
Reasoning in Argumentation Frameworks
of Bounded Clique-Width 1

Wolfgang DVOŘÁK, Stefan SZEIDER and Stefan WOLTRAN

Institut für Informationssysteme,

Technische Universität Wien, A-1040 Vienna, Austria.

Abstract. Most computational problems in the area of abstract argumentation are
intractable, thus identifying tractable fragments and developing efficient algorithms
for such fragments are important objectives towards practically efficient argumenta-
tion systems. One approach to tractability is to view abstract argumentation frame-
works (AFs) as directed graphs and bound certain graph parameters. In particu-
lar, Dunne showed that many problems can be solved in linear time for AFs of
bounded treewidth. In this paper we consider the graph-parameter clique-width,
which is more general than treewidth. An additional advantage of clique-width
over treewidth is that it applies well to directed graphs and takes the orientation of
edges into account. We first give theoretical tractability results for AFs of bounded
clique-width and then introduce dynamic-programming algorithms for credulous
and skeptical reasoning.

Keywords. Computational Properties of Argumentation, Clique-Width, Fixed-
Parameter Tractability

1. Introduction

Starting with the seminal work by Dung [14] the area of argumentation has evolved to
one of the most active research branches within Artificial Intelligence (see, e.g., [2]).
Dung’s abstract argumentation frameworks, where arguments are seen as abstract enti-
ties which are just investigated with respect to their inter-relationship in terms of “at-
tacks”, are nowadays well understood and different semantics (i.e. the selection of sets of
arguments which are jointly acceptable) have been proposed. However, most computa-
tional problems studied for such frameworks are intractable (see, e.g. [13,16]), while the
importance of efficient algorithms for tractable fragments is evident. Symmetric [6] and
bipartite argumentation frameworks [15] are such examples of fragments, where certain
problems, although intractable in general, can efficiently be solved.

An interesting approach to dealing with intractable problems comes from param-
eterized complexity theory and is based on the fact, that many hard problems become
polynomial-time tractable if some problem parameter is bounded by a fixed constant. In
case the order of the polynomial bound on the runtime is independent of the parameter
one speaks of fixed-parameter tractability (FPT). Since abstract argumentation frame-

1Dvořák’s and Woltran’s work was supported by the Vienna Science and Technology Fund (WWTF) under
grant ICT08-028 and Szeider’s work was supported by the European Research Council, grant reference 239962.

works are naturally represented as directed graphs, understanding the complexity of ar-
gumentation problems with respect to graph parameters is of high importance.

Clique-width is such a graph parameter that measures in a certain sense the struc-
tural complexity of a directed or undirected graph [9,10,12]. The parameter is defined via
a graph construction process where only a limited number of vertex labels is available;
vertices that share the same label at a certain point of the construction process must be
treated uniformly in subsequent steps. Clique-width is related to the popular graph pa-
rameter treewidth [4]. Clique-width can be considered to be more general than treewidth
since there are classes of graphs with constant clique-width but arbitrarily high treewidth
(complete graphs, for instance). In contrast, graphs with bounded treewidth also have
bounded clique-width [5,12].

Many NP-hard problems are tractable for graphs of bounded treewidth or clique-
width. By means of a meta-theorem due to Courcelle, Makowsky, and Rotics [11] one
can solve any graph problem that can be expressed in Monadic Second Order Logic with
second-order quantification on vertex sets (MSO1) in linear time for graphs of clique-
width bounded by some fixed constant k. This result is similar to Courcelle’s meta-
theorem [7,8] for graphs of bounded treewidth.

First FPT results for argumentation used treewidth as parameter. While Dunne [15]
was the first to give the necessary MSO characterizations, recent work [17] turned this
theoretical tractability results (which follow from Courcelle’s meta-theorem) into effi-
cient dynamic programming algorithms. Moreover, [17] showed that for several other
parameters (in particular, directed treewidth) bounding the parameter does not render the
argumentation problems tractable.

In this work, we focus on argumentation frameworks of bounded clique-width,
which will lead us to a larger class of tractable argumentation frameworks. We empha-
size that the MSO characterizations in [15] already yield tractability results for bounded
clique-width (the involved MSO formulas are all from MSO1). Thus, the main contri-
bution in our paper is to introduce novel dynamic programming algorithms which put
these theoretical results to work. For this purpose we establish particular succinct data
structures (which we shall call (guarded) k-quadruples) characterizing the extensions of
an argumentation framework. Due to the different nature of treewidth and clique-width
these data structures differ significantly form those introduced in [17].

2. Argumentation Frameworks

In this section we introduce (abstract) argumentation frameworks [14], recall the pre-
ferred semantics for such frameworks, and highlight some known complexity results.

