In this paper, we have used Courcelle’s Theorem to prove the fixed-parameter tractability of a whole range of problems
in knowledge representation and reasoning. More precisely, we have shown that many problems in the area of abduction,
closed world reasoning, circumscription, and disjunctive logic programming are solvable in linear time if the treewidth of
the considered formulae or programs is bounded by some constant. We have also experimented with a prototype implemen-
tation based on the standard MSO-to-FTA approach [25]. However, in accordance with [32], we have come to the conclusion
that this generic way of turning the MSO characterization of a problem into an algorithm is not feasible in practice – despite
the theoretical fixed-parameter linearity of this approach.

Thus, in the second part of this work, we have investigated an alternative method for turning theoretical tractability re-
sults obtained via Courcelle’s Theorem into feasible computations. Based on the monadic datalog approach presented in [30],
we have constructed new algorithms for logic-based abduction. The experimental results obtained with an implementation
of these algorithms underline the feasibility of this approach.

The datalog programs presented in this paper were obtained by an ad hoc construction rather than via a generic trans-
formation from MSO. Nevertheless, we are convinced that the idea of a bottom–up propagation of certain SAT and UNSAT
conditions is quite generally applicable. As a next step, we are therefore planning to devise new algorithms based on our
monadic datalog approach also for other problems in the area of knowledge representation and reasoning. In fact, for cir-
cumscription and for disjunctive logic programming, related algorithms have already been presented recently, see [36,37].

In this paper, the monadic datalog approach from [30] has only been applied to decision problems (e.g., is a given PAP
solvable?) or to the enumeration problem of a unary query with one free individual variable (e.g., for a given PAP, compute
all relevant hypotheses). In the future, we are planning to extend this approach to other kinds of problems like counting
problems (e.g., how many solutions does a given PAP have?) or enumeration problems for more general queries (e.g., for a
given PAP, compute all solutions). In fact, first steps in this direction have already been made in [36,37].

Our notion of treewidth of the problems considered here corresponds to the treewidth of the primal graph of the un-
derlying structures, i.e.: this graph has as vertices all domain elements occurring in the structure; moreover, two vertices
are adjacent in the primal graph if the corresponding domain elements jointly occur in some tuple in the structure. Clearly,
also other mappings of the knowledge representation and reasoning problems to graphs – in particular, to directed graphs
– are conceivable. Moreover, recently, other interesting notions of decompositions and width have been developed, see e.g.
[7,6,43,35]. We are planning to investigate their applicability to the problems studied here.
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Appendix A. Proof of Lemma 4.1

We have to show that the solve-predicate computed by the SAT-program has the intended meaning: For all values of
v, P , N, C , the ground fact solve(v, P , N, C) is true in the minimal model of the interpreted program if and only if the
following condition holds:

Property A. There exists an extension J of the assignment (P , N) to Var(Tv), s.t. (Cl(Tv) \ Cl(v)) ∪ C is true in J while for all clauses
c ∈ Cl(v) \ C, the restriction c|Var(Tv ) is false in J .

The proof goes by structural induction on the tree decomposition.
Base case. For a leaf node v , exactly those facts solve(v, P , N, C) with C ⊆ Cl(v) are true in the minimal model, for which

the following condition holds: ∀c ∈ C , c|Var(v) evaluates to true in the assignment (P , N) and ∀c ∈ Cl(v) \ C , c|Var(v) evaluates
to false in (P , N).

The only extension J of (P , N) to Var(Tv) is (P , N) itself. Hence, solve(v, P , N , C) is true in the minimal model if and
only if Property A holds.

Induction step – “only if”-direction. Suppose that for arbitrary values of v, P , N, C , the ground fact solve(v, P , N, C) is true in
the minimal model of the interpreted program. In order to show that Property A holds, we distinguish five cases according
to the five types of internal nodes.

(1) Variable removal node with removal of variable x. Let solve(v, P , N, C) be true in the minimal model and let v1
denote the child of v . Then either solve(v1, P � {x}, N, C) or solve(v1, P , N � {x}, C) is also true in the minimal model.
We restrict ourselves to the first case here. The latter is treated analogously. By the induction hypothesis, there exists an
extension J of the assignment (P � {x}, N) to Var(Tv1 ) = Var(Tv), s.t. (Cl(Tv) \ Cl(v)) ∪ C is true in J while for all clauses
c ∈ C , the restriction c|Var(Tv ) is false in J . Then J is also the desired extension of (P , N).

