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Abstract
We study a type of change on knowledge bases in-
spired by the dynamics of formal argumentation
systems, where the goal is to enforce acceptance of
certain arguments. We put forward that enforcing
acceptance of arguments can be viewed as a mem-
ber of the wider family of belief change operations,
and that an axiomatic treatment of it is therefore de-
sirable. In our case, laying down axioms enables a
precise account of the close connection between en-
forcing arguments and belief revision. Our analysis
of enforcing arguments proceeds by (i) axiomatiz-
ing it as an operation in propositional logic and pro-
viding a representation result in terms of rankings
on sets of interpretations, (ii) showing that it stands
in close relationship to belief revision, and (iii) us-
ing it as a gateway towards a principled treatment
of enforcement in abstract argumentation.

1 Introduction
The axiomatic approach to belief change [Alchourrón et al.,
1985; Gärdenfors, 1988; Katsuno and Mendelzon, 1992] is a
powerful tool in the study of dynamically evolving knowl-
edge. Its unified methodology has proven useful for the
formalization and comparison of various change operations
(e.g., revision or update), and has opened up an avenue for the
foundational study of other change operations of relevance to
the AI community. The present work looks at enforcing ac-
ceptance of arguments, an operation from the rapidly grow-
ing field of formal argumentation [Bench-Capon and Dunne,
2007], whose focus on formalized debates lends itself natu-
rally to an analysis in terms of beliefs and their dynamics. In-
deed, interest in connecting argumentation and belief change
has steadily risen over the last few years (see [Falappa et al.,
2011; Paglieri and Castelfranchi, 2004] for an overview, and
the dedicated workshop [Fermé et al., 2013], which was held
again in end of 2017).

Enforcing arguments is a core operator in formal argu-
mentation, whose aim is to force a reasoner to accept (a set
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of) arguments. Typically, this aim must be achieved through
minimal modifications to the reasoner’s current state of ar-
guments [Baumann and Brewka, 2010; Baumann, 2012b;
de Saint-Cyr et al., 2016], with the intuition that enforcing
should be done in an “economic” manner. While several as-
pects of enforcing arguments have been investigated, a gen-
eral axiomatic study of the semantic changes required by this
operation (as carried out for operators in belief change) has
so far received little attention. The multitude of formal mod-
els in argumentation, coupled with a plethora of semantics,
means that such a general investigation is helpful for avoid-
ing ad-hoc approaches focused on single formalisms.

In this paper we provide an axiomatization of enforcement
with the novel feature of accommodation, or preservation, of
current points of view. This comes in contrast to existing en-
forcement, which may disrupt beliefs arbitrarily. In line with
our vision of a principled approach, we begin by providing an
axiomatization of our enforcement operation in propositional
logic, which (1) places enforcement on the map of generic
belief change operations and highlights connections to other
operations in this field, and (2) lays the groundwork for de-
riving foundational representation results. We argue that this
provides a general framework for enforcement, and take first
steps in applying it to the context of abstract argumentation.

We find that viewing enforcement as a dual to revision
provides a natural way for axiomatizing these requirements:
while revising a knowledge base κ with µ returns a non-
empty subset of the models of µ, a dual axiomatization of
revision represents a family of operators that return a non-
tautological superset of the models of µ. In this way models
of µ are enforced, while models of κ’s are, if possible, in-
cluded, all the while avoiding an uninformative tautology.

Our main contributions are summarized below:
• We provide an alternative representation result for revi-

sion that uses rankings on sets of interpretations, rather
than the more usual rankings on interpretations, which
are better suited for relating revision and enforcement.
• We axiomatize enforcement as a natural dual to revision,

prove the connection between revision and enforcement
and show a representation result for enforcement based
on ranking sets of interpretations.
• Based on the formalization in propositional logic, we ax-

iomatize our enforcement operation in the context of ar-
gumentation frameworks (AFs) [Dung, 1995], a major
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formalism in argumentation and their admissible seman-
tics. We show that certain “idealized” axioms cannot be
applied to AFs, yet our axiomatization in logic, aided by
a characterization of the admissible semantics, leads to
a principled approach to modify the axioms to suit AFs.
• We show how distance-based revision operators (e.g.,

[Dalal, 1988]) can be adapted to propositional enforce-
ment and to AFs under admissible semantics.
• We argue that, when permitting only certain structural

changes to an AF, axioms have to be adapted to such
constraints, yet this endeavor requires semantical char-
acterizations of the restrictions.

2 Belief Revision
We assume a finite set P of propositional atoms and L is the
set of formulas generated from P with the usual connectives.
A knowledge base κ is a finite set of formulas, typically in-
terpreted conjunctively (i.e., as

∧
ϕ∈κ ϕ). The set of propo-

sitional knowledge bases is 2L. The universe U is the set of
possible interpretations for formulas in L. The models of a
propositional formula µ are the interpretations which satisfy
it, and we write [µ] (respectively, [κ]) for the set of models
of µ (respectively, for

⋂
ϕ∈κ[ϕ]). We typically write models

as words where letters are the atoms assigned to true, e.g.,
{{a, b}, {b, c}} is written as {ab, bc}. If µ1, µ2 ∈ L, we say
that µ1 |= µ2, if [µ1] ⊆ [µ2], and that µ1 ≡ µ2, if [µ1] = [µ2].
A formula µ (a knowledge base κ) is consistent if [µ] 6= ∅
([κ] 6= ∅). The set of consistent knowledge bases is 2Lc . The
set of refutable (i.e., non-tautological) knowledge bases is 2Lr .

A propositional revision operator ◦ maps a κ ∈ 2Lc and a
µ ∈ L to κ ◦ µ ∈ L. The intention is that κ ◦ µ is the result of
modifying existing beliefs κ such that new, trusted informa-
tion µ is accepted. The following list of axioms is typically
acknowledged as a basic core of rational properties for revi-
sion [Katsuno and Mendelzon, 1992]:

(R1) κ ◦ µ |= µ.
(R2) If κ ∧ µ is consistent, then κ ◦ µ ≡ κ ∧ µ.
(R3) If µ is consistent, then κ ◦ µ is consistent.
(R4) If κ1 ≡ κ2 and µ1 ≡ µ2, then κ1 ◦ µ1 ≡ κ2 ◦ µ2.
(R5) (κ ◦ µ) ∧ ϕ |= κ ◦ (µ ∧ ϕ).
(R6) If (κ ◦ µ) ∧ ϕ is cons., then κ ◦ (µ ∧ ϕ) |= (κ ◦ µ) ∧ ϕ.

Reflection on axioms R1−6 reveals that, if faced with incon-
sistency, an operator ◦ satisfying them has to give up infor-
mation from κ and that, in doing so, ◦ behaves as if it has
preferences over units of information. This is formalized us-
ing the following notions. A preorder ≤ on a set W is a re-
flexive, transitive binary relation on W . The set of transitive
relations on W is denoted as T (W ). We write < for the strict
part of ≤, i.e., x < x′ if x ≤ x′ and x′ 6≤ x. We write x ≈ x′
if x ≤ x′ and x′ ≤ x. The ≤-minimal elements of W with
respect to ≤ are defined as min≤W = {x ∈ W | @x′ ∈
W such that x′ < x}. An assignment from W1 to W2 is a
function α : W1 → T (W2).

A useful result in belief revision connects axioms R1−6 to
assignments from 2Lc to U , for which we may write ≤κ in-
stead of α(κ) if there is no danger of ambiguity. We say that

an assignment from 2Lc to U represents a revision operator ◦
(and that ◦ is represented by an assignment from 2Lc to U) if,
for any κ ∈ 2Lc and µ ∈ L, it holds that [κ ◦ µ] = min≤κ [µ].
Given an assignment from 2Lc to U , κ, κ1, κ2 ∈ 2Lc and
w1, w2 ∈ U , the following properties are of particular inter-
est: (f1) if w1, w2 ∈ [κ], then w1 ≈κ w2; (f2) if w1 ∈ [κ] and
w2 /∈ [κ], then w1 <κ w2; (f3) if κ1 ≡ κ2, then ≤κ1

=≤κ2
. A

faithful assignment is an assignment from 2Lc to U such that
≤κ is a total preorder and properties f1−3 are satisfied. Faith-
ful assignments provide the semantic counterpart to axioms
R1−6, as shown by the following representation result.

Theorem 1 ([Katsuno and Mendelzon, 1992]). A revision
operator satisfies axioms R1−6 iff there exists a faithful as-
signment which represents it.

Revision by ranking sets of interpretations. By Theo-
rem 1, revision according to axioms R1−6 is equivalent to
ranking interpretations in a way that depends on κ, and choos-
ing the most plausible allowed interpretations. Alternatively,
we show, revision can be seen as choosing one element from
a set of formulas (in semantic terms, from a set of sets of in-
terpretations). IfM is a set, we write sub(M) = 2M \ {∅}
for the set of non-empty subsets of M. We now switch to
working with assignments from 2Lc to sub(U). Given such
an assignment, κ, κ1, κ2 ∈ 2Lc , and W1,W2 ∈ sub(U), the
following properties are of particular interest:

(r1) If W1 6= W2, there is W3 ∈ sub(U) such that W3 ⊆
W1 ∪W2 and min≤κ{W1,W2,W3} = {W3}.

(r2) If W1,W2 ∈ sub([κ]) and W1 ⊆W2, then W2≤κW1.
(r3) If W1 ∈ sub([κ]) and W2 /∈ sub([κ]), then W2 �κ W1.
(r4) If κ1 ≡ κ2, then ≤κ1

=≤κ2
.

(r5) If W1≤κW3≤κW2 and W3⊆W2, then W1 ∩W2⊆W3.
(r6) If W1≤κW3 ≤ W2, W3 ⊆ W2 and W1 ∩W2 6= ∅, then

W3 ⊆W1 ∩W2.

An r-assignment is an assignment from 2Lc to sub(U) such
that ≤κ is a partial transitive relation and r1−6 are satisfied.
The intention is to use properties r1−6 to represent revision
operators satisfying axioms R1−6: intuitively, sets of inter-
pretations W1 and W2 stand for formulas, and W1 <κ W2

encodes the fact that W1 gets chosen over W2 if a choice is
to be made among them. Property r1 says that, for any sets of
interpretations W1 and W2, there is W3 ⊆ W1 ∪W2 strictly
preferred among the three, i.e., W3 would get chosen if the
choice were betweenW1,W2 andW3. This property is equiv-
alent to min≤ sub([µ]) being a singleton, for any µ ∈ L:
assuming two distinct ≤κ-minimal subsets of [µ] generates
a contradiction with r1. Since we only consider assignments
satisfying r1, we henceforth identify min≤ sub([µ]) with its
unique element. Thus we can define a revision operator whose
output is exactly this minimal element. For further intuitions,
(r2) states that supersets are preferred (if models of κ), (r3)
states that models of κ are preferred, (r4) denotes syntax in-
dependence, and (r5) and (r6) can be seen as semantic coun-
terparts of axioms R5−6, We say that an assignment from 2Lc
to sub(U) satisfying r1 represents a revision operator ◦ if, for
any κ ∈ 2Lc and µ ∈ L, it holds that [κ◦µ] = min≤κ sub([µ]).
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Figure 1: Rankings associated to κ by a faithful assignment and an
r-assignment; an arrow from x to y indicates that x≤κy.

Example 1. Consider the alphabet P = {a, b}, a knowledge
base κ = {¬a} and an r-assignment that associates to κ the
ranking ≤κ in Figure 1-(b). Revision of κ by µ = a yields
min≤κ sub([µ]) = min≤κ{{a}, {ab}, {a, ab}} = {a, ab}.
Finally, we convince ourselves that things are properly ar-
ranged with a representation result involving r-assignments.
Theorem 2. A revision operator satisfies R1−6 iff there exists
an r-assignment which represents it.
Faithful assignments and r-assignments represent the same
axioms, so one would expect there to be a correspondence
between them. This correspondence can be made precise, as
follows. If≤g is a relation onM, the lifting of≤g to sub(M)
is a relation ≤l on sub(M) defined, for any W1,W2 ∈
sub(M), by taking W1≤lW2 iff (l1) min≤g W1 = W1, and
either (l21) W2 ⊆ W1, or (l22) w1<

gw2, for any w1 ∈ W1

and w2 ∈ W2 \ W1. Conversely, if ≤l is a relation on
sub(M), the grounding of ≤l to M is a relation ≤g on
M defined, for any w1, w2 ∈ M, by taking w1≤gw2 iff
w1 ∈ min≤l sub({w1, w2}). Notably, lifting a faithful as-
signment results in an r-assignment, while grounding an r-
assignment results in a faithful assignment.
Example 2. For κ = {¬a}, ≤r

κ in Figure 1-(b) is obtained
by lifting≤f

κ in Figure 1-(a): notice, e.g., that {∅, b}≤r
κ{∅, b},

since ∅ ≈f
κb (giving us l1) and {∅, b} ⊆ {∅, b} (giving us l21);

we also have {∅}<r
κ{∅, a}, because ∅ ≈f

κ∅ (giving us l1) and
∅ <f

κa (giving us l22). Conversely, ≤f
κ is the grounding of

≤r
κ, we get, e.g., that ∅ <f

κa, because min≤rκ sub({∅, a}) =
min≤rκ{{∅}, {a}, {∅, a}} = ∅.

3 Propositional Enforcement
Axiomatization. Enforcement stems from abstract argu-
mentation, where new information can be brought to a debate,
requiring reconsideration of the acceptance status of certain
arguments [de Saint-Cyr et al., 2016]. Concretely, an argu-
mentation framework undergoes change such that its exten-
sions (in this section, its models) include some distinguished
elements. More broadly, daily life provides us with interac-
tions where agents balance their positions in order to take into
account differing points of view. Accommodation is achieved
not necessarily through unconditional acceptance of one of
the viewpoints (as in revision), but by finding a middle ground
between the different sources. Such interactions often have a
strategic flavor, and success consists in finding a position that

allows the possibility of having one’s preferred options, while
avoiding an uninformative solution such as a tautology.

Example 3. The prime-minister is weighing two responses
to an economic downturn: a combination of increased taxes
and spending cuts, i.e., austerity measures (a), and borrowing
money (b). The prime-minister is privately in favor of imple-
menting austerity (µ = a), but polling reveals that the pub-
lic is in favor of borrowing (κ1 = {b}). The prime-minister
wants to put forward a plan that leaves the option of austerity
on the table, while at the same time appeasing the public. The
most inclusive solution in this situation is κ1 ∨ µ ≡ a ∨ b.

Suppose that further polling reveals the public to be op-
posed to austerity (κ2 = {¬a}). In this case we have κ2∨µ ≡
¬a ∨ a, and the prime-minister would like to avoid putting
forward a vacuous proposal. Nonetheless, the same consid-
erations from before apply and we reason that the prime-
minister’s options range as follows: she could put forward a,
if she is confident she can override public opinion; b→ a, for
a compromise solution; or a∨b, for a non-committal position.

We formalize these intuitions through an enforcement opera-
tor ., mapping a refutable (i.e., non-tautological) knowledge
base κ ∈ 2Lr and a formula µ ∈ L to a knowledge base
κ . µ ∈ 2L. We restrict to refutable knowledge bases, since
tautological formulas are a special case (no useful informa-
tion and all interpretations are models). Following common
belief change practice, we start by proposing a set of axioms:

(EP
1 ) µ |= κ . µ.

(EP
2 ) If κ ∨ µ is refutable, then κ . µ ≡ κ ∨ µ.

(EP
3 ) If µ is refutable, then κ . µ is refutable.

(EP
4 ) If κ1 ≡ κ2 and µ1 ≡ µ2, then κ1 . µ1 ≡ κ2 . µ2.

(EP
5 ) κ . (µ ∨ ϕ) |= (κ . µ) ∨ ϕ.

(EP
6 ) If (κ.µ)∨ϕ is refutable, then (κ.µ)∨ϕ |= κ.(µ∨ϕ).

Axioms EP
1−6 can be seen as dual to axioms R1−6 for revi-

sion, and their logic is as follows. Axiom EP
1 formalizes the

idea that the enforcement result takes µ into account, by re-
quiring that µ implies it. Axiom EP

2 says that unless κ ∨ µ is
a tautology, in which case it would carry no useful informa-
tion, we are to simply take the disjunction of κ and µ. Thus,
ideally, enforcement shall accommodate (preserve) κ’s mod-
els. Axioms EP

3 and EP
4 say that enforcement should yield an

informative result when µ is informative, and that this result
should not depend on the syntax of κ and µ. Finally, axioms
EP
5 and EP

6 ensure that the enforcement operator has a stable
behavior when the enforcement formula is allowed to vary.
For an intuition, consider Example 3: if the policy proposal
(κ1 . µ) were to be augmented with a third option (c), then
the axioms ensure equivalence to κ1 . (µ∨c) (the result is the
same as if c was part of original proposal and public opinion
needs to be accommodated either way).

Relating revision and enforcement. It is intended that the
enforcement axioms EP

1−6 bear some resemblance to the re-
vision axioms R1−6, which raises the question of what con-
nection there is between the two operations. The following
theorem makes this connection precise.
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Figure 2: Order associated with κ by an e-assignment.

Theorem 3. A propositional enforcement operator . satisfies
EP
1−6 iff there is a propositional revision operator ◦ satisfying

R1−6 s.t., for any κ ∈ 2Lr and µ ∈ L: κ . µ = ¬(¬κ ◦ ¬µ).
Theorem 3 reveals that enforcement is a dual to revision. Intu-
itively, in order to accommodate µ, an enforcement operator
gives up possible worlds that do not satisfy µ, in a manner
that shows some preference for preserving as much as possi-
ble of the information in κ. Thus enforcement operators act
as choice functions, choosing the ‘best’ elements from fea-
sible options: the menu of feasible options here is the set
of refutable supersets of [µ], defined as sup([µ]) = {W 6=
U | [µ] ⊆ W}. Deciding which of these supersets is best re-
quires an underlying ranking over sets of interpretations, and
to this purpose we employ assignments from 2Lr to 2Ur , where
2Ur = 2U \ {U}. Given such an assignment, κ, κ1, κ2 ∈ 2Lr ,
and W1,W2 ∈ 2Ur , consider the following properties:
(e1) If W1 6= W2, there is W3 ∈ sup(U) such that W1 ∩

W2 ⊆W3 and min≤κ{W1,W2,W3} = {W3}.
(e2) If W1,W2 ∈ sup([κ]) and W1 ⊆W2, then W1≤κW2.
(e3) If W1 ∈ sup([κ]), W2 /∈ sup([κ]), then W2 �κ W1.
(e4) If κ1 ≡ κ2, then ≤κ1=≤κ2 .
(e5) If W1≤κW3≤κW2 and W2⊆W3, then W3⊆W1 ∪W2.
(e6) If W1≤κW3≤κW2, W2 ⊆W3 and W1 ∪W2 6= U , then

W1 ∪W2 ⊆W3.
An e-assignment αe is an assignment from 2Lr to 2Ur such that
≤κ is a partial transitive relation and e1−6 are satisfied. An
e-assignment αe represents an enforcement operator . (alter-
natively, . is represented by αe) if, for any κ ∈ 2Lr and µ ∈ L,
it holds that [κ . µ] = min≤κ sup([µ]).
Example 4. For the alphabet P = {a, b}, take a knowl-
edge base κ = {a} and the ranking ≤κ in Figure 2. En-
forcement by µ = ¬a yields [κ . µ] = min≤κ sup([µ]) =
min≤κ{{∅, b}, {∅, a, b}, {∅, b, ab}} = {∅, b}.
To establish a representation result, we use the connection to
revision presented in Theorem 3. We show a similar corre-
spondence between r-assignments and e-assignments.
Proposition 4. For any r-assignment αr there is an e-
assignment αe such that, for any κ ∈ 2Lr andW1,W2 ∈ 2Ur , it
holds that W1≤e

κW2 iff (U \W1)≤r
¬κ(U \W2). Conversely,

for any e-assignment αe there is an r-assignment αr such that
W1≤r

κW2 iff (U \W1)≤e
¬κ(U \W2).

This correspondence facilitates the following result.
Theorem 5. A propositional enforcement operator satisfies
axioms EP

1−6 iff there is an e-assignment representing it.

It is here that our representation of revision operators using
rankings on sets of formulas pays off richly, as it highlights in
a very clear manner the correspondence between revision and
enforcement at the semantic level. A representation for en-
forcement using rankings on interpretations is unwieldy and
lacks the intuitive appeal of an e-assignment.

Concrete enforcement operators. The drastic enforce-
ment operator .D, is defined, for any κ ∈ 2Lr and µ ∈ L,
by: κ .D µ = κ ∨ µ if κ ∨ µ is refutable, and µ otherwise.

A more fine-grained operator uses the Hamming distance
between interpretations (i.e., the number of atoms on which
they differ) to choose a set of interpretations situated between
[µ] and [κ ∨ µ]. We call this Dalal’s enforcement operator
.H, as it uses the identity in Theorem 3 to adapt Dalal’s
revision operator [Dalal, 1988] into an enforcement opera-
tor. Define, first, the minimum cardinality of the symmetric
difference of models of two formulas as |∆|min(ϕ,ψ) =
min{|w∆w′| | w ∈ [ϕ], w′ ∈ [ψ]}, for ϕ,ψ ∈ L. The op-
erator .H is now defined by taking [κ .H µ] = {w ∈ U |
@w′ ∈ [¬κ] such that |w∆w′| = |∆|min(¬κ,¬µ)}. Intu-
itively, [κ .H µ] is obtained by removing the interpretations
from [¬µ] at minimum distance to [¬κ].

Example 5. For an alphabetP = {a, b}, take κ = {¬a∨¬b},
and suppose we want to enforce µ = a ∧ b. For .D we get
κ .D µ = µ, since κ ∨ µ is a tautology. For .H, we have
[¬κ] = {ab} and [¬µ] = {∅, a, b}. The models from ¬µ
that have minimum distance to ¬κ are a and b. Therefore,
[κ .H µ] = U \ {a, b} = {∅, ab} = [a↔ b].

Drastic and Hamming enforcement operators satisfy EP
1−6

(via Theorem 3, any revision operator satisfying R1−6 can
be converted into an enforcement operator satisfying EP

1−6).

4 Enforcement in Argumentation
Existing forms of enforcement focus on the formal model
of argumentation frameworks (AFs) [Dung, 1995], repre-
sentable as directed graphs F = (A,R) with A a set of
arguments and R a directed conflict relation (attacks) be-
tween arguments. The study of AFs is mainly concerned with
defining subsets of arguments (extensions) that can be ac-
cepted together when taking into account the graph struc-
ture. As a result, the argumentation literature offers a wide
range of criteria (AF semantics) for establishing jointly ac-
ceptable arguments. Enforcing a set S with respect to F typ-
ically amounts to changing F such that F ’s set of extensions
includes S [Baumann and Brewka, 2010; Baumann, 2012b].

In this section we focus on the admissible semantics,
whose definition requires the following notions. For an AF
F = (A,R), a set E ⊆ A is conflict-free in F if there is no
directed edge between any arguments in E; E is an admis-
sible extension if E is conflict-free, and for each argument c
attacking a ∈ E, there is an argument b ∈ E that attacks c (b
counters c, and can be thought of as defending a). If F is an
AF, then adm(F ) is the set of its admissible extensions.

Example 6. Let F = ({a, b, c}, {(b, c)}) be an AF. We have
adm(F ) = {∅, a, b, ab}. Enforcing {ac} requires finding an
AF F ′ such that ac ∈ adm(F ′).



Notice the similarity between the extensions of an AF and
the models of a propositional formula: though syntactically
different, formulas and AFs share a common semantic rep-
resentation, and it is this insight that raises the prospect of
modelling enforcement as a belief change operation.

We wish to apply the axiomatic approach developed for
propositional enforcement (see previous section) to AFs. In
doing so, we will exploit the analogy between extensions and
propositional models. However, we immediately run into a
problem. In contrast to propositional logic, there are sets S
of sets of arguments for which there is no AF F such that
adm(F ) = S. A set S of sets of arguments is adm-realizable
if there exists an AF F such that adm(F ) = S [Dunne et al.,
2015]. Fortunately, we know exactly what properties S has to
satisfy in order for such an F to exist. The admissible closure
of a set S of extensions [Dunne et al., 2015; Niskanen et al.,
2016] characterizes all adm-realizable sets, and is defined by
taking Cl (S) = {E | E =

⋃
E′∈S′ E′, S′ ⊆ S, ∀a, b ∈

E it holds that ∃E′′ ∈ S s.t. {a, b} ⊆ E′′}. Intuitively, in the
admissible closure of S, we add E, if E is the union of some
sets in S, and each pair of arguments a, b from E is conflict-
free, i.e., both occur together in some set in S. It holds that
Cl (S) is the smallest superset of S that is adm-realizable,
and that S is adm-realizable iff Cl (S) = S. The signature of
the admissible semantics Σadm = {adm(F ) | F is an AF}
thus can be characterized by Σadm = {S | Cl (S) = S}.
Example 7. If M = {∅, a, ab, ac, bc}, then Cl (M) = M ∪
{abc} and thus M is not adm-realizable.
An adm-enforcement operator .adm is a function which,
given an AF F and µ ∈ L, maps adm(F ) and [µ] to a set
of extensions adm(F .adm µ). The propositional formula µ
encodes the extensions to be enforced, under the assump-
tion that sets of arguments are identified with interpretations
and admissible extensions with models. The notation makes it
clear that the intention is to realize adm(F .adm µ) as an AF
under the admissible semantics, and it is worth noting how
the issue of realizability has a role to play: a set of extensions
is adm-realizable as an AF only if it is in the signature Σadm

of the admissible semantics; given our identification of exten-
sions with interpretations, one can think of all adm-realizable
sets as a subset of the semantics of propositional logic. In this
way, enforcement on adm-realizable sets can be viewed as
operating in a “fragment” of propositional logic.

Going from propositional enforcement to adm-
enforcement of AFs, we say a set S is refutable if it is
a proper subset of 2A, with A the set of all arguments
occurring in F and µ. We propose the following axioms:
(EA

1 ) [µ] ⊆ adm(F .adm µ).
(EA

2 ) adm(F .adm µ) ⊆ Cl (adm(F ) ∪ [µ]).
(EA

3 ) If Cl (adm(F ) ∪ [µ]) is refutable, then adm(F )∪[µ] ⊆
adm(F .adm µ).

(EA
4 ) If adm(F1) = adm(F2) and [µ1] = [µ2], then

adm(F1 .adm µ1) = adm(F2 .adm µ2).
(EA

5 ) adm(F .adm (µ ∨ ϕ)) ⊆Cl (adm(F .adm µ) ∪ [ϕ]).
(EA

6 ) If adm(F .adm µ) ∪ [ϕ] is refutable, then
adm(F .adm µ) ∪ [ϕ] ⊆ adm(F .adm (µ ∨ ϕ)).1

1Refutable refers here to arguments occurring in F , µ and ϕ.

Comparison with axioms EP
1−6 reveals differences, imposed

by the particularities of AF semantics. One change concerns
axiom EA

2 , which reflects a no-effort case: a straight adapta-
tion of the propositional case suggests adm(F ) ∪ [µ] as de-
fault output, but this is not guaranteed to be adm-realizable.

Example 8. Let A = {a, b, c}, adm(F ) = {∅, a, ab} and
[µ] = {ac, bc}, we have adm(F )∪ [µ] is not adm-realizable.

Since adm(F .adm µ) includes [µ] (by EA
1 ), and is adm-

realizable, we have Cl ([µ]) ⊆ adm(F .adm µ). What we
need from EA

2 is an adm-realizable set that acts as an approx-
imation of adm(F )∪ [µ], and we suggest Cl (adm(F ) ∪ [µ])
as an upper bound. To justify the choice of axioms EA

3 and EA
5 ,

notice that straightforward adaptations of EP
3 and EP

5 , given by
EA
7 and EA

8 below, clash with the other postulates:

(EA
7 ) If Cl ([µ]) is refutable, adm(F .adm µ) is refutable.

(EA
8 ) adm(F .adm µ) ⊆ adm(F .adm µ) ∪ [ϕ].

Proposition 6. There is no adm-enforcement operator satis-
fying axioms EA

2−4,6−7, or EA
1−2,4,8.

Thus, we have to weaken EA
7,8. Axiom EA

3 sets a lower bound
for adm(F .adm µ) if Cl (adm(F .adm µ)) is refutable, and
axiom EA

5 replaces adm((F .adm µ) ∪ [ϕ]) with its closure.
Next, we ask whether there exist adm-enforcement oper-

ators satisfying axioms EA
1−6. One natural idea is to use ex-

isting propositional enforcement operators, but this founders
on the discovery that they typically do not guarantee an adm-
realizable result, as witnessed by Examples 8 and 9.

Example 9. If A = {a, b, c}, adm(F ) = {∅, b, c, ac, bc,
abc}, and [µ] = {a, b, ab, ac}, then .H yields {a, b, c, ab, ac,
bc}, which is not adm-closed, and thus not adm-realizable.

To ensure that enforcement yields an adm-realizable result,
we propose to use propositional operators and coerce their
results into Σadm of the adm semantics via the adm-closure.

Definition 1. Let F be the set of all AFs, α an assignment
from F to 2U mapping every F ∈ F to a transitive order ≤F
such that ≤F satisfies e1−6. Then the adm-refinement w.r.t.
α is an adm-enforcement operator .refadm and is defined as
adm(F .refadm µ)=Cl (min≤F sup(µ)) for any F∈F , µ∈L.

By Theorem 5, properties e1−6 are used to represent axioms
EP
1−6. Definition 1 can thus be seen as taking a propositional

enforcement operator and refining its output such that it falls
inside the signature Σadm . This is possible because of our se-
mantic approach where we treat adm(F ) as the models of F ,
i.e., as a set of sets of atoms in the base alphabet. Interestingly,
it turns out that refinements satisfy axioms EA

1−6.

Proposition 7. If α is an assignment satisfying e1−6, the
adm-refinement with respect to α satisfies axioms EA

1−6.

An equivalent result does not hold if we now switch to the
duals of axioms EA

1−6. This shows that the restriction to ad-
missible sets makes revision and enforcement diverge: in this
context they are no longer mirror images of each other.

Structural constraints and existing enforcement. We ar-
gue that imposing structural constraints on how an AF may be
modified, axiomatization of enforcement requires semantical



characterizations of such constraints. To illustrate one such
restriction, consider normal expansions [Baumann, 2012a]:
given an AF F = (A,R), another AF F ′ = (A′, R′) is a
normal expansion of F if A ⊆ A′, R ⊆ R′ and for each
new attack (a, b) ∈ R′ \ R we have that a or b is an added
argument (in A′ \ A). (Attacks between existing arguments
must stay untouched.) The signature of normal expansions is,
for an AF F = (A,R) with expanded arguments A′, ΣA

′

F =
{adm(F ′) | F ′ = (A′, R′) a normal expansion of F}.
Example 10. Assume an AF F = ({b, c}, {(b, c)}) and the
goal to enforce {ac} to be admissible under normal expan-
sions that may add a (A′ = {a, b, c}). There are only two sets
of sets of arguments that include {ac}, are adm-realizable,
and realizable via normal expansions, namely W1 = {∅, a,
ac} (adding (a, b)), andW2 = {∅, a, b, ac} (adding (a, b) and
(b, a)): ΣA

′

F ∩ sup({ac}) = {W1,W2}. Note that adm(F ) =
{∅, b} and Cladm(adm(F ) ∪ {ac}) = adm(F ) ∪ {ac}.
As illustrated by the example, there are cases where opera-
tor .refadm yields an adm-realizable set, yet not realizable via
normal expansions. We now show axiom satisfaction when
we define an operator that may choose arbitrarily from ΣA

′

F
as the outcome of enforcement, i.e., for an AF F = (A,R),
we define adm(F .s µ) ∈ ΣA

′

F , for pre-specified expanded
arguments A′ ⊇ A, and only require that [µ] ⊆ adm(F .s µ)
(enforcement is successful). The alphabet (arguments) and A
(for defining refutability) for such operators is then equal to
A′. For instance, in Example 10, such an operator may ei-
ther choose W1 or W2. We assume here that there always is
a superset of [µ] in ΣAF . Let S be all such operators .s. Inde-
pendently of the choice, two axioms cannot be satisfied.

Proposition 8. If .s is an operator such that .s ∈ S, then .s
satisfies axiom EA

1 , but neither EA
2 nor EA

4 .

In strict extension enforcement for normal expansions [Bau-
mann and Brewka, 2010] for an AF F = (A,R) and S ⊆ 2A,
the output is F ′ = (A′, R′) s.t. F ′ is a normal expansion of
F , S ⊆ adm(F ′) and |R∆R′| is minimal, breaking ties arbi-
trarily. We assume that F ′ is uniquely determined.

Example 11. Continuing Ex. 10, enforcing {ac} under strict
extension enforcement adds (a, b), corresponding to W1.

This shows that axioms for enforcement under adm cannot
be preserved under normal expansions. Generally, strict ex-
tension enforcement satisfies axiom EA

1 , but not EA
2−6. Other

variants of enforcement [Coste-Marquis et al., 2015], un-
der minimal changes to attacks, can be shown to violate
at least one axiom. Rather than a shortcoming of the ax-
iomatic approach, this shows that semantical characteriza-
tions of structural constraints are needed: e.g., under nor-
mal expansions admissible extensions can be preserved (see
Ex. 10). However, axiom EA

2 is tailored to unrestricted en-
forcement under adm . What is needed to adapt a property
such as adm(F )∪ [µ] ⊆ adm(F .s µ) ⊆ U to other types of
enforcement is a new bound U . While semantic effects (e.g.,
adding an argument [Cayrol et al., 2010]), have been studied,
characterizations for structural constraints are missing. Writ-
ing good axioms for enforcement, we find, goes hand in hand
with understanding the semantic effects of changing an AF’s

structure, and the challenge for axiomatization is to take these
effects into account while preserving the intuitions.

5 Related Work

Theorem 3 makes it clear that propositional enforcement
is closely related to revision, deserving to be treated as a
member of the wider family of belief change operators. The
idea that enforcement accommodates the two sources recalls
the operation of non-prioritized revision [Hansson, 1999],
though our axiomatization sets it apart from these propos-
als. Our choice of representing the operators using rank-
ings on sets of interpretations is reminiscent of other similar
approaches [Grove, 1988; Gärdenfors and Makinson, 1988;
Lindström and Rabinowicz, 1989; Rott, 1992; Meyer et al.,
2000] and bears close similarity to the monoselective ap-
proach [Hansson, 2015]. The axioms for propositional en-
forcement are similar to axioms proposed for revising de-
sires [Dubois et al., 2017], though used to different effect.

Adapting propositional enforcement to an AF setting re-
calls work on revision in fragments of propositional logic,
e.g., Horn logic [Delgrande and Peppas, 2015]; in our case,
the fragment is characterized in terms of Σadm . Our approach
is most similar to [Creignou et al., 2014] through the usage
of a closure function that takes us into the fragment we are
interested in, while the most striking contrast is our finding
that a refined operator satisfies a set of intuitive axioms.

In [de Saint-Cyr et al., 2016], enforcement is modeled as
change on FO formulas, whose semantics are AFs. In [Doutre
et al., 2014], enforcing arguments is encoded in a logic for
dynamics. Axioms in [de Saint-Cyr et al., 2016] relate AFs
encoded in the formulas, while Doutre et al. [2014] show
that axioms can be defined via the logic. Booth et al. [2013]
consider an agent that has beliefs and an AF. If inconsis-
tent together, they study AF expansions to restore consis-
tency. In [Moguillansky and Simari, 2016; Moguillansky et
al., 2013], acceptance revision operators are defined that in-
corporate a new logic (rule)-based argument, and they give
axioms ensuring the argument’s acceptance. Further, studies
on enforcement in AFs concern characterizations [Baumann
and Brewka, 2010; Baumann, 2012b; Coste-Marquis et al.,
2015] and computational results [Coste-Marquis et al., 2015;
Wallner et al., 2017]. In contrast, we axiomatize the semantic
change induced by our novel enforcement operator.

6 Conclusions

In this paper we have axiomatized enforcement in the spirit
of belief change operators, and showed its duality to revision.
We have made the case that the connection to revision is best
seen through the lens of a new type of representation result,
using rankings on sets of interpretations. Moreover, we have
modified the axioms to fit AFs, showing that operators sat-
isfying the modified axioms can be obtained in a seamless
way if no structural restrictions are present. For future work,
we think that our results should be extended by considering
further semantics and characterizations of structural changes.
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