An argumentation framework (AF) is a pair F = (A, R) where A is a set of argu-
ments and R ⊆ A × A is the attack relation. We sometimes write a ֌ b instead of
(a, b) ∈ R, in case no ambiguity arises. Further, for S ⊆ A and a ∈ A, we write S ֌ a

(resp. a ֌ S) iff there exists b ∈ S, such that b ֌ a (resp. a ֌ b). An argument a ∈ A

is defended by a set S ⊆ A iff for each b ∈ A, such that b ֌ a, also S ֌ b holds.

Example 1. Let F = (A, R) with A = {a, b, c, d} and R = {(a, b), (c, b), (c, d), (d, c)}.
Thus, AFs can be represented as directed graphs. For instance, F looks like as follows:

a b c d

Definition 1. Let F = (A, R) be an AF. A set S ⊆ A is conflict-free (in F) if there are

no a, b ∈ S, such that (a, b) ∈ R. A set S ⊆ A is admissible for F if S is conflict-free

in F and each a ∈ S is defended by S in F . S is a preferred extension of F if S is

a maximal (wrt. subset inclusion) admissible set for F . We denote the collection of all

preferred extensions of F by pref (F).

For the AF F in Example 1, we get as admissible sets {}, {a}, {c}, {d}, {a, c} and
{a, d}. Consequently, pref (F) = {{a, c}, {a, d}}.

Next, we recall the complexity of reasoning over preferred extensions. To this end,
we define the decision problems of credulous and skeptical acceptance, which have as
input an AF F = (A, R) and a set S ⊆ A of arguments:

• CA: is there an extension E ∈ pref (F), such that S ⊆ E;
• SA: does S ⊆ E hold, for each E ∈ pref (F)?

It is known that CA is NP-complete, while SA is ΠP
2 -complete (see [13,16]). The

reason why CA is located on a lower level of the polynomial hierarchy compared to SA

is the fact that it is sufficient to check whether S is part of at least one admissible set for
the given AF F . Then S ⊆ E also holds for a preferred extension E of F .

3. Clique-Width of Argumentation Frameworks

Let k be a positive integer. A k-graph is a graph whose vertices are labeled by integers
from {1, . . . , k} =: [k]. The labeling of a graph G = (V, E) is formally denoted by a
function L : V → [k]. We consider an arbitrary graph as a k-graph with all vertices
labeled by 1. We call the k-graph consisting of exactly one vertex v (say, labeled by
i ∈ [k]) an initial k-graph and denote it by i(v).

Graphs can be constructed from initial k-graphs by means of repeated application of
the following three operations.

• Disjoint union (denoted by ⊕);
• Relabeling: changing all labels i to j (denoted by ρi→j);
• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j

(denoted by ηi,j or ηj,i); already existing edges are not doubled.2

A construction of a k-graph G using the above operations can be represented by an
algebraic term composed of i(v), ⊕, ρi→j , and ηi,j , (i, j ∈ [k], and v a vertex). Such a
term is then called a cwd-expression defining G. A k-expression is a cwd-expression in
which at most k different labels occur. The set of all k-expressions is denoted by CWk.

Definition 2. The clique-width of a graph G, cwd(G), is the smallest integer k such that

G can be defined by a k-expression.

For instance, trees have clique-width 3 and co-graphs have clique-width 2 (co-graphs
are exactly given by the graphs which are P4-free , i.e. whenever there is a path (a, b, c, d)
in the graph then {a, c}, {a, d} or {b, d} is also an edge of the graph).

2Some authors postulate that i 6= j for the edge insertion ηi,j to prohibit loops, but as AFs may have
self-attacking arguments we do not.

η1,2

⊕

ρ1→3

η1,2

⊕

1(a) 2(b)

η2,1

⊕

1(c) 2(d)

(a) Parse tree of σ

a3 b2 c1 d2

a3 b2 c1 d2

a3 b2

a1 b2

a1 b2

a1 b2

c1 d2

c1 d2

c1 d2

(b) Labeled AFs for sub-expressions of σ

Figure 1. Example cwd-expression σ = η1,2(ρ1→3(η1,2(1(a) ⊕ 2(b))) ⊕ η2,1(1(c) ⊕ 2(d)))

One can use k-expressions also to construct directed graphs (and thus argumentation
frameworks), interpreting ηi,j as the operation that inserts directed edges that are oriented
from vertices labeled i to vertices labeled j. Courcelle and Olariu [12] define the clique-
width of a directed graph G as the smallest integer k such that G can be constructed by
a k-expression.

Example 2. The parse-tree of a cwd-expression σ ∈ CW3 for the framework F from
Example 1 is given in Figure 1(a). Figure 1(b) illustrates the labeled graphs associated
to sub-expressions rooted in a node of the parse-tree. Here the index of a node denotes
the current label, i.e. for a such that L(a) = 3 we write a3. Actually one can show that
cwd(F) = 2, but for demonstrating our algorithms the above 3-expression is appropriate.

There are also classes of dense directed graphs which have low clique-width. As
an example, we mention the class of transitive tournaments T = {Tn : n ≥ 1} with
Tn =

(

{a1, . . . , an}, {(ai, aj) : 1 ≤ i < j ≤ n}
)

. For an arbitrary Tn we can give
a cwd-expression that only uses two different labels. For illustration, we give such an
expression defining the graph T5 (see Figure 2):

η1,2(ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(1(a1) ⊕ 2(a2))) ⊕ 2(a3))) ⊕ 2(a4))) ⊕ 2(a5))

Similar 2-expressions exist for each tournament Tn, thus we obtain that the clique-
width for each graph in T is bounded by 2.

Modularity is a further aspect of clique-width that makes it attractive in the context
of abstract argumentation. Consider an AF F = (A, R). A subset M ⊆ A is a module

of F if any two arguments in M are “indistinguishable from the outside,” i.e., for any
x, x′ ∈ M and y ∈ A \ M we have (x, y) ∈ R iff (x′, y) ∈ R, and (y, x) ∈ R iff
(y, x′) ∈ R. The AF F is called prime if all its modules are of size 1 or |A|. For instance,
the AF T5 of Figure 2 has a large module {a2, . . . , a5} and is therefore not prime. In AFs
that model real-world situations one would expect to find large modules, for instance,
formed by groups of people that share the same beliefs and opinions regarding the world
outside the group (but possibly attack each other for some “internal” reason). One can
handle AFs that contain large modules efficiently with clique-width based algorithms.
Intuitively3, from the cwd-expression of an AF F with a large module M we can first find
a cwd-expression for the subframework induced by M . Then we give all arguments in M

3This can be made precise: the clique-width of an AF equals the maximum clique-width of its prime sub-
frameworks [12].

a1 a2 a3 a4 a5

Figure 2. Tournament T5

the same label and treat them for subsequent considerations as one single argument aM .
Consequently, for solving reasoning problems on F we can then strongly benefit from the
“compression” of M to aM when we use the clique-width based dynamic programming
methods as described in Section 5.

Finally we summarize the properties that make clique-width an appealing parameter
for abstract argumentation:

• There are both, sparse (e.g. tree-like AFs or AFs of bounded tree-width, see be-
low) and dense AFs (e.g. transitive tournaments) that possess small clique-width.

• Clique-width incorporates the orientation of attacks.
• Clique-width offers an efficient handling for modular structures.

4. Fixed-Parameter Tractability

As we have already mentioned, clique-width is related to the popular graph parameter
treewidth [4], therefore it is useful to review known results for the two parameters side
by side. Clique-width can be considered to be more general than treewidth since there
are graphs of constant clique-width but arbitrarily high treewidth (complete graphs, for
instance), but graphs of bounded treewidth also have bounded clique-width [12,5]. An
additional advantage of clique-width over treewidth is that it applies well to directed
graphs and takes the orientation of edges into account.

By means of a meta-theorem due to Courcelle, Makowsky, and Rotics [11] one
can solve any graph problem that can be expressed in Monadic Second Order Logic
with second-order quantification on vertex sets (MSO1) in linear time for graphs of
clique-width bounded by some constant k. This result is similar to Courcelle’s meta-
theorem [7,8] which applies to a more general class of problems (problems expressible in
Monadic Second Order Logic with second-order quantification on vertex sets and edge
sets, MSO2) on less general classes of graphs (graphs of bounded treewidth).

Treewidth and clique-width are both NP-hard to compute (as shown in [1] and [18],
respectively). However, one can check in polynomial time whether the width of a given
graph is bounded in terms of a fixed k. For treewidth this can be accomplished even ex-
actly in linear time via Bodlaender’s algorithm [3]. For clique-width, the known algo-
rithms involve an additive approximation error that is bounded in terms of k: as shown
by Oum and Seymour [20], there is a function f such that one can find in polynomial
time (of order independent of k) an f(k)-expression for an undirected graph of clique-
width k. As shown by Kanté [19], a similar result holds also for directed graphs.

Dunne [15] already provided MSO2 characterizations to show the fixed-parameter
tractability of reasoning problems for argumentation frameworks of bounded treewidth.
We observe that these MSO2 characterizations do not make use of quantification over
edge sets and so are in fact MSO1 characterizations. Together with the meta-theorem for
clique-width, we thus can immediately give the following result.

Proposition 1. For AFs of clique-width bounded by a constant, the problems CA and SA

are decidable in linear time.