(2) Clause removal node with removal of clause c. Let solve(v, P , N, C) be true in the minimal model and let v1 denote
the child of v . By construction, C is of the form C ′ \ {c} for some C ′ ⊆ Cl(v1), s.t. solve(v1, P , N, C ′) is true in the minimal
model. By the induction hypothesis, there exists an extension J of (P , N) to Var(Tv) = Var(Tv1 ), s.t. (Cl(Tv1 ) \ Cl(v1)) ∪ C ′
is true in J while for all clauses d ∈ Cl(v1) \ C ′ , the restriction d|Var(Tv ) is false in J . Note that Cl(v) ∪ {c} = Cl(v1) and
C ∪ {c} = C ′ . Hence, J is also the desired extension of (P , N) in the node v , i.e., (Cl(Tv) \ Cl(v)) ∪ C = (Cl(Tv1 ) \ Cl(v1)) ∪ C ′
is true in J . Moreover, for every d in Cl(v) \ C = Cl(v1) \ C ′ , the restriction d|Var(Tv ) is false in J .

(3) Variable introduction node with introduction of variable x. Let solve(v, P � {x}, N, C) be true in the minimal model
and let v1 denote the child of v . The case solve(v , P , N � {x}, C) is treated analogously and, therefore, omitted here. There
exist sets C1 and C2 with C = C1 ∪ C2, s.t. solve(v1, P , N, C1) and true({x},∅, C2, Cl(v)) are true in the minimal model.
The latter condition means that C2 contains exactly those clauses in Cl(v) where the propositional variable x occurs in
unnegated form. Of course, we have Cl(Tv1 ) = Cl(Tv) and Var(Tv1 ) = Var(Tv) \ {x}. By the induction hypothesis, there exists
an extension J1 of (P , N) to Var(Tv1 ), s.t. (Cl(Tv1 ) \ Cl(v1)) ∪ C1 is true in J1 while for all clauses c ∈ Cl(v1) \ C1, the
restriction c|Var(Tv1 ) is false in J1. Now consider the extension J of (P � {x}, N) to Var(Tv) which is obtained by extending
J1 to Var(Tv) = Var(Tv1 )∪{x} with J (x) = true. By construction, all clauses in C \ C1 have a positive occurrence of x and are
therefore true in J . Hence, all clauses in (Cl(Tv) \ Cl(v)) ∪ C are indeed true in J . On the other hand, by the definition of C ,
for all clauses c ∈ Cl(v) \ C , the restriction c|Var(Tv ) is false in J . Hence, J is indeed the desired extension of the assignment
(P � {x}, N).

(4) Clause introduction node with introduction of clause c. We have Var(Tv1 ) = Var(Tv) and Cl(Tv1 ) = Cl(Tv) \ {c}. By
the connectedness condition, c|Var(Tv ) = c|Var(v) . Hence, the truth value of c|Var(Tv ) in any extension of (P , N) to Var(Tv)

coincides with the truth value of c|Var(v) in (P , N). Now let solve(v, P , N, C) be true in the minimal model and let v1 denote
the child of v . By construction, there exist facts solve(v1, P , N, C1) and true(P , N, C2, {c}) with C = C1 ∪ C2 which are true
in the minimal model. Thus, by the induction hypothesis, there exists an extension J of (P , N) to Var(Tv1 ) = Var(Tv), s.t.
(Cl(Tv1 ) \ Cl(v1)) ∪ C1 is true in J while for all clauses d ∈ Cl(v1) \ C1, the restriction d|Var(Tv ) is false in J . We claim that J
is the desired extension of (P , N) in v .

To see this, first consider the case that c|Var(v) is false in (P , N). Hence, C2 = ∅ and, therefore, C = C1. Moreover, (Cl(Tv)\
Cl(v)) ∪ C = (Cl(Tv1 ) \ Cl(v1)) ∪ C1 is true in J . On the other hand, for all clauses d in (Cl(v) \ C) = (Cl(v) \ C1), we either
have d ∈ Cl(v1) \ C1 or d = c. In either case, the restriction d|Var(Tv ) is false in J .

It remains to consider the case that c|Var(v) is true in (P , N). In this case, C2 = {c} and C is of the form C = C1 ∪ {c}.
We have (Cl(Tv) \ Cl(v)) ∪ C = (Cl(Tv1 ) \ Cl(v1)) ∪ C1 ∪ {c}. We are considering the case that c is true in (P , N) and thus
in J . Hence, (Cl(Tv) \ Cl(v)) ∪ C is true in J . On the other hand, for all clauses d in (Cl(v) \ C) = (Cl(v1) \ C1), the restriction
d|Var(Tv ) is false in J .

(5) Branch node. Suppose that solve(v, P , N, C) is true in the minimal model with C = C1 ∪ C2, s.t. solve(v1, P , N, C1)

and solve(v2, P , N, C2) are also true in the minimal model. By the induction hypothesis, for each i ∈ {1,2}, the assignment
(P , N) can be extended to some interpretation J i on Var(Tvi ), s.t. (Cl(Tvi ) \ Cl(v)) ∪ Ci is true in J i while for all clauses
c ∈ Cl(v) \ Ci , the restriction c|Var(Tvi )

is false in J i . We are using the fact that Cl(v) = Cl(vi) holds. Note that, by the
definition of normalized tree decompositions and by the connectedness condition, Var(Tv1 ) ∩ Var(Tv2 ) = Var(v). Moreover,
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J1 and J2 coincide on Var(v) since they both extend (P , N). Hence, we may define an extension J of (P , N) to Var(Tv) as
follows

J (x) =
⎧⎨
⎩

(P , N)(x) if x ∈ Var(v),

J1(x) if x ∈ Var(Tv1) \ Var(v),

J2(x) if x ∈ Var(Tv2) \ Var(v).

We claim that J has the desired property: Every clause c in (Cl(Tv) \ Cl(v)) ∪ C is contained in at least one of the sets
(Cl(Tvi ) \ Cl(v)) ∪ Ci with i ∈ {1,2}. Hence, each such clause c is true in J by the induction hypothesis. Likewise, for every
clause c ∈ Cl(v) \ C , both restrictions c|Var(Tvi )

are false in J . Hence, also c|Var(Tv ) is false in J .
Induction step – “if”-direction. Suppose that for arbitrary values of v, P , N, C , Property A holds, i.e., v denotes a node in T

and (P , N) is an assignment on the variables Var(v). Moreover, C is an arbitrary clause set with C ⊆ Cl(v) and there exists
an extension J of (P , N) to Var(Tv), s.t. (Cl(Tv) \ Cl(v)) ∪ C is true in J while for all clauses d ∈ Cl(v) \ C , the restriction
d|Var(Tv ) is false in J . We have to show that then the fact solve(v, P , N, C) is indeed true in the minimal model of the
interpreted program. Again, we distinguish the five cases according to the five types of internal nodes.

(1) Variable removal node with removal of variable x. Note that Cl(Tv) = Cl(Tv1 ), Cl(v) = Cl(v1), Var(Tv) = Var(Tv1 ), and
Var(v) = Var(v1) \ {x}, where v1 is the child of v . We have to distinguish two cases depending on whether J (x) = true or
J (x) = false. We only treat the first case here. The second one goes analogously. Since J (x) = true, J is also an extension
of (P � {x}, N). By assumption, (Cl(Tv) \ Cl(v)) ∪ C = (Cl(Tv1 ) \ Cl(v1)) ∪ C is true in J while for all clauses d ∈ Cl(v) \ C =
Cl(v1)\ C , the restriction d|Var(Tv ) = d|Var(Tv1 ) is false in J . Hence, by the induction hypothesis, solve(v1, P �{x}, N, C) is true
in the minimal model and, therefore, solve(v, P , N, C) is also true.

(2) Clause removal node with removal of clause c. Note that Cl(Tv) = Cl(Tv1 ), Cl(v) = Cl(v1) \ {c}, Var(Tv) = Var(Tv1 ),
and Var(v) = Var(v1), where v1 is the child of v . Let C ′ = C ∪ {c}. By assumption, all clauses in (Cl(Tv) \ Cl(v)) ∪ C =
(Cl(Tv1 ) \ Cl(v1)) ∪ C ′ are true in J . On the other hand, for all clauses d in Cl(v) \ C = Cl(v1) \ C ′ , the restriction d|Var(Tv ) =
d|Var(Tv1 ) is false in J . Hence, by the induction hypothesis, solve(v1, P , N, C ′) is true in the minimal model and, therefore,
solve(v, P , N, C) is also true in the minimal model.

(3) Variable introduction node with introduction of variable x. In this case, we have Cl(Tv1 ) = Cl(Tv), Cl(v1) = Cl(v),
Var(Tv1 ) = Var(Tv) \ {x}, and Var(v1) = Var(v) \ {x}, where v1 is the child of v . We distinguish two cases depending on
whether x ∈ P or x ∈ N . We only treat the first case here. The second one goes analogously. Consider the assignment
(P \ {x}, N) on Var(v1) = Var(v) \ {x}. Moreover, let J1 denote the restriction of J to Var(Tv1 ) = Var(Tv) \ {x}. We define
C1 = {c ∈ C : c|Var(Tv1 ) is true in J1}. By the connectedness condition, the clauses in (Cl(Tv1 ) \ Cl(v1)) = (Cl(Tv) \ Cl(v)) do
not contain the variable x. Hence, they have the same truth value in J1 as in J , namely true. Thus, (Cl(Tv1 ) \ Cl(v1)) ∪ C1

is true in J1. On the other hand, for every d ∈ Cl(v1) \ C1, the restriction d|Var(Tv1 ) is false in J1. Thus, by the induction
hypothesis, solve(v1, P \ {x}, N, C1) is true in the minimal model.

Now let C2 be defined as C2 = {c ∈ C : x occurs unnegated in c}. Then C = C1 ∪ C2 holds. This is due to the fact that all
clauses in C are true in J . Hence, they are already true in J1 or they become true in J because of an unnegated occurrence
of x. Moreover, by the definition of the true-predicate, the fact true({x},∅, C2, C) is true in the minimal model. Thus, also
solve(v, P , N, C) is true in the minimal model.

(4) Clause introduction node with introduction of clause c. In this case, we have Cl(Tv1 ) = Cl(Tv)\ {c}, Cl(v1) = Cl(v)\ {c},
Var(Tv1 ) = Var(Tv) and Var(v1) = Var(v), where v1 is the child of v . By the connectedness condition, c|Var(Tv ) = c|Var(v)

holds. Let C2 be defined as C2 = {c} if c|Var(v) is true in (P , N) and C2 = ∅ otherwise. In either case, the fact
true(P , N, C2, {c}) is true in the minimal model.

Now let C1 = C \ C2. Clearly, (Cl(Tv1 ) \ Cl(v1)) ∪ C1 ⊆ (Cl(Tv) \ Cl(v)) ∪ C holds. By assumption, (Cl(Tv) \ Cl(v)) ∪ C is true
in J . Hence, (Cl(Tv1 ) \ Cl(v1)) ∪ C1 is also true in J . Moreover, for all clauses d in Cl(v1) \ C1 ⊆ Cl(v) \ C , the restriction
d|Var(Tv1 ) = d|Var(Tv ) is false in J . Hence, by the induction hypothesis, solve(v1, P , N, C1) is true in the minimal model. Thus,
by construction, also solve(v, P , N, C) is true in the minimal model.

(5) Branch node. Let v1, v2 denote the children of v and let i ∈ {1,2}. By the definition of branch nodes, we have Cl(v) =
Cl(v1) = Cl(v2) and Var(v) = Var(v1) = Var(v2). Let Ci be defined as Ci = {c ∈ C : c|Var(Tvi )

is true in J }. By assumption, for
every c ∈ C , the restriction c|Var(Tv ) is true in J . Hence, for every c ∈ C , at least one of c|Var(Tv1 ) and c|Var(Tv2 ) is true in J .
Thus, C = C1 ∪ C2.

Let J i denote the restriction of J to Var(Tvi ). By the connectedness condition, for any clause d ∈ (Cl(Tvi ) \ Cl(vi)), the
truth value of d|Var(Tvi )

in J i is identical to the truth value of d in J , namely true. Hence, (Cl(Tvi ) \ Cl(vi)) ∪ Ci is true in J i .
Now consider an arbitrary clause d ∈ Cl(vi) \ Ci = Cl(v) \ Ci ⊇ Cl(v) \ C . If d is in Cl(v) \ C then d|Var(Tv ) is false in J

and, therefore, also d|Var(Tvi )
is false in J i . On the other hand, if d is in C but not in Ci then, by the definition of Ci ,

d|Var(Tvi )
is also false in J i . Hence, in any case, the restriction d|Var(Tvi )

is false in J i . Thus, by the induction hypothesis,
solve(vi, P , N, Ci) is true in the minimal model for both i ∈ {1,2}. Thus, solve(v, P , N, C) with C = C1 ∪ C2 is also true in the
minimal model.
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Auxiliary Predicates

check(P , N, C1, C, ‘y’) ← true(P , N, C1, C), x ∈ N , man(x).

check(P , N, C1, C, ‘n’) ← true(P , N, C1, C), not check(P , N, C1, C, ‘y’).

defined(v, S, i1, i2) ← aux(v, S, i1, i2, P , N, C,d),

equal(v, S, i1, i2, j1, j2) ← defined(v, S, i1, i2), defined(v, S, j1, j2),
not diff (v, S, i1, i2, j1, j2).

diff (v, S, i1, i2, j1, j2) ← defined(v, S, i1, i2), defined(v, S, j1, j2),
aux(v, S, i1, i2, P , N, C,d), not aux(v, S, j1, j2, P , N, C,d).

diff (v, S, i1, i2, j1, j2) ← defined(v, S, i1, i2), defined(v, S, j1, j2),
aux(v, S, j1, j2, P , N, C,d), not aux(v, S, i1, i2, P , N, C,d).

less( j1, j2, i1, i2) ← j1 < i1.
less( j, j2, j, i2) ← j2 < i2.

reduced_smaller(v, S, i, i1, i2) ← less( j1, j2, i1, i2), reduce(v, S, i, j1, j2).

duplicate(v, S, i1, i2) ← less( j1, j2, i1, i2), equal(v, S, i1, i2, j1, j2).

open(v, S, i, i1, i2) ← j < i, not reduced_smaller(v, S, j, i1, i2).

reduce(v, S, i, i1, i2) ← 0 � i < K , defined(v, S, i1, i2),
not reduced_smaller(v, S, i, i1, i2), not duplicate(v, S, i1, i2),
not open(v, S, i, i1, i2).

Fig. B.1. reduce and auxiliary predicates.

Appendix B. Datalog definition of the reduce-predicate

As was mentioned in Section 4.2, we find it preferable to think of the reduce-predicate as a built-in predicate which can
be implemented very efficiently via appropriate hash codes. However, this is not a necessity, since it could also be imple-
mented in datalog (with negation). A datalog implementation of the reduce-predicate and of several auxiliary predicates is
given in Fig. B.1.

The idea of reduce(v, S, . . .) is twofold: (1) We want to detect “duplicates”: Two pairs (i1, i2) and ( j1, j2) are duplicates if
and only if for all values of (P , N, C,d), a fact aux(v, S, i1, i2, P , N, C,d) is true in the minimal model ⇔ aux(v, S, j1, j2, P ,
N, C,d) is true in the minimal model. In such a situation, we keep the lexicographically smallest pair (i1, i2) and delete
all other pairs. (2) We map the pairs of indices (i1, i2) which are not deleted in (1) in lexicographic order to contiguous
values i. The functionality of reduce can be provided very efficiently via hash codes for the facts aux(v, S, i1, i2, . . .). In
Fig. B.1, we show that it is also definable in datalog.

The only rule with head predicate reduce guarantees that a pair (i1, i2) of indices is mapped onto a single index i if
and only if the following conditions are fulfilled: (i) the pair (i1, i2) is defined, i.e., there exists at least one aux-fact for
this combination (v, S, i1, i2), (ii) no lexicographically smaller pair ( j1, j2) is mapped to i, (iii) there is no lexicographically
smaller pair ( j1, j2), s.t. (i1, i2) and ( j1, j2) give rise to exactly the same set of ground atoms aux(v, S, _, _, P , N, C,d) which
are true in the minimal model of the interpreted program, and (iv) for all indices j with j < i there exists a pair ( j1, j2)

smaller than (i1, i2) that is mapped onto j.
The intended meaning of the predicates check and reduce has already been explained in Section 4.2. The other pred-

icates in Fig. B.1 have the following meaning. defined(v, S, i1, i2) means that there exists at least one aux-fact for this
combination (v, S, i1, i2). equal(v, S, i1, i2, j1, j2) is true in the minimal model if and only if (i1, i2) and ( j1, j2) give
rise to exactly the same set of ground atoms aux(v, S, _, _, P , N, C , d) which are true in the minimal model of the pro-
gram, while diff (v, S , i1, i2, j1, j2) means that (i1, i2) and ( j1, j2) give rise to different sets of ground atoms aux(v, S, _,
_, P , N, C,d). less( j1, j2, i1, i2) is true in the minimal model if ( j1, j2) is lexicographically smaller than (i1, i2). With
reduced_smaller(v, S, i, i1, i2) we can check if some index pair ( j1, j2), which is lexicographically smaller than (i1, i2), is
mapped onto i. duplicate(v , S, i1, i2) means that there exists a lexicographically smaller pair ( j1, j2), s.t. (i1, i2) and ( j1, j2)

give rise to exactly the same set of ground atoms aux(v, S, _, _, P , N, C , d) true in the minimal model; in other words, (i1, i2)

is a duplicate. Finally, open(v, S, i, i1, i2) means that there exists an index j < i which has not been used as the target of the
mapping defined by the reduce-predicate, i.e., there exists no index pair ( j1, j2) smaller than (i1, i2), s.t. ( j1, j2) is mapped
onto j.
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