
Applications of ASP in Formal Argumentation

Martin Diller, Wolfgang Dvořák, Jörg Pührer,
Johannes P. Wallner, and Stefan Woltran

Institute of Logic and Computation, TU Wien, Austria

Abstract. Argumentation is nowadays one of the major fields within
Artificial Intelligence. On one hand it provides genuine methods to model
discourses or legal cases; on the other hand, it is closely related to – and
gives an orthogonal view on – several formalisms from the AI domain.
The aim of this paper is to survey argumentation systems that use ASP
technology inside.

Keywords: Argumentation, Answer-Set Programming

1 Introduction

The area of formal argumentation has seen a steady rise of interest in the last
two decades in the field of Artificial Intelligence [5]. It studies how to model argu-
ments and their relationships, as well as the necessary conflict resolution in the
presence of diverging opinions, thus providing a general and formal treatment
of several questions arising in various applications, for instance, in legal reason-
ing. In its most prominent manifestation, Abstract Argumentation Frameworks
(AFs) by Dung [23], argumentation scenarios are modeled as simple directed
graphs, where the vertices represent arguments and each edge corresponds to an
attack between two arguments. AFs are resolved using appropriate semantics,
which select acceptable subsets of the arguments. For example, consider the AF
F = 〈{a, b, c, d}, {〈a, b〉, 〈b, c〉, 〈b, d〉}〉 with arguments a, b, c, and d, where a at-
tacks b and b attacks c and d. F has five extensions ∅, {a}, {a, c}, {a, d}, {a, c, d}
under admissible semantics and one extension {a, c, d} under complete semantics.
Many more semantics have been studied and formal argumentation offers a wide
range of different formalisms, ranging from AFs to structured argumentation,
where arguments are not treated as atomic entities [8].

Logic Programming (LP) and Argumentation are closely related fields. They
have common roots in non-monotonic reasoning and, like in the answer-set pro-
gramming (ASP) paradigm, many argumentation semantics allow for multiple
intended models. There is a research stream that instantiates logic programs as
argumentation frameworks with the goal to find semantics for the latter in order
to capture the LP semantics at hand. This has been done for stable semantics
already in the seminal paper by Dung [23] and has been subsequently applied
to other semantics, see e.g. [16]. Another research stream takes the other di-
rection and investigates methods for implementing argumentation by means of
logic programming, in particular, by making use of ASP solvers [38,39,40]. The



2 M. Diller et al.

aim of this paper is to survey these ASP-based approaches. For more general
overviews on argumentation systems we refer to [18,19].

2 ASP-Based Argumentation Systems

Dung’s Abstract Argumentation Frameworks. AFs are a core formalism in formal
argumentation and have been extensively studied in the literature. In a nutshell,
AFs abstract away from the contents of single arguments, focusing on the rela-
tionship between arguments that is analyzed. The relationship that is expressed
by an AF is the so-called attack relation, where an attack from an argument a to
argument b indicates that the conclusion of a contradicts (parts of) the premises
of an argument b. AFs are thus just directed graphs, where arguments consti-
tute the vertices and edges represent attacks. Different semantics are defined to
obtain jointly acceptable sets of arguments (the so-called extensions of the AF
at hand). Nowadays, a large number of such semantics is available and these se-
mantics were extensively studied, see e.g. [7]. The complexity of reasoning tasks
for AFs span different classes on the first two levels of the polynomial hierarchy
[24] depending on the actual semantics.

Early approaches to encode AF evaluation via ASP are [48,59,60], see also
the survey by Toni and Sergot [58]. The reference ASP system for AFs, how-
ever, is nowadays ASPARTIX1, which provides a collection of ASP encodings for
numerous AF semantics [28]. ASPARTIX strictly separates the input AF from
the evaluation. In other words, for each semantics, a fixed encoding is provided
which, when combined with an AF as input, returns the corresponding exten-
sions. In particular, for semantics which are located on the second level of the
polynomial hierarchy, different approaches have been presented which rely on the
standard saturation technique in ASP [28,36] or make use of particular features
of ASP solvers [25,34]. A different approach to capture the different semantics
for AFs is via labellings; ASP encodings based on labellings have been presented
in [52].

Formalisms Extending AFs. The quite restricted structure of Dung AFs lead to
proposals of several extensions of this formalism. Most prominent among these
extensions are collective attacks [47], support relations [17] and attacks on at-
tacks [45] yielding formalisms known as SETAFs, bipolar AFs, and EAFs, respec-
tively. While support relations have already been considered in the ASPARTIX
system from the very beginning, there are dedicated ASP encodings available
for collective attacks [27] and attacks on attacks2 [26]. In recent work [42], AS-
PARTIX was extended to include Metalevel AFs that simultaneously allow for
values, preferences and attacks on attacks.

Abstract Dialectical Frameworks. Among the most comprehensive of the gener-
alizations of Dung AFs are abstract dialectical frameworks or ADFs for short

1 http://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
2 http://gerd.dbai.tuwien.ac.at/

http://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
http://gerd.dbai.tuwien.ac.at/


Applications of ASP in Formal Argumentation 3

[12,13]. In ADFs, each argument comes with an associated acceptance condition
in the form of a propositional formula that allows to express how the accep-
tance status of an argument depends on the acceptance status of the parents in
the graph. The main semantics for AFs have been generalized to ADFs, with
the higher expressivity of ADFs coming at the price of higher complexity: the
complexity of most reasoning tasks for ADFs are one level higher in the poly-
nomial hierarchy with respect to the complexity of the same tasks for AFs [55].
For instance, checking credulous acceptance under admissible semantics is NP -
complete for AFs and ΣP

2 -complete for ADFs. Bipolar ADFs on the other hand,
which allow only attacking and supporting links between statements, while still
being more expressive than AFs, have the same complexity.

The first ASP-based system for ADFs was ADFSys [33] which lead to the
DIAMOND (DIAlectical FraMewOrks eNcoDings)3 family of systems [30,31].
All of these systems have in common that they basically consist of several ASP
encodings and a script with information on what encodings to combine to ob-
tain a desired reasoning behavior. From the start, the systems in the DIAMOND
family support reasoning with subclasses of ADFs with the last version of DIA-
MOND, goDIAMOND [32], allowing ADFs with acceptance conditions expressed
as propositional formulas and as Boolean functions, as well as bipolar ADFs and
AFs (previous versions also included prioritized ADFs). The encoding for the dif-
ferent semantics usually stays the same; what changes for the different subclasses
are the encodings for the computation of the consequence operators associated
to the different formalisms to obtain the desired semantics.

The different versions of DIAMOND typically rely on static encodings, i.e.
the encodings do not change for different ADF instances. This approach is hence
limited by the data complexity of ASP. To handle reasoning problems going
beyond the second level of the polynomial hierarchy, DIAMOND systems trans-
form ADFs with acceptance conditions expressed as propositional formulas to
ADFs with Boolean functions; an operation which may involve an exponential
blowup. YADF4 [11] is a more recent system demonstrating the use of the fact
that the combined complexity of ASP for programs with predicates of bounded
arity [29], just as the complexity of reasoning of ADFs, reaches the third level
of the polynomial hierarchy. This allows for dynamic (hence the “Y” in YADF)
yet single shot encodings to fragments of ASP with matching complexity that
make use of the representation of the acceptance conditions of the input ADFs
as propositional formulas.

The GRAPPA approach. GRAPPA (GRaph-based Argument Processing with
Patterns of Acceptance) [14] is a further generalization of ADFs, providing means
of semantically evaluating arbitrary labelled graphs with flexible user-defined
acceptance conditions. Reasoning for GRAPPA nevertheless is exactly as hard as
reasoning for ADFs. GrappaVis5 [41] is a graphical JAVA-based tool allowing to

3 http://diamond-adf.sourceforge.net/
4 https://www.dbai.tuwien.ac.at/proj/adf/yadf/
5 https://www.dbai.tuwien.ac.at/proj/adf/grappavis/

http://diamond-adf.sourceforge.net/
https://www.dbai.tuwien.ac.at/proj/adf/yadf/
https://www.dbai.tuwien.ac.at/proj/adf/grappavis/


4 M. Diller et al.

specify GRAPPA (and ADF) instances, evaluate them and visualize the results.
It is based on static as well as dynamic encodings to ASP.

ASP is also used as the back-end of ArgueApply6 [50,51], a mobile app for
online debates based on GRAPPA. ArgueApply is a native Android application
where users can participate in discussions and collectively relate statements of
the debates with each other. Based on these relationships, a debate can be seman-
tically evaluated on the Android device exploiting translations from GRAPPA to
ASP [11] developed for YADF. Reasoning is done by an ASP service that may
run independently of the Android application and encapsulates a JavaScript
version of Clingo 5.2.

Synthesis and Enforcement Problems. UNREAL7 [44] is a system that deals with
realizability of abstract argumentation: the problem of whether for a given set V
of interpretations, there is an instance of the argumentation formalisms that has
V as its semantics. This task is also known as synthesis problem. UNREAL can
decide realizability for multiple formalisms (AFs, ADFs, BADFs, and SETAFs)
and semantics. Moreover, if a set is realizable, the tool can compute frameworks
that evaluate to V . The tool uses modular ASP encodings that guess seman-
tical objects, called realizability characterizations, that determine the realizing
knowledge base. Depending on the chosen formalism and semantics, different
propagation modules efficiently eliminate unwanted solution candidates.

Enforcement is a dynamic operation on formal models in argumentation.
Operators within this family transform a given formal model (e.g. expanding
arguments and attacks) such that the modified model satisfies certain goals (for
instance, having a specified argument accepted). Encoding such operations in
ASP was studied for AFs [49,52] and ADFs [61].

Structured argumentation In formal argumentation, one distinguishes between
structured argumentation, where arguments have explicit internal structure, and
abstract argumentation, where arguments’ internal contents are abstracted away
to focus on their acceptability solely relying on relationships between argu-
ments. Usually, structured arguments are constructed from a possibly incon-
sistent and/or incomplete (formal) knowledge base (e.g. a logical or rule base).
Some of the most established frameworks for structured argumentation [9] in-
clude deductive argumentation [10], ASPIC+ [46], defeasible logic program-
ming [37], and assumption-based argumentation [21].

In deductive argumentation [10] arguments are inferences based on a mono-
tonic logic, notably classical logic. Different notions of conflict among arguments
can been defined, allowing the construction of AFs (the attacks standing for the
conflicts) by means of which inconsistencies in the knowledge bases which start
off the deductive argumentation process can be resolved. ASP has been utilized
to implement argument construction (as well as their relationships) for deduc-
tive argumentation in the work of [20] resulting in the tool vispartix8. More

6 https://www.informatik.uni-leipzig.de/~puehrer/ArgueApply/
7 http://www.dbai.tuwien.ac.at/proj/adf/unreal/
8 http://www.dbai.tuwien.ac.at/research/project/argumentation/vispartix/

https://www.informatik.uni-leipzig.de/~puehrer/ArgueApply/
http://www.dbai.tuwien.ac.at/proj/adf/unreal/
http://www.dbai.tuwien.ac.at/research/project/argumentation/vispartix/


Applications of ASP in Formal Argumentation 5

concretely, the approach relies on a two-step procedure: a first ASP call gener-
ates arguments from a given input classical logic knowledge base, while a second
ASP call identifies conflicts among the arguments that were created by the first
call.

In Assumption-based Argumentation (ABA) structured arguments are cre-
ated from a rule-based knowledge base [21]. Arguments in this formalism are
based on assumptions from which derivations, via the given rules, lead to con-
clusions of arguments. Two approaches first generate arguments, and conflicts,
of a given ABA framework, and then utilize ASP to implement the ABA seman-
tics on the resulting abstract argumentation framework. The first approach [6],
implemented in ABAPlus9, implements ABA+ in this way, which is an extension
to ABA that includes preferences among arguments (given as preferences over
assumptions). The second approach [43], implemented in aba2af10, implements
ABA semantics. Both approaches do not create all arguments from a given ABA
framework, but introduce certain smaller sets of (abstract) arguments that are
sufficient for reasoning over the given ABA framework.

Defeasible logic [37] or DeLP programs are as programs in logic program-
ming, yet distinguishing between defeasible and strict rules (also, there is no
default negation; on the other hand negation can appear in the head of rules). A
dialectical procedure essentially amounting to considering all possible arguments
relevant to evaluating a claim is used to determine whether a conclusion is war-
ranted. In [57] the authors study the relationship between DeLP and ASP by
defining two possible translations of DeLP programs into ASP programs differing
in the treatment of strict rules. Yet in both cases warrant of a literal w.r.t. the
DeLP program implies credulous acceptance of the corresponding literal w.r.t.
the resulting ASP program.

A more practical use of ASP in the context of DeLP is the work11 presented
in [3]. Here the authors evaluate the use of ASP as an alternative NP-oracle (to
SAT) for the two main queries (looking for valid arguments and finding collective
conflicts among arguments) underlying the algorithm proposed by the authors to
compute the set of warranted and blocked conclusions resulting from a recursive
semantics for a generalisation of DeLP: P-DeLP [4]. The latter attaches levels
of strength to defeasible rules, formalised as degrees of probabilistic necessity.
The recursive semantics [1] on the other hand avoids the potentially exponential
number of arguments that need to be considered by the DeLP-style warrant
procedure and can be implemented in polynomial space [2].

In [62,63] (revision of [64]) the authors propose a “two-step” approach to
instantiation of theories consisting of strict and defeasible (propositional) rules
to AFs. The approach in question bypasses the construction of (potentially ex-
ponentially many) complex arguments prior to generating an AF as in the more
standard approach underlying e.g. deductive argumentation as well as ASPIC+
and discussed in [15]. Instead, the only nodes of the resulting AFs represent

9 http://www-abaplus.doc.ic.ac.uk/
10 https://www.cs.helsinki.fi/group/coreo/aba2af/
11 https://github.com/f-guitart/RP-DeLP_solver

http://www-abaplus.doc.ic.ac.uk/
https://www.cs.helsinki.fi/group/coreo/aba2af/
https://github.com/f-guitart/RP-DeLP_solver


6 M. Diller et al.

literals and rules of the theories; in fact, the AFs can be computed in polyno-
mial time. In [53] the author reports on ASP encodings for the instantiation
of theories via the two-step approach12. The encodings are integrated into the
DIAMOND system, thus allowing to directly apply this system for reasoning on
the instantiated AFs.

ASP encodings are also available for the “direct stable semantics” for knowl-
edge bases consisting of defeasible and strict (first order) rules defined in [56].
The latter is the result of the authors abandoning previous attempts [63,54]
at defining a semantics based on instantiation of knowledge bases via abstract
argumentation in favor of an approach, where arguments for particular claims
are an optional by-product rather than part of the semantics (thus tackling
the problems of satisfaction of rationality postulates, over generation of argu-
ments, opacity of attacks, regeneration of the arguments when the knowledge
base changes, ...). More specifically, static encodings to disjunctive ASP are pro-
vided for existence of a stable model, as well as credulous and skeptical reasoning
with respect to propositional defeasible theories13; all of these problems are lo-
cated on the second level of the polynomial hierarchy (the encodings also work
for first order defeasible theories, but at the cost of an exponential blowup).
There is also ongoing work on making use of the direct stable semantics (and
ASP encodings) to provide an argumentation-based interface to a restricted frag-
ment of the controlled natural language ACE [35] extended with constructs for
expressing defeasible rules [65,22].

3 Conclusion

In this paper we have surveyed approaches to implement reasoning in formal
models of argumentation via ASP. The variety of reasoning tasks, as well as
the variety of formal models for which ASP implementations were developed
witnesses the wide applicability of both the ASP language and state-of-the-art
ASP solvers available today.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF): I2854, P30168-
N31, S11409-N23, W1255-N23, and Y698.

References

1. Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defea-
sible argumentation. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.)
Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol. 216, pp.
27–38. IOS Press (2010)

12 https://sourceforge.net/p/diamond-adf/code/ci/master/tree/lib/

theorybase.lp
13 https://github.com/hstrass/defeasible-rules

https://sourceforge.net/p/diamond-adf/code/ci/master/tree/lib/theorybase.lp
https://sourceforge.net/p/diamond-adf/code/ci/master/tree/lib/theorybase.lp
https://github.com/hstrass/defeasible-rules


Applications of ASP in Formal Argumentation 7

2. Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Maximal ideal recursive semantics for
defeasible argumentation. In: Benferhat, S., Grant, J. (eds.) Proc. SUM. Lecture
Notes in Computer Science, vol. 6929, pp. 96–109. Springer (2011)

3. Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Using answer set programming for an
scalable implementation of defeasible argumentation. In: Proc. ICTAI. pp. 1016–
1021. IEEE Computer Society (2012)

4. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming frame-
work for possibilistic argumentation: Formalization and logical properties. Fuzzy
Sets and Systems 159(10), 1208–1228 (2008)

5. Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari,
G.R., Thimm, M., Villata, S.: Towards artificial argumentation. AI Magazine
38(3), 25–36 (2017)

6. Bao, Z., Cyras, K., Toni, F.: ABAplus: Attack reversal in abstract and structured
argumentation with preferences. In: An, B., Bazzan, A.L.C., Leite, J., Villata, S.,
van der Torre, L.W.N. (eds.) Proc. PRIMA. Lecture Notes in Computer Science,
vol. 10621, pp. 420–437. Springer (2017)

7. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks and
their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, chap. 4, pp. 159–236. College Publications
(2018)

8. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.): Handbook of Formal
Argumentation. College Publications (2018)

9. Besnard, P., Garćıa, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni,
F.: Introduction to structured argumentation. Argument & Computation 5(1), 1–4
(2014)

10. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
11. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving

advanced argumentation problems with answer-set programming. In: Singh, S.P.,
Markovitch, S. (eds.) Proc. AAAI. pp. 1077–1083. AAAI Press (2017)

12. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran., S.: Abstract di-
alectical frameworks. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.
(eds.) Handbook of Formal Argumentation, chap. 5, pp. 237–285. College Publi-
cations (2018), also appears in IfCoLog Journal of Logics and their Applications
4(8):2263–2318

13. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract di-
alectical frameworks revisited. In: Rossi, F. (ed.) IJCAI. pp. 803–809. IJCAI/AAAI
(2013)

14. Brewka, G., Woltran, S.: GRAPPA: A semantical framework for graph-based argu-
ment processing. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proc. ECAI.
Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 153–158. IOS
Press (2014)

15. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5-6), 286–310 (2007)

16. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the equivalence between logic
programming semantics and argumentation semantics. Int. J. Approx. Reasoning
58, 87–111 (2015)

17. Cayrol, C., Lagasquie-Schiex, M.: Bipolarity in argumentation graphs: Towards a
better understanding. Int. J. Approx. Reasoning 54(7), 876–899 (2013)

18. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der



8 M. Diller et al.

Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15, pp. 688–767. College
Publications (2018), also appears in IfCoLog Journal of Logics and their Applica-
tions 4(8):2623–2706

19. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - A survey. Artif. Intell.
220, 28–63 (2015)

20. Charwat, G., Wallner, J.P., Woltran, S.: Utilizing ASP for Generating and Visu-
alizing Argumentation Frameworks. In: Fink, M., Lierler, Y. (eds.) Proceedings of
the 5th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2012). pp. 51–65 (2012)

21. Cyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: Dis-
putes, explanations, preferences. In: Baroni, P., Gabbay, D., Giacomin, M., van der
Torre, L. (eds.) Handbook of Formal Argumentation, chap. 7, pp. 365–408. College
Publications (2018), also appears in IfCoLog Journal of Logics and their Applica-
tions 4(8):2407–2456

22. Diller, M., Wyner, A.Z., Strass, H.: Defeasible acerules: A prototype. In: Gardent,
C., Retoré, C. (eds.) Proc. IWCS(1). The Association for Computational Linguis-
tics (2017)

23. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

24. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, chap. 14, pp. 631–687. College Publications
(2018), also appears in IfCoLog Journal of Logics and their Applications 4(8):2557–
2622

25. Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Making use of advances in
answer-set programming for abstract argumentation systems. In: Tompits, H.,
Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) Pro-
ceedings of the 19th International Conference on Applications of Declarative Pro-
gramming and Knowledge Management (INAP 2011), Revised Selected Papers.
Lecture Notes in Artificial Intelligence, vol. 7773, pp. 114–133. Springer (2013)

26. Dvořák, W., Gaggl, S.A., Linsbichler, T., Wallner, J.P.: Reduction-based ap-
proaches to implement Modgil’s extended argumentation frameworks. In: Eiter,
T., Strass, H., Truszczynski, M., Woltran, S. (eds.) Advances in Knowledge Repre-
sentation, Logic Programming, and Abstract Argumentation - Essays Dedicated to
Gerhard Brewka on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 9060, pp. 249–264. Springer (2015)

27. Dvořák, W., Greßler, A., Woltran, S.: Evaluating SETAFs via answer-set program-
ming. In: Thimm, M., Cerutti, F., Vallati, M. (eds.) Proceedings of the Second
International Workshop on Systems and Algorithms for Formal Argumentation
(SAFA 2018). CEUR Workshop Proceedings, vol. 2171, pp. 10–21. CEUR-WS.org
(2018)

28. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument & Computation 1(2), 147–177 (2010)

29. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2-4), 123–165 (2007)

30. Ellmauthaler, S., Strass, H.: The DIAMOND system for computing with abstract
dialectical frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.)



Applications of ASP in Formal Argumentation 9

Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol. 266, pp.
233–240. IOS Press (2014)

31. Ellmauthaler, S., Strass, H.: DIAMOND 3.0 - A native C++ implementation
of DIAMOND. In: Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.)
Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol. 287, pp.
471–472. IOS Press (2016)

32. Ellmauthaler, S., Strass, H.: go DIAMOND 0.6.6 ICCMA 2017 System Description.
http://argumentationcompetition.org/2017/goDIAMOND.pdf (2017)

33. Ellmauthaler, S., Wallner, J.P.: Evaluating abstract dialectical frameworks with
ASP. In: Verheij, B., Szeider, S., Woltran, S. (eds.) COMMA. Frontiers in Artificial
Intelligence and Applications, vol. 245, pp. 505–506. IOS Press (2012)

34. Faber, W., Vallati, M., Cerutti, F., Giacomin, M.: Enumerating preferred exten-
sions using ASP domain heuristics: The ASPrMin solver. In: Modgil, S., Budzyn-
ska, K., Lawrence, J. (eds.) Proc. COMMA. Frontiers in Artificial Intelligence and
Applications, vol. 305, pp. 459–460. IOS Press (2018)

35. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. Lecture Notes in Computer Sci-
ence, vol. 5224, pp. 104–124. Springer (2008)

36. Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-
set programming encodings for abstract argumentation. TPLP 15(4-5), 434–448
(2015)

37. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. TPLP 4(1-2), 95–138 (2004)

38. Gebser, M., Kaminski, R., Kaufmann, B., Lühne, P., Obermeier, P., Ostrowski,
M., Romero, J., Schaub, T., Schellhorn, S., Wanko, P.: The potsdam answer set
solving collection 5.0. KI 32(2-3), 181–182 (2018)

39. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89 (2012)

40. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. J. Artif. Intell. Res. 60, 41–95 (2017)

41. Heissenberger, G., Woltran, S.: GrappaVis - A system for advanced graph-based
argumentation. In: Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.)
Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol. 287, pp.
473–474. IOS Press (2016)

42. Kökciyan, N., Sassoon, I., Young, A.P., Modgil, S., Parsons, S.: Reasoning with
metalevel argumentation frameworks in Aspartix. In: Modgil, S., Budzynska, K.,
Lawrence, J. (eds.) Proc. COMMA. Frontiers in Artificial Intelligence and Appli-
cations, vol. 305, pp. 463–464. IOS Press (2018)

43. Lehtonen, T., Wallner, J.P., Järvisalo, M.: From structured to abstract argumen-
tation: Assumption-based acceptance via AF reasoning. In: Antonucci, A., Cholvy,
L., Papini, O. (eds.) Proc. ECSQARU. Lecture Notes in Computer Science, vol.
10369, pp. 57–68. Springer (2017)

44. Linsbichler, T., Pührer, J., Strass, H.: A uniform account of realizability in ab-
stract argumentation. In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E.,
Dignum, V., Dignum, F., van Harmelen, F. (eds.) Proc. ECAI. Frontiers in Artifi-
cial Intelligence and Applications, vol. 285, pp. 252–260. IOS Press (2016)

45. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell.
173(9-10), 901–934 (2009)

46. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

http://argumentationcompetition.org/2017/goDIAMOND.pdf


10 M. Diller et al.

47. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for argu-
mentation: Arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) Proc. ArgMAS. Lecture Notes in Computer Science, vol. 4766,
pp. 54–73. Springer (2006)

48. Nieves, J.C., Cortés, U., Osorio, M.: Preferred extensions as stable models. TPLP
8(4), 527–543 (2008)

49. Niskanen, A., Wallner, J.P., Järvisalo, M.: Extension enforcement under grounded
semantics in abstract argumentation. In: Thielscher, M., Toni, F., Wolter, F. (eds.)
Proc. KR. pp. 178–183. AAAI Press (2018)

50. Pührer, J.: ArgueApply: A mobile app for argumentation. In: Balduccini, M., Jan-
hunen, T. (eds.) Proc. LPNMR. Lecture Notes in Computer Science, vol. 10377,
pp. 250–262. Springer (2017)

51. Pührer, J.: ArgueApply: Abstract argumentation at your fingertips. KI 32(2-3),
209–212 (2018)

52. Sakama, C., Rienstra, T.: Representing argumentation frameworks in answer set
programming. Fundam. Inform. 155(3), 261–292 (2017)

53. Strass, H.: Implementing instantiation of knowledge bases in argumentation frame-
works. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Proc. COMMA. Fron-
tiers in Artificial Intelligence and Applications, vol. 266, pp. 475–476. IOS Press
(2014)

54. Strass, H.: Instantiating rule-based defeasible theories in abstract dialectical frame-
works and beyond. J. Log. Comput. 28(3), 605–627 (2018)

55. Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract di-
alectical frameworks via approximation fixpoint theory. Artif. Intell. 226, 34–74
(2015)

56. Strass, H., Wyner, A.: On automated defeasible reasoning with controlled natural
language and argumentation. In: Barták, R., McCluskey, T.L., Pontelli, E. (eds.)
Proc. KnowProS. pp. 765–773. AAAI Press (2017)

57. Thimm, M., Kern-Isberner, G.: On the relationship of defeasible argumentation
and answer set programming. In: Besnard, P., Doutre, S., Hunter, A. (eds.)
Proc. COMMA. Frontiers in Artificial Intelligence and Applications, vol. 172, pp.
393–404. IOS Press (2008)

58. Toni, F., Sergot, M.: Argumentation and answer set programming. In: Balduccini,
M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of
His 65th Birthday, pp. 164–180. Springer (2011)

59. Wakaki, T., Nitta, K.: Computing argumentation semantics in answer set program-
ming. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.)
Proc. JSAI and Workshops. Revised Selected Papers. Lecture Notes in Computer
Science, vol. 5447, pp. 254–269. Springer (2008)

60. Wakaki, T., Nitta, K., Sawamura, H.: Computing abductive argumentation in an-
swer set programming. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.)
Proc. ArgMAS. Revised Selected and Invited Papers. Lecture Notes in Computer
Science, vol. 6057, pp. 195–215. Springer (2009)

61. Wallner, J.P.: Structural constraints for dynamic operators in abstract argumenta-
tion. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Proc. COMMA. Frontiers
in Artificial Intelligence and Applications, vol. 305, pp. 73–84. IOS Press (2018)

62. Wyner, A.Z., Bench-Capon, T.J.M., Dunne, P.E.: On the instantiation of knowl-
edge bases in abstract argumentation frameworks. In: Leite, J., Son, T.C., Torroni,
P., van der Torre, L., Woltran, S. (eds.) Proc. CLIMA. Lecture Notes in Computer
Science, vol. 8143, pp. 34–50. Springer (2013)



Applications of ASP in Formal Argumentation 11

63. Wyner, A.Z., Bench-Capon, T.J.M., Dunne, P.E., Cerutti, F.: Senses of ’argument’
in instantiated argumentation frameworks. Argument & Computation 6(1), 50–72
(2015)

64. Wyner, A.Z., Bench-Capon, T.J., Dunne, P.E.: Instantiating knowledge bases in
abstract argumentation frameworks. In: Bench-Capon, T., Parsons, S., Prakken, H.
(eds.) Proc. AAAI Fall Symposium - The Uses of Computational Argumentation.
AAAI Technical Report, vol. FS-09-06. AAAI (2009)

65. Wyner, A.Z., Strass, H.: dARe - using argumentation to explain conclusions from
a controlled natural language knowledge base. In: Benferhat, S., Tabia, K., Ali, M.
(eds.) Proc. IEA/AIE. Lecture Notes in Computer Science, vol. 10351, pp. 328–338.
Springer (2017)


	Applications of ASP in Formal Argumentation