5. Algorithms

In this section we provide our dynamic-programming algorithms for credulous and skep-
tical acceptance. In fact, we start with credulous acceptance which relies on a simpler
data structure (since we only have to characterize admissible sets), and then extend our
ideas to skeptical acceptance. However, both algorithms follow the same basic princi-
ples by making use of a k-expression σ defining an argumentation framework F in the
following way: we assign certain objects (e.g. for CA we use k-quadruples as defined in
Definition 3 below) to each subexpression of σ. We manipulate these objects in a bottom-
up traversal of the parse tree of the k-expression such that the objects in the root of the
parse tree then provide the necessary information to decide the problem under consider-
ation. The size of these objects is bounded in terms of k (and independent of the size of
F) and the number of such objects required is linear in the size of F . Most importantly,
we will show that these objects can also be efficiently computed for bounded k. Thus,
we obtain the desired linear running time for AFs of bounded clique-width.

In what follows, we consider (unless stated otherwise) an AF F = (A, R) as a
labeled directed graph, where the labeling is given by L : A → [k] with appropriate k.

5.1. Credulous Acceptance

Definition 3. A tuple Q = (I, A, O, D) with I, A, O, D ⊆ [k] is called a k-quadruple,

and we refer to its parts using Qin = I , Qatt = A, Qout = O and Qdef = D. The set

of all k-quadruples is given by Qk.

The “semantics” of a k-quadruple Q with respect to a given AF F is given as follows.

Definition 4. Let Q ∈ Qk and F = (A, R) be an AF labeled by L : A → [k]. An

F-extension of Q is a conflict-free set E ⊆ A satisfying:

Qin = {L(a) : a ∈ E}

Qatt = {L(a) : a ∈ A \ E, a ֌ E, E 6֌ a}

Qout = {L(a) : a ∈ A \ E, E 6֌ a, b 6֌ E or E ֌ b for all b with L(b)=L(a)}

Qdef = {L(a) : a ∈ A \ E, E ֌ a, E ֌ b for all b with L(b)=L(a)}

The set of all F-extensions of Q is denoted by EF (Q). If EF (Q) 6= ∅ we call the k-

quadruple Q valid for F .

Informally speaking, for a given AF F , a k-quadruple Q characterizes sets E such
that for each l ∈ Qin , at least one argument with L(a) = l is contained in E. More-
over, for arguments not contained in E, the sets Qatt , Qout , Qdef provide some further
information about the relationship between arguments with respect to their labels. Let us
mention here that for a valid k-quadruple Q, a label l ∈ [k] may be contained in Qin

and also in one of Qatt , Qout , Qdef ; however, Qatt , Qout and Qdef are pairwise disjoint.
It is important to observe that for each k there is only a finite number of k-quadruples.
With this finite number of k-quadruples we are able to represent an unbounded number
of different sets E.

To further illustrate the idea behind k-quadruples, consider the AF F from Exam-
ple 1 with labels L(a) = 3, L(b) = L(d) = 2 and L(c) = 1 as depicted in the root of

the tree in Figure 1(b). Consider Q = ({1, 3}, ∅, ∅, {2}) and let us construct a set E such
that E ∈ EF(Q). We have only a single argument with label 1 and resp. with label 3, thus
E = {a, c}. Moreover, both arguments with label 2, b and d, satisfy the condition for
Qdef , i.e. we have E ֌ b and E ֌ d. Hence, E ∈ EF (Q) holds. As a second example,
consider Q′ = ({2}, {1, 3}, {2}, ∅). Since there are two arguments with label 2, we have
three candidates for being an F-extension E′ of Q′, namely {b}, {d} and {b, d} (all of
them are conflict-free in F). However, since 1 ∈ Q′

att , c ֌ E′ and E′ 6֌ c has to hold.
Thus, d cannot be contained in an F-extension of Q′. Checking the remaining proper-
ties, one can show that EF (Q′) = {{b}}. Finally, consider Q′′ = ({1, 2}, {2, 3}, ∅, ∅)
and suppose an E′′ ∈ EF (Q′′). Then c ∈ E′′, since c is the only argument with label 1.
However, also b or d has to be contained in E′′ since 2 ∈ Q′′

in . But then, E′′ is not
conflict-free in F . Thus EF (Q′′) = ∅, i.e. Q′′ is not valid for F .

The following definition assigns k-quadruples (and certain relations between them)
to the nodes of the parse-tree of a given k-expression. In what follows, we denote the AF
defined by a k-expression σ as Fσ.

Definition 5. A full k-quadruple assignment for a k-expression σ is a function that maps

each subexpression θ of σ to a relation Lθ over k-quadruples in the following way:

• Lθ(Q, R, S) iff θ = θ1 ⊕ θ2, Q, R, S are valid k-quadruples for Fθ , Fθ1
, and

resp. Fθ2
, and for each E1 ∈ EFθ1

(R), E2 ∈ EFθ2
(S), also E1 ∪ E2 ∈ EFθ

(Q);
• Lθ(Q, Q′) iff either θ = ρi→j(θ

′) or θ = ηi,j(θ
′), Q and Q′ are valid k-

quadruples for Fθ and resp. Fθ′ , and for each E ∈ EF ′

θ
(Q′), also E ∈ EFθ

(Q);
• Ll(v)(Q) iff Q is a valid k-quadruple of Fl(v).

The following theorem reveals the benefits of full k-quadruple assignments for our
algorithmic purposes. Indeed, the desired dynamic programming algorithm for CA is
used within the proof of that result. We bound the running time of our algorithms in terms
of the length of the given cwd-expression (which is linear in the size of the given AF).

Theorem 1. Let k be a constant.

1. Given a k-expression σ for an AF F , we can compute the full k-quadruple as-

signment for σ in linear time.

2. Given the full k-quadruple assignment for σ and a set S of arguments, we can

decide in linear time whether some preferred extension of F contains S.

In the remainder of the subsection, we sketch a proof of this result and illustrate the
central concepts using Example 1.

For the first part of the theorem we have to establish valid k-quadruples for all subex-
pressions θ of σ and the respective relations Lθ without an explicit computation of F-
extensions. Instead, we use a bottom-up computation along the parse tree of σ. To this
end, we recursively define a function FCA which associates to each subexpression of σ

the set of k-quadruples which are valid for the respective subframework.

Definition 6. The function FCA : CWk → 2Qk is recursively defined along the structure

of k-expressions as follows.

• FCA(i(v)) = {({i}, ∅, ∅, ∅), (∅, ∅, {i}, ∅)}
• FCA(σ1 ⊕ σ2) = {Q ⊕CA Q′ : Q ∈ FCA(σ1), Q

′ ∈ FCA(σ2)} where

Q⊕CAQ′ = (Qin∪Q′
in , Qatt∪Q′

att , (Qout∪Q′
out)\(Qatt∪Q′

att), Qdef ∩Q′
def)

• FCA(ρi→j(σ)) = {ρCA
i→j(Q

′) : Q′ ∈ FCA(σ)} where ρCA
i→j(Q

′) = Q holds iff the

following conditions are jointly satisfied:

∗ Qin =

{

Q′
in \ {i} ∪ {j} if i ∈ Q′

in

Q′
in otherwise

∗ Qatt =

{

Q′
att \ {i} ∪ {j} if i ∈ Q′

att

Q′
att otherwise

∗ Qout =











Q′
out \ {i} ∪ {j} if i ∈ Q′

out and j 6∈ Q′
att

Q′
out \ {i, j} if i ∈ Q′

att

Q′
out \ {i} otherwise

∗ Qdef =

{

Q′
def \ {i} ∪ {j} if i ∈ Q′

def and j 6∈ Q′
att ∪ Q′

out

Q′
def \ {j} otherwise

• FCA(ηi,j(σ)) = {ηCA
i,j (Q) : Q ∈ FCA(σ), {i, j} 6⊆ Qin} where

ηCA
i,j (Q) =











(Qin , Qatt \ {j}, Qout \ {j}, Qdef ∪ {j}) if i ∈ Qin

(Qin , Qatt ∪ {i}, Qout \ {i}, Qdef \ {i}) if j ∈ Qin , i ∈ Qout

Q otherwise

By definition, FCA provides the necessary relations for the desired full k-quadruple as-
signment. Figure 3 illustrates the function FCA for the cwd-expression used in Example
2 to define the AF F . Each table in Figure 3 shows the valid k-quadruples for the sub-
frameworks of F (the tree of tables mirrors the tree of subframeworks as given in Figure
1(b)). For a better understanding, we provide in Figure 3 also the extension4 E of the
k-quadruples; however, those extensions are not required for computing FCA.

Let us have a look at a few aspects of the computation of FCA. We start at the leaf
nodes. For instance, in the leaf of the left branch, we consider the subframework defined
by the expression σ1 = 1(a), i.e. the framework F1 = ({a}, ∅) with a labeled by 1.
By definition of FCA, two k-quadruples are assigned to σ1, viz. Q1 = ({1}, ∅, ∅, ∅) and
Q′

1 = (∅, ∅, {1}, ∅) representing the two conflict-free sets of F1, {a} and ∅. Similar k-
quadruples (see the rhs sibling) are assigned to the framework ({b}, ∅) defined by σ2 =
2(b). Then, FCA(σ1 ⊕σ2) combines these k-quadruples according to Definition 6. In the
next step we have to deal with an edge-insertion, i.e. we compute FCA(η1,2(σ1 ⊕ σ2));
observe that the k-quadruple Q = ({1, 2}, ∅, ∅, ∅) thus drops out by definition, since
{1, 2} ⊆ Qin . Also observe that the status of the arguments which have been “out”
changes accordingly to the direction of the introduced edge. Due to space restrictions,
we cannot give a discussion about the entire bottom-up computation of FCA here, but we
mention that each k-quadruple as computed by FCA in Figure 3 is indeed valid for the
respective subframework. As well, all the relations from Definition 5 are established by
computing FCA. The general result is as follows.

Lemma 1. Let σ be a k-expression defining an AF F . Then, FCA(σ) coincides with

the set of valid k-quadruples for F . Further, the valid k-quadruples together with the

operators ⊕CA, ρCA
i→j ,ηCA

i,j give the full k-quadruple assignment for σ.

4In this example, there is always exactly one such extension for the depicted valid k-quadruples; hence ∅
refers to the empty extension and not to the empty set of extensions.

in att out def E(.)
1,3 - - 2 {a, c}
2,3 - - 1,2 {a, d}
3 - 1,2 - {a}
2 3 - 1 {b, d}
2 1,3 2 - {b}
1 - 3 2 {c}
2 - 2,3 1 {d}
- - 1,2,3 - ∅

in att out def E(.)
1,3 2 - - {a, c}
2,3 - - 1,2 {a, d}
3 - 1,2 - {a}

1,2 2,3 - - {b, c}
2 3 - 1 {b, d}
2 3 1,2 - {b}
1 2 3 - {c}
2 - 2,3 1 {d}
- - 1,2,3 - ∅

in att out def E(.)
3 - - 2 {a}
2 3 - - {b}
- - 3,2 - ∅
in att out def E(.)
1 - - 2 {a}
2 1 - - {b}
- - 1,2 - ∅

in att out def E(.)
1,2 - - - {a, b}
1 - 2 - {a}
2 - 1 - {b}
- - 1,2 - ∅

in att out def E(.)
1 - - - {a}
- - 1 - ∅

in att out def E(.)
2 - - - {b}
- - 2 - ∅

in att out def E(.)
1 2 - - {c}
2 - - 1 {d}
- - 1,2 - ∅

in att out def E(.)
1,2 - - - {c, d}
1 - 2 - {c}
2 - 1 - {d}
- - 1,2 - ∅

in att out def E(.)
1 - - - {c}
- - 1 - ∅

in att out def E(.)
2 - - - {d}
- - 2 - ∅

Figure 3. The function FCA for the k-expression in Example 2

The time to compute FCA(σ) depends (heavily) on k but is linear in the size of σ

(and thus in the size of Fσ). This concludes the proof sketch for (1).

To prove the second part of Theorem 1, we require an appropriate connection between
admissible sets and k-quadruples.

Lemma 2. Let F be an AF and E be conflict-free in F . Then there is a unique valid k-

quadruple Q with E ∈ EF (Q). Further, E is an admissible extension of F iff Qatt = ∅.

Given the full k-quadruple assignment for σ, we are now able to efficiently decide
whether an argument set S is contained in at least one admissible extension of F : For
each node of the parse-tree, i.e. each subexpression σ′, we mark the valid k-quadruples
that represent at least one admissible extension E of the subframework Fσ′ = (A′, R′)
such that S ∩ A′ ⊆ E. This can be done as follows: First, for each cwd-expression i(v),
({i}, ∅, ∅, ∅) is marked in case v ∈ S; otherwise, both ({i}, ∅, ∅, ∅) and (∅, ∅, {i}, ∅) are
marked. Hence, quadruples without a mark indicate that some element from S is missing.
In the ηi,j and ρi→j nodes of the parse tree, a quadruple is marked if it is in relation with
a marked quadruple in the child node. For a ⊕-node (i.e. for a subexpression θ with ⊕
as main connective), we mark the quadruple Q if Lθ(Q, Q1, Q2) holds for some marked
quadruples Q1, Q2. If we have a marked quadruple Q in the root and this quadruple
represents an admissible extension, i.e. Qatt = ∅ holds, then S is credulously accepted.

This marking algorithm is obviously running in linear time w.r.t. to the size of the full
k-quadruple assignment of F . This shows the second part of the theorem.

5.2. Skeptical Reasoning

For skeptical acceptance we augment each k-quadruple by a so-called guard which stores
quadruples representing larger (wrt. ⊆) extensions. This will allow us to characterize not
only admissible but also preferred extensions.

Definition 7. A guarded k-quadruple is a pair (Q, Γ) where Q ∈ Qk and Γ ⊆ Qk is the

guard for Q. The set of all guarded k-quadruples is given by GQk.

Definition 8. Let (Q, Γ) ∈ GQk and F = (A, R) be an AF. An F-extension of (Q, Γ)
(in F), is a conflict-free set E ⊆ A in F satisfying: (1) E ∈ EF (Q); (2) for each conflict-

free set E′ of F with E ⊂ E′, there is a Q′ ∈ Γ such that E′ ∈ EF(Q′); and (3) for each

Q′ ∈ Γ there exists an E′ with E ⊂ E′, such that E′ ∈ EF(Q′).
The set of all F-extensions of (Q, Γ) (in F) is denoted by EF (Q, Γ). If EF (Q, Γ) 6= ∅

we call (Q, Γ) valid for F .

Replacing in Definition 5 k-quadruples by guarded k-quadruples and E(Q) by
E(Q, Γ) gives us the concept of a full guarded k-quadruple assignment.

Theorem 2. Let k be a constant.

1. Given a k-expression σ for an AF F , we can compute the full guarded k-

quadruple assignment for σ in linear time.

2. Given the full guarded k-quadruple assignment for σ and a set S of arguments,

we can decide in linear time whether all preferred extensions of F contain S.

As before, we now provide a function, which recursively establishes the full guarded
k-quadruple assignment without an explicit computation of extensions (for Γ, Γ′ ⊆ Qk,
we below use the operator Γ ⊕SA Γ′ = {Q ⊕CA Q′ : Q ∈ Γ, Q′ ∈ Γ′}).

Definition 9. The function FSA : CWk → 2GQk is recursively defined as follows.

• FSA(i(v)) =
{(

{i}, ∅, ∅, ∅), ∅
)

,
(

∅, ∅, {i}, ∅), {({i}, ∅, ∅, ∅)}
)}

• FSA(σ1⊕σ2) =
{(

Q1⊕
CAQ2, (Γ1⊕

SAΓ2)∪({Q1}⊕
SAΓ2)∪(Γ1⊕

SA{Q2})
)

:

(Q1, Γ1) ∈ FSA(σ1), (Q2, Γ2) ∈ FSA(σ2)
}

• FSA(ρi→j(σ)) =
{(

ρCA
i→j(Q), {ρCA

i→j(Q
′) : Q′ ∈ Γ}

)

: (Q, Γ) ∈ FSA(σ)
}

• FSA(ηi,j(σ)) =
{(

ηCA
i,j (Q), {ηCA

i,j (Q′) : Q′ ∈ Γ, {i, j} 6⊆ Q′
in}

)

:

(Q, Γ) ∈ FSA(σ), {i, j} 6⊆ Qin

}

Roughly speaking, for (Q, Γ) ∈ GQk we apply here the already defined function
FCA not only to Q but also to each element in Γ. It can be shown that FSA(σ) coincides
with the set of valid guarded k-quadruples for Fσ. Further the valid guarded k-quadruples
together with the operators ⊕SA, ρSA

i→j , ηSA
i,j give the full guarded k-quadruple assign-

ment for σ. We note that due to the use of guards, computing FSA(σ) is more involved
compared to FCA(σ), for a given k-expression σ. However, the size of the tables for each
node in the parse-tree of σ still remains bound by k and is independent from the actual
size of σ. This guarantees a linear-running time with respect to the size of AFs defined
by σ also for FSA(σ) as long as the AFs have their clique-width bounded by k.

To show (2) we give a certain link between preferred sets and guarded k-quadruples.

in att out def Γ
Q1 1,3 - - 2 -
Q2 2,3 - - 1,2 -
Q3 3 - 1,2 - Q1, Q2

Q4 2 3 - 1 -
Q5 2 1,3 2 - Q4

Q6 1 - 3 2 Q1

Q7 2 - 2,3 1 Q2, Q4

Q8 - - 1,2,3 - Q1 − Q7

in att out def Γ
Q1 1,3 2 - - -
Q2 2,3 - - 1,2 -
Q3 3 - 1,2 - Q1, Q2

Q4 1,2 2,3 - - -
Q5 2 3 - 1 -
Q6 2 3 1,2 - Q4, Q5

Q7 1 2 3 - Q1, Q4

Q8 2 - 2,3 1 Q2, Q5

Q9 - - 1,2,3 - Q1 − Q8

in att out def Γ
Q1 3 - - 2 -
Q2 2 3 - - -
Q3 - - 3,2 - Q1, Q2

in att out def Γ
Q1 1 - - 2 -
Q2 2 1 - - -
Q3 - - 1,2 - Q1, Q2

in att out def Γ
Q1 1,2 - - - -
Q2 1 - 2 - Q1

Q3 2 - 1 - Q1

Q4 - - 1,2 - Q1, Q2, Q3

in att out def Γ
Q1 1 - - - -
Q2 - - 1 - Q1

in att out def Γ
Q1 2 - - - -
Q2 - - 2 - Q1

in att out def Γ
Q1 1 2 - - -
Q2 2 - - 1 -
Q3 - - 1,2 - Q1, Q2

in att out def Γ
Q1 1,2 - - - -
Q2 1 - 2 - Q1

Q3 2 - 1 - Q1

Q4 - - 1,2 - Q1, Q2, Q3

in att out def Γ
Q1 1 - - - -
Q2 - - 1 - Q1

in att out def Γ
Q1 2 - - - -
Q2 - - 2 - Q1

Figure 4. The function FSA for Example 2

Lemma 3. Let F be an AF and let E be conflict-free in F . Then there exists a unique

valid guarded k-quadruple (Q, Γ) such that E ∈ EF (Q, Γ). Moreover, E is a preferred

extension of F iff Qatt = ∅ and there is no Q′ ∈ Γ such that Q′
att = ∅.

Figure 4 illustrates the function FSA for our running example. Compared to Figure 3
we now give also the guard for each k-quadruple. Due to space restrictions, a detailed dis-
cussion of this example has to be omitted. We just note that there are four valid guarded
k-quadruples (Q, Γ) in the root which match the condition that there is no Q′ ∈ Γ such
that Q′

att = ∅, namely G1 = (({1, 3}, ∅, ∅, {2}), ∅), G2 = (({2, 3}, ∅, ∅, {1, 2}), ∅),
G4 = (({2}, {3}, ∅, {1}), ∅) and G5 = (({2}, {1, 3}, {2}, ∅), {({2}, {3}, ∅, {1})}),
with their extensions EF(G1) = {{a, c}}, EF (G2) = {{a, d}}, EF(G4) = {{b, d}}
and EF (G5) = {{b}}. G1, G2 and G4 thus characterize maximal conflict-free sets of
F , but G4 is identified to be not preferred since (G4)att = {3} 6= ∅. We also have
selected G5, since there is no superset of {b} admissible in F ; however, we also have
(G5)att = {1, 3} 6= ∅. Thus, G1 and G2 are the only ones fulfilling all necessary condi-
tions for characterizing preferred extensions of F , which indeed are {a, c} and {a, d}.

The algorithm for skeptical acceptance is similar to the one for CA discussed above.
The only pairs marked in leafs i(v) are ((∅, ∅, {i}, ∅), {({i}, ∅, ∅, ∅)}) for v ∈ S. In the
other nodes, a guarded k-quadruple is marked if it is in relation with at least one marked
pair in its child(ren). Now, there is a marked pair for the root representing a preferred
extension (cf. Lemma 3) exactly if S is not skeptically accepted, since in this case we
have found a preferred extension where at least one argument from S was left out.

6. Conclusion

In this paper, we turned some theoretical tractability results (which implicitly follow
from previous work [15]) for argumentation frameworks of bounded clique-width into
efficient algorithms. These algorithms are applicable to arbitrary frameworks, whenever a
defining k-expression is given, but the runtime heavily depends on k, rather than the size
of the AF. Thus the algorithms are expected to run efficiently in particular for small k.

We restricted ourselves here to the problem of acceptance with respect to the pre-
ferred semantics, which relies on maximal admissible sets. However, admissibility and
maximality are prototypical properties common in many other argumentation semantics.
Hence, we expect that the methods developed here can also be extended to other seman-
tics and reasoning tasks, which is left for future work.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM

J. Algebraic Discrete Methods, 8(2):277–284, 1987.
[2] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial Intelligence,

171(10-15):619–641, 2007.
[3] H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms, 14(1):1–23, 1993.
[4] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993.
[5] D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM J. Comput.,

34(4):825–847, 2005.
[6] S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frameworks. In Proc. EC-

SQARU’05, volume 3571 of LNCS, pages 317–328. Springer, 2005.
[7] B. Courcelle. Recognizability and second-order definability for sets of finite graphs. Technical Report

I-8634, Université de Bordeaux, 1987.
[8] B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of Theoretical Computer

Science, Vol. B, pages 193–242. Elsevier Science Publishers 1990.
[9] B. Courcelle, J. Engelfriet, and G. Rozenberg. Context-free handle-rewriting hypergraph grammars. In

Proc. Graph Grammars 1990, volume 532 of LNCS, pages 253–268. Springer, 1991.
[10] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J. of Computer

and System Sciences, 46(2):218–270, 1993.
[11] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of

bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
[12] B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. Discr. Appl. Math., 101(1-

3):77–114, 2000.
[13] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default theories.

Theoret. Comput. Sci., 170(1-2):209–244, 1996.
[14] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.
[15] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints. Ar-

tificial Intelligence, 171(10-15):701–729, 2007.
[16] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artificial Intelligence,

141(1/2):187–203, 2002.
[17] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms for argumentation.

In Proc. KR’10, pages 112-122. AAAI Press, 2010
[18] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-complete. SIAM J.

Discrete Math., 23(2):909–939, 2009.
[19] M. M. Kanté. The rank-width of directed graphs. CoRR, abs/0709.1433, 2007.
[20] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B,

96(4):514–528, 2006.

