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Zusammenfassung

Diese Arbeit handelt von Beziehungen bestimmter endlicher Strukturen,

von diskreten Zuständen und Transformierbarkeit.

Die (abstrakten) Strukturen setzen sich zusammen aus Argumenten und

gerichteten Attacken zwischen diesen Argumenten. Als Semantik bezeich-

nen wir in diesem Zusammenhang Akzeptanzbedingungen für Mengen von

Argumenten. Motiviert durch komplexitätstheoretische Reduktionen und

inspiriert von den theoretischen Grundlagen von Graphersetzungssystemen

führen wir den Begriff der lokalen Transformation ein.

Unter dem Terminus Intertranslatability werden sodann Verfahren zu-

sammengefasst, die vorhandene Strukturen so umformen, dass unter-

schiedliche Semantiken vergleichbare Resultate hervorbringen. Auf diese

Weise erforschen wir Zusammenhänge, Grenzen und Ausdrucksstärke der

gängigsten Argumentationssemantiken.

Abstract

In this thesis we deal with finite structures which may be interpreted as

(natural) language dialogues, respectively can be derived from such.

When reflecting an arbitrary dialogue one might work out arguments and

conflicts. We call the resulting formal representation an argumentation

framework. Depending on personal principles one might want sets of

arguments to withhold certain acceptability conditions. We describe such

principles with the term argumentation semantics. It is evident that neither

representations nor principles remain indubitable.

Intertranslatability refers to the act of transforming argumentation frame-

works with the purpose of equalizing acceptable sets of arguments for

different semantics. We point out possibilities as well as impossibilities,

introduce a concept of locality and flesh out the expressiveness of the most

common abstract argumentation semantics.
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Figure 1.1: Not an Illustration of Zeus and Prometheus. [44]

1 Introduction

1.1 The Why of Abstract Argumentation

From back to Socrates much effort has been spent into categorization of natural language,

into classification of speech and dispute. Long lasted the hope that a logical system,

provably free of contradictions, capable of explaining world and natural language, was

possible. It was Kurt Gödel who in 1931 [46] showed that any system implementing basic

arithmetics is either inconsistent or can not show its own consistency. Thus shuttering

the hope to pieces. Further on less ambitious approaches have gained importance and

Non-Classical Logic Systems were once more put into focus. In his 1995 seminal paper

Phan Minh Dung [29] came up with a formalization of argumentation, which we nowadays

also use to call abstract argumentation. Of course wide agreement with this formalization

in philosophical terms can not be expected without objection. In particular from a more

philosophical point of view the meaning of an argument might be even more important than

the syntactical representation. However abstract argumentation has almost immediately

gained wide-spread acceptance in the field of artificial intelligence, computer science and

formal philosophy.

Dung’s work was successful in presenting not less than a generalization for human argu-

mentation as well as other economical and social problems, such as n-person-games and

the stable marriage problem, on the way also catching non-monotonic reasoning in artificial

intelligence and logic programming. As it is the case with so many successful theories,

abstract argumentation is built upon a simple definition: argumentation frameworks, repre-
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1 Introduction

Figure 1.2: Not an Illustration of Prometheus. [44]

sented by arguments and their conflicts, nowadays also known as Dung-style-frameworks.

More applications built upon these frameworks are to be found in negotiation [3, 2, 31], law

and legal reasoning [12, 14], Multi-Agent Systems and Game Theory [56, 53, 57], Decision

Making and Recommendation [22, 23], Machine Learning [59] and more, part of which, we

are convinced, future is still about to show.

Of course Dung’s work did not come out of the blue, but to the best of our knowledge

it can be seen as the first proper formalization of argumentation in simple mathematical

terms. In [67] Toulmin gives an analysis of arguments in philosophical terms. The credit

of refactoring arguments into moves of a person in a game can probably be given to

Hamblin [48]. The interested reader might acknowledge that a comprehensive handbook

of historical background for argumentation theory [69] is available. In [71] Walton gives a

nice introduction into argumentation theory from a more philosophical point of view. An

overview of abstract argumentation, respectively argumentation in artificial intelligence can

be found in [13].

Abstract Argumentation as a term consists of two words. Just the same way abstract

argumentation as a task might consist of two parts of different concern. One of these parts

would be argumentation, be it argumentation in a courtyard, or argumentation between

computational programs in some multi-agent-system. The other part would be abstraction,

a theory built to provide tools of use for any kind of argumentation. As it is common

nature in science the link between theory and application might be weak (respectively not

yet practically established). One can focus on theory or on application or somewhere in

between. In this thesis focus is on theory mainly, hence concrete examples of possible real

world argumentation are only to be found in this introductory chapter.
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1.2 The How of Abstract Argumentation

Figure 1.3: Not an Illustration of Zeus. [44]

1.2 The How of Abstract Argumentation

To illustrate abstract argumentation, in the following sections we will give a short example

of application (argumentation), theory (abstraction) and interaction in between the two.

Example 1.1. Eternal Argument between Prometheus and Zeus

PROMETHEUS: Humankind shall live forever.

ZEUS: Humans are ugly and shall therefor not be allowed to live on earth.

PROMETHEUS: Humans are children of eternal nature, nature itself is pure beauty

by definition.

ZEUS: Speaking about eternity, humankind is likely to be a self-destructive

species anyway.

If we try to make sense of this dialogue, it is inevitable to split the sayings into parts, to

identify arguments and conflicts. Usually, if we happen to investigate some dialogue of

natural language, it is most likely that we start by understanding one sentence after another.

Also, in natural language dialogues, argumentation frameworks are often not limited to

the boundaries of some determined opening and closing. Additional arguments, both older

and newer, might arise at any time and extend, respectively modify the knowledge base.

Additional arguments and attacks might falsify statements previously supposed to be valid.

In logical reasoning one would expect valid statements inside some theory to withhold their

validity, regardless of how the theory might be extended. To express this non-conformity,

we classify abstract argumentation to belong to the family of non-monotonic logics. Having

said this, we present an abstraction1 of the former argument:

1In standard abstract argumentation the only kind of relation between arguments is a relation of attack.
In [17] the authors present a concept of acceptance condition, allowing arbitrary propositional formulas to
determine the relation between any arguments. An alternative definition for argumentation frameworks with the
bipolarity of defending and defeating relations is presented in [1].
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1 Introduction

Figure 1.4: Not another Illustration of Zeus and Prometheus. [44]

Example 1.2. Dialogue Abstraction

P: Humankind shall live forever. ; P1 humankind lives

Z: Humans are ugly ; Z1 humans are ugly

Z: and shall not be allowed to live. ; Z2 ugliness defeats live

P: Humans are children of nature ; P2 humans are nature

P: nature itself is pure beauty. ; P3 nature defeats ugly

Z: Humankind is most likely self-destructing. ; Z3 live defeats itself

Remark. Observe that abstraction is by no means a unique transformation. Especially for

natural languages we have to make use of a good part of subjective interpretation. For

instance “not living on earth” and “living forever” are not necessarily contradicting. However

for the greater part of this thesis we remain in the abstract layer, where no interference of

this kind will appear.

For a graphical representation of this abstraction, to be able to let loose of subjective

issues, we prefer the following directed graph.

P2 Z1 P1
P3 Z2

Z3

In abstract argumentation we try to pick useful sets of arguments2 and call them

extensions. If for instance ancient Greek gods believed that any maximal set of conflict-free

fractions of some dispute does represent a relevant interpretation, we might as well pick

these sets as extensions, receiving the sets {P2} and {Z1}. The collection of all extensions

of one kind for one specific argumentation framework is called semantics. Thus we might

name the collection of these extensions the maximal-conflict-free semantics.
2Alternative definitions of somewhat extended argumentation frameworks, which allow to pick sets of argu-

ments and attacks, and also allow attacking of attacks can be found in [6, 42].
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1.3 The About of this Thesis: Intertranslatability

Now for an at first sight completely different problem. We will use the famous Liar Paradox

to suggest another abstract argumentation framework. Bertrand Russell is said to be the

one who reintroduced the formulation, which dates back to ancient Greek philosopher

Eubulides (as stated in [72]). A modified version is used for Gödel’s first incompleteness

result [46]. To better match Example 1.2 we extend the paradoxic sentence A with additio-

nal sentences:

Example 1.3. Liar Paradox

A: This sentence is wrong. A� A

B: Sentence A is wrong. B� A

C: Sentence B is wrong. C � B

Now again we will put this example into a graphical representation. As it turns out

Examples 1.2 and 1.3 seem to generate very similar visual output.

C B A

In [29] Dung states that it is an often held opinion in the artificial intelligence and logic

programming community, that only systems with stable extensions are to be reasonably

considered. A stable extension is a conflict-free extension, where each argument of the

framework is either part of the extension or attacked by the extension, thus partitioning all

the arguments into “in” and “out”.

If we look for a stable extension in the Liar Paradox example however it appears that it

does not provide one. The only non-empty conflict-free sets are {C} and {B}, as C is in

conflict with B and A is in conflict with itself. When looking at the possible extension {C}
obviously A is neither attacked by nor part of the extension. On the other hand for {B}, we

have C not being part of the extension and not being attacked.

So when looking at abstract argumentation frameworks not only the abstract representa-

tion itself appears to be of importance, but also the semantics of interest. Thus, although

Examples 1.2 and 1.3 happen to be similar in graphical representation, a severe difference

pops up when taking into account the respectively related semantics. The conflicts and

the arguments stay the same, but extensions differ for stable and maximal-conflict-free

semantics.

Transformation 1.1. A Minor Transformation

α: Any attacked sentence attacks back. (X � Y ) =⇒ (Y � X)

β: Any self-attacking sentence is attacked by all sentences. (X � X) =⇒ (Y � X)

C B A

5



1 Introduction

If we apply Transformation 1.1 to the Liar Paradox we receive stable extensions {C} and

{B}. So for these particular frameworks we found a transformation such that maximal-

conflict-free semantics for the Eternal Dialogue (Example 1.2) and stable semantics for the

Liar Paradox (Example 1.3) modified by Transformation 1.1 coincide. More generally spoken,

translations as introduced into argumentation theory in [39] focus on adding arguments

and attacks to frameworks such that different extensions, respectively semantics coincide

on the arguments of the original framework, sometimes with side-conditions.

In general, semantics in abstract argumentation yield hard problems concerning com-

putational complexity. Thus even if one can think of a simple translation, this particular

translation might only be of theoretical use. For instance in Section 3.4 we introduce

translations, which are easily understood and reproduced, but most sure can not yield rea-

sonable computation time. Since two semantics are likely to differ in complexity somehow,

efficient translations might not be possible in both directions.

Since Turing first came up [68] with a concept of computability, various authors investi-

gated ways of reaching efficiency, e.g. [65] and comparing computable systems, e.g. [45].

As argumentation theory can be seen as a field of non-monotonic logic, intertranslatability

in abstract argumentation refers to translations between various logics (e.g. [50, 27, 51]).

In [47] Gottlob shows that no modular translation from default to autoepistemic logic

possibly exists. To follow translations and related results back in time, a good overview

can be found in [61].

In abstract argumentation, prior to [39], effort has been put into showing strong relation-

ship between generalized and original Dung frameworks, see e.g. [21, 11, 6, 16]. In [10]

an approach of enforcing some extension by adding arguments is discussed, remarkably

incorporating also negative results.

1.4 The What of this Thesis

This thesis focuses mainly on intertranslatability of argumentation frameworks as intro-

duced by Dvořák and Woltran in [39]. The authors originally published efficiency related

results with respect to grounded, stable, admissible, complete, preferred, semi-stable and

stage semantics. We will extend the scope to also cover conflict-free and naive semantics.

We will introduce a new concept of locality which applies to most of the translations

presented in [39]. Locality will shed light upon computational aspects (e.g. Theorem 3.1.4)

as well as provide us with an implicit tool for classification of translations. We will use

locality to deepen results, to gain new results and to classify given results in Section 3.1.

We will point out relations between semi-stable, stage and stable semantics (for instance

Corollary 3.2.32 and Translation 3.3.13). We will present counter-examples for translations

to conflict-free, naive (Theorem 3.2.4) and stage semantics (Theorem 3.2.6). We will present

various partially surprising inefficient translations in Section 3.4. Most complicated and

therefor maybe most notably however will be the contributions concerning finite-diameter

local translations. We will use this property to show various impossibility results in

Sections 3.2 and 3.3.
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1.5 The Structure of this Thesis

We will give proper definitions for argumentation frameworks, semantics and translations

in Chapter 2. There we will also give background information we think is necessary to

understand and follow the subsequent parts, given that one might not be familiar with

the discussed issues in detail. We will give definitions concerning intertranslatability and

introduce concepts of locality.

Chapter 3 consists of the parts we think this thesis is able to contribute to the field of

abstract argumentation in general and intertranslatability in particular. We will give an

analysis of results from [39], a categorization concerning locality, new translations and

new impossibility results. Finally a detailed overview of gained insights will be given in

Section 3.5.

In Chapter 4 we will speak about related work, give hints and relations to show what

other works seem to be interesting as far as the previously presented matter is concerned.

Furthermore we will give a summary of achieved results and give account to implications

as well as open questions. We will close this thesis by reflecting upon open questions and

therefor possible extensions of the scope of this thesis with the ulterior motive of collecting

material for future work.

Publication Statement

Due to the writer’s remarkably inefficient time management habits parts of this thesis

have by now already been published [37]. Ironically this concerns most of those parts with

significance for inefficient intertranslatability.

Acknowledgments

I do thank my parents for being there, Marie-Theres Gallnbrunner for contributing the

illustrations and Wolfgang Dvořák as well as Stefan Woltran for endless corrections and

inspirational talks.
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2 Behind the Scenes

One should acknowledge that without further distinction argumentation is a very wide field,

from classical argumentation theory to abstract argumentation as introduced by Dung.

For further distinction we refer to [69, 71, 13]. To release confusion we furthermore will

only deal with argumentation frameworks and argumentation in the sense of [29] in the

meantime also known as Dung frameworks and abstract argumentation. We sometimes

also speak of argumentation in artificial intelligence.

Based on Dung’s seminal paper we will give an introduction into argumentation frame-

works in Section 2.1. We will give a short motivation and basic definitions for abstract

argumentation, including attack and defense as well as basic operations on argumentation

frameworks.

In Section 2.2 we will talk about extension based argumentation semantics and give the

definitions for conflict-freeness and admissibility as well as the semantics needed later on,

which are naive, grounded, stable, preferred, complete [29], semi-stable [18] and stage [70]

semantics.

Having given the basic definitions in Section 2.3 we will take care of relations (set

inclusion, etc.) described in the literature so far between given semantics partly affecting

only special kind of (i.e. symmetric, acyclic and self-attack-free) argumentation frameworks.

A naive approach for computational issues for argumentation semantics would be to

compute all the extensions for a given argumentation framework. Section 2.4 will give a

brief overview of alternative reasoning modes and decision problems of interest. We will

present verification, plain and non-empty-existence, credulous and skeptical acceptance.

Section 2.5 gives a brief introduction into complexity theory and definitions of what is

needed later. However since the main results will not require complexity theory, the more

important purpose of this section will be to illustrate one aspect of difference concerning

semantics.

Section 2.6 can be seen as an introduction to [39]. We will give definitions for translations

in abstract argumentation, including some properties of interest, namely (weak) exactness

and faithfulness, modularity and monotonicity, embedding and covering. We will also

introduce concepts of locality, which are supposed to add some fine-graining to the open

space between modularity and monotonicity.

For readers already familiar with abstract argumentation and standard comparison

procedures we still recommend to read Section 2.6. We present a bunch of definitions

necessary to understand Chapter 3. In particular for the probably most complicated

proofs we will make use of Definition 2.6.23 (diameter local) which itself depends on

Definition 2.1.28 (diameter of argumentation frameworks).

9



2 Behind the Scenes

P2 Z1 P1

Figure 2.1.3: Abstract argumentation framework from the introductory chapter as reintro-
duced in Example 2.1.2.

a b c d e

Figure 2.1.5: Graphical representation of an exemplary argumentation framework used in
Example 2.1.6 and throughout the whole thesis.

2.1 Abstract Argumentation Frameworks

Definition 2.1.1. An argumentation framework (AF) is a pair

F = (A,R)

where A is a set of arguments and R is a binary relation on A, i.e. R ⊆ A×A. For (a, b) ∈ R
we also write a�R b and say a attacks b under R, or a�F b and say a attacks b in F . In

case no ambiguity arises we might just write a� b and say a attacks b. Sometimes for a

given argumentation framework F ∗ = (A∗, R∗) we will use AF∗ to denote AF∗ = A∗ and RF∗

to denote RF∗ = R∗.

Example 2.1.2 (Formalization of Eternal Dialogue). Example 1.2 can be reformulated as a

proper abstract argumentation framework with F = (A,R) and

A = {P1, P2, Z1} R = {(P2, Z1), (Z1, P1), (P1, P1)}

Remark 2.1.4. For most people however Figure 2.1.3 will catch the internal conception

better than Example 2.1.2. For arbitrary argumentation frameworks to specify a proper

definition in general it suffices to give a graphical representation. Any proper graphical

representation induces a unique argumentation framework.

Example 2.1.6 (Abstract Example). The graph representation from Figure 2.1.5 induces

the argumentation framework1 F = (A,R) with

A = {a, b, c, d, e} R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}

1This example is taken from [15].

10



2.1 Abstract Argumentation Frameworks

Definition 2.1.7 (Attack, Defense and Range). For an arbitrary argumentation framework

F = (A,R), E ⊆ A and a ∈ A we say that

• E �R a (resp. a�R E) if for some b ∈ E, b�R a (resp. a�R b).

• a is defended by E (respectively E defends a) with R if for each b ∈ A, such that b�R a,

also E �R b holds.

• The range2 of E under R, denoted as E+
R is the set E ∪ {b | E �R b}.

Alternatively we may write�F , defended by E in F , range of E in F , E+
F . If no ambiguity

arises we might drop the concerning object and just write�, defended by E and E+.

Remark 2.1.8. Intuitively these notions can be extended a bit:

• For E,E′ ⊆ A sets of arguments we might also write E � E′ to denote that for some

a ∈ E′ we have E � a and

• E′ is defended by E if for all a ∈ E′ we have that a is defended by E.

• For a ∈ A an argument, the range of a is given by a+ = {a}+.

Example 2.1.9. Take into account Example 2.1.2 and the set E = {Z1, P2}. Now according

to Definition 2.1.7 we have:

• Z1 and P1 are attacked by E, E is attacked by itself,

• P1 and P2 are defended by E,

• the range of P2 is given by P+
2 = E, the range of E is the whole framework, in other

terms E+ = {P1, P2, Z1} = A.

Remark 2.1.10. Intuitively one happens to prefer sets of arguments which do not attack

themselves. However the definitions of attack, defense and range do not yet handle this

property. See Definition 2.2.4 for a definition of conflict-freeness.

Example 2.1.11. Take into account the argumentation framework from Figure 2.1.5. Then

• b, c and e are attacked by {a, d},

• {a, d} defends itself,

• the range of {a, d} is given by {a, d}+ = A.

• {c, d} attacks and defends itself.

Remark 2.1.12. According to definition and graphical representation there is some similarity

to graph theory. However as soon as dealing with intended meaning this similarity comes

to a stop, for in graph theory an edge is intended to represent reachability, while in

argumentation theory it is quite the opposite.

But anyway, there are some set-theoretic tools also used in graph theory, we want to

ensure to be able to use with argumentation frameworks too, most important of which

appear to be union and isomorphism.
2The concept of range was first introduced in [70], although general agreement on the corresponding formal-

ization has changed slightly in between.

11



2 Behind the Scenes

Definition 2.1.13 (Set Operations). For argumentation frameworks F = (A,R) and F ′ =

(A′, R′) we give definitions for basic set operations.

• The union of two argumentation frameworks is given as F ∪ F ′ = (A ∪A′, R ∪R′).

• The intersection of two argumentation frameworks is given as F ∩ F ′ = (A∩A′, R ∩R′).

Remark 2.1.14. Intuitively for any set F = {F1, F2 . . . } of argumentation frameworks also

union and intersection of this set (respectively of these argumentation frameworks) are

defined: ⋃
F∈F

F =
⋃

F = F1 ∪
⋃

(F \ F1)
⋂
F∈F

F =
⋂

F = F1 ∩
⋂

(F \ F1)

Remark 2.1.15 (Finite Argumentation Frameworks Only). Concerning classical set the-

ory3 ⋃F and
⋂

F are well-defined also for infinite sets F , possibly resulting in infinite

argumentation frameworks. However, since it is not part of the investigation, we restrict

ourselves to finite4 argumentation frameworks (|A| <∞) for the rest of this work. Thus the

union of an infinite amount of argumentation frameworks has to be handled with care. As

a side note intertranslatability for infinite frameworks also serves a quiet different purpose.

Definition 2.1.16 (Subframework). For argumentation frameworks F = (A,R), F ′ = (A′, R′)

we call F a subframework of F ′ if the corresponding subset relation holds with respect to

arguments and attacks:

F ⊆ F ′ ⇐⇒ A ⊆ A′, R ⊆ R′ F ( F ′ ⇐⇒ A ( A′, R ( R′

Definition 2.1.17 (Restriction). The restriction of an argumentation framework F = (A,R)

to a set E ⊆ A of arguments is given by:

F |E = (E,R ∩ (E × E)) .

F |E is then called the by E induced subframework of F .

Definition 2.1.18 (Isomorphism). Two argumentation frameworks F = (A,R) and F ′ =

(A′, R′) are called isomorphic (F ∼= F ′) if there exists a bijective function ϕ : A → A′ such

that

(a, b) ∈ R ⇐⇒ (ϕ(a), ϕ(b)) ∈ R′.

If no ambiguity arises for any isomorphic frameworks we take an isomorphism ϕ : A→ A′

as given. Otherwise we write ϕF,F ′ , ϕA,A′ or similar. To denote relations we might also make

use of an asymmetric equivalence symbol:

F ∼=ϕ F ′ ⇐⇒ F ′ ∼=ϕ−1

F.

3For an introduction into classical set theory we refer to [40, 24]. A comprehensive collection of set theoretic
topics can be found in [54]. For the purpose of this work, to be familiar with problems of contemporary logic and
set theory probably [41] suffices.

4Actually argumentation frameworks in the sense of [29] include infinity, Dung also introduces categories for
infinite frameworks. Further discourses on infinite argumentation frameworks are to be found in e.g. [20, 62, 5].
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2.1 Abstract Argumentation Frameworks

Remark 2.1.19. For any argumentation framework F = (A,R) and any mapping ϕ : A→ A′

transforming the argumentation framework F into another argumentation framework

F ′ = (A′, R′):

A′ = {ϕ(a) | a ∈ A} R′ = {(ϕ(a), ϕ(b)) | (a, b) ∈ R}

we can extend the definition of ϕ in a natural way:

ϕ(A⊆) =
{
ϕ(a) | a ∈ A⊆ ∩A

}
ϕ(r) = ϕ(a, b) = (ϕ(a), ϕ(b)) for (a, b) = r ∈ R

ϕ(R⊆) =
{
ϕ(r) | r ∈ R⊆ ∩R

}
ϕ(F⊆) = (ϕ(A⊆), ϕ(R⊆)) for F⊆ = (A⊆, R⊆)

Remark 2.1.20 (Universe, F∞). Technically there is a proper definition for argumentation

frameworks to be elements of the following class:

CF = {F = (A,R) | A ( {ai | i an ordinal} , R ⊆ A×A}

Thus we have that the universe of all possible argumentation frameworks forms a proper

class. If no ambiguity arises we can use other letters and signs to denote argumentation

frameworks, arguments and attacks, sets of arguments and sets of attacks. By definition

any x in the domain of abstract argumentation, x being an argument, an attack, a set

of arguments, a set of attacks, an argumentation framework or a set of argumentation

frameworks can be identified as such. Nonetheless we will mostly use easily distinguishable

names.

Observe that there are only countably many isomorphically different finite argumen-

tation frameworks. Thus there is a proper set F∞ of standardized finite argumentation

frameworks, such that for any finite argumentation framework F there is exactly one

L ∈ F∞ such that F ∼= L. However already all isomorphically equivalent frameworks with

one argument only F = {F | F ∼= ({a1} , ∅)} do not form a proper set anymore. By allowing

any ordinal to be part of the name of an argument we blow up the number of isomorphically

equivalent frameworks.

Example 2.1.21 (Isomorphism). Take into account the argumentation framework F = (A,R)

with:

A = {a1, a2, a3} R = {(a1, a2), (a2, a3), (a3, a3)}

This argumentation framework is isomorphically equivalent to the framework from Ex-

ample 2.1.2 as well as Example 1.2 and 1.3. Furthermore without loss of generality we

have

F ∈ F∞.
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Definition 2.1.22 (Cardinality). The cardinality of an argumentation framework F = (A,R)

is given by the number of its arguments:

|F | = |A|

Cardinality is mostly of theoretical use as a first comparison of structure of different

argumentation frameworks. In terms of computational complexity however, where we will

be referring to an input size, we need a different measure. Thus we introduce a measure

of size which does not reflect any structural issues, but reflects how much space some

argumentation framework needs for representation.

Definition 2.1.23 (Size). The size of an argumentation framework F = (A,R) involves

numbers of arguments and attacks:

‖F‖ = |A|+ |R|

Remark 2.1.24 (Ordering). Observe that neither cardinality nor size are capable of iden-

tifying isomorphic argumentation frameworks. Although for any isomorphic frameworks

F ∼= F ′ we have |F | = |F ′| and ‖F‖ = ‖F ′‖, the reverse does not necessarily hold. It is

possible to give a total ordering for argumentation frameworks, such that cardinality is

respected, size is partially reflected and isomorphism enacts as the relation of equality.

Example 2.1.25 (Size and Cardinality). Consider the argumentation frameworks F = (A,R)

and F ′ = (A′, R′) with:

A = {a1, a2, a3} A′ = {a1, a2}
R = {(a1, a2), (a2, a3)} R′ = {(a1, a1), (a1, a2), (a2, a1), (a2, a2)}

Without loss of generality F, F ′ ∈ F∞ are the minimal examples for different behaviour of

cardinality and size.

|F | = 3 |F ′| = 2 but ‖F‖ = 5 ‖F ′‖ = 6

Definition 2.1.26 (Connection and Path). Two arguments a and b are called connected in

some argumentation framework F = (A,R) with a, b ∈ A if a = b or there exists a sequence

P = {(a, c1), (c1, c2) . . . (cn, b)} such that for each (s1, s2) ∈ P we have5 {(s1, s2), (s2, s1)}∩R 6= ∅.
If P satisfies this condition P is called an (undirected) path from a to b in F . If a = b then

the empty set ∅ is a path from a to b.

Take into account the argumentation frameworks F , F1 = (A1, R1) and F2 = (A2, R2), with

F1 ⊆ F and F2 ⊆ F . F1 and F2 are called connected in F if there exist a1 ∈ A1 and a2 ∈ A2

such that a1 and a2 are connected in F .

Sometimes for argumentation frameworks F1 and F2 we might also speak of connect-

edness without explicitly referring to some comprising F . In this case the respective

argumentation framework F is implicitly defined as the union of F1 and F2, F = F1 ∪ F2.
5Observe that for the purpose of this thesis we make use of undirected connectedness only. All definitions are

easily to be converted into corresponding definitions with directed quality by requiring (s1, s2) ∈ R at this point.
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Definition 2.1.27 (Distance). For some argumentation framework F = (A,R), the distance

of two arguments a, b ∈ A in F , is given as size of the shortest path6 from a to b:

dist(a, b)F = min
P is a path from a to b in F

(|P |)

The distance of two argumentation frameworks F1 = (A1, R1) and F2 = (A2, R2) (or sets A1

and A2) in F is given by

dist(F1, F2)F = dist(A1, A2)F = min
a1∈A1,a2∈A2

dist(a1, a2)F

In case no ambiguity arises we might just write dist(a, b) and dist(F1, F2) for F1, F2 ⊆ F .

If no argumentation framework F with F1, F2 ⊆ F is specified, we will implicitly use

F = F1 ∪ F2 and therefor dist(F1, F2) = dist(F1, F2)F1∪F2 . Observe that the implicit distance

of two argumentation frameworks defaults to either 0 or ∞.

Definition 2.1.28 (Diameter). For argumentation frameworks F = (A,R), F ⊆ F ′ the

diameter of F (or A) in F ′ is given by7

dia(F )F
′

= dia(A)F
′

= max
a,b∈A

(dist(a, b)F
′
)

Often enough we will simply use the term diameter of F , to denote dia(F ) = dia(F )F .

Definition 2.1.29 (Connected Components). For any argumentation framework F , a set of

argumentation frameworks F is called a fragmentation (into connected components) of F

if
⋃

F = F and for any F ′ ∈ F we have dia(F ′) <∞.

If furthermore for any two argumentation frameworks F1, F2 ∈ F , we have F1 and F2 not

being connected (dist(F1, F2)F = dia(F1 ∪ F2) =∞), we call F a minimal fragmentation into

connected components.

Lemma 2.1.30. If an argumentation framework F has diameter d < ∞, then F consists of
at most 1 connected component.

Example 2.1.31. Take into account the argumentation frameworks F1, F2 and F3 with:

F1 = ({b} , ∅) F2 = ({a, c} , {(a, c)}) F3 = ({a, b, c} , {(a, b), (b, c)})

We now have the following:

F1 F2 F3 F1 ∪ F2 F1 ∪ F2 ∪ F3

diameter 0 1 2 ∞ 1

distance of a and c − 1 2 1 1

distance of a and b − − 1 ∞ 1

connected components 1 1 1 2 1

minimal fragmentation {F1} {F2} {F3} {F1, F2} {F2 ∪ F3}

6We declare that minx∈∅(x) =∞, such that the distance between arguments not being connected is infinite.
7We declare that maxx∈∅(x) = 0, such that the empty framework has a diameter of 0.
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2.2 Argumentation Semantics: What Good is an Argument?

When dealing with argumentation frameworks the main task is to find good sets of argu-

ments. Semantically we might be interested in true or right sets, for the purpose of being

general we only think about good sets. This also implies that inversion of a good set will in

general not yield any good set. This chapter still is mostly based on [29], semi-stable se-

mantics is due to [18], stage semantics to [70]. For a comprehensive overview of semantics

for abstract argument systems see [8, 4].

Definition 2.2.1 (Extensions and Semantics). Given an argumentation framework F =

(A,R) any partition σ(F ) ⊆ ℘(A) is called a semantics of F . The sets E ∈ σ(F ) are called

extensions of F .

Remark 2.2.2. Further on we will prefer to give rules an extension has to fulfill to belong to

a specific semantics and implicitly build semantics upon these rules.

Note that although semantics and extensions are defined with respect to some argumen-

tation framework, we will often omit this reference when the context clearly indicates the

respective argumentation framework.

We only consider8 semantics σ of interest such that for any F ∼=ϕ F ′ we have σ(F ′) =

ϕ(σ(F )). Thus the semantics we have in mind are independent of names of arguments.

Remark 2.2.3 (Properly Defined Semantics). Semantics for argumentation frameworks pick

a set of sets of arguments. Formally (compare Remark 2.1.20) we can define a semantics σ

as a mapping from argumentation frameworks to sets of sets of arguments.

σ : {F1, F2 . . . } → ℘(℘({a1, a2 . . . })) σ(F ) ⊆ ℘(AF )

The first thing that comes to mind probably is that good sets should not9 attack them-

selves. By introducing conflict-free sets we take care of this issue. To our knowledge there

is no serious work on semantics which do not fulfill conflict-freeness.

Definition 2.2.4 (Conflict-Freeness). Consider an argumentation framework F = (A,R), a

set E ⊆ A is called conflict-free (cf) in F if there are no arguments a, b ∈ E such that a� b.

Now that we have introduced conflict-freeness, we will augment this definition to also

consider defense. We recall that by definition of defense (Definition 2.1.7), defense is

attacking of attackers. Now intuitively if a set E of arguments is defending itself against

all attacking arguments we consider this E to be more interesting than sets which do not

possess this feature.

Definition 2.2.5 (Admissibility). Consider any argumentation framework F = (A,R), a

conflict-free set E ⊆ A is called admissible (adm) in F if for any a ∈ A with a � E also

E � a.

8Observe that in abstract argumentation, since we skip deeper meaning of frameworks, we do not consider
semantics based upon subjective values, like truth or morality.

9For non-standard argumentation frameworks with recursive attacks or similar concepts, extensions usually
consist of arguments and attacks. Thus e.g. self-attacking arguments become conflict-free if the self-attack is
not included in the respective extension.
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a1

a2

F1

a1

a2

F2

a1

a2

F3

a1

a2

F4

a3

F5
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Figure 2.2.6: Minimalistic argumentation frameworks for the purpose of illustration.

Example 2.2.7 (Conflict-freeness vs. Admissibility). Having a look at the frameworks in

Figure 2.2.6, we compare conflict-free and admissible sets:

F1 F2 F3 F4 F5

cf adm cf adm cf adm cf adm cf adm

∅ X X X X X X X X X X

{a1} X X X X X X X X X -

{a2} X X X - X X X - X -

{a1, a2} X X - - - - X X - -

Admissibility seems to give an additional impression, compare F2,F3 respectively F1,F4. On

the other hand for some frameworks admissibility does not decide anything, for instance in

F5 and other odd length cycles only the empty set is admissible, while a lot of sets are still

conflict-free. It is a much discussed10 and still open question in the abstract argumentation

community whether semantics without admissibility are of practical interest.

Example 2.2.8. Consider the framework F from Figure 2.1.5. We have

cf (F ) = {∅, {a} , {c} , {d} , {a, c} , {a, d} , {b} , {b, d}}
adm(F ) = {∅, {a} , {c} , {d} , {a, c} , {a, d}}

Definition 2.2.9 (Naive Semantics). For an arbitrary argumentation framework F = (A,R)

a conflict-free set E ∈ cf (F ) is called a naive extension of F if it is maximal with respect to

set inclusion:

naive(F ) = {E ∈ cf (F ) | for E′ ∈ cf (F ), E ⊆ E′ already E = E′}

Definition 2.2.10 (Preferred Semantics). For an arbitrary argumentation framework F an

admissible set E ∈ adm(F ) is called a preferred extension of F if it is maximal with respect

to set inclusion:

prf (F ) = {E ∈ adm(F ) | for E′ ∈ adm(F ), E ⊆ E′ already E = E′}
10See for instance [9] for a discussion, including semantics based on conflict-freeness of strongly connected

components.
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O4

a1

a2

a3

a4

O3

a1

a2 a3

Figure 2.2.15: Circular argumentation frameworks O4 of 4 and O3 of 3 arguments.

Example 2.2.11. Having a look at the argumentation frameworks from Figure 2.2.6. We

compare naive with preferred semantics:

F1 F2 F3 F4 F5

naive prf naive prf naive prf naive prf naive prf

∅ - - - - - - - - - X

{a1} - - X X X X - - X -

{a2} - - X - X X - - X -

{a1, a2} X X - - - - X X - -

Example 2.2.12. Consider the argumentation framework F from Figure 2.1.5. We have:

naive(F ) = {{a, c} , {a, d} , {b, d}}
prf (F ) = {{a, c} , {a, d}}

Definition 2.2.13 (Characteristic Function). For an argumentation framework F = (A,R)

and a set of arguments A′ the characteristic function FF : ℘(A)→ ℘(A) is given as

FF (A′) = {a | a is defended by A′}

Remark 2.2.14. Although the characteristic function also works on self-conflicting sets

of arguments, we intend to use it on conflict-free sets and as far as we know there is no

utilization of the characteristic function on self-conflicting sets.

Example 2.2.16. Consider the circular frameworks shown in Figure 2.2.15. If we take the

set E1 = {a1}, then the characteristic function yields {a3} = FF (E1) for both frameworks. If

we take the set E2 = {a1, a3}, then we have FO4(E2) = E2, but FO3(E2) = {a2, a3}. If we take

the set E3 = {a1, a2, a3}, then we have FO3(E3) = E3, but FO4(E3) = {a1, a3, a4}.
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The following deductions are important for well-definedness of admissible semantics and

semantics based on the characteristic function. The same results, although different in

presentation, can be found in [29] as Fundamental Lemma 10 and as Lemma 18.

Lemma 2.2.17. The characteristic function preserves conflict-freeness and admissibility.
For an arbitrary argumentation framework F = (A,R), and a set of arguments E ⊆ A, we
have:

E ∈ cf (F ) =⇒ FF (E) ∈ cf (F ) (1)

E ∈ adm(F ) =⇒ FF (E) ∈ adm(F ) (2)

Proof. (1) For a contradiction assume that there are a, b ∈ FF (E) with a � b. Since E

defends b we have E � a. But then, since E defends a against any attack, we also have

E � E, a contradiction.

(2) Now observe that due to admissibility E defends itself and therefor E ⊆ FF (E). Now

since FF (E) adds only arguments to E which are defended already by E alone, also FF (E)

is admissible.

Corollary 2.2.18 (Characteristic Function). For any argumentation framework F a conflict-
free set E of arguments is admissible if and only if E ⊆ FF (E).

Definition 2.2.19 (Fixed Point). Consider some argumentation framework F = (A,R), a

fixed point of the characteristic function is a set E ⊆ A such that FF (E) = E.

Example 2.2.20 (Fixed Points). When looking at Figure 2.2.6 we can state that

• the only fixed point of F1 is {a1, a2},

• the only fixed point of F2 is {a1},

• the fixed points of F3 are ∅, {a1} , {a2} , {a1, a2},

• the only fixed point of F4 is {a1, a2},

• the fixed points of F5 are ∅, {a1, a2, a3}.

Definition 2.2.21 (Complete Semantics). For an arbitrary argumentation framework F =

(A,R) a conflict-free set E ⊆ A is called a complete extension of F if it is a fixed point of the

characteristic function.

com(F ) = {E ∈ cf (F ) | FF (E) = E}

Remark 2.2.22. Due to Corollary 2.2.18 any set which is a conflict-free fixed point is also

admissible. For practical purposes complete semantics can be obtained by creating fixed

points out of conflict-free (respectively admissible) sets.

Example 2.2.23. Considering the framework F from Figure 2.1.5 the complete extensions

are given as:

com(F ) = {{a} , {a, c} , {a, d}} .
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Example 2.2.24. The complete semantics for the argumentation frameworks from Fig-

ure 2.2.15 are given as:

com(O4) = {∅, {a1, a3} , {a2, a4}}
com(O3) = {∅}

Remark 2.2.25. Observe that if for some argumentation framework F = (A,R) we have

E1 ⊆ E2 ⊆ A, immediately also FF (E1) ⊆ FF (E2). The empty set is admissible in any

argumentation framework and thus there has to be a unique least fixed point of the

characteristic function.

Definition 2.2.26 (Grounded Semantics). For any argumentation framework F = (A,R)

the unique grounded extension of F is given as the least fixed point of the characteristic

function.

grd(F ) = {E ⊆ A | FF (E) = E, for E′ ⊆ E with E′ = FF (E′) already E′ = E′}

Remark 2.2.27. Since for any argumentation framework F there is always exactly one

grounded extension E, we sometimes also speak of the grounded extension E and if no

ambiguity arises write grd(F ) = E. The grounded semantics can be obtained by iteratively

applying the characteristic function to the empty set.

grd(F ) = FF d
|A|
2 e(∅)

Example 2.2.28. The grounded extension of framework F from Figure 2.1.5 is given as

grd(F ) = {a}. The grounded extensions for the argumentation frameworks from Figure 2.2.6

are given as grd(F1) = {a1, a2}, grd(F2) = {a1}, grd(F3) = ∅, grd(F4) = {a1, a2}, grd(F5) = ∅.
Remark 2.2.29. Abstract argumentation frameworks are based on an attack relation. For

a specific extension this relation tells us something about the remaining arguments too.

We receive an implicit partitioning of: arguments in the extension, arguments attacked by

the extension and arguments neither being part of nor being attacked by the extension.

Observe that in this way e.g. for F from Figure 2.1.5 the extension {a, c} implies three

partitions, while {a, d} implies only two partitions, with all arguments either being part of

or being attacked by the extension. We might consider extensions where any argument is

either part of or attacked by the extension of greater importance, compare Section 1.3.

Definition 2.2.30 (Stable Semantics). For any argumentation framework F = (A,R) a

conflict-free set E ⊆ A is called a stable extension of F if it attacks any a ∈ A \E, in other

words the range spans all arguments in the framework.

stb(F ) =
{
E ∈ cf (F ) | E+ = A

}
Remark 2.2.31 (Admissibility of Stable Semantics). Since a stable extension is conflict-free

and the range encompasses all arguments it becomes immediately clear, that we can

replace conflict-free in the preceding definition by admissible. In other words, each stable
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extension is also admissible. However not every argumentation framework provides a stable

extension. For instance in Figure 2.2.6 we have stb(F5) = ∅.
Example 2.2.32. Consider the argumentation frameworks from Figure 2.2.6 we investigate

stable, grounded and complete semantics:

F1 F2 F3 F4 F5

st
b

co
m

gr
d

st
b

co
m

gr
d

st
b

co
m

gr
d

st
b

co
m

gr
d

st
b

co
m

gr
d

∅ - - - - - - - X X - - - - X X

{a1} - - - X X X X X - - - - - - -

{a2} - - - - - - X X - - - - - - -

{a1, a2} X X X - - - - - - X X X - - -

Observe that for F5 complete and grounded semantics contain the empty set while stable

semantics is empty itself.

Example 2.2.33. Consider the framework from Figure 2.1.5. The only stable extension

consists of a and d.

stb(F ) = {{a, d}}

Remark 2.2.34. As Dung already pointed out in [29] not every useful argumentation

framework possesses a stable extension. In the following we present two argumentation

semantics, which prove to be equivalent to stable semantics if some stable extension exists,

yet stage and semi-stable semantics lack the annoyance of collapsing where no stable

extension exists.

As far as motivation for stage and semi-stable semantics is concerned a comparison with

naive and preferred semantics (Definitions 2.2.9 and 2.2.10) seems natural. Previously

we had semantics maximizing extensions themselves, in the following we will present

semantics maximizing the range of extensions.

Definition 2.2.35 (Stage Semantics). For a given argumentation framework F = (A,R) a

conflict-free set of arguments E ⊆ A is called a stage extension of F if it is maximal in

range:

stg(F ) =
{
E ∈ cf (F ) | for E′ ∈ cf (F ), E′+ ⊆ E+ already E′+ = E+

}
.

Definition 2.2.36 (Semi-Stable Semantics). For a given argumentation framework F =

(A,R) an admissible set of arguments E ⊆ A is called a semi-stable extension of F if it is

maximal in range:

sem(F ) =
{
E ∈ adm(F ) | for E′ ∈ adm(F ), E′+ ⊆ E+ already E′+ = E+

}
.

Example 2.2.37. Consider the argumentation frameworks from Figure 2.2.15. We have:

stg(O4) = {{a1, a3} , {a2, a4}} stg(O3) = {{a1} , {a2} , {a3}}
sem(O4) = {{a1, a3} , {a2, a4}} sem(O3) = {∅}
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∅ {a1, a3} {a2, a4} {a1} , {a2} ,
{a3} , {a4} ∅ {a1},{a2},{a3}

cf (O4) X X X X cf (O3) X X
adm(O4) X X X - adm(O3) X -
grd(O4) X - - - grd(O3) X -
stb(O4) - X X - stb(O3) - -
com(O4) X X X - com(O3) X -
naive(O4) - X X - naive(O3) - X
prf (O4) - X X - prf (O3) X -
stg(O4) - X X - stg(O3) - X
sem(O4) - X X - sem(O3) X -

Table 2.3.1: Semantical differences for the argumentation frameworks from Figure 2.2.15

a

b

e

c

f

d

Figure 2.3.2: Framework illustrating aspects of argumentation semantics.

2.3 A First Comparison of Argumentation Semantics

After introducing various argumentation semantics in the previous section, we will focus

on showing differences and relations between them in this section. So far we presented

semantics relying on different principles. Some of the introduced semantics are based upon

conflict-freeness (naive and stage), some are based on admissibility (preferred and semi-

stable), others do not depend on whether they are built upon conflict-free or admissible

sets (complete, grounded and stable).

The observation of concrete argumentation frameworks and semantics can solely give

hints on relational properties, or with a bit of luck disprove assumptions. The first relational

a b c d e

Figure 2.3.3: Example illustrating aspects of argumentation semantics.
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∅ {a} {b} {c} {d} {a, c} {a, d} {b, d}
cf X X X X X X X X
adm X X - X X X X -
grd - X - - - - - -
stb - - - - - - - -
com - X - - - X X -
naive - - - - - X X X
prf - - - - - X X -
stg - - - - - X - X
sem - - - - - X - -

Table 2.3.4: Semantical differences for the argumentation framework from Figure 2.3.2

∅ {a} {b} {c} {d} {a, c} {a, d} {b, d}
cf X X X X X X X X
adm X X - X X X X -
grd - X - - - - - -
stb - - - - - - X -
com - X - - - X X -
naive - - - - - X X X
prf - - - - - X X -
stg - - - - - - X -
sem - - - - - - X -

Table 2.3.5: Semantical differences for the argumentation framework from Figure 2.3.3

property we are going to visit is set inclusion, namely the question whether extensions of

one kind are always also extensions of another kind.

Lemma 2.3.6 (σ ⊆ cf ). Any σ-extension is always also a conflict-free extension, for σ ∈
{adm, grd , com, stb,naive, prf , stg , sem}.

Proof. Follows immediately from the definitions.

Lemma 2.3.7 (σ ⊆ adm). Any σ-extension is always also an admissible extension, for
σ ∈ {grd , com, stb, prf , sem}.

Proof. For prf and sem extensions this follows immediately from the definition. Admissibility

of stable extensions is already covered with Remark 2.2.31. Since com and grd extensions

are based on fixed points of the characteristic function, we only have to reconsider Corol-

lary 2.2.18 (cf of E and E ⊆ FF (E) =⇒ adm of E) to finish this proof.

Lemma 2.3.8 (grd ∈ com). For any argumentation framework the grounded extension is
also a complete extension.

Proof. Grounded extensions are the least fixed point, built upon the empty set. Conflict-

freeness follows by Lemma 2.2.17. Any conflict-free fixed point is a complete extension.

Corollary 2.3.9 (grd(F ) =
⋂
com(F )). For any argumentation framework F we have

grd(F ) =
⋂

com(F ) ∈ com(F ).
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Lemma 2.3.10 (prf ⊆ com). For any argumentation framework F a preferred extension E

is also a complete extension.

Proof. Since preferred extensions are admissible, with Corollary 2.2.18 we have E ⊆ FF (E).

According to the definition of preferred semantics (Definition 2.2.10) E is a maximal

admissible set, therefor either E = FF (E) or FF (E) is not admissible. The later anyhow

contradicts Lemma 2.2.17.

Lemma 2.3.11 (sem ⊆ prf ). For an arbitrary argumentation framework F = (A,R) any
semi-stable extension E is also a preferred extension.

Proof. Since semi-stable extensions are maximal admissible with respect to range, no set

of arguments E′ ) E can be admissible in F . Otherwise with a ∈ E′ \ E and E 6� a also

E′+ ) E+.

Lemma 2.3.12 (stg ⊆ naive). Any stage extension is also a naive extension.

Proof. Follow the previous proof, but replace admissible with conflict-free and semi-stable

with stage.

Lemma 2.3.13 (stb ⊆ σ). For an arbitrary argumentation framework F any stable extension
E is also a σ-extension, for σ ∈ {sem, stg , prf ,naive, com, adm, cf }.

Proof. With the previous lemmata it suffices to show this lemma for σ ∈ {sem, stg}. Now

with Lemma 2.3.7 we know that E is admissible (and conflict-free by definition), since it

clearly is maximal in range we have E ∈ sem(F ) and E ∈ stg(F ).

Lemma 2.3.14 (Non-Empty Stable Semantics). For any argumentation framework F =

(A,R), if there is at least one stable extension, instantly stable, semi-stable and stage exten-
sions coincide.

Proof. For any stable extension E by definition E+ = A, therefor any range-maximal conflict-

free or admissible set E′ must also fulfill E′+ = A, considering Lemma 2.3.13 the desired

property can be derived immediately.

Lemma 2.3.15 (Range-Maximizing and Selfattack). If for some argumentation framework
F = (A,R) without self-attacks (for all a ∈ A we have a 6� a) semi-stable and stage exten-
sions coincide (sem(F ) = stg(F )) then already sem(F ) = stg(F ) = stb(F ).

Proof. If any semi-stable extension E is also a stage extension, then for any argument

a ∈ A \ E+ we need to have (a, a) ∈ R. Otherwise either a � E and E is therefor no

semi-stable extension, or E ∪{a} is conflict-free and covers greater range than E, yielding E

not being a stage extension. Since the framework of interest does not provide self-attacks,

however we need E+ = A, yielding non-empty stable semantics.

Lemma 2.3.16 (Conflict-Free Extensions are Covered by Naive Extensions). For an ar-
bitrary argumentation framework F = (A,R) any conflict-free set is covered by some naive
extension.

A ∈ cf (F ) =⇒ there is some E ∈ naive(F ) such that A ⊆ E
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Corollary 2.3.17. Any σ-extension is covered by some naive extension, for all introduced
semantics σ ∈ {cf , adm, com, stb, grd ,naive, prf , stg , sem}.

Lemma 2.3.18 (Admissible Extensions are Covered by Preferred Extensions). For an arbi-
trary argumentation framework F = (A,R) any admissible set is covered by some preferred
extension.

A ∈ adm(F ) =⇒ there is some E ∈ prf (F ) such that A ⊆ E

Corollary 2.3.19. Any admissible set is covered by some complete extension.

Corollary 2.3.20. Any σ-extension is covered by some σ′-extension for σ ∈ {adm, grd , com,
stb, sem, prf } and σ′ ∈ {adm, com, prf }.

Remark 2.3.21 (Acyclic Argumentation Frameworks). Acyclic argumentation frameworks

F = (A,R) do not contain any circular sequence of attacks (a0, a1), (a1, a2) . . . (an, a0). Acyclic

in this context matches the definition of well-founded for finite argumentation frameworks

from [29] (Definition 29 in there). Dung shows that for any well-founded argumentation

framework automatically grounded, preferred and stable semantics coincide. We conclude

that for acyclic argumentation frameworks grounded, complete, preferred, semi-stable,

stable and stage semantics coincide.

Remark 2.3.22 (Symmetric Argumentation Frameworks). For symmetric argumentation

frameworks F = (A,R) we have (a, b) ∈ R if and only if (b, a) ∈ R. In such frameworks

any argument defends itself, thus if F is symmetric we have cf (F ) = adm(F ) implying

naive(F ) = prf (F ) and stg(F ) = sem(F ).

We observe that so far only stable semantics is capable of producing no extension at

all. This observation appears to be related with the following semantical property which is

fulfilled by any but stable semantics. The intuition is that we would prefer semantics to

treat distinct parts of any framework independently.

Definition 2.3.23 (Property of Non-Interference). We say that a semantics σ satisfies the

non-interference property11 if and only if for any argumentation framework F = F1 ∪ F2

where F1 ∩ F2 = (∅, ∅), we have σ(F ) = {E1 ∪ E2 | E1 ∈ σ(F1), E2 ∈ σ(F2)}.

If we take into account the definitions of introduced semantics it appears that to check

E ∈ σ(F ) intuitively for some semantics it suffices to look at the direct impact of E in F ,

for others we have to compare E with other sets of arguments. We express this intuitive

difference by labelling the respective semantics in the following definition.

Definition 2.3.24 (Conditional Semantics). We sometimes speak of conditional semantics,

referring to naive, stage, semi-stable and preferred semantics; and opposed to these of

unconditional semantics, referring to conflict-free, admissible, complete, grounded and

stable semantics.

We close this section with a final example (Figure 2.3.25) and a graphical illustration of

discussed set inclusions (Figure 2.3.26). For the final example observe how much stage and

11Opposed to [4] and prior occurrences we use a stronger version of non-interference which we believe to match
the intent better.
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a

b

cd

sem(F ) = {{a}}

stg(F ) = {{b}}

Figure 2.3.25: Illustrating aspects of semi-stable and stage semantics.

semi-stable extensions differ. When looking at the introductory examples of this section,

one might assume that each semi-stable extension is covered by some stage extension.

However this example proves that assumption wrong.

2.4 The Better Good of Reasoning

Example 2.4.2 (Exponentially Many Extensions). For some finite set I with |I| = n consider

the argumentation framework F = (A,R) with:

A = {ai, bi | i ∈ I} R = {(ai, bi), (bi, ai) | i ∈ I}

We have |A| = 2n and |R| = 2n, thus ‖F‖ = 4n. We present stable semantics for this

framework:

stb(F ) =
{
{ai | i ∈ I \ J} ∪ {bj | j ∈ J}

∣∣J ⊆ I}
It follows that |stb(F )| = 2n = 2

‖F‖
4 . Thus stable semantics and with earlier subset relations

most other introduced semantics (except grounded) appear to possibly invoke exponentially

many extensions with respect to the size of the argumentation framework of concern.

In the previous examples, for the semantics of interest we used to present all valid

extensions. In general, for bigger frameworks especially, it might be more comfortable to

compute smaller amounts of information. For instance, when looking at the argumentation

framework F from Figure 2.4.1, one might occasionally wonder if it provides a stable

extension, stb(F ) 6= ∅. Or if any argument in the innermost circle a ∈ {a1, a2, a3} is part of

some or maybe even all preferred extensions. An oracle might conclude that F = (A,R)

does not provide a stable extension, that each a ∈ {a1, a2, a3} is contained in some preferred

extension and therefor no ai in all preferred extensions. Naively one might consider to

generally compute all extensions for one specific semantics and deduce questions like these

from this computation. Since semantics in general are defined by subsets of the power

set σ(F ) ⊆ ℘(A) of the arguments however, it might be the case that there are exponential
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stbstg semnaive prf com adm

cf

Figure 2.3.26: A Venn diagram illustrating set inclusion concerning common argumenta-
tion semantics. Observe that we refer to grounded semantics as just one
special complete extension.

many different extensions (see also Example 2.4.2). A comparison of that many extensions

will certainly prove to be kind of hard. In this section we will present standard reasoning

modes and decision problems established in the community, narrowing down semantics

without actually requiring access to all the extensions. For the remainder of this section

we occasionally refer to some semantics σ.

When thinking about the origins of abstract argumentation, the probably first question

that comes to mind is whether one specific argument is part of at least one extension, in

other words, if the semantics of choice supports an argument of choice.

Example 2.4.3 (Credoulous Acceptance). Consider preferred semantics, the argumentation

framework shown in Figure 2.4.1, and argument a1. Obviously a1 defends itself, thus {a1}
is an admissible set, as a consequence some preferred extension E includes a1.

Definition 2.4.4 (Credoulous Acceptance).
Credσ: Given some argumentation framework F = (A,R) and some argument a ∈ A. Is a

contained in some σ-extension: ∃E ∈ σ(F )(a ∈ E)?

If we happen to investigate argumentation frameworks for the purpose of establishing

some truth, we would much likely prefer a stronger support for at least some arguments,

we might wonder if for some semantics and some argument effectively every extension

contains this argument.

Example 2.4.5 (Skeptical Acceptance). Consider preferred semantics, the argumentation

framework shown in Figure 2.4.1, and argument a1. Since a2 is contained in some preferred

extension E, clearly a1 is not member of all preferred extensions.
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Figure 2.4.1: A bigger abstract argumentation framework.

Definition 2.4.6 (Skeptical Acceptance).
Skeptσ: Given some argumentation framework F = (A,R) and some argument a ∈ A. Is a

contained in all σ-extensions: ∀E ∈ σ(F )(a ∈ E)?

Furthermore we might be interested in applying acceptance to more complicated cases,

to sets of arguments. We might feel the need to ask, whether some specific set of arguments

represents an extension.

Example 2.4.7 (Verification). Consider complete semantics, the empty set and the argu-

mentation framework shown in Figure 2.4.1. Any argument is attacked by some other

argument, thus the grounded extension remains empty and therefor the empty set proves

to be a complete extension.

Definition 2.4.8 (Verification).
Verσ: Given some argumentation framework F = (A,R) and a set of arguments E ⊆ A. Is E

a σ-extension: E ∈ σ(F )?

The questions introduced so far might also be thought of as reasoning modes. By asking

these questions we try to narrow down semantics. We believe that questions of practical use
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can be stated simply by using these three reasoning modes. On the theory level however

some more questions might bother us. For example if for some specific semantics some

argumentation framework provides an extension.

Example 2.4.9 (Existence). Consider stable semantics and the argumentation framework

F = (A,R) shown in Figure 2.4.1. Now assume that there is some stable extension E.

Without loss of generality assume b3 ∈ E. Now c2 � b3 but only b2 and c3 defend b3 against

c2, both of which are in conflict with b3 themselves. The conclusion is that b 6∈ E for

all b ∈ {b1, b2 . . . b9}. Furthermore {c1, c2 . . . c9} represents an odd circle and thus there is

no conflict-free C ⊆ {c1, c2 . . . c9} such that C+ = {c1, c2 . . . c9}. It follows that there is no

admissible set E ⊆ A with E+ = A and therefor F does not have any stable extension, in

other terms stb(F ) = ∅.

Definition 2.4.10 (Existence).
Existsσ: Given some argumentation framework F = (A,R). Does F provide some σ-extension:

∃E ∈ σ(F )?

So far we have learned, that there are frameworks, which do not provide a stable

extension. However it does not take long to recognize, that all the other semantics we

introduced provide some extension for any framework. Consequently the question arises,

whether an extension other than the empty set exists for arbitrary semantics.

Example 2.4.11 (Non-Empty Existence). Consider semi-stable semantics and the argu-

mentation framework shown in Figure 2.4.1. We notice that a1 defends itself against all

attacks, thus a1 is admissible and therefor there has to be some non-empty E ∈ sem(F )

with a1 ∈ E+.

Definition 2.4.12 (Non-Empty Existence).
Exists¬∅σ : Given some argumentation framework F = (A,R). Does F provide some non-empty

σ-extension: ∃E ∈ σ(F )(E 6= ∅)?

2.5 Complexity of Abstract Argumentation

The introduction of reasoning, reasoning modes and decision problems comes along with

the hope of reduced complexity. We have to keep in mind that without further information

for some semantics σ and some argumentation framework F = (A,R) there might be

exponential many different extensions, |σ(F )| ≈ 2|A|. Thus computational issues might

also require exponential time. By downsizing questions we hope that also time and

space requirements decrease. In this section we will present a short summary of results

concerning complexity of abstract argumentation semantics.

In the following we briefly recall terms from computational complexity. We skip meaning

and motivation and just present very reduced definitions. For a more comprehensive

discourse on computational complexity we refer to [60]. For an overview on complexity of

abstract argumentation we refer to [35] and the references in there.

Definition 2.5.1 (Big-Oh). For functions f, g : N → R we say that f is in big-oh of g

(f = O(g)) if and only if there exist n0,m0 ∈ N such that for all n > n0 we have f(n) < m0g(n).
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Definition 2.5.2 (Algorithm). An algorithm α is a finite set of rules that transforms any

valid finite input into some finite output. Each application of some rule is called a step, the

number of steps needed for an application of the algorithm is called time. While processing

the algorithm may use some buffer memory, which we can think of as to be similar to a

blackboard that can be deleted and reused. The amount of buffer memory an algorithm

needs while processing is called space. Any input s can be represented by a unique finite

string of characters, we call the length of this string, |s| = n the size of the input. If there

is a function f such that α(s) needs O(f(n)) time (respectively space) we say that α is an

f-time (respectively f-space) algorithm.

Definition 2.5.3 (First Complexity Classes). For given input size n we call

• trivial: the class of k-time algorithms, for k being independent of n,

• L: the class of log(n)-space algorithms,

• P: the class of nk-time algorithms, for k <∞,

• PSPACE: the class of nk-space algorithms, for k <∞,

• EXPTIME: the class of bn-time algorithms, for b <∞.

Definition 2.5.4 (Reduction). Given two computational tasks T1 and T2 a reduction from

T1 to T2 is an algorithm R, that can be applied to any instance I of T1 such that

• R(I) is an instance of T2,

• R(I) needs at most O(log(|I|)) space,

• the answers to I in T1 and R(I) in T2 match exactly.

Definition 2.5.5 (Hardness and Completeness). Given some computational task T , a

Complexity Class CT is implicitly given by all computational tasks T ′, that can be reduced

to T , i.e. there is a reduction from T ′ to T . For each such T, T ′ we say that T ′ is in CT and

T is CT′-hard. If furthermore for some T ∗ ∈ CT we have CT∗ = CT, i.e. each CT-problem

can be reduced to T ∗, T ∗ is in CT and CT-hard, we say that T ∗ is CT-complete.

Definition 2.5.6 (Polynomial Hierarchy). Given a logical formula α, without loss of gen-

erality α =
∧
i∈{1,2...k}(ai,1 ∨ ai,2 ∨ ai,3) for ai,j ∈ {a1, a2 . . . am}, a sequence Qn = QnQn−1 . . . Q1

with Qi = ∃Ei for odd i = 2k + 1 and Qi = ∀Ei for even i = 2k and for i 6= j : Ei ∩ Ej = ∅
and

⋃
Ei = {a1, a2 . . . am}. Any Qnα forms a decision problem. We define the polynomial

hierarchy:

• ΣPn : class of tasks reducible to some Qnα,

• ΠP
n : class of tasks reducible to some ¬Qnα,

• NP = ΣP1 ,

• coNP = ΠP
1 .
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ΣP1
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Figure 2.5.7: A Venn diagram illustrating Complexity classes of our concern.

Remark 2.5.8 (Polynomial Hierarchy - Without Proof). We have (see also Figure 2.5.7)

L ⊆ P = ΣP0 = ΠP
0

ΣPn ,Π
P
n ⊆ ΣPn+1,Π

P
n+1⋃

ΣPn =
⋃

ΠP
n = PSPACE ⊆ EXPTIME

P ( EXPTIME

To the best of our knowledge these are all the set-theoretical relations known to hold for the

presented complexity classes. It is commonly believed, but not proven, that above subset

relations are real subset relations (e.g. L ( P).

We now turn to concrete results as far as complexity of argumentation semantics is

concerned. Luckily as far as the introduced complexity classes are concerned there are

no open questions left. We hereby admit that for this work we do not consider non-trivial

subclasses of L to be of importance. Thus some results are well known in the literature,

other results are trivial in comparison. We begin with a selection of the later ones.

Lemma 2.5.9 (Some Results for Trivial Complexity). We have that Credcf , Crednaive , Skeptcf ,
Existscf , Existsnaive ,Existsstg ,Existssem are trivial

Proof. Take for instance conflict-freeness and sceptical acceptance of some argument a for

any argumentation framework F . The empty set is always a conflict-free extension and

a 6∈ ∅.
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ

cf in L trivial in L trivial in L

naive in L in L in L trivial in L

grd P-c P-c P-c trivial in L

stb NP-c coNP-c in L NP-c NP-c

adm NP-c trivial in L trivial NP-c

com NP-c P-c in L trivial NP-c

prf NP-c ΠP
2 -c coNP-c trivial NP-c

sem ΣP2 -c ΠP
2 -c coNP-c trivial NP-c

stg ΣP2 -c ΠP
2 -c coNP-c trivial in L

Table 2.5.11: Complexity of abstract argumentation, where C-c denotes C-completeness.

Lemma 2.5.10 (Some Results for Logspace Complexity). We have that Vercf , Vernaive ,
Skeptnaive , Exists¬∅cf , Exists¬∅naive , Exists¬∅stg are in L.

Proof. Take for instance verification of naive semantics in some argumentation framework

F = (A,R) for some set E ⊆ A. To check pairwise conflict-freeness of E we need space for

two pointers. To check if there is some argument outside of E that is not attacked by E

and not attacked by itself the two pointers are still sufficient.

In his 1995 paper Dung [29] already explored to a good part admissible, grounded,

stable and preferred semantics. He showed that Skeptadm , Existsadm , Existsgrd and Existsprf

are trivial, that Veradm , Verstb and Exists¬∅grd are in L and that Credgrd , Skeptgrd and Vergrd are

in P. Dvořák and Woltran in [39] showed that Credgrd , Skeptgrd and Vergrd are even P-hard,

thus concluding P-completeness. In the very same paper they showed coNP-completeness

of Verstg . The same authors showed in [38] ΣP2 -completeness of Credstg , ΠP
2 -completeness of

Skeptstg , coNP-completeness of Versem and NP-completeness of Exists¬∅sem .

By connecting graph theoretical structures and various logics and subsequent results in

their 1996 paper [28] Dimopoulos and Torres implicitly also affected complexity of abstract

argumentation. We derive NP-completeness of Credadm , Exists¬∅adm , Exists¬∅com , Credstb, Existsstb,

Exists¬∅stb, Credprf and Exists¬∅prf as well as coNP-completeness of Skeptstb and Verprf .

Coste-Marquis, Devred and Marquis contributed to the realm of abstract argumentation

complexity in their 2005 work [26] which focussed on symmetric frameworks by declaring

NP-completeness of Credcom , P-completeness of Skeptcom , efficiency of Vercom and triviality

of Existscom .

Credits for showing ΠP
2 -completeness of Skeptprf can be given to Dunne and Bench-

Capon [33]. Credits for showing showed ΣP2 -membership of Credsem and ΠP
2 -membership of

Skeptsem in [34] can be given to Dunne and Caminada, credits for showing hardness of the

latest memberships is again due to [38].

It appears thus that for the semantics introduced in this work there are no open problems

as far as mainstream complexity issues are concerned. We present all of these complexity

related results in Table 2.5.11.
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Figure 2.6.1: An Illustration of Intertranslatability in real life. [44]

2.6 Translations and Properties

So far we have compared argumentation semantics with respect to set inclusion and com-

plexity. One might wonder, if some fine-graining to these comparisons can be added. In [39]

Dvořák and Woltran present a new concept of comparison for argumentation semantics.

In the previous section we pointed out, that in comparing problems of computational

complexity, reductions play an important role. Translations as introduced into abstract

argumentation in [39] apply the concept of computational task reduction to argumentation

semantics.

A translation informally is a mapping from argumentation frameworks to argumentation

frameworks, such that some property is one to one kind of mapped onto some possibly

different property. In this context, when speaking about “property” we think about seman-

tics, with “one to one kind of” we mean that there is some automated way to derive the

semantics of the original framework from the other. Thus we speak of translating semantics

and write e.g. Tr : σ ⇒ σ′ for a translation from semantics σ to σ′. In the following we will

sometimes use “transformations” and sometimes “translations” with the intention of using

the later only if the “one to one kind of” part is fulfilled.

For translations we try to keep the idea of efficiency as used for reductions, i.e. reductions

are bound to log-space transformations. Since we also try to interlock semantics in

the original and in the translated framework it becomes immediately clear, that some

translations will not be possible due to reasons of computational complexity. Think about

existence and the possibility of some translation stb ⇒ adm for instance. In this section we

present a brief introduction into intertranslatability for argumentation semantics along

with known results, all of which are strongly related and to a great part taken from [39].
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Definition 2.6.2 (Predictability). We call a transformation Tr predictable if for any isomor-

phic argumentation frameworks F = (A,R), F ′ = (A′, R′), F ∼=ϕ F ′, there is a mapping ψ

such that Tr (F ) ∼=ψ Tr (F ′) and even ψ(a) = ϕ(a) for all a ∈ A.

Sometimes we will give characterizations (e.g. remainder sets in Definition 2.6.12) for

specific arguments or sets of arguments in the translated framework. For predictable

frameworks we require also these characterizations to be isomorphic.

Remark 2.6.3 (Predictability). For applications a translation implementing random algo-

rithms, considering names of arguments, referring to some order of arguments or similar

might be of interest and also in conflict with predictability. Until proven otherwise however

we actually believe that only predictable translations are useful. For the purpose of this

work we therefor restrict ourselves to predictable translations.

Remark 2.6.4 (Proper Definition of Translations). Technically for some argumentation

framework F = (A,R) and some translational transformation Tr there is a proper defini-

tion (compare Remark 2.1.20) concerning the names of the arguments in the translated

framework Tr (F ) = (A′, R′) with:

A′ ( A ∪
{
aF
⊆

i | i ∈ N, F⊆ ⊆ F
}
, R′ ⊆ A′ ×A′

The intuition is that translations operate on argumentation frameworks, and therefor build

their structure, in names their arguments, from the original framework (A), from properties

of subframeworks (aF
⊆

i with F⊆ 6= ∅) and from properties not depending on any concrete

framework (a∅i ). Observe that the a in aF
⊆

i does not refer to any a ∈ A but is fixed. Reference

to some argument b ∈ A can formally be managed by using a{b}i .

If no ambiguity arises we can use other letters and signs to denote arguments of translated

frameworks. We just need to remind ourselves from time to time, that there is a proper

definition underneath, distinguishing three kinds of arguments after translating.

We call a translation Tr a finite translation if for any finite argumentation framework F

we have |Trans(F )| <∞. If not mentioned explicitly we will further on only deal with finite

translations.

In [55] Liberatore investigates relationships between variants of default logic. He in-

troduces a concept of faithfulness, which interlocks models of the original logic and its

translation in a strong way. In relation with this we introduce exactness.

Definition 2.6.5 (Exactness). For semantics σ, σ′ we call a transformation Tr : σ ⇒ σ′ an

exact translation if for every argumentation framework F we have

σ(F ) = σ′(Tr (F ))

So if a translation is exact, for solving most semantical reasoning problems one can think

of, it will not make a difference to take F with σ or to take Tr (F ) with σ′. If the problem on

one side is solved, the solution can immediately be turned into a solution on the other side.

It is easily to be seen, that for any semantics σ the identical translation Tr id, which simply

copies the original framework, is an exact translation for σ ⇒ σ.
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a b c d e

a′ b′ c′ d′ e′

Figure 2.6.7: A first translation applied to Example 2.1.6.

Example 2.6.6 (Exact Translation). For an arbitrary argumentation framework F = (A,R),

we define a transformation Tr (F ) = (A′, R′) with:

A′ = {a, a′ | a ∈ A} , R′ = R ∪ {(a, a′), (a′, a′), (a′, a) | a ∈ A} .

An illustration of this transformation as applied to the argumentation framework from

Example 2.1.6 is shown in Figure 2.6.7. For frameworks received from applying this

transformation it appears that any admissible set is a fixed point of the characteristic

function. Obviously any set E of arguments can defend some argument a only if a ∈ E.

Moreover admissible sets of arguments are the same for F and Tr (F ). Thus we get an exact

translation from admissible to complete semantics, Tr : adm ⇒ com

Example 2.6.8 (No Exact Translation). Observe that the argumentation framework from

Figure 2.1.5 has as admissible sets {∅, {a} , {c} , {d} , {a, c} , {a, d}}. Now clearly {a} ( {a, c},
immediately we have that there can not be an exact translation Tr : adm ⇒ prf .

So there are semantics which can not be translated exactly. Observe that for the

reasoning problems introduced however, due to Class-Completeness, there has to be

a reduction from some admissible problem to the corresponding problem in preferred

semantics. Following [51] we introduce a concept of faithfulness.

Definition 2.6.9 (Faithfulness). For semantics σ, σ′ we call a transformation Tr : σ ⇒ σ′

a faithful translation if for every argumentation framework F = (A,R) we have |σ(F )| =

|σ′(Tr (F ))| and

σ(F ) = {E ∩A | E ∈ σ′(Tr (F ))}

And indeed there is a faithful translation Tr : adm ⇒ prf , for more details we refer to [39]

or Translation 3.1.85.

For most reasoning problems given some faithful translation it is still an easy task

to retrieve a solution for the original framework, assuming prior knowledge about the

corresponding problem in the translated framework. However, some reasoning problems

might change their meaning, as it is for non-empty-existence. Think about semantics

σ1 and σ2 with a faithful translation Tr : σ1 ⇒ σ2. If for some argumentation framework

F we know that there is some non-empty σ2-extension E of Tr (F ), then without further

knowledge we do not know anything about non-empty extensions for σ1(F ), since E might

consist of additional arguments only.
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a b c d e

τ

Figure 2.6.13: Another simple translation applied to Example 2.1.6.

Example 2.6.10 (No Faithful Translation). Take any argumentation framework F with

non-empty grounded extension grd(F ) 6= ∅. Then obviously there can not be an exact or

faithful translation Tr : grd ⇒ adm, since the empty set is always admissible.

Example 2.6.11 (No Translation). Take any framework F and any semantics σ such that

|σ| ≥ 2, then clearly there can not be any exact or faithful translation Tr : σ ⇒ grd , since

grounded semantics consists of exactly one extension only.

With the former two examples we run into trouble. To our knowledge there is no useful

concept of a translation for the later example. For the first of these examples however [39]

provides a workaround.

Definition 2.6.12 (Weakly Exact/Faithful). For semantics σ, σ′, we call a transformation

Tr a

• weakly exact translation with respect to S for σ ⇒ σ′ if there exists a proper set S of

sets of arguments, such that for any argumentation framework F , σ(F ) = σ′(Tr (F ))\S,

• weakly faithful translation with respect to S for σ ⇒ σ′ if there exists a proper set S of

sets of arguments, such that for any argumentation framework F , σ(F ) = {E ∩ AF |
E ∈ σ′(Tr (F )) \ S} and |σ(F )| = |σ′(Tr (F )) \ S|.

For a given weakly exact or faithful translation with respect to some set S, the elements of

S are also called remainder sets.

Example 2.6.14 (Weakly Exact Translation). For any argumentation framework F = (A,R),

with respect to {{τ}} we define a transformation Tr (F ) = (A′, R′) with:

A′ = A ∪ {τ} , R′ = R ∪ {(a, τ), (τ, a) | a ∈ A}

See Figure 2.6.13 for an application of this transformation to the argumentation framework

from Example 2.1.6. Now {τ} clearly is a stable extension in Tr (F ). If F has a stable

extension E, then clearly E is also a stable extension of Tr (F ). Thus with Lemma 2.3.14 it

follows that this is a weakly exact translation Tr : stb ⇒ σ for σ ∈ {sem, stg}.
Remark 2.6.15. For a given weakly exact or faithful translation with respect to S by

definition and with reference to Remark 2.6.4, each S ∈ S consists only of arguments

introduced for the translation, independent of any specific argumentation framework.

S (
{
a∅1, a

∅
2 . . .

}
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exact weakly exactfaithful

weakly faithful

Figure 2.6.16: A Venn diagram illustrating subset relations of (weakly) exact/faithful trans-
lations

To get a more clear differentiation, we might refer to the arguments of which any S is built

of as

S ( {τ1, τ2 . . . } .

Observe that S is supposed to be a set, although it might be useful to use proper classes.

However we believe that S being a proper class is highly pathological in nature and only of

theoretical use. If not mentioned explicitly we will further on thus only deal with a finite

set of remainder sets S : |S| <∞.

Lemma 2.6.17. If a translation is faithful or weakly exact, then it is also weakly faithful. If
it is exact it is also faithful and weakly exact. See Figure 2.6.16 for an illustration of these
subset relations.

Since part of the motivation for introducing translations is to find other ways of com-

puting solutions for reasoning problems, respectively computing semantics for arbitrary

argumentation frameworks, we would like translations to fulfill further conditions.

Definition 2.6.18 (Efficiency). A transformation Tr is called efficient if for every argumen-

tation framework F , Tr (F ) can be computed using logarithmic space with respect to the

size of F (Definition 2.1.23).

Any efficient transformation will also meet the requirements to transform statements of

computational complexity. Dvořák and Woltran [39] used this to show some impossibility

results.

With the following translational property we introduce a concept intended to ease com-

putational efforts by a great part. The idea is to be able to split computation into several

independent parts, thus enabling parallel computing.

Definition 2.6.19 (Modularity). A transformation Tr is called modular if for any argumen-

tation frameworks F , F ′, we retrieve

Tr (F ) ∪ Tr (F ′) = Tr (F ∪ F ′).
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2 Behind the Scenes

It appears that for modular transformations we can retrieve the transformation of any

framework by dividing it into smaller and smaller fractions.

Tr (F ) = Tr (F1 ∪ F2 . . . Fn) = Tr (F1) ∪ Tr (F2) . . .Tr (Fn)

At some point anyway we will arrive at smallest fractions. These smallest fractions can then

be divided into classes of isomorphic frameworks. Since we restrict ourselves to predictable

frameworks (compare Remark 2.6.2) for each of these classes it suffices to translate just

one representative. Generalizing this principle we present a concept of locality.

Definition 2.6.20 (Locality With Respect to L ). A transformation Tr is called local with

respect to a set L of argumentation frameworks (L = {F1, F2, . . . }) if for any argumentation

framework F , we retrieve

Tr (F ) =
⋃

L∈L ,L∼=F ′⊆F
Tr (F ′)

Remark 2.6.21. Without loss of generality the argumentation frameworks in L can be

chosen isomorphically different, i.e. for L1, L2 ∈ L with L1
∼= L2 already L1 = L2.

Definition 2.6.22 (k-Component Locality). A transformation Tr is called k-component local

if it is local with respect to L and each F ∈ L consists of at most k connected components

(compare Definition 2.1.29), in other words for each L ∈ L there is a fragmentation FL into

connected components12 such that |FL| ≤ k.

Definition 2.6.23 (Local with Diameter). A transformation Tr is called local with diameter

d if for any argumentation framework F we have:

Tr (F ) =
⋃

F ′⊆F,dia(F ′)≤d
Tr (F ′)

Lemma 2.6.24 (Diameter vs. 1-Component). Any transformation which is local with finite
diameter is also 1-component local with respect to some possibly infinite set L .

Proof. For an arbitrary argumentation framework F = (A,R) and transformation Tr with

diameter d, consider the (for d > 0 infinite) set of universal (compare Remark 2.1.20)

argumentation frameworks L ( F∞ with diameter of at most d.

L = {F ∈ F∞ | dia(F ) ≤ d}

Then for F ′ ⊆ F with dia(F ′) ≤ d consequently there is some L ∈ L such that L ∼= F ′.

Therefor

Tr (F ) =
⋃

L∈L ,L∼=F ′⊆F
Tr (F ′)

Definition 2.6.25 (Finite Locality). A transformation Tr is called finitely local if it is local

with respect to L and |L | <∞.
12We have

⋃
FL = L and for any F ∈ FL: dia(F ) <∞.
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Lemma 2.6.26. A transformation Tr is finitely local with respect to L if and only if there is
some n <∞ such that for each L ∈ L , |L| ≤ n.

Proof.

=⇒: If L < ∞, then there is some Lm ∈ L such that |L′| ≤ |Lm| for all L′ ∈ L . With

Remark 2.1.15 any argumentation framework is finite, now simply take n = |Lm|.

⇐=: There are only a finite number of isomorphically different argumentation frameworks

F with |F | ≤ n for finite n.

Corollary 2.6.27. Any finitely local transformation is k-component local for some k <∞.

Definition 2.6.28 (Strict Locality). A transformation is called strictly local if it is 1-

component finitely local.13 In case ambiguity arises we also speak of strictly local with

respect to a set L of 1-component argumentation frameworks, or similar.

Remark 2.6.29 (Locality). We will present further details on relations between modular,

local and faithful translations in Section 3.1. For now we keep in mind that strictly

local is the most restricted form of locality and the following relations: Each strictly local

transformation is local with finite diameter and finitely local. Each local with finite diameter

transformation is 1-component local. Each finite transformation is k-component local for

some finite k.

We will show that strict locality is in some way an immediate extension of modular in

Lemma 3.1.1 and we will show that monotonicity as introduced below is equivalent to

locality in Lemma 3.1.3. We will use finite locality to derive efficiency in Theorem 3.1.4.

Besides relating efficiency and modularity, Chapter 3 will work with locality in various

ways. We will use strict locality to broaden proofs based upon modularity. We will use

k-component locality to classify concrete transformations. We will use finite-diameter and

1-component locality to acquire impossibility results.

One might wish that subframeworks translate into subframeworks. With the following

definition we introduce monotonicity as presented in [39]. We will show in Section 3.1 that

monotonicity serves as the most general form of locality.

Definition 2.6.30 (Monotonicity). A transformation Tr is called monotone if for any argu-

mentation frameworks F , F ′, we retrieve

F ⊆ F ′ =⇒ Tr (F ) ⊆ Tr (F ′).

When thinking about practical applications of translations it appears that we might want

arguments and conflicts (maybe even non-conflicts) to remain after translating. Thus,

especially on the meta-level, the following conditions might be of interest.

13Recall that for predictable transformations Tr (compare Definition 2.6.2) for computational issues it suffices
to compute Tr (L) for all L ∈ L and apply the results to isomorphic subsets of F .
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Definition 2.6.31 (Covering). A transformation Tr is called covering if for every argumen-

tation framework F we have F ⊆ Tr (F ).

Definition 2.6.32 (Embedding). A transformation Tr is called embedding if for every

argumentation framework F = (A,R) we have F ⊆ Tr (F ) and Tr (F )|A = F , in other words if

the transformation is covering and no attacks between original arguments are added.

A transformation fulfilling embedding will preserve the inner structure of the original

framework. A covering transformation will still preserve much of the inner structure,

although there might be additional attacks between original arguments. Justification for

both is that we want to preserve original arguments and conflicts (and conflict-freeness), to

ensure to still be talking about the same argumentation process on a meta-level. Clearly

an embedding transformation is always also a covering transformation but not vice versa.
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3 Contributions

This thesis started out with repeated attempts of translating semi-stable to stage semantics.

As a first substantial result impossibility of weakly exact translations was detected and

already included in [39]. This first impossibility was soon followed up by impossibility

of modular weakly faithful translations. Up to now existence of efficient weakly faithful

translations is still unknown, but by enhancing modularity to levels of locality by now we

know that possibly existing efficient translations are probably not all that intuitive. See for

instance Example 3.2.27 for a partial translation. Consequently the results of this thesis

can be seen as spin-off products of the initial attempts. We tried to complete the picture,

yet for the time being results of non-restricted local translations are rare.

However by investigating locality and thus applicability of parallel computing we de-

veloped techniques suitable for categorization of translations as well as detection of im-

possibilities. We would like to emphasize the concept of strict locality, for we actually

believe that translations possessing this property might build a well distinguishable class

of transformations (at least compared to the property of being efficient).

In the previous chapter we have given definitions, basic results and background informa-

tion for argumentation frameworks and intertranslatability. In this chapter we will focus on

intertranslatability results for the introduced semantics. We will deal with open questions

from [39], we will present modified as well as new translations and we will present new

impossibility results for several demands. We will give a motivation and make use of

the different levels of locality. We will present results affecting interplay between various

semantics.

Dvořák and Woltran investigated intertranslatability with respect to stage, stable, semi-

stable, preferred, complete, admissible and grounded semantics. As a first step we will

expand the semantics of interest to also include conflict-free and naive semantics. A

summarizing presentation of results from [39] is given in Table 3.0.1. Colored cells indicate

enhancement by this thesis. As far as the encoding of the results is concerned for now we

only declare that

• each cell consists of an upper (translations) and a lower (impossibilities) area;

• for each result the part following the colon is a reference, for Table 3.0.1 referring to

some result from [39];

• E indicates exactness, E indicates weak exactness, F indicates faithfulness and F

indicates weak faithfulness.

We will give a detailed definition, especially for the remaining parts of the encoding in

Definition 3.1.14. Some enhancements are also due to broadening translations of interest

also to inefficient translations, thus enabling additional results (Section 3.4).
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⇒ stg stb sem prf com adm grd

stg

Ee
0: id Ec

2: Tr2

Fe
0: Tr5

Fe: Th. 10 Ee: Th. 14 Fe: Th. 9 Fe: Th. 10 Fe: Th. 10 F: Prop. 3

stb
Ee

0 : Tr3 Ee
0: id Ee

0 : Tr3 (Ee
2 : Tr4 ) (Ee

2 : Tr4 ) (Ee
2 : Tr4 )

F: Prop. 3

sem
Ee
0: id

E: Th. 15 Fe: Th. 10 Fe: Th. 9 Fe: Th. 10 Fe: Th. 10 F: Prop. 3

prf
Ee
0: Tr1 Ee

0: id
E: Th. 15 Fe: Th. 10 Fe: Th. 10 Fe: Th. 10 F: Prop. 3

com
Fe
0: Tr7 Fe

0: Tr7 Fe
0: Tr7 Fe

2: Tr4 ◦Tr7 Ee
0: id F e

2 : Tr4 ◦Tr7

E: Th. 11 E: Th. 11 E: Th. 11 E: Th. 11 E: Th. 12 F: Prop. 3

adm
Fe
1: Tr6 Fe

1: Tr6 Fe
1: Tr6 Fe

2: Tr4 ◦Tr6 Ee
0: Tr1 Ee

0: id
E: Th. 11 E: Th. 11 E: Th. 11 E: Th. 11 F: Prop. 3

grd
Fe
e: Tr8 Fe

e: Tr8 Fe
e: Tr8 Fe

e: Tr8 Fe
e: Tr8 F e

e : Tr4 ◦Tr8 Ee
0: id

Ee: Th. 13 Ee: Th. 13 Ee: Th. 13

Table 3.0.1: A summary of intertranslatability results with references to results from [39],
decryption by Definition 3.1.14, colored cells indicate enhancement by this
thesis.

In the following among other results we will present new facts for all question marks in

Table 2 from [39]. As far as intertranslatability for abstract argumentation semantics is

concerned a detailed summary of all results from this thesis can be found in Section 3.5

(Table 3.5.1). Highlighting of singular results turns out to be a difficult task, however we

would like to hint to

• relation of stage, stable and semi-stable semantics in self-attack-free argumentation

frameworks (Corollary 3.2.32),

• efficiency of finitely local and thus modular translations (Theorem 3.1.4),

• impossibility of weakly faithful translations σ ⇒ (cf |naive) (Theorem 3.2.4),

• impossibility of weakly exact translations (sem|prf |com|adm) ⇒ (cf |naive|stg) (Corol-

lary 3.2.8),

• impossibility of efficient exact translations grd ⇒ stg (Corollary 3.3.15),

• impossibility of finite-diameter local weakly faithful translations (sem|prf )⇒ stg (Theo-

rem 3.2.24),

• impossibility of finite-diameter local weakly exact translations grd ⇒ sem (Theo-

rem 3.3.18),

• impossibility of finite-diameter local weakly faithful translations grd ⇒ (stg |prf ) (Theo-

rem 3.3.20) and grd ⇒ (stb|com|adm) (Corollary 3.3.21),

• the surprisingly simple modular embedding faithful Translation 3.1.72 for com ⇒
(stg |stb|sem|prf ),

• the modular embedding faithful Translation 3.3.11 for grd ⇒ sem,

• the oracle embedding exact Translation 3.4.17 for sem ⇒ prf .
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3.1 Translational Basics

In Section 3.1 we begin the contributions chapter with a deeper look into known transla-

tions, as well as modifications of these translations and genuinely new translations with

similar effect. We will also analyze relations between efficient, modular, local and monotone

transformations. The aim of new and modified translations will be to meet a stronger level

of locality, generality or simplicity.

In translating argumentation frameworks a lot of effort has been put into investigation

of similar semantics. In Section 3.2 we will focus on intertranslatability of conditional

semantics (naive, stage, semi-stable and preferred semantics, see Definition 2.3.24).

For the semantics presented in this work, grounded semantics stands out of the crowd for

possessing a unique extension for every argumentation framework and being comparably

simply computable. In Section 3.3 we will present new results concerning impossibilities of

finite-diameter translations and efficient translations grd ⇒ σ.

When looking for efficient translations or at efficiency of translations it is also good to

know upper boundaries. By focusing on transformations without the limits of compu-

tational issues, we finalize this chapter by giving results for inefficient translations in

Section 3.4.

Section 3.5 is dedicated to outlining all results of this thesis. We will present a detailed

table as well as illustrations for selected classes of translations.

Remark 3.0.2 (Empty Argumentation Frameworks). In contrast to [39] we allow arbitrary

argumentation frameworks F to be empty (F = (∅, ∅)). As far as intertranslatability is

concerned this mainly affects behaviour of stable semantics. The empty set is a stable

extension if and only if the argumentation framework of interest is empty. Thus we will

mark some translations as non-general (e.g. stb ⇒ adm) but on the other hand allow some

exact translations (e.g. naive ⇒ stb).

3.1 Translational Basics

So far we have introduced various translational properties. While embedding and covering

serve structure-preserving purpose, efficiency, modularity, locality and monotonicity are

intended to give measures for computational issues, exactness and faithfulness are used to

give basic conditions for the use of translations. With the hitherto introduced characteristics

the strongest attributes a translation can have are modular, embedding and exact. We

observe the following correlations:

• If a translation is embedding it is also covering. In general monotone translations will

at least be argument-covering. Since the semantics of interest in this thesis operate

on the same concept of conflict-freeness furthermore monotonicity and the covering

property will appear to be in a strong correlation.

• If a translation is exact it is also faithful and weakly exact. If a translation is faithful

or weakly exact it is also weakly faithful. We hint to Figure 2.6.16 for a Venn diagram

illustrating these relations.
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• If a translation is modular it is also efficient and strictly local, as will be shown

shortly. As far as the levels of locality are concerned we will present a Venn diagram

in Figure 3.1.9, illustrating significance and correlation also with the concept of

efficiency. Subsection 3.1.1 will deal in great parts with resolving these issues.

For a starter in Subsection 3.1.1 we will clarify relations of computational properties.

We will follow up by analyzing and giving first results in the subsequent subsections,

namely translations and impossibilities as far as intertranslatability between argumentation

semantics is concerned. For this section we will overall stay close to [39].

A few words about locality
In Section 2.6 we have introduced various concepts of locality. Local Translations (Defi-

nition 2.6.20) can be declared by translating a possibly infinite set L of argumentation

frameworks.

In Lemma 3.1.3 we will point out the relation between local and monotone translations.

For finitely local translations (Definition 2.6.25) we deal with a finite set L of representative

argumentation frameworks determining the translation; we will focus on implications

of this definition for efficiency in Theorem 3.1.4. In Lemma 3.1.1 we will point out the

relationship between modularity (Definition 2.6.19) and strict locality (Definition 2.6.28).

We will use finite-diameter locality (Definition 2.6.23) to give impossibility results. We will

use k-component locality (Definition 2.6.22) to classify actual translations.

For now we point out that while diameter local translations are also 1-component lo-

cal (Lemma 2.6.24) the reverse does not hold. While finite-diameter translations are

not necessarily efficient we will give 1-component local translations in Section 3.4 where

finite-diameter local translations happen to fail and an efficient 1-component local Transla-

tion 3.3.9 which appears not to be finite-diameter local.

The main purpose of introducing finite-diameter locality is to toughen impossibility

results, originally revealed with respect to modularity. By thinking of finite-diameter local

translations we have transformations in mind which not necessarily possess efficiency but

do so for sparsely populated argumentation frameworks.

3.1.1 Essential Properties of Local Translations

The original intent of modular translations is to ensure usability for parallel computing. In

order to achieve this goal, modular translations can be built by splitting the transformation

into small, smaller and smallest parts. When thinking about modularity we think about

breaking the framework into bits.

What follows is a classification of modularity as the most restricted and still useful

form of locality and of monotonicity as the most general form of locality, thus presenting

concepts of locality as fine-graining between monotonicity and modularity. To decorate this

categorization with Theorem 3.1.4 we will show that finitely local and therefor modular

translations happen to already be efficient.
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Lemma 3.1.1 (Modular vs. Local). Any modular translation Tr is also strictly local.

Proof. Take into account the set Lm = {F0, F1, F2, F3} with

F0 = (∅, ∅) F2 = ({a0} , {(a0, a0)})
F1 = ({a0} , ∅) F3 = ({a0, a1} , {(a0, a1)})

Now obviously if Tr is local with respect to Lm it is already strictly local (finitely 1-component

local, see Definition 2.6.28). We observe that for any argumentation framework F we have

that F is the union of sets which are isomorphic to some Fi with i ∈ {0, 1, 2, 3}:

F =
⋃

F ′∼=Fi,F ′⊆F
F ′

But then for any modular translation Tr (as of Definition 2.6.19) we retrieve

Tr (F ) = Tr (
⋃

F ′∼=Fi,F ′⊆F
F ′) =

⋃
F ′∼=Fi,F ′⊆F

Tr (F ′)

and therefor any modular translation is also local with respect to Lm, respectively strictly

local.

Remark 3.1.2. Observe that in the previous proof Lm is minimal. For any proper subset

L ( Lm we can think of some modular translation not being local with respect to L .

Furthermore F1, F2 and F3 are necessary to build the identical transformation (Transforma-

tion 3.1.11). As a side note we can think1 of a weakly faithful translation with remainder

set ∅, making use also of F0. Thus we claim modular translations to be the most restricted

and still reasonable local translations.

Lemma 3.1.3 (Monotone vs. Local). Any translation Tr is monotone if and only if it is local
with respect to some possibly infinite set L .

Proof.

⇐=: Assume that Tr is local with respect to some L . For arbitrary argumentation frame-

works F ⊆ F ′ we have that for any subframework F< ⊆ F with F< ∼= L for some L ∈ L ,

also F< ⊆ F ′ and therefor Tr (F<) ⊆ Tr (F ) and Tr (F<) ⊆ Tr (F ′). Thus monotonicity

follows:

Tr (F ) =
⋃

F<⊆F
Tr (F<) ⊆

⋃
F<⊆F ′

Tr (F<) = Tr (F ′)

=⇒: Take into account the universe of all possible isomorphically different abstract ar-

gumentation frameworks F∞ (compare Remark 2.1.20). Now observe that for any

argumentation framework F and for all F ′ ⊆ F there is some L′ ∈ F∞ such that

L′ ∼= F ′. Thus any monotone translation Tr is also local with respect to F∞.

Tr (F ) =
⋃
F ′⊆F

Tr (F ′) =
⋃

L′∈F∞,L′∼=F ′⊆F
Tr (F ′)

1Take into account Translation 3.1.66 for stb ⇒ adm. The empty argumentation framework translates into a
single-argument framework and the empty set is used as remainder set.
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Theorem 3.1.4 (Efficient vs. Local). Any finitely local translation is already efficient.

Proof. We look at any argumentation framework F = (A,R) and investigate some translation

Tr which is local with respect to some finite (Definition 2.6.25) set L of argumentation

frameworks. For given L ∈ L , since ‖L‖ is finite, observe that we need some fixed

amount of finite space to compute Tr (L). Furthermore, since L is finite, we can fix some

L1 ∈ L for which space requirement of Tr is maximal but constant and L2 ∈ L for which

size ‖L2‖ is maximal. Note that subgraph isomorphism in general is NP-complete [45],

however by restricting the size of the graph of interest efficiency can be achieved. We need

O(‖L2‖ log(‖F‖)) space to check for subframeworks in F which are isomorphic to L2 and

thus to translate any subgraph isomorphic to some L ∈ L . It follows that any finitely local

translation can be computed efficiently (compare Definition 2.6.18).

Corollary 3.1.5.

1. Any strictly local translation is already efficient.

2. Any modular translation is already efficient.

We refer to [63] for efficiency of graph connectivity. Combined with the semantical

property of non-interference (Definition 2.3.23) we conclude an interesting observation.

Corollary 3.1.6. Semantics fulfilling the non-interference property which can be translated
finitely local can also be translated efficiently 1-component local.

Remark 3.1.7. The reverse of Theorem 3.1.4 (efficient =⇒ finitely local) is not true in

general, even for useful translations. Tr8 from [39] is efficient but not finitely local.2

It is an open and to speak of interesting question whether the reverse of Corollary 3.1.6

is true or false. Does existence of efficient 1-component local translations tell us something

about existence of finitely local translations?

This leads us to some more questions about which properties translations from [39] fulfill

and which properties they might fulfill with minor modifications, most of which we will deal

with in this section.

Corollary 3.1.8 (Subset Relations for Computational Properties). With reference to Re-
mark 2.6.29 and the previous results for local translations we present the following sum-
mary. Consider some translation Tr then the following statements hold:

• If Tr is modular it is also strictly local.

• Tr is strictly local if and only if it is 1-component finitely local.

• If Tr is local with diameter d it is 1-component local.

• If Tr is 1-component local it is local with possibly infinite diameter d.

• If Tr is k-component local it is also k + 1-component local.

2In fact Tr8 is not monotone. However we will give a simple modification (Translation 3.3.9) such that Tr8
becomes an efficient 1-component local faithful translation.
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efficient translations

modular

strictly local

finite diameter local

1-component local

..
.

k-component local

..
.

finitely

local

monotone = local with respect to some L

Figure 3.1.9: Illustration of relations between computational properties of translations as
presented in Corollary 3.1.8.

• If Tr is finitely local it is k-component local for some finite k.

• If Tr is finitely local it is also efficient.

• Tr is monotone if and only if it is local with respect to some L .

A graphical illustration of these concluding relations can be found in Figure 3.1.9

Remark 3.1.10. When presenting translations which are local with respect to some finite

set L of argumentation frameworks, a visually very comforting way is to present the

transformations for all L ∈ L separately. We will follow this idea in the following and often

even skip text representations later on.

Transformation 3.1.11 (Identity). Identity for argumentation frameworks can be defined

as a modular transformation, F = (A,R),Tr id(F ) = (A′, R′), with A = A′ and R = R′:

A = {a} R = ∅ =⇒ A′ = {a} R′ = ∅
A = {a} R = {(a, a)} =⇒ A′ = {a} R′ = {(a, a)}
A = {a, b} R = {(a, b)} =⇒ A′ = {a, b} R′ = {(a, b)}
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As mentioned above we can also visually represent the identical transformation with the

following scheme:

a a

a a
a

b

a

b

Translation 3.1.12 (Ee0: σ ⇒ σ). Obviously for any argumentation framework F and any

semantics σ we have that Tr id is an efficient modular embedding translation for σ ⇒ σ.

Remark 3.1.13. In general there will not be any local with diameter 0 translation for

semantics making use of conflict-freeness. Any such translation does not have access to

attacks between original arguments.

As already used for Translation 3.1.12 by the end of this subsection we are able to

categorize translations according not only to (weak) exactness/faithfulness, efficiency and

embedding/covering property but also to their respective level of locality (compare also

Figure 3.1.9). The following Definition 3.1.14 presents an encoding we will subsequently

use throughout this thesis.

Definition 3.1.14 (Short Form of Translational Properties). We use E to denote exactness,

E to denote weak exactness, F to denote faithfulness and F to denote weak faithfulness.

We call X ∈ {E, E,F, F} the type of translation, for X being the type of translation we use

Xe to denote the embedding property and Xc to denote the covering property. Furthermore

we use Xi to denote the level of locality respectively efficiency where i is decoded by value

as follows:

0 modular 5 efficient monotone

1 strictly local 6 1-component local

2 finitely local 7 monotone

3 efficient 1-component local

4 finite-diameter local e efficient

We refer to impossibility results by coloring, e.g. E0 means that some modular exact

translation is not possible. Furthermore we use parentheses to denote applicability of

some translation only for specific argumentation frameworks. If some covering efficient

monotone weakly faithful translation applies only to non-empty argumentation frameworks

we might use (F e5 ).

3.1.2 Foundational Transformations and Translations

We point out that any mapping and therefor any translation Tr can be represented as a

class of ordered pairs Tr = {(F, F ′) | F some argumentation framework and Tr (F ) = F ′}.
Intuitively for arbitrary transformations Tr1 and Tr2 with (F, F1) ∈ Tr1 and (F, F2) ∈ Tr2

we can build a new transformation Tr1+2 with (F, F1 ∪ F2) ∈ Tr1+2 . The motivation for

this observation is that for local transformations with respect to L for any L ∈ L we
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have a separate transformation which is local with respect to {L}. Thus we can build a

transformation which is local with respect to L by breaking the definition into partial

transformations Tr1 ,Tr2 . . . being local with respect to L1,L2 . . . such that L = L1∪L2 . . .

In the following we will introduce partial transformations on possibly similar sets L (e.g.

L1 ∩L2 6= ∅). As touched in Remark 2.6.21 this does not affect well-definedness of the

presented local transformations.

Definition 3.1.15 (Union of Transformations). For translations Tr and Tr ′ we define the

union of transformations Tr ∪ Tr ′ as

(Tr ∪ Tr ′)(F ) = Tr (F ) ∪ Tr ′(F )

Remark 3.1.16. The intent of the union of transformations is that for transformations Tr

and Tr ′ which are local with respect to L and L ′ we receive a transformation Tr ∪Tr ′ which

is local with respect to L ∪L ′. In general however we need to take care, as names of new

arguments might be used in both transformations. Observe that for any argumentation

framework F and any monotone or predictable transformation Tr we get Tr (F ) = Tr (F )

and thus (Tr ∪ Tr )(F ) = Tr (F ).

Transformation 3.1.17 (Symmetry). With respect to L = {({a, b} , {(a, b)})} we define a

symmetrizing modular transformation Trsym:

a b a b

Transformation 3.1.18 (Emphasizing Arguments). With respect to L = {({a} , ∅)} we

define a modular transformation Tremph0 emphasizing arguments:

a a ā

Transformation 3.1.19 (Emphasizing Attacks). With respect to L = {({a, b} , {(a, b)})} we

define a modular transformation Tremph1 emphasizing attacks:

a b a b̄

Transformation 3.1.20 (Emphasizing with Conflict). With respect to L = {({a} , ∅)} we

define a modular transformation Tremph self-conflicting additional arguments of the form Ā:

a ā

Remark 3.1.21. Observe, that the previous four transformations in general do not give any

useful translation on their own. In Trsym we have that arguments not being member of a

classical attack relation do not occur in the transformed framework, in Tremph0 attacks

are not translated at all, in Tremph1 non-attacking arguments do not reappear, in Tremph

original arguments disappear completely. To be of practical use Transformations 3.1.17 to

3.1.20 will be used in union with other transformations.

The identical Translation 3.1.12 will not constitute a disturbing factor for most cases

as far as union of transformations (Definition 3.1.15) is concerned. As far as efficient

translations are concerned, to our knowledge there are very few results negating the
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a b c d e

Figure 3.1.23: Translation 3.1.22 (cf ⇒ adm,naive ⇒ prf ) as applied to Example 2.1.6.

covering property3 (Definition 2.6.31). Viewed in this light it comes clear that the intentional

use of Trsym, Tremph0 and Tremph1 is in union with Tr id, the intentional use of Tremph is in

union with Tremph0 and/or Tremph1 .

Thus also the definitions and names of the preceding four transformations can be

declared: The transformation given by Tr = Tr id ∪ Trsym transforms any framework into a

similar framework, with the same set of arguments and similar but symmetric conflicts.

With Tr id∪Tremph0 we accentuate importance of arguments, with Tr id∪Tremph1 we accentuate

importance of attacks.

Observe that Tremph0 , Tremph1 and Tremph use the same additional arguments, thus e.g.

in Tremph0 ∪ Tremph1 accentuation of some argument a and accentuation of some attack

(b, a) operate on the same additional argument ā.

Translation 3.1.22 (Ec0: cf ⇒ adm, naive ⇒ prf ). For an arbitrary argumentation framework

F we have that Tr = Tr id ∪ Trsym is a covering modular exact translation for cf ⇒ (cf |adm)

and naive ⇒ (naive|prf ).

Proof. We have that Tr (F ) is a symmetric framework (compare Remark 2.3.22), thus any

conflict-free set is also admissible. For any argumentation framework any admissible set is

also conflict-free. Furthermore any conflict-free set of arguments in Tr (F ) is also conflict-

free in F and vice versa, since neither Tr id nor Trsym add new conflicts or arguments. Thus

the first part (cf ⇒ (cf |adm)) turns out to be true. If for some argumentation framework

conflict-free and admissible sets coincide as a matter of course also maximized conflict-free

and maximized admissible sets coincide, hence Tr also proves to be a translation for

naive ⇒ (naive|prf ).

Lemma 3.1.24 (Ee: cf ⇒ adm). There is no embedding weakly exact translation for cf ⇒
adm.

Proof. Take into account the argumentation framework F = ({a, b} , {(a, b)}). We have

cf (F ) = {{a} , {b} , ∅}. Since b is attacked by a in F and with Definition 2.6.32 (Embedding)

in mind for any admissible set E with b ∈ E we need E to attack a. So either b attacks a

and the translation is not embedding or some argument different from b attacks a and the

translation is not exact.

We observe that the problematic extensions for conflict-free and for naive semantics

coincide for the argumentation framework from the proof above. Furthermore we observe

that for any semantics σ based on admissibility we have E ∈ σ(F ) only if E ∈ adm(F ).

3Lemma 3.1.45 represents a pathological and at the same time the only known impossibility result for covering
translations.
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Figure 3.1.28: Translation 3.1.27 (cf ⇒ naive) as applied to Example 2.1.6.

Corollary 3.1.25 (Ee: (cf |naive) ⇒ (stb|sem|prf |com|adm)). There is no embedding weakly
exact translation for (cf |naive)⇒ (stb|sem|prf |com|adm).

Lemma 3.1.26 (E: (cf |com|adm) ⇒ (naive|stg |stb|sem|prf )). There is no weakly exact trans-
lation for (cf |com|adm)⇒ (naive|stg |stb|sem|prf ).

This lemma is already part of [39], the idea is that for admissible, complete and conflict-
free semantics the selected extensions can be proper subsets of each other for one particular
framework whereas this is not possible for stable, preferred, naive, semi-stable and stage
semantics.

Translation 3.1.27 (Fe0: cf ⇒ (naive|stg |stb|sem|prf )). For an arbitrary argumentation frame-

work F we have that Tr = Tr id ∪ Tremph0 is an embedding modular faithful translation for

cf ⇒ (naive|stg |stb|sem|prf ).

Proof. For an arbitrary E ∈ cf (F ) we take into account the set E′ = E ∪ {ā | a ∈ AF \ E}.
Now E′ is conflict-free and for any argument a ∈ AF either a or ā is a member of E′. By

definition of Tremph0 we have E′+ = ATr (F ). Thus E′ is a stable and therefor also naive,

stage, semi-stable and preferred extension.

For σ ∈ {naive, stg , stb, sem, prf } we observe that by the embedding property for any

E′ ∈ σ(Tr (F )) and E = E′ ∩ AF , immediately E ∈ cf (F ). Furthermore by maximality

of σ for any a ∈ AF and any E′ ∈ σ(Tr (F )) we have either a ∈ E′ or ā ∈ E′. Thus

from E′1, E
′
2 ∈ σ(Tr (F )) with E′1 ∩ AF = E′2 ∩ AF it follows that already E′1 = E′2, implying

|σ(Tr (F ))| = |cf (F )|.

Remark 3.1.29. Observe that despites superficial similarity the task of translating adm ⇒
prf is not quite as simple as translating cf ⇒ naive. By combining other translations

anyhow we will present the embedding modular faithful Translation 3.1.85 for adm ⇒ prf

in Subsection 3.1.6.

Translation 3.1.30 (Ee0: adm ⇒ com,naive ⇒ stg,prf ⇒ sem). For an arbitrary argumentation

framework F we have that Tr = Tr id ∪ Tremph0 ∪ Tremph is an embedding modular exact

translation for adm ⇒ (com|adm), naive ⇒ (naive|stg) and prf ⇒ (sem|prf ).

Proof. Observe that by definition Tr equals Tr1 from [39]. A detailed proof of adm ⇒
(com|adm) and prf ⇒ (sem|prf ) is to be found there. We are left with the apparently similar

task of showing that Tr is an exact translation for naive ⇒ (naive|stg). In other words for

any argumentation framework F we have 1. naive(F ) = naive(Tr (F )) and 2. naive(Tr (F )) =

stg(Tr (F )). We hereby specify the set of additional arguments Ā = {ā | a ∈ AF }.
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Figure 3.1.31: Translation 3.1.30 (adm ⇒ com, prf ⇒ sem, naive ⇒ stg) as applied to
Example 2.1.6.

1. Since neither Tr id nor Tremph0 ∪ Tremph add additional attacks between the original

arguments and any new argument ā ∈ Ā is self-conflicting by definition (Tremph) we

have that any E ⊆ ATr (F ) is conflict-free in F if and only if it is conflict-free in Tr (F ).

Thus immediately naive(F ) = naive(Tr (F )).

2. As pointed out in Lemma 2.3.12 any stage extension is also a naive extension. If

E ∈ naive(Tr (F )) then E+
Tr (F ) = E+

F ∪ {ā | a ∈ E}. Assuming there exists some conflict-

free E′ such that E+
Tr (F ) ⊆ E′+Tr (F ) we receive E ⊆ E′ since any ā with a ∈ E is attacked

only by a and ā. Thus with maximality of naive extensions immediately E′ = E and

therefor also naive(Tr (F )) ⊆ stg(Tr (F )).

Remark 3.1.32. Apparently as far as Tremph0 is concerned for any argumentation framework

F = (A,R) with a ∈ A the attack (ā, a) is not necessary for Translation 3.1.27 and parts

of Translation 3.1.30. But omitting this attack does neither simplify any proof nor would

such a translation provide stronger translational properties. We therefor abstain from

splitting Tremph0 into two variations with the benefit of keeping the number of introduced

transformations a bit lower.

3.1.3 Stage Semantics

As we have seen in Translation 3.1.22 translating conflict-freeness into admissibility is

fairly easy, as is naive semantics into preferred semantics. Surprisingly for stg ⇒ sem the

task turns out to be much more difficult. In the following we present various results in

respect of translations from stage semantics.

Lemma 3.1.33 (Fe: (stg |sem)⇒ prf , (stg |sem|prf )⇒ (stb|com|adm)).

• There is no efficient weakly faithful translation for (stg |sem)⇒ prf unless ΣP2 = NP.

• There is no efficient weakly faithful translation for (stg |sem|prf )⇒ (stb|com|adm) unless
ΣP2 = NP.

These results are taken from [39] and proofs are to be found there. Both proofs are based
on complexities of the various semantics, the first proof makes use of credulous, the second
of skeptical acceptance.
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We will present the general impossibility of modular exact translations for stg ⇒ sem

with Lemma 3.1.38. The reason for this impossibility is already utilized in the following

(partial) modular exact Translation 3.1.34 for stg ⇒ sem. We restrict the argumentation

frameworks of interest such that all self-attacking arguments are attacked by all arguments

in their respective range. Observe that the chosen subclass of argumentation frameworks

is maximal with regard to modular exact intertranslatability.

Translation 3.1.34 ((Ec0): stg ⇒ sem). We investigate any argumentation framework F =

(A,R), where from a ∈ A with (a, a) ∈ R and (a, b) ∈ R for some b it follows that also

(b, a) ∈ R.4 For frameworks of this kind the transformation

Tr = Tr id ∪ Trsym ∪ Tremph0 ∪ Tremph1 ∪ Tremph

is a covering modular exact translation for stg ⇒ (stg |sem).

Proof. Observe that this transformation is similar to Tr2 from [39]. We already know that

Tr id ∪ Trsym is an exact translation for naive ⇒ (naive|prf ). Conflict-freeness is not altered

by Tremph0 ∪ Tremph1 ∪ Tremph, as a consequence and in connection with Lemmata 2.3.11

and 2.3.12 (sem ⊆ prf ,stg ⊆ naive) focus has to be put on range of possible extensions.

This said, apparently as far as Tr (F ) is concerned, due to Trsym stage and semi-stable

extensions coincide, thus what remains to show is that for the frameworks of interest we

have E ∈ stg(F ) if and only if E ∈ stg(Tr (F )).

=⇒: Postulating E ∈ stg(F ) we take a look at E+
Tr (F ). We get

E+
Tr (F ) = E+

F ∪
{
ā | a ∈ E+

F

}
∪
{
a | a�F E

}
Assuming there is some E′ ∈ cf (Tr (F )) with E+

Tr (F ) ⊆ E′+Tr (F ) clearly we also need

{
ā | a ∈ E+

F

}
=
{
ā | ā ∈ E+

Tr (F )

}
⊆
{
ā | ā ∈ E′+Tr (F )

}
=
{
ā | a ∈ E′+F

}
But then since E is a stage extension in F above subset relations become equality

relations and E′ is another (or the same) stage extension in Tr (F ).

⇐=: For E ∈ stg(Tr (F )) we observe that also E ⊆ AF , furthermore E ∈ cf (F ) and even

E ∈ naive(F ). For a contradiction we assume E 6∈ stg(F ). Then there is some E′ ∈ stg(F )

such that E+
F ( E′+F . We have a look at A0 = E+

Tr (F ) \ E′+Tr (F ) Since elements of type

ā ∈ E+
Tr (F ) are predetermined as

{
ā | a ∈ E+

F

}
we have that A0 consists of elements from

AF only. For the very same reason we need ∅ 6= A0, otherwise also E+
Tr (F ) ( E′+Tr (F ).

Now for any a0 ∈ A0 with a0 6�Tr (F ) a0 on the one hand we have that a0 must be in

conflict with E′ (in F and Tr (F )), otherwise E′ 6∈ naive(F ). On the other hand if a0 is in

conflict with E′ due to Trsym also E′�Tr (F ) a0. Thus it follows that a0 is self-attacking,

in symbols a0 �Tr (F ) a0. But then with E �Tr (F ) a0, due to the very nature of the

argumentation frameworks of interest, already E �F a0, contradicting E+
F ( E′+F .

4Compare Translation 3.1.42 for a prototype of frameworks that do not satisfy this condition.
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ā b̄ c̄ d̄ ē

Figure 3.1.35: Translation 3.1.34 (stg ⇒ sem) as applied to Example 2.1.6

When looking at the previous proof it occurs that the used translation might not work

for general argumentation frameworks just for the possible existence of non-attacked by

others but attacking and self-attacking arguments. As it turns out this is a first limitation

of modular translations.

Lemma 3.1.36 (Ee: stg ⇒ sem). There is no embedding weakly exact translation for stg ⇒
sem.

Proof. This lemma is already to be found in [39], but the proof touches characteristics of ex-

act translations stg ⇒ sem we will soon enough be referring to. Consider the argumentation

framework F = ({a, b, c} , {(a, b), (b, c), (c, c)}). Now stg(F ) = {{a} , {b}}. For any embedding

weakly exact translation Tr we observe that if stg(F ) ⊆ sem(Tr (F )) firstly (a, b) ∈ RTr (F ) and

therefor secondly b has to defend itself against a, in other words also (b, a) ∈ RTr (F ).

We observe that in the previous proof as far as semi-stable semantics was concerned we

did make use only of the admissibility property. Thus the very same proof immediately also

applies to any semantics (on the right side) relying on admissibility.

Corollary 3.1.37 (Ee: stg ⇒ σ). There is no embedding weakly exact translation for stg ⇒
(stb|sem|prf |com|adm).

Lemma 3.1.38 (E0: stg ⇒ sem). There is no modular weakly exact translation for stg ⇒ sem.

Recall that modularity resolves to locality with respect to the argumentation frameworks

(∅, ∅) ({a1}, ∅) ({a1}, {(a1, a1)}) ({a1, a2}, {(a1, a2)})

Proof. For a contradiction we assume that there exists some modular weakly exact with

remainder set S translation Tr : stg ⇒ sem. Then by definition of modularity (Defini-

tion 2.6.19) and considering the singular framework ({a} , ∅) we obtain that for any argu-

mentation framework F and any a ∈ AF also a ∈ ATr (F ). Due to weak exactness furthermore

stg(F ) ⊆ sem(Tr (F )) ⊆ stg(F ) ∪ S.

We now consider the frameworks F1 = ({a, b} , {(a, b)}), F2 = ({b, c} , {(c, b), (c, c)}) and

F = F1 ∪ F2. Due to modularity Tr (F ) = Tr (F1) ∪ Tr (F2). Furthermore stg(F1) = {{a}},
stg(F2) = {{b}} and stg(F ) = {{a}}. Due to monotonicity b can not be self-attacking in

Tr (F ).
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ā b̄ c̄ d̄ ē

Figure 3.1.41: Translation 3.1.40 (stg ⇒ sem) as applied to Example 2.1.6.

Since {b} ∈ sem(Tr (F2)) we have that {b} is defending itself against all attacks in Tr (F2).

Due to subset isomorphism and modularity the same holds for {b} in Tr (F1). We conclude

admissibility of {b} in Tr (F ). This implies some bidirectional conflict between a and b in

Tr (F1) and thus the same for a and b as well as b and c in Tr (F ).

With the previous results and due to modularity and exactness we have {a} , {b} ∈
adm(Tr (F )), {a, b, c} ⊆ {b}+Tr (F ) and c 6∈ {a}+Tr (F ). Thus there has to be some S ∈ S such that

{b}+Tr (F ) ( S+
Tr (F ). But then due to modularity already {b}+Tr (F2) ( S+

Tr (F2).

Remark 3.1.39 (Fe0: stg ⇒ sem). For the previous proof we put some more light into problems

regarding translations for stg ⇒ sem. We refer to [39] for a modular embedding faithful

translation Tr5 : stg ⇒ sem. In the following we present two workarounds for exact

translations.

Translation 3.1.40 (Ec2: stg ⇒ sem). With respect to L = {({a, b} , {(b, b)})} we present a

2-component finitely local transformation Tr ′:

a b a b

The transformation Tr = Tr id ∪ Tremph0 ∪ Tremph1 ∪ Tremph ∪ Tr ′ is a covering 2-component

finitely local exact translation for stg ⇒ sem.

Proof. Upon inspection this transformation proves to be identical to Tr2 from [39], thus

a detailed proof is to be found there. Basically with this transformation we resolve the

problem presented in Lemma 3.1.38 by putting self-attacking arguments into the range of

all arguments. Since with Tremph1 anyway attacks and therefor range are emphasized this

tactic appears to work out.

Translation 3.1.42 (Ec1: stg ⇒ sem). With respect to L = {({a, b, c} , {(a, b), (c, b), (c, c)})} we

present a strictly local transformation Tr ′:

a b c a c

The transformation Tr = Tr id ∪ Tremph0 ∪ Tremph1 ∪ Tremph ∪ Tr ′ is a covering strictly local

exact translation for stg ⇒ sem.
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Figure 3.1.43: Translation 3.1.42 (stg ⇒ sem) as applied to two slightly different argumen-
tation frameworks.

Proof. The proof for Translation 3.1.34 applies mostly. Only this time any self-attacking

argument c from F becomes attacked by all arguments a attacking any b for which c� b.

So as far as the last few sentences of above proof are concerned we are on the safe side.

What remains to show is that Tr ′ does not destroy extensions in another way. Firstly

prf (Tr (F )) is still the same for any argumentation framework F since Tr ′ produces attacks

only on self-attacking arguments.

Secondly we think about F to be the argumentation framework from the definition of

Tr ′, F ∈ L and F to be a subframework of some F ′ to be translated, F ⊆ F ′. Apparently

whether a or b is member of some extension is independent from the attack (a, c) since the

range of F ′ is reproduced with Tremph0 ◦ Tremph1 ◦ Tremph with arguments of the form Ā.

3.1.4 Stable Semantics

For the semantics we have introduced, stable semantics stands out, as for general frame-

works it is possible that no extension exists at all. This implies that only weakly exact

respectively weakly faithful translations will be possible for stb ⇒ σ in general.

Lemma 3.1.44 (F: stb ⇒ σ). There is no faithful translation for stb ⇒ σ where σ is non-empty
for all argumentation frameworks F (σ(F ) 6= ∅).

For translations σ ⇒ stb on the other hand we have to deal with the need of relating

connected components of argumentation frameworks. Thus in general there will be no

covering weakly exact translation σ ⇒ stb. Furthermore all other semantics permit the

empty set to be an extension for non-empty argumentation frameworks where ∅ is a stable

extension only for F = (∅, ∅).

Lemma 3.1.45 (Ec: σ ⇒ stb). There is no covering weakly exact translation for σ ⇒ stb with
σ ∈ {cf ,naive, stg , sem, prf , com, adm, grd}.

Proof. Take into account the argumentation framework F = ({a} , {(a, a)}). Assuming

Tr : σ ⇒ stb is a covering translation then ∅ ∈ stb(Tr (F )). But this can only be the case for

Tr (F ) = (∅, ∅) and thus Tr can not fulfill the covering property.

Corollary 3.1.46 (E7: σ ⇒ stb). We take into account that any monotone translation has to
cover all arguments. Thus there is no monotone weakly exact translation for σ ⇒ stb.
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a b c d

Figure 3.1.48: Translation 3.1.47 (naive ⇒ stb) as applied to Example 2.1.6.

a b c d e τ

Figure 3.1.50: Translation 3.1.49 (naive ⇒ stb) as applied to Example 2.1.6.

Translation 3.1.47 (Ee: naive ⇒ stb). For an arbitrary argumentation framework F = (A,R)

take into account the transformation Tr (F ) = (A′, R′) with

A′ = A \ {a | (a, a) ∈ R} R′ = {(a, b), (b, a) | a, b ∈ A′, (a, b) ∈ R}

then Tr forms an efficient exact translation for naive ⇒ stb.

Proof. Firstly we observe that naive(Tr (F )) = naive(F ). Since any a ∈ ATr (F ) is self-defending

and not self-attacking immediately also stb(Tr (F )) = naive(Tr (F )).

Translation 3.1.49 (Fc0: naive ⇒ stb). With respect to L = {({a} , {(a, a)})} take into account

the modular self-attack-removing transformation Tr ′:

a a τ

We claim that the transformation Tr = Tr id ∪ Trsym ∪ Tr ′ is a covering modular faithful

translation for naive ⇒ stb.

Proof. We observe that if there is a stable extension E ∈ stb(Tr (F )) we have τ ∈ E and

furthermore E \ {τ} ∈ stb(Tr (F ) \ τ+
Tr (F )). Now the proof for Translation 3.1.47 applies.

Translation 3.1.51 (Fe0: naive ⇒ stb). With respect to L = {({a, b} , {(a, b)}) , ({a} , {(a, a)})}
we define a modular parallel stabilizing transformation Tr ′:

a b

b′

a b

a′

a a

a′

τ

We claim that Tr = Tr id ∪ Tr ′ is an embedding modular faithful translation for naive ⇒ stb.

Proof. We observe that for an arbitrary argumentation framework F = (A,R) the restriction

of the translated framework to new arguments F̄ = Tr (F )|ATr (F )\AF
is isomorphic to the by

Translation 3.1.49 (hereby referenced as Tr0 ) translated framework.

F̄ ∼= Tr0 (F )
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Figure 3.1.52: Translation 3.1.51 (naive ⇒ stb) as applied to Example 2.1.6.

a b c d e

τ

Figure 3.1.55: Translation 3.1.54 (stb ⇒ (stg |sem)) as applied to Example 2.1.6

Furthermore there are no attacks from A to AF̄ in Tr (F ), thus any possibly stable extension

of Tr (F ) is extending some stable extension of F̄ . Now for a′ ∈ AF̄ (with (a, a) 6∈ R) we

observe that a′ defends a against all attacks, τ attacks all self-attacking arguments and

thus Tr is indeed an embedding modular faithful translation for naive ⇒ stb.

Transformation 3.1.53 (Stabilizing by Range). With respect to L = {({a} , ∅)} we define a

modular transformation Trstb0 with the aim of stabilizing by range:

a a τ

Translation 3.1.54 (Ee0: stb ⇒ σ, Range). For an arbitrary argumentation framework F we

have that the transformation Tr with

Tr = Tr id ∪ Trstb0

is an embedding modular weakly exact translation for stb ⇒ (stg |stb|sem) with remainder

set {τ}.

Proof. This transformation proves to be equal to Tr3 from [39]. A detailed proof for the

claimed qualities can be found there. Basically the requirements are accomplished by

creating an artificial stable extension {τ}. Since possibly existing stable extensions survive

with Lemma 2.3.14 the desired property is fulfilled. In contrast with [39] we allow the

empty argumentation framework and thus additionally need to consider F0 = (∅, ∅). Now

Tr (F0) = F0 and the claimed qualities hold.

Transformation 3.1.56 (Stabilizing by Admissibility). With the aim of stabilizing by ad-

missibility and with respect to L = {({a, b} , ∅), ({a} , ∅)} we define the 2-component finitely

local transformation Trstb1 :
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Figure 3.1.58: Translation 3.1.57 (stb ⇒ (sem|prf |com|adm)) as applied to Example 2.1.6.

a ā a a b ā b

Translation 3.1.57 ((Ee2): stb ⇒ σ, Admissibility). For any non-empty argumentation

framework F 6= (∅, ∅) we have that the transformation Tr with

Tr = Tr id ∪ Tremph0 ∪ Tremph1 ∪ Tremph ∪ Trstb1

is an embedding 2-component finitely local weakly exact translation with remainder set ∅
for stb ⇒ (stb|adm).

Proof. This transformation happens to be equal to Tr4 from [39]. A detailed proof can be

found there. Basically the intention of this translation is that any argument from Ā attacks

all original arguments, with Tremph0 and Tremph1 any original argument is defended by

some extension E if and only if E+
F = AF .

Corollary 3.1.59 ((Ee2 ): stb ⇒ (sem|prf |com)). The previous translation applies also to trans-
lating stb ⇒ (sem|prf |com).

Proof. This follows immediately from set inclusion properties discussed in Chapter 2.3,

namely

stb ⊆ sem ⊆ prf ⊆ com ⊆ adm.

In the following we will show that for general argumentation frameworks there is no

weakly exact translation for stb ⇒ adm. We will conclude implications and follow up with a

weakly faithful translation for stb ⇒ (stg |stb|sem|prf |com|adm).

Lemma 3.1.60 (E: σ ⇒ (cf |adm)). For any argumentation framework F and any semantics
σ with possibly but not necessarily ∅ ∈ σ(F ) there is no weakly exact translation σ ⇒
(cf |adm). This especially applies to semantics σ ∈ {naive, stg , stb, sem, prf , com, grd}.

Proof. This result is touched in [39], we as few as broaden the consequences. Any conflict-

free or admissible semantics involves the empty set as an extension. So if ∅ 6∈ σ(F ) we have

to include ∅ in the remainder sets. On the other hand for the cases where ∅ ∈ σ(F ) for

weakly exact translations we can not include ∅ in the remainder sets.
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Lemma 3.1.61 (F: σ ⇒ (cf |adm)). There is no faithful translation σ ⇒ (cf |adm) with

σ ∈ {naive, stg , stb, sem, prf , com, grd} .

Proof. We observe that for any argumentation framework ∅ ∈ (cf |adm)(F ), yet there are

argumentation frameworks F ′ such that ∅ 6∈ σ(F ′).

Lemma 3.1.62 (E: stb ⇒ com). For possibly empty argumentation frameworks there is no
weakly exact translation stb ⇒ com.

Proof. Observe that for the empty argumentation framework F0 = (∅, ∅) we have the empty

set as a stable extension stb(F0) = {∅}. Thus the empty set can not be a member of the

remainder sets.

Now consider the argumentation framework F2 = ({a, b} , {(a, b), (b, a)}). We have stb(F2) =

{{a} , {b}} and thus ∅ 6∈ stb(F2). Assuming for a contradiction that there exists some weakly

exact translation Tr for stb ⇒ com then it follows that ∅ 6∈ com(Tr (F2)). If the empty set

is not a complete extension however it follows that the grounded extension is not empty

either. The grounded extension in turn is a subset of every complete extension and therefor

there is some argument a0 such that for any E ∈ com(Tr (F2)) we have a0 ∈ E. Since we

need stb(F2) ⊆ com(Tr (F2)) it follows that Tr can not be weakly exact.

Considering the simple symmetric argumentation framework F2 as introduced in the

previous proof, with stable, semi-stable, preferred, stage and naive semantics σ(F ) =

{{a} , {b}} it becomes clear that the very same proof for possibly empty argumentation

frameworks and weakly exact translations stb ⇒ com can be applied also to these semantics.

In this context if σ 6= stb we have σ(F ) 6= ∅ for any argumentation framework, but it still

remains to be a computationally hard question whether there is some E ∈ σ(F ) such that

E 6= ∅.

Corollary 3.1.63 (E: (naive|stg |sem|prf )⇒ com). There is no weakly exact translation Tr for
(naive|stg |sem|prf )⇒ com.

Lemma 3.1.64 (F: (naive|stg |stb|sem|prf ) ⇒ com). There is no faithful translation Tr for
(naive|stg |stb|sem|prf )⇒ com.

Proof. Take into account the argumentation framework F = ({a, b} , {(a, b), (b, a)}). Obviously

we have σ(F ) = {{a} , {b}}. Thus we need {E1, E2} = com(Tr (F )) with {a} = A ∩ E1 and

{b} = A ∩ E2. Due to Corollary 2.3.95 there has to be some E ∈ com(Tr (F )) such that

E ⊆ E1 ∩ E2 and therefor ∅ = A ∩ E, a contradiction to com(Tr (F )) = {E1, E2}.

In Translation 3.1.57 we excluded empty argumentation frameworks, for if and only if

F = (∅, ∅) then stb(F ) = {∅}. Thus we can not use the empty set as a remainder set for

any translation stb ⇒ σ and possibly empty argumentation frameworks. What follows is a

workaround making use of faithful intertranslatability (Definition 2.6.9).

5The grounded extension is also a complete extension and can be defined as the intersection of all complete
extensions.
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Transformation 3.1.65 (Faithful Stabilizing). With respect to L = {L0, L1} with

L0 = (∅, ∅) L1 = ({a} , ∅)

we define a modular transformation Trstb2 , where Trstb2 (L0) = ({τ̄} , ∅), with the aim of

stabilizing by range and admissibility:

a a

τ

τ̄

ā

Translation 3.1.66 (F e0 : stb ⇒ σ). For an arbitrary argumentation framework F we have

that the transformation Tr with

Tr = Tr id ∪ Tremph0 ∪ Tremph1 ∪ Tremph ∪ Trstb2

is an embedding modular weakly faithful translation for stb ⇒ (stg |stb|sem|prf |com|adm) with

remainder sets {τ} and ∅.

Proof. As a starter we consider the empty argumentation framework F0 = (∅, ∅). It appears

that Tr (F0) = ({τ̄} , ∅), thus the translation fulfills the desired properties for F0. For non-

empty argumentation frameworks also the transformed framework is non-empty due to

Tr id, thus for the rest of this proof we consider only non-empty argumentation frameworks.

Now observe that τ is attacking any from τ different argument. Thus {τ} is a stable

extension in Tr (F ) and immediately

E ∈ stb(F ) ⇐⇒ E ∪ {τ̄} ∈ stb(Tr (F )) for E 6= {τ}

Of course any stable extension is also admissible, what remains to show is that for any

E ∈ adm(Tr (F )) with E 6= ∅ already E ∈ stb(Tr (F )).

In the following we try to think about some non-empty admissible set E ⊆ Tr (F ) different

from {τ}. Since τ is attacked only by τ̄ we observe that τ̄ needs to be a member of E. Since

τ̄ is attacked by all ā for a ∈ AF , all ā need to be attacked in return.

So far we have {τ, τ̄} ∪ {ā | a ∈ AF } ⊆ E+
Tr (F ). But then also AF ⊆ E+

Tr (F ) since Ā reflects

the range of arguments from AF due to Tremph0 , Tremph1 and Tremph. So obviously ATr (F ) =

E+
Tr (F ) and thus E is a stable extension in Tr (F ) and E ∩AF is a stable extension in F .

Lemma 3.1.68 (E6: stb ⇒ (prf |com|adm)). There is no 1-component local weakly exact
translation for stb ⇒ σ with σ ∈ {prf , com, adm}.

Proof. Take into account the argumentation framework F = ({a, b} , {(b, b)}). Now for any

1-component local translation Tr by definition we can split the act of translating into

translating of two distinct argumentation frameworks Fa = ({a} , ∅) and Fb = ({b} , {(b, b)}).
Obviously F does not have a stable extension and therefor we expect Tr (F ) not to have any

σ-extension.
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a b c d e

ā b̄ c̄ d̄ ē

τ τ̄

Figure 3.1.67: Translation 3.1.66 (stb ⇒ σ) as applied to Example 2.1.6.

a b c d e

ā b̄ c̄ d̄ ē

τ

Figure 3.1.70: Translation 3.1.69 (stb ⇒ prf ) as applied to Example 2.1.6.

We have {a} ∈ stb(Fa) and thus {a} ∈ adm(Tr (Fa)). Furthermore a can not be member

of any remainder set. By definition of 1-component locality a can be attacked in Tr (F ) by

some argument x only if a is already attacked by x in Tr (Fa). Thus {a} is admissible also

in Tr (F ) yielding a contradiction.

The question arises whether for possibly empty argumentation framework there is a

weakly exact translation from stable to preferred semantics. We respond to this question

with an actual translation.

Translation 3.1.69 (Ee2: stb ⇒ prf ). For an arbitrary argumentation framework F we have

that the transformation Tr with

Tr = Tr id ∪ Tremph0 ∪ Tremph1 ∪ Tremph ∪ Trstb0 ∪ Trstb1

is an embedding 2-component local weakly exact translation for stb ⇒ prf with remainder

set {τ}.

Proof. When looking at prf (Tr (F )) we observe that {τ} ∈ prf (Tr (F )). Consider some pre-

ferred extension E ∈ prf (Tr (F )) with E 6= {τ} then, since E attacks τ , the proof for

Translation 3.1.57 applies.
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3.1.5 Complete Semantics

Prior results were mostly very straightforward. In the following we will present a translation

which is not that simple in motivation, yet manages to translate complete semantics

faithfully to stage, stable, semi-stable and preferred semantics. We observe that since

com(F ) 6= ∅ for any argumentation framework F it suffices to show applicability for stable

and preferred semantics.

Transformation 3.1.71 (Parallelism). With respect to L = {({a, b} , {(a, b)}), ({a} , {(a, a)})}
we define a modular parallelizing transformation Trpar:

a b

b′

a b

a′

a a

a′

Translation 3.1.72 (Fe0: com ⇒ (stg |stb|sem|prf )). For an arbitrary argumentation frame-

work F we have that the transformation Tr with

Tr = Tr id ∪ Trpar

is an embedding modular faithful translation for com ⇒ (stg |stb|sem|prf ).

Remark 3.1.73. This translation serves similar purpose as the modular faithful embedding

Translation Tr7 from [39], however it is more simple in definition and additionally translates

com ⇒ prf .

Proof. We take an argumentation framework F as given and investigate Tr (F ). For empty

argumentation frameworks the assumption proves right, thus further on we focus on

non-empty frameworks. Observe that for any conflict-free set E′ ⊆ ATr (F ), E = E′ ∩AF we

have that E′ attacks a′ in Tr (F ) if and only if E attacks a in F and therefor E′ defends some

argument a (and a′) in Tr (F ) if and only if E defends a in F .

• E ∈ com(F ) =⇒ E ∪ {a′ | E 6� a} = E′ ∈ stb(Tr (F )): There are no attacks between any

arguments of the form a′ and thus E′ is conflict-free. For a ∈ E we have a′ ∈ E′ and

thus
{
a, a′ | a ∈ E+

F

}
⊆ E′+Tr (F ). Any argument a′ such that a ∈ AF \E+

F is not attacked by

E and thus member of E′. Due to definition of completeness any argument a ∈ AF \E+
F

is attacked by some b ∈ AF \E+
F , b� a and thus b′� a. It follows that E′+Tr (F ) = ATr (F )

and thus E′ is a stable extension of Tr (F ).

• E′ ∈ prf (Tr (F )) =⇒ E′ ∩ AF = E ∈ com(F ): Due to the embedding property E is

conflict-free in F since it is conflict-free in Tr (F ). Furthermore by construction the

relationship between E and E′ is unique. Since a ∈ E is defended by E′ in Tr (F ) if

and only if it is defended by E in F we conclude admissibility and with maximality of

the preferred extension E′ also the identity E = FF (E) and thus completeness of E.

We close this proof with a reference to the subset relations of semantics as discussed in

Section 2.3 (stb ⊆ sem ⊆ prf ) and Lemma 2.3.14 (existence of a stable extension), implying

that proposed properties hold for Tr .
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a b c d e

a′ b′ c′ d′ e′

Figure 3.1.74: Translation 3.1.72 (com ⇒ σ) as applied to Example 2.1.6.

3.1.6 Concatenations

To spare time and energy concatenation of translations proves to be a useful tool. Intuitively

with Tr := Tr2 ◦ Tr1 for any argumentation framework F we refer to Tr (F ) = Tr2 (Tr1 (F )).

If translation Tr1 happens to be exact for σ0 ⇒ σ1 and Tr2 happens to be exact for σ1 ⇒ σ2

then obviously also Tr turns out to be exact for σ0 ⇒ σ1. Transitiveness for other attributes

however turns out to be not that reliable.

Definition 3.1.75 (Concatenation). For arbitrary domains D0, D1, D2 and arbitrary map-

pings f1 : D0 → D1 and f2 : D1 → D2 the concatenation of f1 and f2, f = f1 ◦ f2 is defined

by

f : D0 → D2, f(d) = f2(f1(d)) for all d ∈ D0.

Definition 3.1.76 (Transitivity). For arbitrary mappings f1, f2 ∈ F an attribute α evaluating

any f ∈ F is called transitive if from α(f1) and α(f2) it follows that also α(f2 ◦ f1).

Lemma 3.1.77. For any argumentation framework and any translation the attributes of
being exact, weakly exact, faithful, modular, monotone, finitely local, efficient, embedding
and covering are transitive.

Remark 3.1.78. Except for efficiency these proofs are very straightforward and therefor left

as an exercise to the interested reader. As far as efficiency is concerned we only hint that

the idea is to compute any data from f1 needed for f2 newly every time it is needed.

Example 3.1.79. Consider the modular weakly exact Translation 3.1.54 as Tr1 : stb ⇒ stg

and a hypothetical strictly local faithful translation Tr2 : stg ⇒ σ with respect to L . We

assume

(a, b) ∈ RTr2 (L) for L = ({a, b, c} , {(a, c), (b, c)})

We investigate the argumentation framework F = ({a, b} , ∅) and the strictly local transfor-

mation Tr (F ) = (A′, R′) with:

Tr = Tr2 ◦ Tr1

Now (a, b) ∈ R′ and thus although both transformations, Tr1 and Tr2 are strictly local there

might be no finite k such that Tr is k-component local.
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We assume Tr2 to be introducing a new argument ā for each argument a and for any

argumentation framework F we assume:

E ∈ stg(F ) ⇐⇒ (E ∪ {ā | a ∈ AF \ E}) ∈ σ(Tr2 (F ))

Now with predictability (Definition 2.6.2) Tr can not be weakly exact any more since Tr2

translates remainder set {τ} into a proper class of sets of arguments consisting mostly of

arguments of the form Ā.

Lemma 3.1.80. In general the attributes of being weakly faithful, strictly local, local with
diameter or k-component local are not transitive.

Remark 3.1.81. Example 3.1.79 points out what kind of problems occur. We observe

that for 1-component local translations transitivity depends on appearance of framework-

independent arguments in the translation.

Lemma 3.1.82. If for some translations Tr1 and Tr2 for any distinct argumentation frame-
works F1 and F2 (AF1

∩AF2
= ∅) we have

ATr1 (F1) ∩ATr1 (F2) = ∅ and ATr2 (F1) ∩ATr2 (F2) = ∅

then the attributes of being 1-component local, strictly local and local with finite diameter
are transitive, respectively hold for Tr = Tr1 ◦ Tr2 if they hold for Tr1 and Tr2 separately.

Lemma 3.1.83. If for some translations Tr1 , Tr2 we have Tr1 is faithful and Tr2 is weakly
faithful, then Tr2 ◦ Tr1 is weakly faithful.

Proof. We take into account some argumentation framework F , Tr1 (F ) = F1 and Tr2 (F1) =

F2. Furthermore Tr1 is a faithful translation for σ ⇒ σ1 and Tr2 is a weakly faithful

translation for σ1 ⇒ σ2 with remainder sets S. We receive:

σ1(F1) = AF1 ∩ (σ2(F2) \ S) σ(F ) = AF ∩ σ1(F1)

Apparently Tr = Tr2 ◦ Tr1 is a weakly faithful translation for σ ⇒ σ2.

Corollary 3.1.84. We present the following translations without attaching proofs, for above
Lemmata and referenced translations immediately imply the result.

Translation 3.1.85 (Fe0: adm ⇒ (stg |stb|sem|prf )). By referring to Translation 3.1.30 as

Tradm,com and to Translation 3.1.72 as Trcom,σ the transformation Tr given by

Tr = Trcom,σ ◦ Tradm,com

is an embedding modular faithful translation for adm ⇒ (stg |stb|sem|prf ).

Remark 3.1.86. Observe that in [39] with Tr6 a strictly local embedding faithful translation

for adm ⇒ (stg |stb|sem) is introduced.
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Translation 3.1.87 (F e0 : com ⇒ adm). Referring to Translation 3.1.72 as Trcom,stb and to

Translation 3.1.66 as Tr stb,adm the transformation Tr given by

Tr = Tr stb,adm ◦ Trcom,stb

is an embedding modular weakly faithful translation for com ⇒ adm.

Translation 3.1.88 (Ec0: cf ⇒ com,naive ⇒ sem). Referring to Translation 3.1.22 as Trcf ,adm

and to Translation 3.1.30 as Tradm,com the transformation Tr given by

Tr = Tradm,com ◦ Trcf ,adm

is a covering modular exact translation for cf ⇒ com and naive ⇒ sem.

Translation 3.1.89 (F e0 : naive ⇒ (com|adm)). Referring to Translation 3.1.51 as Trnaive,stb

and to Translation 3.1.66 as Tr stb,adm the transformation given by

Tr = Tr stb,adm ◦ Trnaive,stb

serves as an embedding modular weakly faithful translation for naive ⇒ (com|adm). Observe

that for a concrete application, arguments have to be renamed before concatenation. This

is due to both translations referring to some argument τ in different context.

3.2 Advanced Relations between Conditional Semantics

As presented in Definition 2.3.24 we intuitively partition the introduced semantics into

unconditional and conditional semantics, the later covering naive, stage, semi-stable and

preferred semantics. In this section we focus on relations between conditional semantics.

Before presenting impossibility results, we recall already known characteristics. Naive

and stage semantics focus on conflict-free sets of arguments, while semi-stable and

preferred semantics require admissible sets. Naive and preferred semantics maximize

extensions, while stage and semi-stable semantics maximize the range of extensions.

Table 3.2.1 summarizes relations between conditional semantics. We start this section

with the assumption of the following results:

• Lemma 3.1.33: impossibility of efficient faithful translations for (stg |sem)⇒ prf ,

• Translation 3.1.22: covering modular exact for naive ⇒ prf ,

• Translation 3.1.30: embedding modular exact for prf ⇒ sem and naive ⇒ stg,

• Translation 3.1.88: covering modular exact for naive ⇒ sem,

• Subsection 3.1.3 conquers the task of translating stg ⇒ sem,

• Translation Tr5 from [39]: embedding modular faithful for stg ⇒ sem,

• Lemmata 3.1.24, 3.1.36: impossibility of embedding exact translations (naive|stg) ⇒
(sem|prf ).

66



3.2 Advanced Relations between Conditional Semantics

⇒ naive stg sem prf

naive

Ee0: 3.1.12 Ee0: 3.1.30 Ec0: 3.1.88
Fe0: 3.2.2

Ec0: 3.1.22
Fe0: 3.2.2

Ee: 3.1.25 Ee: 3.1.25

stg

Ee0: 3.1.12 Ec1: 3.1.42
Fe0: 3.1.39
(Ec0: 3.1.34)

Fe6: 3.4.5
Ec6: 3.4.20

F: 3.2.4 E0: 3.1.38
Ee: 3.1.36

Fe: 3.1.33
Ee: 3.1.37

sem

Fe6: 3.4.5
(Fe2: 3.2.27)

Ee0: 3.1.12 Ee6: 3.4.17

F: 3.2.4 E: 3.2.6
F4: 3.2.24

Fe: 3.1.33

prf

Fe6: 3.4.5
(Fe2: 3.2.27)

Ee0: 3.1.30 Ee0: 3.1.12

F: 3.2.4 E: 3.2.8
F4: 3.2.24

Table 3.2.1: A summary of results regarding intertranslatability between conditional se-
mantics with references inside this thesis.

As shown in Lemma 3.1.24 there is no embedding exact translation for naive ⇒ prf . We

attach this impossibility with an embedding modular faithful translation for naive ⇒ prf .

Translation 3.2.2 (Fe0: cf ⇒ (com|adm),naive ⇒ (sem|prf )). With respect to L = {L1, L2}
where L1 = ({a, b} , {(a, b)}) and L2 = ({a} , ∅) , inspired by Trpar we define a parallel inverting

transformation Tr inv:

a b

b′

a b

a′

a a

a′ā

ā′

We claim that the transformation Tr = Tr id ∪ Tr inv is an embedding modular faithful

translation for cf ⇒ (com|adm) and naive ⇒ (sem|prf ).

Proof. Consider some argumentation framework F = (A,R). As a result of Tr (L2) we observe

that for any E ∈ adm(Tr (F )) and any a ∈ A we have a ∈ E if and only if a′ ∈ E. Furthermore,

as a result of Tr (L1) we observe that for any a ∈ A we have a defending a′ and vice versa. It

follows that E ⊆ A is conflict-free in F if and only if E ∪ {a′ | a ∈ E} is admissible in Tr (F ),

immediately the same holds for naive(F ) and prf (Tr (F )).

Now for cf ⇒ com observe that a (respectively a′) is defended by E in Tr (F ) if and only if a′

(respectively a) is a member of E. Thus any admissible set in Tr (F ) is already complete. For

naive ⇒ sem observe that for any E,E′ ∈ prf (Tr (F )) with E 6= E′ (due to Tr (L2)) immediately

also E+
Tr (F ) 6= E′+Tr (F ). Thus any preferred extension in Tr (F ) is already a semi-stable

extension.
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a b c d e

a′ b′ c′ d′ e′

Figure 3.2.3: Translation 3.2.2 as applied to Example 2.1.6.

3.2.1 Conflict-Free Inaccessibilities

In this subsection we will present two counter-examples regarding translations approaching

conflict-free, naive and stage semantics and their implications. It appears that conflict-free

and naive semantics are very limited in their ability of describing extensions even for

faithful approaches, stage semantics reveals difficulties for exact extensional matchings.

Theorem 3.2.4 (F: (stg |stb|sem|prf |com|adm)⇒ (cf |naive)). There is no weakly faithful trans-
lation for σ ⇒ σ′ where σ ∈ {stg , stb, sem, prf , com, adm} and σ′ ∈ {cf ,naive}.

Proof. For a contradiction we assume that such a translation Tr exists. Consider the

argumentation framework F = (A,R) as shown in Figure 3.2.5 with

A = {a1, a2, a3, b1, b2, b3}
R = {(a1, a2), (a2, a1), (a2, a3), (a3, a2), (a1, a3), (a3, a1)}

∪ {(a1, b1), (a2, b2), (a3, b3)}

Now observe that for

E1 = {a1, b2, b3} E2 = {b1, a2, b3} E3 = {b1, b2, a3}
B = {b1, b2, b3}

we have that E1, E2, E3 are σ-extensions while B 6∈ σ(F ). So for any Ei there has to be

some E′i ∈ σ′(Tr (F )) such that Ei ⊆ E′i. Thus immediately6 B ∈ cf (Tr (F )), since pairwise

conflict-freeness of the bi is granted by E′1, E
′
2 and E′3. For any conflict-free set B in any

argumentation framework F ′ there has to be some extension B′ ∈ naive(F ′) such that

B ⊆ B′, yielding a contradiction also for naive semantics.

What follows is a presentation of the impossibility of exact translations (sem|prf )⇒ stg.

The related counter example is already part of [39], nonetheless it has its origins in the

work for this thesis.

6Recall that we require the remainder sets to form a proper joint set S and thus disallow arguments of original
frameworks to be members of remainder sets.
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a1

b1

a2

b2
a3

b3

Figure 3.2.5: Argumentation framework serving as a counter example for Theorem 3.2.4.

a3

a2 a1

c3

c1c2

b1 b2

b3

Figure 3.2.7: The counter example used for exact translations in Theorem 3.2.6.

Theorem 3.2.6 (E: sem ⇒ stg). There is no weakly exact translation for sem ⇒ stg.

Proof. Take into account the argumentation framework F = (A,R) from Figure 3.2.7:

A = {a1, a2, a3, b1, b2, b3, c1, c2, c3} R = {(a1, a2), (a2, a1), (a2, a3), (a3, a3)}
∪ {(b1, b2), (b2, b1), (b2, b3), (b3, b3)}
∪ {(a1, c3), (b1, c3), (c1, c2), (c2, c3), (c3, c1)}

Consider the sets E1 = {a2, b2}, E2 = {a1, b2, c1} and E3 = {a2, b1, c1}. We have

sem(F ) = {E1, E2, E3} .

We assume for a contradiction that there is a (weakly) exact translation Tr : sem ⇒ stg.

According to our assumption and regardless of whether looking at a weakly exact or at

an exact translation, {E1, E2, E3} ⊆ stg(Tr (F )). Since c1 ∈ E2 there is no conflict between

c1 and b2 in Tr (F ). Since c1 ∈ E3 there is no conflict between c1 and a2 in Tr (F ). It follows

that the set B = {a2, b2, c1} is conflict-free in Tr (F ) and not only E1 ( B but since c1 can

not be in the range of E1 in Tr (F ) even E1
+
Tr (F ) ( B+

Tr (F ) yielding a contradiction with our

assumption.

We observe that as far as the counter example from the preceding proof is concerned

the crucial part was the difference between conflict-freeness and admissibility. Thus a

generalization for a wider field of semantics can easily be obtained.
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Corollary 3.2.8 (E: (sem|prf |com|adm) ⇒ (cf |naive|stg)). There is no weakly exact transla-
tion for σ ⇒ (cf |naive|stg) where σ ∈ {sem, prf , com, adm}.

Proof. We take a look at the argumentation framework F from the previous proof again.

Due to subset relations of semantics incorporating admissibility the sets E1, E2 and E3 are

extensions also for σ. The set B = {a2, b2, c1} is not admissible in F and therefor neither a

complete nor a preferred extension. Consequently B happens to contradict the possibility

of weakly exact translations σ ⇒ (cf |naive|stg) with just the same arguments.

Corollary 3.2.9 (E: (sem|prf )⇒ stb). There is no weakly exact translation (sem|prf )⇒ stb.

Proof. Considering Translation 3.1.54 (weakly exact for stb ⇒ stg) as Tr0 we take into

account the transformation built by concatenating with the hypothetical weakly exact

translation Tr for (sem|prf )⇒ stb. Now Tr0 ◦ Tr forms a previously shown to be impossible

weakly exact translation for (sem|prf )⇒ stg.

3.2.2 Empowering Finite Diameter Locality

Thanks to the previous counter-examples we are left with investigating possible faithful

translations (sem|prf ) ⇒ stg. We start by presenting two example frameworks indicating

that modular faithful translations are not possible and follow up with upgrading this

example to showing that already local with finite diameter translations are not possible.

Example 3.2.12 (F0: sem ⇒ stg). Investigate the circular frameworks O3 and O4 also shown

in Figure 3.2.10:

O3 = ({a1, a2, a3}, {(a1, a2), (a2, a3), (a3, a1)})
O4 = ({a1, a2, a3, a4}, {(a1, a2), (a2, a3), (a3, a4), (a4, a1)})

Assume there is a modular faithful translation Tr : sem ⇒ stg. Then stg(Tr (O3)) = {E}
and stg(Tr (O4)) = {E1, E2} with E ∩ AO3 = ∅, E1 ∩ AO4 = {a1, a3} and E2 ∩ AO4 = {a2, a4}.
Now the idea is that for predictable translations E ∩ Tr (({ai, aj} , {(ai, aj)})) must be strictly

isomorphic for all attacks (ai, aj) ∈ O3. But then we can move E in an isomorphic extending

way to Tr (O4) and receive an unwanted extension.

The intuition behind this example can be generalized to local with finite diameter trans-

lations. We recall that if a translation is local with respect to L for any argumentation

framework F we have

Tr (F ) =
⋃

L∈L ,L∼=F ′⊆F
Tr (F ′).

If a translation is local with finite diameter d, it is local with respect to L and for each

L ∈ L we have that dia(L) ≤ d.
For the definition of diameter we refer to Definition 2.1.28, for the corresponding defi-

nitions and implications of locality we refer to Definitions 2.6.20, 2.6.23 and 2.6.25 and

Lemma 2.6.24.

We also recall Definition 2.1.18 (Isomorphism). Between isomorphic frameworks F ∼= F ′

the isomorphism ϕ respectively ϕF,F ′ is defined by ϕF,F ′(F ) = F ′.
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Figure 3.2.10: Circles of Example 3.2.12
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Figure 3.2.11: Circles with indication of modular translation from Example 3.2.12

71



3 Contributions

On

an

a1

a2

a3

a4
a5

a6

a7

a8

a9

Figure 3.2.13: A circular argumentation framework On.

Definition 3.2.14 (Circular and Linear Frameworks). We define the standardized circular

framework of size n, On as shown in Figure 3.2.13 and the standardized linear framework

of length n, In by

On = ({a1, a2 . . . an} , {(a1, a2), (a2, a3) . . . (an − 1, an), (an, a1)})
In = ({a1, a2 . . . an} , {(a1, a2), (a2, a3) . . . (an − 1, an)})

Example 3.2.15. For any natural number n we have sem(On) = prf (On). For odd numbers

n = 2k + 1 we have |sem(O2k+1)| = 1 and sem(O2k+1) = prf (O2k+1) = {∅}, for even numbers

n = 2k we have |sem(O2k)| = 2 and

sem(O2k) = prf (O2k) = {{a1, a3 . . . a2k−1} , {a2, a4 . . . a2k}} .

Example 3.2.16. Observe that for any natural number n we have dia(On) =
⌊
n
2

⌋
. In other

words for even respectively odd n

dia(O2k) = k = dia(O2k+1).

Lemma 3.2.17. For any natural number n we look at some 1-component argumentation
framework F 6= On being a true subframework of On: F ⊆ On, dia(F ) <∞ and F 6= On. Then
F is isomorphic to Im for some natural number m ≤ n. Furthermore for any m ≤ n we have
Im ⊆ In.

F ⊆ On, F 6= On, dia(F ) <∞ =⇒ ∃(m ≤ n) : F ∼= Im ⊆ In
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Theorem 3.2.18 (F4: (sem|prf ) ⇒ stg). There is no local with finite diameter faithful trans-
lation for (sem|prf )⇒ stg.

Remark 3.2.19. We will show this theorem for argumentation frameworks On and left hand

semantics sem only. Of course if a translation is impossible for specialized frameworks it is

just as much impossible for general frameworks. As touched in Example 3.2.15 concerning

frameworks of the form On to show the impossibility of translations prf ⇒ σ it suffices to

show the same result for sem ⇒ σ.

Furthermore by Lemma 3.2.17 and predictability (Definition 2.6.2) for Tr being local with

respect to L and n > 2d+ 1 without loss of generality we can use L = {Id′ |d′ ≤ d+ 1} and

even L = {Id+1}. Thus we will show that there is no local with respect to {Id+1} faithful

translation sem ⇒ stg for argumentation frameworks of the form On.

Proof. Assume for a contradiction that such a translation Tr happens to exist. Then for

any natural number n > 2d+ 1 we have |sem(On)| = |stg(Tr (On))| and

sem(On) = {E ∩AOn
| E ∈ stg(Tr (On))} .

We now restrict the realm of observation to frameworks On and O2n and a transformation

Tr which claims to be a local with respect to L = {Id+1} faithful translation for sem ⇒ stg

where n = 2d+ 3. Thus we have the following:

Tr (On) =
⋃

Id+1
∼=F ′⊆On

Tr (F ′) Tr (O2n) =
⋃

Id+1
∼=F ′⊆O2n

Tr (F ′)

Since n is odd, as mentioned in Example 3.2.15, there has to be a unique extension

E ∈ stg(Tr (On)). We recall the proper definition of translations (Remark 2.6.4) with whom

every argument a ∈ ATr (F )\AF can be defined by some aF
′

i with F ′ ⊆ F . Due to predictability

and the very restricted frameworks we are working with, for each F ′ ∼= Id+1 with F ′ ⊆ On or

F ′ ⊆ O2n this implies one unique isomorphism

ϕTr (F ′) : Tr (Id+1)→ Tr (F ′).

We observe that for any two argumentation frameworks F, F ′ ⊆ On with F ∼= F ′ ∼= Id+1 for

any a ∈ ATr (Id+1) we have:

ϕTr (F )(a) ∈ (ATr (F ) ∩ E) ⇐⇒ ϕTr (F ′)(a) ∈ (ATr (F ′) ∩ E)

Otherwise due to symmetry reasons the extension E ∈ stg(Tr (On)) would not be unique in

Tr (On).

We now construct a stage extension E′ for O2n such that E′ ∩ AO2n
= ∅. For this we

observe Id+1 ⊆ On and obviously Id+1
∼= Id+1 and thus we get:

E =
{
ϕTr (F )(a) | Id+1

∼= F ⊆ On, a ∈ (E ∩ATr (Id+1))
}

E′ =
{
ϕTr (F )(a) | Id+1

∼= F ⊆ O2n, a ∈ (E ∩ATr (Id+1))
}
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Obviously E′ ∩AO2n
= ∅ and due to locality of Tr and uniqueness of E we have that E′ is

also conflict-free in Tr (O2n). We take a look at the range of E′ now. Since E is the only stage

extension of Tr (On) and due to locality of Tr for each b ∈ ATr (O2n) \E′+Tr (O2n) we retrieve that

• b is self-attacking in Tr (O2n) and

• each c attacking b is also self-attacking in Tr (O2n).

In Tr (O2n) there might be stage extensions different from E′, but for sure E′ ∈ stg(Tr (O2n)),

a contradiction.

Remark 3.2.20. Observe that as far as this proof is concerned for minimality reasons we

could also look at O2d+2 and O2d+3. It does not make any substantial difference but we

believe that On and O2n are more easy to read.

Remark 3.2.21. Observe that the gap between impossibility and intertranslatability results

for sem ⇒ stg is tight. If we want to enable the correct stage extensions for O2n we could for

instance take Translation 3.1.54 (stb ⇒ stg), with the problem of ∅ = stg(Tr (On)), as used

in the proof of Theorem 3.2.24. We could also take Translation 3.1.72 (com ⇒ stg) where

the problem of an unwanted stage extension for Tr (O2n) occurs, as used in the proof of

Theorem 3.2.18.

If we try to augment Theorem 3.2.18 to cover also weakly faithful translations, especially

the last step of the preceding proof turns out to be harder. For weakly faithful translations

we have that stg(Tr (On)) is not necessarily unique and thus conditions change. Anyhow

most of the used steps are still adaptable. We present some results for local and weakly

faithful translations first.

Lemma 3.2.22. If a translation Tr is weakly faithful with remainder sets S ′ (with possibly
|S ′| = ∞) and finitely local with respect to L then there is some S ⊆ S ′ with |S| < ∞ such
that Tr is weakly faithful with remainder sets S.

Proof. Take into account the set E∪ of all arguments possibly about to appear in remainder

sets:

E∪ =
⋃
S ′

Due to predictability (Definition 2.6.2) and finite locality (Definition 2.6.25) we have that all

arguments of interest in E∪ are member already of the from L translated argumentation

frameworks Tr (L) for L ∈ L . We therefor shrink E∪ to E∩ with:

E∩ = E∪ ∩
⋃
L∈L

ATr (L)

Now since L is finite and we only deal with finite argumentation frameworks we have

|E∩| <∞. As touched before only remainder sets E ⊆ E∩ are matter of interest, since any

s ∈ E∪ \ E∩ can not be reached with a predictable finitely local translation. It follows that

Tr is weakly faithful with finitely many remainder sets S ∈ S where S = {E ∈ S ′ | E ⊆ E∩}.
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We merely underline the important facts of this lemma with an additional corollary.

Corollary 3.2.23. For any finitely local with respect to L weakly faithful translation Tr

with remainder sets S without loss of generality we have that S is finite and each E ∈ S is
finite and for each E ∈ S we have:

E ⊆
⋃
L∈L

(ATr (L) \AL)

Theorem 3.2.24 (F4: (sem|prf )⇒ stg ). There is no local with finite diameter weakly faithful
translation for (sem|prf )⇒ stg.

Remark 3.2.25. For this proof we follow for great parts the proof of Theorem 3.2.18,

knowledge of prior proofs is assumed in the following.

Proof. Again we can restrict the proof to argumentation frameworks On and O2n and a

weakly faithful with remainder sets S translation Tr : sem ⇒ stg which is local with respect

to L = Id+1 with n = 2d+ 3. Observe that due to the structure of L for the cases of interest

this translation reduces to a finitely local translation and thus Lemma 3.2.22 (respectively

Corollary 3.2.23) can be applied.

This time there is one unique E ∈ stg(Tr (On)) such that E 6∈ S. Again we can construct

E′ for Tr (O2n):

E′ =
{
ϕTr (F )(a) | Id+1

∼= F ⊆ O2n, a ∈ E ∩ATr (Id+1)

}
Now due to uniqueness of E in Tr (On) and locality of Tr we have that E′ is conflict-free

in Tr (O2n). As pointed out in Corollary 3.2.23, E′ can not be a remainder set without

being a remainder set in Tr (On) (and even in Tr (Id+1)). Furthermore E ∩ On = ∅ and per

definition of E′ we have E′ ∩ O2n = ∅. Now for Tr being the translation of desire we need

E′ 6∈ stg(Tr (O2n)). Thus there is some T ′ ∈ stg(Tr (O2n)) such that E′+Tr (O2n) ( T ′+Tr (O2n).

Assuming that T ′ is a remainder set, as pointed out in Corollary 3.2.23 we have T ′ ⊆
ATr (Id+1), then T ′ is conflict-free also in Tr (On) and E+

Tr (On) ( T ′+Tr (On), a contradiction with

E being a stage extension of Tr (On).

It follows that T ′ is no remainder set, thus (T ′ ∩ AO2n
) ∈ sem(O2n), T ′ is one of the two

“normal” stage extensions of Tr (O2n) and in relation with sem(O2n). We now construct Td+1

and Ed+1, restrictions of the respective range to Id+1:

Td+1 = T ′+Tr (O2n) ∩ATr (Id+1) Ed+1 = E′+Tr (O2n) ∩ATr (Id+1) = E+
Tr (On) ∩ATr (Id+1)

Now for symmetry reasons, locality and predictability we have

Ed+1 ( Td+1.

By construction of n = 2d+ 3 there is some T ∈ cf (Tr (On)) with T ∩ATr (Id+1) = T ′ ∩ATr (Id+1)

and Td+1 ⊆ T+
Tr (On). Observe that we are not yet finished for we might not be able to

construct a stage extension for Tr (On) out of T . Without loss of generality we have a1 ∈ T ,
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Figure 3.2.26: Illustration of a local with diameter 3 translation on circular framework On.

thus T is not allowed to be a stage extension of Tr (On). But then there has to be some

stage extension R ∈ stg(Tr (On)) with Td+1 ⊆ T+
Tr (On) ( R+

Tr (On), immediately

Ed+1
+
Tr (On) ( R+

Tr (On).

Since R has to be in the remainder sets and as pointed out in Corollary 3.2.23 and for

symmetry reasons E+
Tr (On) ( R+

Tr (On), thus E is no stage extension of Tr (On)

Let us take a look at semantics which allow non-admissible extensions, i.e. conflict-

free, naive and stage semantics. As pointed out in Theorem 3.2.4 conflict-free and naive

semantics are highly inaccessible. In contrast to this result stage semantics appears to be

more flexible in translational terms. As far as translations (sem|prf )⇒ stg are concerned

this subsection however makes an interesting point.

Previously presented translations intuitively operated and were motivated in a local way.

This subsection, culminating in Theorem 3.2.24, essentially shows that this approach will

not work for (sem|prf )⇒ stg. In other words finite diameter weakly faithful translations are

not possible; investigation of a limited number of connected argumentation frameworks

will not result in a general translation.

With this we leave the domain of impossibility results for translations (sem|prf )⇒ stg and

head over to more speculative relations and enlightenments for possibility results. The

following Subsection gives a partial finitely local translation for circles and sheds light on

implications of possible translations sem ⇒ stg.
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3.2.3 Further Relations and Partial Translations

In this subsection we will give hints on implications of and possible ways for translating

(sem|prf )⇒ stg. As a first result we point out that an inefficient embedding 1-component

local faithful translation happens to exist (Translation 3.4.5). In fact the gap between

above impossibility results and this translation seems to be as small as the gap between

1-component locality and finite-diameter locality. In the following however we will observe

that the technique used above to show impossibility of local with finite diameter translations

will not work for k-component finite locality since the frameworks On can be transformed

correctly with a 2-component local translation. Then we will reflect on similarities and

differences of semi-stable and stage extensions. To end this section we will take a short

look at implications of existence of an efficient translation for (sem|prf )⇒ stg.

Example 3.2.27 ((Fe2): (sem|prf ) ⇒ stg). For argumentation frameworks F with F ∼= On for

some n there is a 2-component finitely local faithful translation for (sem|prf ) ⇒ stg. We

present a graphical representation in Figure 3.2.28.

We take into account the set L = {L1, L2} and the transformation Tr ′ with:

L1 = ({a, b} , {(a, b)}), Tr ′(L1) = ({aa, ba, ab, b} , {(aa, ba), (ab, b)}),
L2 = ({a, b, c} , {(b, c)}), Tr ′(L2) = ({ba, ca} , {(ba, ca)}).

For argumentation frameworks F with F ∼= On for some natural number n we have that

Tr = Tr id ∪ Tr ′

is a 2-component finitely local faithful translation for (sem|prf )⇒ stg.

In fact Tr creates copies Fa of the original framework F for each single argument a. The

only difference between these copies and the original framework is that for any (b, a) ∈ RF
we add (ba, a) and not (ba, aa). Thus aa is not attacked at all in Fa.

By looking at Figure 3.2.28 it becomes obvious that for circular frameworks Tr (On) adds

a stable extension. If n is odd then any argument a ∈ AOn
can be attacked by the grounded

extension of (On)a. If n is even the grounded extension of (On)a defends a as far as (On)a is

concerned, thus we can choose between the two stable extensions of On.

Example 3.2.29 (Differences of Semi-Stable and Stage Extensions). As already touched at

the end of Section 2.3 semi-stable and stage semantics can be completely different for some

argumentation frameworks. In Figure 3.2.30 we again present the graphical representation

of F = (A,R) with:

A = {a, b, c, d} , R = {(a, b), (b, a), (d, d), (d, b), (b, c), (c, c)}

We have prf (F ) = sem(F ) = {{a}} while stg(F ) = {{b}}. Thus there are argumentation

frameworks such that ∅ 6∈ (sem(F ) ∪ stg(F )) but still for any two extensions E1 ∈ sem(F ),

E2 ∈ stg(F ) we have E1∩E2 = ∅, contradicting the somewhat intuitive (yet wrong) hypothesis

of any semi-stable extension being extended by some stage extension.
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Figure 3.2.28: A transformation showing that odd length cycles can be identified by a
finitely local faithful transformation for (sem|prf ) ⇒ stg as mentioned in
Example 3.2.27.
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a

b

cd

sem(F ) = {{a}}

stg(F ) = {{b}}

Figure 3.2.30: An illustration of differences between semi-stable and stage semantics.

We recall that as far as the definitions of semi-stable (Definition 2.2.36) and stage

(Definition 2.2.35) semantics are concerned the only difference is the replacement of

admissibility in semi-stable extensions by conflict-freeness in stage extensions. Both

semantics choose those extensions which are maximal with respect to range. We recall

that admissible sets by definition are conflict-free and that there provably exists an

efficient exact translation cf ⇒ adm (Translation 3.1.22) and an efficient exact translation

stg ⇒ sem (Translation 3.1.42) as well as an inefficient faithful translation sem ⇒ stg

(Translation 3.4.5). We have proven that there is no exact (Theorem 3.2.6) and no local

with finite diameter weakly faithful (Theorem 3.2.24) translation sem ⇒ stg. We know that

semi-stable and stage extensions coincide for symmetric frameworks (Remark 2.3.22) as

well as acyclic frameworks (Remark 2.3.21). As pointed out in Example 3.2.29 there are

frameworks F such that ∅ 6∈ (sem(F ) ∪ stg(F )) but for any E1 ∈ sem(F ), E2 ∈ stg(F ) we have

E1 ∩ E2 = ∅.
Nonetheless one might still wonder whether some efficient faithful translation Tr : sem ⇒

stg exists and if for some argumentation framework F this possibly existing translation

results in sem(Tr (F )) = stg(Tr (F )). For the remaining of this section we focus on impli-

cations of this potential equality. As a first step we observe that for any efficient weakly

faithful translation Tr : (sem|prf )⇒ stg we have stb(Tr (F )) 6= stg(Tr (F )) for infinitely many

efficiently not distinguishable argumentation frameworks F unless ΣP2 = NP (compare

Lemma 3.1.33).

Lemma 3.2.31 (stg = sem). If for some argumentation framework F we have stg(F ) =

sem(F ) then for any E ∈ sem(F ) and any a 6∈ E+ we have (a, a) ∈ RF .

Proof. Consider F with stg(F ) = sem(F ), E ∈ sem(F ) and a 6∈ E+. We have that E does not

attack a since a is not in the range of E. Then a does not attack E, otherwise E would not

be admissible. Since E+ ( E+ ∪ {a} we need E ∪ {a} to possess some conflict. Now E is

conflict-free, E is not attacked by a and E is not attacking a and therefor a itself needs to

possess a conflict and thus we need a to be self-attacking.
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Figure 3.2.34: An illustration of the transformation for removal of self-attacks for semi-
stable semantics as used in the proof of Corollary 3.2.33.

We consider argumentation frameworks which do not contain any self-attacks. Applied

to these frameworks the previous lemma tells us something about stable semantics too.

Corollary 3.2.32 (stg = sem and stb). Consider some self-attack-free argumentation frame-
work F = (A,R) (there is no a ∈ A such that (a, a) ∈ R). If semi-stable and stage seman-
tics coincide (sem(F ) = stg(F )) then also stable semantics produces the same extensions
(stb(F ) = sem(F ) = stg(F )).

Proof. Observe that stg(F ) 6= {∅} as soon as at least one argument is not self-attacking.

Thus with Lemma 3.2.31 we have that for any E ∈ sem(F ) it follows that E+ = AF .

We recall that as of Lemma 3.1.33 there is no efficient weakly faithful translation sem ⇒
stb unless ΣP2 = NP. Now if we take into account weakly faithful translations sem ⇒ stg and

suppose that Tr (F ) equalizes semi-stable and stage extensions then Lemma 3.2.31 tells us

one more thing.

Corollary 3.2.33 (stg = sem for Tr (F )). Assuming ΣP2 6= NP and for some efficient weakly
faithful translation Tr : sem ⇒ stg we have sem(Tr (F )) = stg(Tr (F )) for any argumentation
framework F then Tr (F ) is in general not self-attack-free, in other words there is some
a ∈ ATr (F ) with (a, a) ∈ RTr (F ). This especially affects argumentation frameworks F which
are self-attack-free before translating.

Proof. Any argumentation framework F containing self-attacking arguments is as far as

semi-stable semantics is concerned not distinguishable from some out of F efficiently

constructible argumentation framework F ′. For arguments a ∈ AF with (a, a) ∈ RF we

simply need to remove (a, a) and include three new arguments a1, a2 and a3 and five

new attacks (a, a1), (a2, a1), (a1, a3), (a3, a) and (a3, a2). A graphical representation of this

transformation is shown in Figure 3.2.34. Now a (and a2) are in conflict with a1 which is the

only argument defending a (and a2) against a3, thus there is no admissible set containing

any of a and a2. In similar ways there is no admissible set containing a1 or a3. It follows

that F and F ′ have the same admissible and thus semi-stable extensions.

Although the complexity tables are similar, an efficient translation (sem|prf )⇒ stg has

not been found yet. One might wonder if there is a reasoning problem one can think of that

makes such a translation impossible, or if there is a very tricky way to efficiently faithfully

translate frameworks. However the results of this chapter give a glimpse of what surely is

impossible, namely exact and local with finite diameter faithful translations.
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3.3 Efficient Moves on the Grounded Extension

As far as grounded semantics is concerned we have to deal with some very specific problems.

First of all for any argumentation framework there is exactly one grounded extension. Thus

for all of the other semantics σ introduced in this work there will be no useful translation

σ ⇒ grd . In this chapter we put focus on translations grd ⇒ σ. For a warming up we

begin with impossibility results from [39] and append an impossibility result for efficient

translations grd ⇒ naive.

Dvořák and Woltran presented an embedding efficient faithful translation (Tr8 in [39]) for

grd ⇒ (stg |stb|sem|prf |com|grd). Interestingly enough this translation is not local, anyhow

by renumbering the arguments of the translated framework it is possible to acquire

monotonicity and thus locality, which we will do with Translation 3.3.5. Furthermore we

will present Translation 3.3.11, a new embedding modular faithful translation for grd ⇒ sem.

We will show impossibility of various efficient translations grd ⇒ stg, impossibility of faithful

translations σ ⇒ cf (Lemma 3.3.4) and impossibility of finite-diameter local weakly faithful

translations grd ⇒ σ (Theorem 3.3.18). We refer to Section 3.4 for inefficient translations

grd ⇒ σ.

Lemma 3.3.1 (F: σ ⇒ grd ). There is no weakly faithful translation Tr : σ ⇒ grd for any
semantics σ introduced in this work with σ 6= grd . As already mentioned above and in [39]
this is due to singularity of grounded extensions in general.

Lemma 3.3.2 (Ee: grd ⇒ (stb|com|adm)). There is no efficient weakly exact translation for
grd ⇒ (stb|com|adm) unless L = P. See [39] for a proof based on the fact that Vergrd is P-hard
while Verσ is in L.

Observe that although we could extend the following impossibility to translations σ ⇒
(cf |naive) with σ ∈ {stg , stb, sem, prf , com, adm, grd} easily, we only present it for grd ⇒ naive.

Anyhow Lemma 3.3.4 states that there is no weakly faithful translation σ ⇒ cf for σ 6= cf

and Theorem 3.2.4 shows that there is no weakly faithful translation σ′ ⇒ naive with

σ′ 6∈ {cf ,naive, grd}.

Lemma 3.3.3 (Fe: grd ⇒ naive). There is no efficient weakly faithful translation grd ⇒ naive

unless L = P.

Proof. This is simply due to complexity of credulous acceptance, which is in L for naive

semantics and P-complete for grounded semantics. For naive semantics any argument not

being self-attacking is in some extension. If there was a predictable efficient weakly faithful

translation grd ⇒ naive we would have access to an efficient algorithm deciding credulous

acceptance of grounded semantics.

Lemma 3.3.4 (F: σ ⇒ cf ). For σ ∈ {naive, stg , stb, sem, prf , com, adm, grd} there is no weakly
faithful translation σ ⇒ cf .

Proof. Take into account the argumentation framework F = ({a, b, c} , {(a, b), (b, c)}). We have

{a, c} ∈ σ(F ) and {c} 6∈ σ(F ). But for standard argumentation frameworks c can only be in

some conflict-free set if c is not self-conflicting. Thus any translation yields a conflict-free

extension {c}, which can not be taken care of with remainder sets.
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Figure 3.3.6: Translation 3.3.5 as applied to Example 2.1.6

In the following we present a slightly modified version of the efficient faithful translation

grd ⇒ σ from [39], enabling monotonicity by renumbering of arguments. Observe that both

translations produce isomorphic frameworks.

Translation 3.3.5 (Fe5: grd ⇒ σ). For an arbitrary argumentation framework F = (A,R)

with
⌈
|A|
2

⌉
= m, take into account the transformation Tr with Tr (F ) = (A′, R′) and:

A′ = A ∪
{
āi | a ∈ A, i ∈ {1 . . .m}

}
∪
{
ai | a ∈ A, i ∈ {1 . . .m− 1}

}
R′ = R ∪

{
(āi, bi−1) | (a, b) ∈ R with possibly a = b, i ∈ {2 . . .m}

}
∪
{

(ai, b̄i) | (a, b) ∈ R with possibly a = b, i ∈ {1 . . .m− 1}
}

∪
{

(ā1, b) | (a, b) ∈ R with possibly a = b
}

We have that Tr is an embedding monotone faithful translation for grd ⇒ σ with σ ∈
{stg , stb, sem, prf , com, grd}.

Proof. This transformation is a slightly modified version of Tr8 from [39], therefor a detailed

proof by structural induction can be derived immediately from the proof in there. Note

however that this translation is based on imitation of fixed point iteration of the character-

istic function. The single advantage of this modification is that numbering of additional

arguments is inversed as far as attacks are concerned, thus adding monotonicity to the

properties of the translation.
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Translation 3.3.7 (F e5 : grd ⇒ adm). Referring to Translation 3.3.5 as Tr and to Transla-

tion 3.1.66 as Tr stb,adm we have that Tr stb,adm ◦ Tr forms an embedding monotone weakly

faithful translation for grd ⇒ adm.

Remark 3.3.8 (Fe0, F e0 : grd ⇒ σ). Observe that by restricting Translations 3.3.5 and 3.3.7 to

a union of 1-component argumentation frameworks with maximum cardinality n (F =
⋃
i Fi,

|F | ≤ n, AFi
∩ AFj

= ∅), we can derive a modular translation. In other words, modularity

of this translation depends on intentional size of argumentation frameworks. Anyhow we

can obviously restrict this translation to 1-component subframeworks, thus receiving a

1-component local translation.

Translation 3.3.9 (Fe3,F e3 : grd ⇒ σ). We label Translation 3.3.5 (respectively Transla-

tion 3.3.7 for grd ⇒ adm) as Tr ′. For some argumentation framework F = F1 ∪ F2 . . . with

AFi
∩AFj

= ∅ for i 6= j and dia(Fi) <∞ for any i we get an embedding efficient 1-component

local (weakly for grd ⇒ adm) faithful translation grd ⇒ (stg |stb|sem|prf |com|adm) by

Tr (F ) =
⋃
i

Tr ′(Fi).

We observe that the preceding translation is the only known useful efficient translation

which appears to be not finitely local so far. One might wonder if some finitely local

translation can serve the same purpose. We can not answer this question in general but in

the following we present a modular faithful translation for grd ⇒ sem.

Transformation 3.3.10 (Emphasizing Additional Arguments). We define a modular, respec-

tively local with respect to L = {({a} , ∅)}, transformation Tremph′ emphasizing additional

arguments of the form A′:

a a′ ā

Translation 3.3.11 (Fe0: grd ⇒ sem). For an arbitrary argumentation framework F = (A,R)

we have that Tr = Tr id ∪ Trpar ∪ Tremph′ forms an embedding modular faithful translation

for grd ⇒ sem.

Proof. To validate this statement we recall that due to Translation 3.1.72 we have that

Tr0 = Tr id ∪ Trpar is an embedding modular faithful translation for com ⇒ (stb|prf ). For a

given set E ⊆ A we also recall the derived set E′ = E ∪
{
a′ | E 6�F a

}
as used in the proof of

Translation 3.1.72. Furthermore we use A′ = {a′ | a ∈ A} and Ā = {ā | a ∈ A} to denote the

additional arguments of Tr (F ).

We observe that Tremph′ does not affect preferred extensions, in other words we have:

prf (Tr (F )) = prf (Tr0 (F ))

Since Tr0 represents a faithful translation for com ⇒ (stb|prf ) also for any E ∈ prf (Tr (F ))

we have:

(A ∪A′) ⊆ E+
Tr (F )
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a′ b′ c′ d′ e′

ā b̄ c̄ d̄ ē

Figure 3.3.12: Translation 3.3.11 as applied to Example 2.1.6.

As pointed out in Lemma 2.3.11 any semi-stable extension is a preferred extension, thus

it suffices to look for complete extensions E ∈ com(F ) such that E′ is range-maximal in

Tr (AF ) or to be precise among Ā.

We look back at the definition of E′ which for any E ∈ com(F ) gives a preferred extension

of Tr (F ). We observe that ā ∈ Ā is in the range of E′ if and only if a′ ∈ A′ is a member of E′.

Furthermore any E ∈ com(F ) extends the grounded extension E0 = grd(F ). Thus any range

of any E′ ∈ prf (Tr (F )) is extended by the range of E′0.

E0 ( E =⇒ (E′)+
Tr (F ) ( (E′0)+

Tr (F )

If we are looking for efficient translations starting from the grounded extension we

are thus left with (weakly) exact translations ⇒ stg , sem, prf . We will put focus on stage

semantics first, presenting an interesting result incorporating some unique stage extension

and stable semantics followed up by impossibility of efficient exact, embedding weakly

exact and finite-diameter weakly exact translations. We will continue with impossibility of

finite diameter weakly exact translations for grd ⇒ (sem|prf |com) and finite diameter weakly

faithful translations for grd ⇒ (stg |stb|prf |com|adm). We will close this section with thoughts

about weakly exact translations grd ⇒ (sem|prf ).

Translation 3.3.13 ((Ee): stg ⇒ stb). Consider some argumentation framework F = (A,R)

with |stg(F )| = 1. The transformation Tr (F ) = (A′, R′) with

A′ = A \
{
a ∈ A | a�R a, b�R a⇒ b�R b

}
R′ = R ∩A′ ×A′

is an efficient exact translation stg ⇒ stb.

Remark 3.3.14. Observe that this translation is in general not covering and can for general

argumentation frameworks with the desired property not acquire the covering property.

This is due to the fact that F might consist of self-attacking arguments only, thus yielding

an empty stage extension for non-empty argumentation framework, while the empty set is

a stable extension for empty argumentation frameworks only.
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Proof. If F = (A,R) has one stage extension E ∈ stg(F ) only, then the only arguments not

in the range of E are self-attacking and attacked only by self-attacking arguments:

a ∈ (A \ E+) =⇒ (a� a), (b� a =⇒ b� b)

Otherwise there would have to be another stage extension E′ 6= E such that a is in the

range of E′. Observe that for argumentation frameworks with self-attacking arguments

only (a ∈ A⇒ a�R a) this yields an empty argumentation framework.

Now for any conflict-free set E′ ∈ cf (F ) we have E′ ∈ cf (Tr (F )) and furthermore E′+F =

E′+Tr (F ). The stage extension E is still unique and for the reasons explained before we have

E+
Tr (F ) = ATr (F ) and therefor a stable extension E ∈ stb(Tr (F )).

Corollary 3.3.15 (Ee: grd ⇒ stg). There is no efficient exact translation Tr taking care of
grd ⇒ stg unless L = P.

Proof. Otherwise Tr together with Translation 3.3.13 (now referred to as Tr ′) provides

us with an efficient exact translation Tr ′ ◦ Tr : grd ⇒ stb which due to Lemma 3.3.2 is

impossible unless L = P.

Lemma 3.3.16 (Ee: grd ⇒ stg). There is no embedding weakly exact translation grd ⇒ stg.

Proof. For a contradiction assume that such a translation Tr exists. Take into account the

argumentation framework F = ({a, b, c} , {(b, c), (c, b)}).
Taking a look at Tr (F ) = F ′ we observe that since Tr is an embedding transformation

a 6�F ′ c and c 6�F ′ c, in other words {a, c} ∈ cf (F ′). But then {a} 6∈ stg(F ′), a contradiction.

Besides the question whether remainder sets can be of use for efficient translations

grd ⇒ stg or not, arbitrary weakly exact translations in this case can not be handled that

easy. Practical translations, making use of remainder sets so far, consisted of exactly one

remainder set, however theoretically remainder sets provide some challenging possibilities.

In the following we examine several kinds of restricted local translations grd ⇒ σ.

Theorem 3.3.17 (E4: grd ⇒ stg). There is no local with finite diameter d weakly exact
translation grd ⇒ stg.

Proof. For a contradiction assume that such a translation Tr exists. Take into account an

argumentation framework F built by the union of a circular framework On with7 n > 2d+ 1

and a singular framework B, F = On ∪B with:

B = ({b} , ∅) On = ({a1, a2 . . . an} , {(an, a1), (a1, a2), (a2, a3) . . . (an−1, an)})

Observe that grd(F ) = {{b}}. We further observe that in Tr (F ) due to monotonicity we have

a2 6�Tr (F ) a2 and {a2, b} ∈ cf (Tr (F )). It follows that {b} 6∈ stg(Tr (F )), a contradiction.

7Compare Example 3.2.16 for the choice of n.
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We admit that this last result turns obsolete with Lemma 3.4.13 where we will be working

with monotone translations. However the previous proof is adaptable also for modified

concepts of locality, while the upcoming proof strongly relies on monotonicity.

The following Theorem encompasses also complete semantics although we have discussed

efficient weakly exact translations grd ⇒ com in Lemma 3.3.2. We have presented efficient

translations not being local already. Finite-diameter local translations not being efficient

are possible yet we do not know about any concrete.

Theorem 3.3.18 (E4: grd ⇒ (sem|prf |com)). There is no local with finite diameter d weakly
exact translation for grd ⇒ (sem|prf |com).

Proof. For a contradiction we assume that such a translation Tr happens to exist. For

grd ⇒ (prf |com) we take into account8 the argumentation frameworks F1, F2,O2n where

n = 2d and

O2n = ({a1, a2 . . . a2n} , {(a1, a2), (a2, a3) . . . (a2n−1, a2n), (a2n, a1)})
F1 = (AO2n

, RO2n
\ {(a2n, a1)})

F2 = (AO2n
, RO2n

\ {(an, an+1)})

Obviously these argumentation frameworks are strongly related, F1
∼= F2 and even E =

grd(F1) = grd(F2) = {a1, a3 . . . a2n−1}. Furthermore due to the nature of finite-diameter local

translations, the equality dia(F1) = 4d− 1 and the obvious identity O2n = F1 ∪ F2 we get

Tr (O2n) = Tr (F1) ∪ Tr (F2).

Thus with E being admissible in Tr (F1) and Tr (F2) we get E being admissible also in

Tr (O2n) and therefor E is at least subset of some preferred and complete extension of O2n.

As far as semi-stable semantics is concerned we reconsider the proof of Theorem 3.3.17

and thus consider the argumentation frameworks F0, F with:

F0 = ({b} , ∅) F = F0 ∪ O2n

Due to finite-diameter locality we get

Tr (F ) = Tr (F0) ∪ Tr (O2n)

Now we derive that E ∪ {b} is an admissible set in Tr (F ), but then due to finite-diameter

locality either there is some semi-stable extension E′ in Tr (F ) with b ∈ E′ and |E′| > 1

or there is no semi-stable extension in Tr (F ) containing b, either way contradicting the

assumption.

We observe that the previous finite-diameter proofs do not work upon faithful translations,

basically due to Remark 3.3.8. The impact of some faithful translation grd ⇒ σ does not

depend on diameter only but also on size.

8For more information on properties of O2n we refer to Definition3.2.14 and the subsequent results.
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Remark 3.3.19 (Circular and Linear Frameworks). In the proof for the following theorem we

will make use of modified versions of circular and linear frameworks from Definition 3.2.14.

We investigate the following linear and circular frameworks:

IN = ({a1, a2 . . . aN} , {(a1, a2), (a2, a3) . . . (aN−1, aN )})
Ii,j = ({ai, ai+1 . . . aj} , {(ai, ai+1), (ai+1, ai+2) . . . (aj−1, aj)})
Oi,j = ({bi, bi+1 . . . bj} , {(bi, bi+1), (bi+1, bi+2) . . . (bj−1, bj), (bj , bi)})

We observe that for Tr a local with diameter d < ∞ translation, i > d, j > i + 2d + 1,

N > j + d, due to predictability and proper definition of translations there are unique

induced structure preserving mappings

ϕIN : Tr (IN )→ Tr (Oi,j) and ϕOi,j : Tr (Oi,j)→ Tr (IN ),

with ϕIN : ak+m(j−i) 7→ bk and ϕOi,j
: bk 7→ ak+m(j−i) for i ≤ k ≤ j.9 Now ϕIN is an onto

function and ϕOi,j is the corresponding inverse. The mappings operate in a bijective way,

i.e. for E an extension of Tr (Oi,j) we get ϕIN (ϕOi,j (E)) = E, the reverse however does not

necessarily hold.

Theorem 3.3.20 (F4: grd ⇒ (stg |prf )). There is no finite-diameter local weakly faithful
translation for grd ⇒ (stg |prf ).

Proof. For a contradiction we assume that a local with finite diameter d transformation

Tr serves as weakly faithful translation for grd ⇒ σ with σ ∈ {stg , prf }. We recall that we

did restrict ourselves to finite argumentation frameworks (Remark 2.1.15) and investigate

linear and circular frameworks and induced mappings from Remark 3.3.19. We observe

that for 2d < i, i+ 2d+ 1 < j, j + 2d < N and the argumentation frameworks of interest due

to predictability and without loss of generality we can assume Tr to be local with respect

to Id+1. Furthermore we observe that IN ∩ Oi,j = (∅, ∅), and thus build F = IN ∪ Oi,j, for

which we have Tr (F ) = Tr (IN ) ∪ Tr (Oi,j).
We observe that the grounded extension is unique for any argumentation framework and

we deal with finite argumentation frameworks and thus finite translated frameworks only.

We choose the unique E = σ(Tr (F )) with E ∩AF ∈ grd(F ). We observe that Ea = E ∩ATr (IN )

and Eb = E ∩ ATr (Oi,j) serve as the respective unique extensions, related to grd(IN ) and

grd(Oi,j). Furthermore for any relevant remainder set S ∈ S we have S ⊆ ATr (Id+1) and

S ⊆ ATr (Oi,j) ∩ATr (IN ).

Now for N big enough the structure of the chosen σ-extension in Tr (IN ) will repeat itself.

Thus we can choose i, j,N such that

ϕOi,j (ϕIN (E ∩ATr (Ii−d,j+d))) = E ∩ATr (Ii−d,j+d).

We define B = ϕIN (E ∩ ATr (Ii−d,j+d)). Clearly B is conflict-free in Tr (Oi,j). For σ = prf

we observe that with E being admissible in Tr (F ) also B is admissible in Tr (F ) and thus

9Using the modulo operator we might also write ai+n and bi+(n mod (j−i)). Recall that by Remark 2.1.19 with
ϕ : (A,R)→ (A′, R′) we implicitly define a mapping also for A→ A′, R→ R′, ℘(A)→ ℘(A′) and ℘(R)→ ℘(R′).
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there has to be some preferred extension EB extending B where without loss of generality

bi ∈ EB, implying that EB is no remainder set.

For σ = stg we observe that B is not in conflict with Ea and thus we need the proper

subset relation B+ ( E+
b . We have a look at A = ϕOi,j

(Eb) and observe that firstly there can

not be any remainder set T such that A+
Tr (F ) ( T+

Tr (F ) for otherwise also Eb+Tr (Oi,j) ( T+
Tr (Oi,j).

Secondly E and A are not comparable in range, i.e. there is some a ∈ A+ such that

a 6∈ E+ and vice versa, by the relation B+ ( E+
b . We conclude that there has to be some

EA ∈ stg(Tr (F )) with A+
Tr (F ) ⊆ EA

+
Tr (F ) such that EA is not a remainder set and EA 6= E.

We recall that there are modular weakly faithful translations (stb|com|adm)⇒ prf . Con-

catenation (Tr2 ◦ Tr1 ) of some modular (Tr2 ) and some finite-diameter local (Tr1 ) transfor-

mation yields another finite-diameter local transformation.10 We can thus immediately

conclude the following result.

Corollary 3.3.21 (F4: grd ⇒ (stb|com|adm)). There is no finite-diameter local weakly faithful
translation for grd ⇒ (stb|com|adm).

We close this section with thoughts upon relations between the latest semantics and

intertranslatability. It appears that not only grd ⇒ (sem|prf ) is not possible with a finite

diameter weakly exact translation, but also any possible efficient or weakly exact translation

shows some remarkable characteristics.

Lemma 3.3.22 (grd ⇒ (sem|prf ), Weakly Exact Behavior). If Tr is a weakly exact translation
for grd ⇒ σ, σ ∈ {prf , sem} and |σ(Tr (F ))| > 1 then grd(Tr (F )) = {∅}, regardless of grd(F ).

Proof. Since σ-semantics consist of one element only, as soon as the empty set is a σ-

extension it follows that the empty set is no σ-extension: ∅ 6∈ σ(Tr (F )). We consider

{E0} = grd(Tr (F )). Since any σ-extension is a complete extension for E ∈ σ(Tr (F )) we

have E0 ⊆ E. Now remainder sets consist of arguments from ATr (F ) \ AF only. For exact

translations extensions not being remainder sets consist of arguments from AF only. It

follows that E0 = ∅.

Lemma 3.3.23 (grd ⇒ (sem|prf ), Exact Behavior). If Tr is an efficient exact translation for
grd ⇒ (sem|prf ) then for infinitely many isomorphically different argumentation frameworks
F we have grd(F ) 6= grd(Tr (F )).

Proof. Choose σ ∈ {sem, prf }. We have grd(F ) = {E0} = σ(Tr (F )). If we assume grd(F ) =

grd(Tr (F )) then, since any complete extension extends the grounded extension and any

σ-extension extends some complete extension, already com(Tr (F )) = {E0} = σ(Tr (F )). Thus

assuming L 6= P and not to be contradicting Lemma 3.3.2 for infinitely many isomorphically

different argumentation frameworks F we need grd(F ) 6= grd(Tr (F )).

So if there is an efficient weakly exact translation grd ⇒ prf or grd ⇒ sem most likely the

grounded extensions of the original and of the translated framework differ. As suggested by

Lemma 3.3.22 cutback to the empty set might be a good choice.

10Order is important here, Tr1 ◦ Tr2 does not necessarily preserve finite-diameter locality.
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Remark 3.3.24. Due to subset relations from Section 2.3 any faithful translation grd ⇒ adm

is also valid for grd ⇒ com, any faithful translation grd ⇒ com is also valid for grd ⇒ prf ,

any faithful translation grd ⇒ prf is also valid for grd ⇒ sem and any faithful translation

grd ⇒ stb is also valid for grd ⇒ (stg |sem).

3.4 Leaving Efficiency - Oracle Translations

In this last contributing section we will give inefficient translations with the aim of closing

gaps between prior results. In some cases where provably no efficient translation exists

closing of gaps seems to be the right term. In other cases we might rephrase the aim to

minimizing of gaps, e.g. where provably no finite diameter translation exists, yet we do not

know for sure if an efficient translation might still be possible.

Definition 3.4.1 (Oracle Translation). An oracle translation Tr has access to an ora-

cle which for any argumentation framework F and any semantics σ gives all extensions

E ∈ σ(F ). Therefor most likely oracle translations make use of arguments from
{
aF1 , a

F
2 . . .

}
,

which we hereby also call
{
EiF ′ | Ei ∈ σ(F ′), F ′ ⊆ F

}
, where Ei refers to extensions of sub-

frameworks of F .

In the following we will observe that monotonicity and even 1-component locality do not

appear to be a problem with respect to theoretical capability for most translations. We

point out that any connected argumentation framework provides a finite diameter, since

we restricted ourselves to finite argumentation frameworks. However the translations

presented in the following will not be finite-diameter local.

Definition 3.4.2 (Finite-Diameter Subframework). To shorten the following results in

definition, for argumentation frameworks F ,F ′ we define the finite-diameter subframework

relation:

F ′⊆dF ⇐⇒ F ′ ⊆ F , dia(F ′) <∞
F ′(dF ⇐⇒ F ′ ( F , dia(F ′) <∞

Observe that for this definition “finite” does not actually restrict the size but only the

type. To be more specific we require finite-diameter subframeworks to be subframeworks

consisting of one connected component only.

Remark 3.4.3 (Non-Interference Extended). We recall Definition 2.3.23 (Non-Interference)

and observe that if a non-interfering semantics σ has the empty set as only extension of

the empty argumentation framework, immediately any argumentation framework obtains

at least one extension. In the following we will make use of this observation, thus providing

applicability of presented translations for semantics beyond the scope of this thesis.

Definition 3.4.4 (Regularity). A conflict-free non-interfering argumentation semantics σ,

such that for F0 = (∅, ∅) we have σ(F0) = {∅} is called a regular semantics.

89



3 Contributions

Translation 3.4.5 (Fe6: σ ⇒ (stg |stb|sem|prf )). For an arbitrary argumentation framework

F = (A,R) and any regular semantics11 we define the 1-component local transformation

Tr (F ) = (A′, R′) with:

A′ = A ∪
{
F ′, EiF ′ | F ′⊆dF,EiF ′ ∈ σ(F ′)

}
R′ = R ∪

{
(E,F ′), (F ′, F ′), (F ′, a) | F ′⊆dF,E ∈ σ(F ′), a ∈ AF ′

}
admissibility

∪
{

(E, b) | F ′⊆dF,E ∈ σ(F ′), b ∈ AF ′ \ E
}

maximality

∪
{

(E1, E2) | F ′⊆dF,E1 6= E2 ∈ σ(F ′)
}

extension picking

∪
{

(E′, E<), (E′, F<) | F ′⊆dF, F<(dF ′, E′ ∈ σ(F ′), E< ∈ σ(F<)
}

monotonicty

Now Tr is an embedding 1-component local faithful translation for σ ⇒ (stg |stb|sem|prf ).

Proof. We observe that for disjunct argumentation frameworks F1, F2 with AF1
∩ AF2

= ∅,
also ATr (F1) ∩ ATr (F2) = ∅, furthermore Tr is supposed to possess a stable extension for

every translated argumentation framework. Thus without loss of generality we assume F

to consist of one connected component, dia(F ) <∞.

Now for E ∈ σ(F ) and thus E ∈ cf (F ) we take a look at E′ = E ∪ {E}. E′ is conflict-free

since E attacks only (but all) those arguments from A not being member of E. Furthermore

E attacks any E2 ∈ σ(F ), E2 6= E, any E2 ∈ σ(F ′) for F ′(dF and any F ′ for F ′⊆dF . This

implies that E′ is a stable extension of Tr (F ). By being a stable extension E′ is also a stage,

semi-stable and preferred extension of Tr (F ).

We now assume E′ to be some preferred extension of Tr (F ). Then for any E2 ∈ σ(F ′) with

F ′(dF we have that E2 is not a member of E′ since the only arguments defending E2 against

the non-empty set σ(F ) are members of σ(F ) and thus also attacking E2. Furthermore at

most one E ∈ σ(F ) is member of E′. We observe that there is no admissible set E0 in Tr (F )

such that E0∩σ(F ) = ∅ since all arguments from A are attacked by F . We can thus pick the

unique E ∈ E′ ∩ σ(F ). But then E defends all arguments a ∈ E and it follows immediately

that E′ ∩A = E ∈ σ(F ).

Example 3.4.6. Take into account the argumentation framework F = ({a, b, c} , {(b, c), (c, b)})
with complete semantics, com(F ) = {{a} , {a, b} , {a, c}}. The application of Translation 3.4.5

is illustrated in Figure 3.4.7, where F1 = ({a} , ∅) and F2 = ({b, c} , {(b, c), (c, b)}). We re-

ceive
{
a, {a}F1

, ∅F2

}
,
{
a, {a}F1

, b, {b}F2

}
and

{
a, {a}F1

, c, {c}F2

}
as stable extensions of Tr (F ).

Observe that we simplified the illustration by collecting all non-maximal finite-diameter

subframeworks F< and their extensions E< into one ignorable node. The bunch of E<, F<

thus refers to eight distinct arguments.

We observe that for Translation 3.4.5 some translated argumentation frameworks contain

the empty set as a complete extension. Besides this of course any preferred extension is

also a complete extension and since the only non-empty admissible extensions of Tr (F ) are

extending some E ∈ σ(F ) and E defends all a ∈ E in Tr (F ) the very same transformation

also gives a weakly faithful translation for σ ⇒ com.

11As far as the semantics introduced in this work are concerned this characterization of σ excludes only stable
semantics.
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a

F1

{a}F1

b

F2

∅F2
{c}F2

c

{b}F2

bunch of E<, F<

Figure 3.4.7: Illustration of Translation 3.4.5 (com ⇒ stb) as described in Example 3.4.6.

Corollary 3.4.8 (F e6 : σ ⇒ com). Translation 3.4.5 serves as an embedding 1-component
local weakly faithful translation with remainder set ∅ for σ ⇒ com where σ refers to some
regular semantics.

Corollary 3.4.9 (F e6 : σ ⇒ adm). Referring to Translation 3.4.5 as Trσ,stb and to Transla-
tion 3.1.66 as Tr stb,adm the transformation Tr given by

Tr = Tr stb,adm ◦ Trσ,stb

is an embedding 1-component local weakly faithful translation for σ ⇒ adm where σ refers
to some regular semantics.

We recall that by Lemmata 3.1.62, 3.1.63 and 3.1.64 there is no faithful or weakly exact

translation for (naive|stg |stb|sem|prf ) ⇒ com. By Lemmata 3.1.60 and 3.1.61 there is no

faithful or weakly exact translation for (naive|stg |stb|sem|prf |com)⇒ adm.

We close our inspection of (weakly) faithful translations at this point and turn over

to exact translations. We will first be visiting grd ⇒ σ and close the thesis with exact

translations for sem ⇒ prf , stg ⇒ prf and stg ⇒ stb.

We recall that by Lemmata 3.1.45 and 3.1.46 there is no covering weakly exact and no

monotone weakly exact translation for grd ⇒ stb.

Translation 3.4.10 (E: grd ⇒ stb). For an arbitrary argumentation framework the trans-

formation Tr (F ) = (grd(F ), ∅) is an exact translation for grd ⇒ stb.

Remark 3.4.11 (F e,F7: grd ⇒ naive). Lemma 3.3.3 reflects upon efficient translations

grd ⇒ naive. We extend this result to local and embedding translations. Considering the

circular framework F = ({a, b} , {(a, b), (b, a)}), we have that obviously grd(F ) = {∅}. Thus

immediately any weakly faithful translation Tr for grd ⇒ naive can not be embedding,

otherwise there would be some naive extension extending {b} in Tr (F ). In other words

any node-covering weakly faithful translation grd ⇒ naive has to add the attacks (a, a) and

(b, b). Furthermore any weakly faithful translation grd ⇒ naive can not be monotone, since

we could easily add some argument c and the attack (c, a) to F , ensuring an extension

containing b.
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We recall that by Lemma 3.3.16 there is no embedding weakly exact translation for

grd ⇒ stg.

Translation 3.4.12 (Ec: grd ⇒ (naive|stg)). For an arbitrary argumentation framework

F = (A,R) the transformation Tr (F ) = (A,R ∪ {(a, a) | a ∈ A \ grd(F )}) is a covering exact

translation for grd ⇒ (naive|stg).

Lemma 3.4.13 (E7: grd ⇒ stg ). There is no monotone weakly exact translation for grd ⇒ stg.

Proof. For a contradiction we assume that such a translation Tr happens to exist. Take

into account the argumentation frameworks F1 = (A1, R1) and F2 = (A2, R2) with

A1 = {a, b, c} A2 = {a, b, c}
R1 = {(b, c), (c, b)} R2 = {(a, b), (b, c), (c, b)}

We have that grd(F1) = {a} and grd(F2) = {a, c}. Observe that any monotone translation

needs to copy at least all the original arguments. Now clearly F1 ⊆ F2 and thus for monotone

translation Tr also Tr (F1) ⊆ Tr (F2). Since Tr is supposed to be weakly exact we need

(a, b), (a, c) ∈ RTr (F1) which immediately leads to a contradiction with Tr (F2).

We recall that by Theorem 3.3.18 there is no finite-diameter local weakly exact translation

for grd ⇒ (sem|prf |com) and by Lemma 3.3.2 there is no efficient weakly exact translation

for grd ⇒ com.

Translation 3.4.14 (Ee6: grd ⇒ (sem|prf |com)). For an arbitrary argumentation framework

F = (A,R) we take into account the transformation Tr (F ) = (A′, R′) with:

A′ = A ∪
{
F ′ | F ′⊆dF

}
R′ = R ∪

{
(F ′, F ′), (F ′, a) | F ′⊆dF, a ∈ AF ′ \ grd(F ′)

}
admissibility

∪
{

(a, F<) | F<(dF ′⊆dF, a ∈ AF ′
}

monotonicity

We claim that this transformation gives an embedding 1-component local exact translation

for grd ⇒ (sem|prf |com|grd).

Proof. We take into account that for the semantics of interest there is no difference between

computing the semantics of the union of a collection of disjunct (1-connected component)

argumentation frameworks and computing the semantics prior to building the union.

Without loss of generality we can therefor assume Tr (F ) and thus F to consist of one

connected component only. Observe that we can ignore all arguments F ′(dF since in Tr (F )

they are self-attacking and attacked by every single argument a ∈ A.

Now the argument F is attacked only by itself yet attacks any argument not being a

member of the grounded extension of F , thus eliminating the arguments AF \ grd(F ) for

any admissible extension. If ∅ = grd(F ) it follows that the only admissible set in Tr (F )

is the empty set, immediately the assumption follows. If on the other hand ∅ 6= grd(F )

then there is some a ∈ grd(F ) which is not attacked in Tr (F ). Subsequently it follows that

grd(F ) = grd(Tr (F )) and thus the semantics of interest collapse.
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a

a

b

b

b c

b c

c

c

b c

Figure 3.4.16: Illustration of Translation 3.4.12 (grd ⇒ σ) as described in Example 3.4.15.

Example 3.4.15. Investigate the argumentation framework F = ({a, b, c} , {(b, c), (c, b)}). The

illustration of an application of Translation 3.4.12 is to be found in Figure 3.4.16. For

σ ∈ {sem, prf , com} we have

grd(F ) = {{a}} = σ(Tr (F )).

In the illustration the significant arguments derived from finite-diameter subframeworks

are placed below the original framework, while insignificant arguments are placed above.

Obviously the arguments above are necessary only to ensure monotonicity.

Observe that enlargement of the original argumentation framework potentially results

in exponential growth for the translated framework. Tr (F ) consists of 9 arguments and 20

attacks. Adding of the attack (a, b) to F results in overall 13 arguments and 48 attacks in

the translated framework.

Translation 3.4.17 (Ee6: sem ⇒ prf ). We use PF ′ to denote PF ′ = prf (F ′) \ sem(F ′) for any

argumentation framework F ′ in the following.

For an arbitrary argumentation framework F = (A,R), consider the 1-component local

transformation Tr (F ) = (A′, R′) with:

A′ = A ∪
{
P iF ′ | F ′⊆dF, P ∈PF ′

}
R′ = R ∪

{
(a, P ), (P, P ), (P, b) | F ′⊆dF, P ∈PF ′ , a ∈ AF ′ \ P, b ∈ P

}
extension picking

∪
{

(a, P<) | F<(dF ′⊆dF, a ∈ AF ′ , P< ∈PF<

}
monotonicity

We claim that Tr is an embedding 1-component local exact translation for sem ⇒ prf .

Proof. As in previous translations, without loss of generality we assume dia(F ) <∞. