
Reasoning over Assumption-Based Argumentation Frameworks
via Direct Answer Set Programming Encodings

Tuomo Lehtonen
University of Helsinki, Finland

Johannes P. Wallner
TU Wien, Austria

Matti Järvisalo
University of Helsinki, Finland

Abstract
Focusing on assumption-based argumentation (ABA) as a
central structured formalism to AI argumentation, we pro-
pose a new approach to reasoning in ABA with and without
preferences. While previous approaches apply either special-
ized algorithms or translate ABA reasoning to reasoning over
abstract argumentation frameworks, we develop a direct ap-
proach by encoding ABA reasoning tasks in answer set pro-
gramming. This significantly improves on the empirical per-
formance of current ABA reasoning systems. We also give
new complexity results for reasoning in ABA+, suggesting
that the integration of preferential information into ABA re-
sults in increased problem complexity for several central ar-
gumentation semantics.

1 Introduction
The study of computational models for argumentation is a
vibrant area of AI and knowledge representation (KR) re-
search. As KR formalisms, computational models of argu-
mentation capture various related paradigms, including non-
monotonic reasoning and logic programming (Dung 1995),
and furthermore open up avenues for various types of appli-
cations (Atkinson et al. 2017).

Arguments most often have an intrinsic structure
made explicit through derivations from more basic struc-
tures. Computational models for structured argumenta-
tion (Besnard et al. 2014; Bondarenko et al. 1997; Garcı́a
and Simari 2004; Besnard and Hunter 2008; Prakken 2010)
provide tools for making the internal structure of argu-
ments explicit. This is in contrast to abstract argumentation,
where the structure of individual arguments is completely
abstract, and reasoning over abstract argumentation frame-
works (AFs) (Dung 1995) is restricted to the level of pair-
wise knowledge of attacks between conflicting arguments.
While there has been noticeable attention on computational
approaches for AFs (Charwat et al. 2015), advancing under-
standing of the complexity of and algorithms for reasoning
over structured argumentation frameworks has received less
attention and can be considered more challenging.

In this paper we focus on assumption-based argumenta-
tion (ABA) (Bondarenko et al. 1997; Dung, Kowalski, and
Toni 2009; Toni 2014; Cyras et al. 2018) as one of the central
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structured argumentation formalisms which provides a suit-
able model for various application scenarios (Craven et al.
2012; Fan et al. 2014; Matt et al. 2008). We propose a new
computational approach to reason in ABA with and with-
out preferences. While previous approaches are based on ei-
ther specialized algorithms or translating ABA reasoning to
reasoning over AFs, we propose a direct approach to ABA
reasoning based on encoding ABA reasoning tasks in an-
swer set programming (ASP) (Gelfond and Lifschitz 1988;
Niemelä 1999). While related encodings have been consid-
ered previously focusing on representational aspects in the
context of ABA (Egly and Woltran 2006; Caminada and
Schulz 2017), motivated by the success of ASP encodings
for AFs (Toni and Sergot 2011) we present novel types of
ASP encodings for ABA, and for ABA+ (Cyras and Toni
2016a; 2016c; Bao, Cyras, and Toni 2017) that integrates
preferences into ABA, and in particular provide a first em-
pirical evaluation of this approach. Our approach signifi-
cantly improves on the empirical performance of currently
available ABA reasoning systems, in particular the dis-
pute derivation approach (Gaertner and Toni 2007a; 2007b;
2008; Dung, Mancarella, and Toni 2007; Craven et al. 2012;
Toni 2013; Craven, Toni, and Williams 2013) implemented
in the abagraph system (Craven and Toni 2016) and the
translation-based approach (Dung, Mancarella, and Toni
2007; Caminada et al. 2013) implemented in the aba2af sys-
tem (Lehtonen, Wallner, and Järvisalo 2017) for ABA, as
well as the ABAplus system (Bao, Cyras, and Toni 2017)
for ABA+ to the extent applicable. Furthermore, while the
complexity of reasoning over ABA frameworks is well-
understood (Dimopoulos, Nebel, and Toni 2002), the com-
plexity of reasoning in the ABA+ formalism is currently
less understood. Towards bridging this gap, we also give
new complexity results for reasoning in ABA+, suggesting
that the integration of preferential information into ABA re-
sults in increased problem complexity for several central ar-
gumentation semantics. The complexity results justify why
normal ASP programs are enough to encode ABA+ accep-
tance under stable semantics, and also explain why NP-
reasoning (e.g., ASP over normal logic programs) is not ex-
pected to be powerful enough to allow for direct polynomial-
size encodings for the other semantics; in particular, veri-
fication of admissibility under preferences turns out to be
coNP-complete.



2 Assumption-Based Argumentation
We recall assumption-based argumentation (ABA) (Bon-
darenko et al. 1997; Toni 2014; Cyras et al. 2018) and
ABA+ (Cyras and Toni 2016a; 2016c; Bao, Cyras, and Toni
2017) that equips ABA with preferences over assumptions.
Since ABA+ is a strict generalization of ABA, we directly
define the former and point out differences to the latter.

We assume a deductive system (L,R) with L a for-
mal language, i.e., a set of sentences, and R a set of in-
ference rules over L with a rule r ∈ R having the form
a0 ← a1, . . . , an with ai ∈ L. We denote the head of rule r
by head(r) = {a0} and the (possibly empty) body of r by
body(r) = {a1, . . . , an}.

A central concept in ABA+ is how a sentence can be
derived from a given set of assumptions and a set of
rules. In ABA, several notions of derivability are stud-
ied (Dung, Kowalski, and Toni 2006; Dung, Toni, and Man-
carella 2010), with tree-derivability (|=) the most com-
monly considered one. ABA (without preferences) can be
equivalently defined via forward-derivability, and we will
make use of this fact here for developing ASP encod-
ings for ABA under various semantics. In contrast, tree-
derivability is central for defining ABA+, and the equiva-
lence with forward-derivability does not carry over in gen-
eral to ABA+. However, as we will show, tree-derivability
and forward-derivability remain equivalent also for ABA+

under specific semantics, which allows for an ASP encoding
similar to those we develop for ABA.

A sentence s ∈ L is tree-derivable from a set of assump-
tions X ⊆ A and rules R ⊆ R, denoted by X |=R s, if
there is a finite tree with the root labeled by s, the leaves la-
beled by elements of X , and for each internal node labeled
with t there is a rule r ∈ R s.t. the set of labels of the chil-
dren of this node is body(r) and the node itself is labeled by
head(r). For each rule r ∈ R there is a node labeled in this
way. In brief, there is a derivation tree from assumptions X
and rules R to sentence s. Unless not clear from the context,
we will write |=R without explicitly defining R and assume
that R ⊆ R from the given deductive system.

A sentence a ∈ L is forward-derivable from a set X ⊆ A
via rules R, denoted by X `R a, if there is a sequence of
rules (r1, . . . , rn) such that head(rn) = a, for each rule
ri we have ri ∈ R, and each sentence in the body of ri
is derived from rules earlier in the sequence or in X , i.e.,
body(ri) ⊆ X ∪

⋃
j<i head(rj).

If X |=R s then X `R s, and if X `R s there is an
X ′ ⊆ X and R ⊆ R such that X ′ |=R s. In words, |= is
“stricter” (requires a tree derivation where all assumptions
and rules are required for derivation), while ` is simpler (no
witness tree is required and redundant assumptions and rules
are allowed). The deductive closure for an assumption setX
w.r.t. rules R is given by ThR(X) = {a | X `R a} (there
is an equivalent definition via |=). If the type of derivation is
not relevant, we generally refer to derivations.

An ABA+ framework is a tuple F = (L,R,A, ,≤) with
(L,R) a deductive system, a set of assumptions A ⊆ L, a
function mapping assumptions A to sentences L, and a
preorder≤ onA. The strict counterpart < of≤ is defined as

usual by a < b iff a ≤ b and b 6≤ a, for a, b ∈ A. In this
paper, we focus on so-called flat ABA+ frameworks where
assumptions cannot be derived, i.e., do not occur in heads
of rules. We also assume that each set in a tuple defining an
ABA+ is finite.
Definition 1. Let (L,R,A, ,≤) be an ABA+ framework,
and A,B ⊆ A be two sets of assumptions. Assumption set
A <-attacks B if

• A′ |=R b for some A′ ⊆ A, b ∈ B, and @a′ ∈ A′ with
a′ < b, or

• B′ |=R a for some a ∈ A and B′ ⊆ B s.t. ∃b′ ∈ B′ with
b′ < a.
In words, set A attacks B if (i) from a subset A′ of A, one

can tree-derive a contrary of an assumption b ∈ B and no
member in A′ is strictly less preferred than b, or (ii) from B,
via subset B′ one can tree-derive a contrary of an assump-
tion a ∈ A and some member of B′ is strictly less preferred
than a. Attacks of type (i) are normal <-attacks and those of
type (ii) reverse <-attacks, with the intuition that the (non-
preference based) conflict in (i) succeeds and in case of (ii)
is countered and reversed by the preference relation.
Definition 2. Let F = (L,R,A, ,≤) be an ABA+ frame-
work. An assumption set A ⊆ A is called conflict-free if
A does not <-attack itself. Set A defends assumption set
B ⊆ A if for all C ⊆ A that <-attack B it holds that A
<-attacks C.
Definition 3. Let F = (L,R,A, ,≤) be an ABA+ frame-
work. Further, let A ⊆ A be a conflict-free set of assump-
tions in F . Set A is
• <-admissible in F if A defends itself;
• <-complete in F if A is admissible in F and contains

every assumption set defended by A;
• <-grounded in F ifA is the intersection of all<-complete

assumption sets;1

• <-preferred in F if A is <-admissible and there is no <-
admissible set of assumptions B in F with A ⊂ B; and

• <-stable in F if each {x} ⊆ A \A is <-attacked by A.
We use the term <-σ-assumption-set for an assumption

set under a semantics σ ∈ {adm, com, grd , stb, prf }, i.e.,
<-admissible, <-complete, <-grounded, <-stable, and <-
preferred semantics, respectively.

An ABA framework, that is ABA+ without preferences,
is a tuple F = (L,R,A, , ∅) (i.e. ≤ = ∅). We will de-
note ABA frameworks by F = (L,R,A, ), i.e., omitting
the empty preference relation, and refer to the correspond-
ing semantics, likewise, without the preference relation <
(e.g., complete semantics instead of<-complete semantics).
Attacks (∅-attacks) in ABA frameworks simplify to attacks
from assumption sets A to assumption sets B when A `R b
for b ∈ B (these are normal <-attacks when no preference
information is available; reverse <-attacks are not present in
ABA). Note that forward-derivability is sufficient for ABA.

Main reasoning tasks on ABA+ are the following.

1In non-flat ABA+ grounded semantics is referred to as well-
founded semantics. We consider here only flat frameworks.



Definition 4. Let F = (L,R,A, ,≤) be an ABA+ frame-
work and <-σ a semantics. A sentence s ∈ L is

• credulously accepted in F under semantics <-σ if there
is a <-σ-assumption-set A s.t. s ∈ ThR(A); and

• skeptically accepted in F under semantics <-σ if s ∈
ThR(A) for all <-σ-assumption-sets A.

The tasks for ABA are analogous, the preference rela-
tion < is simply disregarded. For ABA, credulous reasoning
under admissible, complete, and preferred semantics coin-
cide (Bondarenko et al. 1997; Cyras et al. 2018).

Example 1. Let F = (L,R,A, ) be an ABA with assump-
tions A = {a, b, c, d}, sentences L = {x, bc, cc, dc} ∪ A,
rules (x ← a), (cc ← b, x), (bc ← c), and (dc ← a, b),
where bc, cc, and dc are the contraries of b, c, and d, re-
spectively. The complete assumption sets are {a}, {a, b},
and {a, c, d}, with {a} the grounded assumption set (this
assumption is not attacked). The sets {a, b} and {a, c, d}
are also stable: e.g., the first set attacks via the second
and fourth rules the assumptions {c} and {d}. Sentence x
is credulously accepted under admissible, complete, stable,
and preferred. Under preference a < d, in the resulting
ABA+ F ′ = (L,R,A, ,≤) the set {a, b} is not <-stable
(the attack from {a, b} to d is reversed), while set {a, c, d} is
<-stable. By the further preference c < b, the set {c} does
not <-attack {b}, resulting in no <-stable assumption sets.

Computational complexity of reasoning over ABA is
well-established (Dimopoulos, Nebel, and Toni 2002): cred-
ulous reasoning for admissible, stable, and preferred seman-
tics is NP-complete, while skeptical reasoning is P-complete
under admissible, coNP-complete under stable, and Πp

2-
complete under preferred semantics. Complexity of ABA
with preferences has, to our knowledge, not being stud-
ied in depth; Wakaki (2017) showed complexity results for
p ABA, an alternative way of handling preferences in ABA.
However, the results do not directly transfer to ABA+.

Finally, the so-called Axiom of Weak Contraposition
(WCP) bridges ABA+ with the semantics of ABA. Namely,
if an ABA+ framework satisfies WCP, then further proper-
ties on the semantics hold (Cyras and Toni 2016b), e.g., the
grounded assumption set is guaranteed to exist.

Definition 5. An ABA+ (L,R,A, ,≤) satisfies the Axiom
of Weak Contraposition (WCP) if for each A ⊆ A, R ⊆ R,
and b ∈ A, if A |=R b and ∃a′ ∈ A such that a′ < b, then
there is a ≤-minimal a ∈ A such that a < b and A′ |=R′ a
for some A′ ⊆ (A \ {a}) ∪ {b} and R′ ⊆ R.

3 Properties and Complexity Results
We discuss properties essential for developing our ASP en-
codings, as well as establish complexity results for ABA+.

ABA. We begin with slightly re-stating some of the ABA
semantics in terms that are suited for subsequent encodings.
Let (L,R,A, ) be an ABA framework and E ⊆ A be a set
of assumptions. Define DE = {a ∈ A | E attacks {a}}.
Recall that in ABA E attacks {a} iff E `R a.

Proposition 1. Let (L,R,A, ) be an ABA framework and
E ⊆ A be a conflict-free set of assumptions. It holds that
• setE defends an assumption set {a} ⊆ A iffA\DE does

not attack {a};
• set E is admissible iff A \DE does not attack E; and
• set E is complete iff E is admissible and for each b ∈
A \ E we have {b} is attacked by A \DE .
For Proposition 1, which follows from the definitions, the

main ingredient in checking if a set is admissible or com-
plete is the set DE (which can be computed in polynomial
time since `R is decidable in polynomial time). Further, for
ABA frameworks, the grounded semantics can be character-
ized by the function def (A) = {a ∈ A | A defends a},
as shown in (Bondarenko et al. 1997, Theorem 6.2). The
grounded assumption set of an ABA framework is the least
fixed point of def . The complexity of grounded and com-
plete semantics of ABA has, to our knowledge, not been
made explicit, but since DE , and thus def , can be com-
puted in polynomial time, one can straightforwardly infer
their complexity.
Corollary 2. For a given ABA framework, one can in poly-
nomial time (i) compute the grounded assumption set, and
(ii) verify whether a given set of assumptions is complete.
ABA+. Tree-derivability is used for defining <-attacks
in ABA+. Unlike in ABA, tree-derivations and forward-
derivations are not equivalent when using them to define <-
attacks. This can be seen when A normally <-attacks B:
adding redundant assumptions to A (not used for deriving a
sentence) may weaken the set and make it open for reverse
<-attacks that are not present in the original definition via |=
(e.g. by A′ = A∪{a′} with a′ < b for a b ∈ B and A′ `R b
but A′ 6|=R b). However, normal <-attacks can be defined
via `, which follows from (Dung, Kowalski, and Toni 2006;
Dung, Toni, and Mancarella 2010), and reverse <-attacks
in the special case of conflict-free sets A that reversely <-
attack a singleton set {b}.
Lemma 3. Let (L,R,A, ,≤) be an ABA+ framework, and
A,B ⊆ A be two sets of assumptions, and b ∈ A.

• Set A normally <-attacks B iff A′ `R b, for some A′ ⊆
A, b ∈ B, and @a′ ∈ A′ with a′ < b.

• If A is conflict-free, we have A reversely <-attacks {b} iff
{b} `R a for some a ∈ A and b < a.
To see why a conflict-free set A reversely <-attacks {b}

as stated in the second condition of the lemma, first note that,
since A is conflict-free, we have ∅ 6|=R a for all a ∈ A. Thus
also ∅ 6`R a. This means that {b} `R a iff {b} |=R a, for
some a ∈ A, since there is no subset of {b} that forward-
derives a, by presumption of A being conflict-free.

A corollary of Lemma 3 is that one can check whether a
set of assumptions is <-stable via relying only on forward-
derivability. To make this explicit, we slightly re-state <-
stable semantics in the following proposition.
Proposition 4. Let D = (L,R,A, ,≤) be an ABA+

framework. A conflict-free set E ⊆ A is <-stable iff for
all {b} ⊆ A that are not normally <-attacked by E, either
b ∈ E or {b} is reversely <-attacked by E.



In this proposition we have explicitly distinguished be-
tween normal and reverse<-attacks (which will also be use-
ful for our ASP encodings), and explicated that the required
conditions only rely on the notion of forward-derivability.

We move on to investigating the complexity of ABA+ se-
mantics. Central to understanding the complexity of ABA+

is understanding the complexity of <-attacks. In ABA,
attacks take a relatively simple form: sets of assump-
tions attack single assumptions in the definition of an at-
tack in ABA. In both ABA and ABA+ attacks satisfy ⊆-
monotonicity of the following form: ifA (<-)attacksB then
A′ (<-)attacks B′ whenever A ⊆ A′ and B ⊆ B′ (Cyras
and Toni 2016b, Lemma 3). That is, in ABA, if A attacks b,
then A attacks any B with b ∈ B. Attacks in ABA+, while
also ⊆-monotone, may in cases not attack singleton sets of
assumptions. Normal <-attacks in an ABA+ framework are
similar to attacks in an ABA, reverse <-attacks originate
from singleton sets of assumptions, yet attack a set of as-
sumptions. Put differently, in ABA, if a set B is attacked, by
A, then there is at least one singleton set {b} ⊆ B such that
{b} is attacked by A. The same does not hold for reverse
<-attacks in ABA+.

As we show, the difference in attacks between ABA and
ABA+ is significant from a computational perspective. We
classify four types of (counter) <-attacks that are useful
for understanding complexity of ABA+. For two sets of as-
sumptions, A and B, we distinguish whether (i) A normally
<-attacks B, (ii) A reversely <-attacks B, (iii) A normally
<-attacks all subsets B′ ⊆ B that <-attack A, and (iv) A
reversely <-attacks all subsets B′ ⊆ B that <-attack A.

Proposition 5. Let (L,R,A, ,≤) be an ABA+ framework,
and A and B two sets of assumptions. One can decide in
polynomial time whether set A

1. normally <-attacks B,
2. reversely <-attacks B, or
3. normally <-attacks all subsets B′ ⊆ B that <-attack A.

Proof. (sketch) For (1), consider each b ∈ B separately and
compute Ab = {a ∈ A | a 6< b}. If Ab `R b then Ab
normally <-attacks {b}, and by monotonicity A normally
<-attacks B. For (2), compute ThR(B). For each a ∈ A, if
a ∈ ThR(B), construct a directed graph with node set equal
to ThR(B) and iteratively add edges from a to sentences x
whenever there is a rule applicable from ThR(B) with a
in the head and x in the body; continue this process for the
body elements x as rules’ heads and their bodies (until a
fixed point is reached). There is a tree-derivation B′ |=R a
with B′ ⊆ B such that there is a b ∈ B′ with b < a iff
there is a path from a to such a b. For (3), compute X =
{b ∈ B | A normally <-attacks {b}}, which can be done
in polynomial time according to (1). Next, check whether
B \ X <-attacks A (via 1 and 2). If so, then A does not
counter all <-attacks via normal <-attacks.

Note that the item 2 of Proposition 5 is polynomial-time
decidable, since one does not need to find subset-minimal
B′ ⊆ B that are reversely <-attacked by A. Item 3 is
likewise polynomial-time decidable, since normal<-attacks

target only singleton sets of assumptions. Before delving
into attacks of type (iv), we derive complexity of verifying
whether a set of assumptions is <-stable based on Propo-
sition 5. Note that conflict-freeness does not depend on the
preference relation (Cyras and Toni 2016b, Theorem 5), and
can be checked in polynomial time.

Theorem 6. Verifying whether a set of assumptions is <-
stable in an ABA+ framework is in P. Checking credulous
(skeptical) acceptance of a sentence under <-stable seman-
tics in ABA+ is NP-complete (coNP-complete).

This means that <-stable semantics exhibits the same
computational complexity as (non-preference-based) stable
semantics in ABA. Complexity does not carry over from
ABA to ABA+ for the other semantics under consideration.
In fact, when considering counterattacks (defense) against
potentially non-singleton sets of assumptions, i.e., scenario
(iv) (from before Proposition 5), it is coNP-hard to decide.

Proposition 7. Deciding whether a given set A of assump-
tions in an ABA+ framework reversely counterattacks all as-
sumption sets that <-attack A is coNP-complete. Hardness
holds even when assuming WCP.

Proof. (sketch) Membership in coNP can be seen from con-
sidering the complementary problem: for assumption set A,
to check non-<-admissibility, guess setB, check whetherB
<-attacks A and whether A does not <-reversely attack B.
Let φ = c1 ∧ · · · ∧ cm be a Boolean formula in conjunc-
tive normal form over vocabulary X = {x1, . . . , xn} and
clauses C = {c1, . . . , cm}. For a clause cj = l1 ∨ · · · ∨ ls
let neg(cj) = ¬l1, . . . ,¬ls with ¬li = x if li = ¬x and
¬li = ¬x if li = x. Construct ABA+ F = (L,R,A, ,≤)
with A = {a, b} ∪X ∪ ¬X for ¬X = {¬x | x ∈ X} and
the following rules.

di ← xi and di ← ¬xi for 1 ≤ i ≤ n;
ac ← d1, . . . , dm;
bc ← xi,¬xi, ac for 1 ≤ i ≤ n; and
bc ← neg(cj), a

c for 1 ≤ j ≤ m,
with ac and bc the contraries of a and b respectively (no other
contraries are needed). Complete the instance with setting
b > xi and b > ¬xi for 1 ≤ i ≤ n.

We claim that {a, b} is reversely <-attacking all assump-
tion sets X that <-attack {a, b} in F iff φ is unsatisfiable.
Note that one cannot derive a contrary of any assumption
from {a, b}. Thus {a, b} does not normally <-attack any as-
sumption set and no assumption set can reversely <-attack
{a, b} Thus, {a, b} is reversely <-attacking all assumption
sets X that <-attack {a, b} in F iff {a, b} is <-admissible.

Assume that {a, b} is not <-admissible. Since {a, b} is
conflict-free, there is a B ⊆ A s.t. B <-attacks {a, b} and
{a, b} does not<-attackB. Thus, ifB <-attacks {a, b}, then
B normally <-attacks {a, b} and B `R ac, since if B de-
rives bc (either by ` or |=), the only other contrary, then B
also derives ac. If B `R bc, then {a, b} reversely <-attacks
B (since b is preferred to any assumption required to derive
either ac or bc). By presumption,B does not derive bc. Since
B does derive ac, B contains exactly one of xi or ¬xi for
each 1 ≤ i ≤ n (one of each is required to derive ac, if both
are present bc is derived). This defines a truth assignment



on X: true if xi is present in B, false otherwise. Since B
does not derive bc, all bodies of rules bc ← neg(cj), a

c for
1 ≤ j ≤ m are not satisfied (at least one element of these
bodies is missing/non-derivable from B). Thus B satisfies
each clause: B does not contain all elements from neg(cj)
iff B satisfies at least one literal in clause cj iff B satisfies
cj . Since this holds for all clauses, B satisfies φ.

For the other direction, assume that φ is satisfiable with
satisfying truth assignment τ . Construct B = {xi | τ(xi) =
1} ∪ {¬xi | τ(xi) = 0}. Since τ assigns each variable in X
to either true or false, B `R ac (see above). Consider clause
cj . Then B does not contain all sentences of body neg(cj).
Thus, B 6`R bc. This implies that {a, b} is not admissible.

The proof for coNP-hardness holds also when adding the
following rules which enforce that WCP is satisfied by the
constructed ABA+ instance: xci ← b,¬xi and ¬xci ← b, xi
for each 1 ≤ i ≤ n, and for each clause cj = l1 ∨ l2 ∨ l3
adding (lc1 ← b, l2, l3), (lc2 ← b, l1, l3), and (lc3 ← b, l1, l2),
with these new contraries.

The previous proposition suggests that, in order to verify
whether A reversely <-counterattacks <-attacks from B, it
is required to check for each subset B′ of B whether B′ is
<-attacking A and, if so, whether A <-attacks B′ (knowl-
edge of <-attacks on B or any {b} ⊆ B is not sufficient). In
particular, this contrasts complexity of <-admissibility and
<-stability in ABA+.
Theorem 8. Verifying whether a set of assumptions is <-
admissible in ABA+ is coNP-complete. Hardness holds even
when assuming WCP.

Verification complexity under admissibility is quite gener-
ally a cornerstone of complexity of argumentative reasoning,
as a majority of the central semantics require admissibility.
An algorithm that implements a non-deterministic guess of
an <-admissible assumption set (e.g. to check credulous ac-
ceptance) requires a coNP-hard (sub)procedure to verify ad-
missibility. This intuition leads to the next hardness result.
Theorem 9. Checking whether a sentence is credulously ac-
cepted w.r.t. <-admissible semantics in ABA+ is ΣP2 -hard.
Finally, we establish coNP-hardness for assumption-set ver-
ification for <-complete or <-grounded in ABA+.
Theorem 10. Verifying whether a set of assumptions is <-
complete or <-grounded in ABA+ is coNP-hard.

4 ASP Encodings for ABA and ABA+

Complementing our theoretical results, we develop answer
set programming (Gelfond and Lifschitz 1988; Niemelä
1999) encodings for ABA and ABA+, enabling solving σ-
assumption set enumeration and acceptance problems di-
rectly using state-of-the-art ASP solvers.

Answer Set Programming. An answer set pro-
gram π consists of rules r of the form h ←
b1, . . . , bk,not bk+1, . . . , not bm, where h and each bi
is an atom. A rule is positive if k = m, a fact if m = 0, and
a constraint if there is no head h. An atom bi is a predicate
p(t1, . . . , tn) with each tj either a constant or a variable.
An answer set program, a rule, and an atom, respectively, is

ground if it is free of variables. For a non-ground program,
GP is the set of rules obtained by applying all possible sub-
stitutions from the variables to the set of constants appearing
in the program. An interpretation I , i.e., a subset of all the
ground atoms, satisfies a positive rule r = h ← b1, . . . , bk
iff all positive body elements b1, . . . , bk are in I implies
that the head atom is in I . For a program π consisting only
of positive rules, let Cl(π) be the uniquely determined
interpretation I that satisfies all rules in π and no subset of
I satisfies all rules in π. Interpretation I is an answer set
of a ground program π if I = Cl(πI) where πI = {(h ←
b1, . . . , bk) | (h ← b1, . . . , bk,not bk+1, . . . ,not bm) ∈
π, {bk+1, . . . , bm} ∩ I = ∅}} is the reduct; and of a
non-ground program π if I is an answer set of GP of π.

We make use of specific conditional literals (Gebser et
al. 2015) from the extended ASP language (https://
potassco.org/), namely, p(X) : q(X,Y ) (or p(X) :
q(X)) only with q(X,Y ) (q(X)) given as facts and the vari-
ables of predicate p being a subset of the variables of pred-
icate q. Semantically, conditional literals simplify for our
purposes to a conjunction p(t1), . . . , p(tn) for all ground-
ings to variable X for q(X,Y ) (q(X)). We also use opti-
mization statements from asprin (Brewka et al. 2015). For
our purposes, a small subset of features is sufficient: we
augment answer set programs with optimization statements
that enforce that only answer sets that are ⊆-maximal w.r.t.
a specified predicate p of arity one are returned (i.e., I is
an optimal answer set if there is no answer set J such that
{p(t) | p(t) ∈ I} ⊂ {p(t) | p(t) ∈ J}).
ASP Encodings for ABA. We represent an ABA framework
F = (L,R,A, ) withR = {r1, . . . , rn} via the ASP facts

{asm(a). | a ∈ A} ∪
{head(i, b). | ri ∈ R, b ∈ head(ri)} ∪
{body(i, b). | ri ∈ R, b ∈ body(ri)} ∪
{contrary(a, b). | b ∈ a, a ∈ A},

i.e., rules are associated with a unique index, and a predicate
body contains all body elements.

We develop ASP encodings πσ under a semantics σ s.t.
A is a σ-assumption set iff there is an answer set M of πσ
with A = {a | in(a) ∈M}. We begin with an ASP module
(subprogram) πcommon (see Listing 1) common to several
semantics. The first two lines encode a non-deterministic
guess of a subset of the given assumptions, with in and out
denoting what is inside and outside the set, resp. The next
three lines encode forward-derivations via the ASP predi-
cate supp (recall that in ABA we can focus on forward-
derivations only). Formally, for an assumption set A repre-
sented via in, ifA `R x, then supp(x) is included in an an-
swer set. The third line encodes the base case, i.e., derivable
assumptions. The fourth line encodes that whenever a rule is
“triggered”, i.e., all its body elements are derivable from A
represented via trig in(R), then the head of that rule shall
be derived. The fifth rule encodes triggering of rules, where
we make use of the ASP conditional construct. An ABA rule
in the framework (checked with usage of head) is triggered
whenever all its body elements are supported (derivable). In-
tuitively, the conditional supp(X) : body(R,X) holds if



Listing 1: Module πcommon

in(X)← asm(X), not out(X).
out(X)← asm(X), not in(X).
supp(X)← asm(X), in(X).
supp(X)← head(R,X), trig in(R).
trig in(R)← head(R, ), supp(X) : body(R,X).
← in(X), contrary(X,Y), supp(Y).
defeated(X)← supp(Y), contrary(X,Y).

all ASP atoms supp(X) are present for each body(R,X)
of the current rule index R. Analogously, one can view
the ASP conditional for R = i by expanding it to a list
supp(x1), . . . , supp(xn) if ri = h ← x1, . . . , xn. The
sixth rule ensures conflict-freeness of the guessed assump-
tion set: whenever assumption X is included, one can derive
sentence Y from a guessed assumption set, and Y is the con-
trary of X , we have a conflict. The last rule derives attacked
(defeated) assumptions by the guessed assumption set.

With the preceding ASP rules, we encode ABA stable se-
mantics by conjoining πcommon with a rule that all assump-
tions not part of the guessed assumption set (i.e., those that
are out) must be defeated:← out(X),not defeated(X).

A conflict-free assumption set A is admissible iff the set
of assumptions B that are not attacked by A do not attack A
(Proposition 1). Accordingly, in Listing 2, we check whether
a contrary of an in assumption is derivable from undefeated
assumptions. For πadm we make use of the same scheme us-
ing conditionals as for πcommon , except referring to different
sets of assumptions (the undefeated assumptions). The ASP
encoding for admissibility is πcommon ∪ πadm .

Complete semantics is encoded by conjoining πcommon ,
πadm and the rule ← out(X),not att undef(X) which
encodes the check for an assumption X not present in the
guessed set of assumptions A and that is not attacked by
the undefeated assumptions, which implies that X is in fact
defended byA. In case such anX exists, this ASP constraint
ensures that such a guess does not lead to an answer set.

An admissible (complete) assumption setA is preferred if
there is no superset of A that is also admissible (complete).
To compute preferred assumption sets, we make use of as-
prin (Brewka et al. 2015) and utilize the optimization state-
ment #preference(p1, superset) {in(X) : asm(X)}
that, together with #optimize(p1), enforces that only an-
swer sets are returned that are subset-maximal w.r.t. in (mir-
roring subset maximality)

Listing 3 gives an ASP encoding of grounded ABA se-
mantics. We directly encode the iterative defense of assump-

Listing 2: Module πadm
deriv undef(X)← asm(X), not defeated(X).
deriv undef(X)← head(R,X), trig undef(R).
trig undef(R)← head(R, ), deriv undef(X) : body(R,X).
att undef(X)← contrary(X,Y), deriv undef(Y).
← in(X), att undef(X).

Listing 3: Module πgrd
rule(R)← head(R, ).
sentence(S)← head( ,S).
sentence(S)← contrary( ,S), not asm(S).
deriv(X)← asm(X).
deriv(X)← head(R,X), deriv rule(R).
deriv rule(R)← head(R, ), deriv(X) : body(R,X).
in(X)← asm(X), out(Y) : contrary(X,Y).
in(R)← rule(R), in(X) : body(R,X).
in(S)← in(R), head(R,S).
out(X)← in(Y), contrary(X,Y).
out(R)← out(X), body(R,X).
out(S)← sentence(S), out(R) : head(R,S).
out(S)← sentence(S), not deriv(S).

tions, starting from the empty set. The first three rules derive
all rules and sentences present in the ABA framework. The
next three ASP rules encode via predicate deriv derivable
sentences (in principle from the whole set of assumptions).
In short, unlike for the other semantics, the remaining rules
partition assumptions, rules, and sentences into three parts
that are iteratively adapted: the set in, the set out, and ele-
ments that are neither. Interestingly, this encoding is within
a tractable ASP fragment: the unique answer set of the corre-
sponding ground program is computable in polynomial time,
since default negation not in the encoding is stratifiable.
Hence polynomial-time computability of the grounded as-
sumption set (Corollary 2) is preserved under this encoding.

ASP Encoding for ABA+ Stable Semantics. A conflict-
free assumption set A is <-stb iff each assumption b ∈ A
that is not <-normally attacked by A is either in A or
reversely <-attacked by A (Prop. 4). By Lemma 3, one
can check if a set of assumptions is <-stb via only using
forward-derivability. Thus, we can implement <-stb seman-
tics via forward-derivability (as for ABA above): perform
an ASP guess of a set, check conflict-freeness via the cor-
responding rules in πcommon , compute each {b} normally
<-attacked (see also proof of Prop. 5), and from the remain-
ing assumptions {c} not normally <-attacked whether they
are reversely <-attacked. The encoding is independent of
whether the given framework satisfies WCP or not.

5 Experiments
We present empirical results comparing the performance of
the state-of-the-art ASP solver Clingo on our ASP encod-
ings to currently available systems for ABA and ABA+.
For ABA, abagraph implements the so-called dispute deriva-
tion approach (Craven and Toni 2016) using Prolog, while
aba2af translates the ABA to abstract argumentation frame-
works and uses AF-level ASP encodings to solve the ABA
reasoning problem (Lehtonen, Wallner, and Järvisalo 2017).
For ABA+, ABAplus (Bao, Cyras, and Toni 2017) trans-
lates to the AF-level and employs the Aspartix ASP encod-
ings (Egly, Gaggl, and Woltran 2010) to perform ABA+ rea-
soning. We note that abagraph only supports the admissible
and grounded semantics, while aba2af supports admissible,



stable and preferred. We used Clingo v5.2.2 (Gebser et al.
2016) as the ASP solver, and SICStus Prolog v4.4.1 for aba-
graph. The experiments were run on 2.83-GHz Intel Xeon
E5440 quad-core machines with 32-GB RAM under Linux
using a 600-second time limit per instance.

We used the ABA frameworks (which contain up to 90
sentences) and queries used by Craven and Toni (2016)
and Lehtonen, Wallner, and Järvisalo (2017) in experiments
on abagraph and aba2af (http://robertcraven.org/
proarg/experiments.html), and also followed their
setup when applicable, considering the enumeration of all
solutions w.r.t. a query sentence for ABA adm , and skeptical
acceptance of a query for ABA stb. Within the capabilities
of the systems under comparison, we consider credulous ac-
ceptance for ABA grd , and enumeration of all solutions (no
query) for ABA prf and ABA+ <-stb. Following (Lehto-
nen, Wallner, and Järvisalo 2017), for ABA adm we filtered
out trivial instances. For ABA+, the ABAplus algorithm re-
quires WCP (recall Def. 5), and enforces WCP if not satis-
fied by changing the input framework, which can be time-
consuming. Hence for a fair comparison on ABA+, we gen-
erated smaller instances following (Craven and Toni 2016)
over 10, 14, 18, 22, 26, 30 sentences with 10 frameworks per
number of sentences and two preference relations per frame-
work, and used the frameworks as modified by ABAplus as
input to both ABAplus and our approach. We generated pref-
erences by choosing a random permutation (ai)0<i≤n of the
assumptions, and for each j < i, set ai to be preferred to aj
with two fixed probabilities, 15% and 40%.

Table 1 overviews the results. ASP, without any timeouts
and very small cumulative runtimes, clearly outperforms the
other systems on each problem (and supports more prob-
lem types than the competing ABA systems). In contrast, the
other systems exhibit high numbers of timeouts, especially
on the ABA problems. Our approach benefits from not con-
structing an AF unlike ABAplus and aba2af, for which the
AF translation can often be a main bottleneck.

We studied the scalability of our approach by generat-
ing larger instances in the style of series 4 benchmarks
in (Craven and Toni 2016) (the other series of (Craven and

Table 1: Runtime comparison. Mean (mean), median (med.)
and cumulative running times (cum.) over solved instances,
#to is the number of timeouts. Number of instances: 1466
(adm), 6709 (stb, grd ), 680 (prf ), 120 (ABA+ <-stb).

Running times (s)
Problem Approach #to mean med. cum.
ABA adm , ASP 0 0.020 0.008 29
enum. w/query abagraph 394 18.500 1.175 19832

aba2af 402 15.357 1.390 16341
ABA stb, ASP 0 0.009 0.008 59
skept. accep. aba2af 648 7.246 0.900 43918
ABA grd ASP 0 0.020 0.012 29
cred. accep. abagraph 202 10.254 0.972 12961
ABA prf ASP 0 0.333 0.328 226
enum. wo/query aba2af 255 6.082 0.464 2585
ABA+ <-stb ASP 0 0.018 0.008 2
enum. wo/query ABAplus 9 15.583 0.268 1729

Table 2: Scalability of ASP on larger frameworks.
#timeouts (mean running time over solved (s))

|L| ABA adm ABA com ABA stb ABA prf ABA+ <-stb
50 0 (0.02) 0 (0.01) 0 (0.01) 0 (0.3) 0 (0.1)

250 0 (0.4) 0 (0.4) 0 (0.3) 0 (1.5) 0 (12.6)
500 0 (0.9) 0 (0.9) 0 (0.6) 0 (2.7) 0 (53.1)

1000 0 (4.4) 0 (3.7) 0 (1.7) 0 (13.1) 0 (241.0)
1500 0 (28.1) 0 (20.2) 0 (5.5) 0 (107.9) 60 (0.0)
2000 0 (38.5) 0 (30.7) 0 (7.1) 0 (125.0) 60 (0.0)
2500 0 (165.4) 0 (124.3) 0 (30.4) 2 (141.9) 60 (0.0)
3000 24 (331.3) 23 (283.5) 4 (268.4) 3 (0.0) 60 (0.0)
3500 28 (225.7) 27 (262.1) 19 (182.8) 3 (0.0) 60 (0.0)
4000 28 (44.6) 28 (35.2) 28 (14.2) 3 (0.0) 60 (0.0)

Toni 2016) gave either very easy instances or fixed sets of
assumptions). In particular, we generated three frameworks
for each number of sentences, with up to 4000 sentences and
rule heads, 37% assumptions, and rules per head and body
lengths, resp., randomly chosen within [1,min(ns/7, 20)]
and [1,min(ns/8, 20)] with number of sentences ns. The
results are shown in Table 2 for credulous reasoning on 10
arbitrary queries per ABA framework under adm , com , and
stb; for assumption set enumeration under prf (as asprin
does not directly support queries); and for ABA+ credulous
reasoning under<-stb without enforcing WCP. Here we can
routinely solve instances with up to 3000 sentences for ABA
and up to 1000 for ABA+. Within ABA, for prf the limit is
somewhat lower due to both computational complexity and
the task, but nevertheless significantly higher than for the
other systems; even under adm abagraph could only solve
the 50-sentence instances and none of the larger ones.

6 Conclusions
We proposed a new approach to reasoning in assumption-
based argumentation with and without preferences via non-
trivial ASP encodings of ABA reasoning tasks under several
central argumentation semantics. Our approach extends and
significantly improves on the empirical performance of the
current state-of-the-art approaches to ABA reasoning. This
motivates further study of alternative encodings based on
e.g. the labelling-based view (Sakama and Rienstra 2017;
Schulz and Toni 2017). Towards bridging the gap between
the current knowledge on complexity of reasoning in ABA
and ABA+, we provided complexity lower bounds for
ABA+ reasoning under several semantics. While credulous
acceptance in ABA and ABA+ have the same complexity
under the stable semantics, our results on the complexity of
the verification task for ABA+ strongly suggests that the in-
tegration of preferential information into ABA may increase
the computational complexity of acceptance problems.

Acknowledgements
Work supported in part by Academy of Finland (276412 and
312662) and Austrian Science Fund (FWF): P30168, I2854.

References
Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.; Prakken, H.;
Reed, C.; Simari, G. R.; Thimm, M.; and Villata, S. 2017. Towards
artificial argumentation. AI Magazine 38(3):25–36.



Bao, Z.; Cyras, K.; and Toni, F. 2017. ABAplus: Attack rever-
sal in abstract and structured argumentation with preferences. In
Proc. PRIMA, volume 10621 of LNCS, 420–437. Springer.
Besnard, P., and Hunter, A. 2008. Elements of Argumentation. MIT
Press.
Besnard, P.; Garcı́a, A. J.; Hunter, A.; Modgil, S.; Prakken, H.;
Simari, G. R.; and Toni, F. 2014. Introduction to structured ar-
gumentation. Argument & Computation 5(1):1–4.
Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; and Toni, F. 1997.
An abstract, argumentation-theoretic approach to default reason-
ing. Artif. Intell. 93:63–101.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T. 2015.
asprin: Customizing answer set preferences without a headache. In
Proc. AAAI, 1467–1474. AAAI Press.
Caminada, M., and Schulz, C. 2017. On the equivalence between
assumption-based argumentation and logic programming. J. Artif.
Intell. Res. 60:779–825.
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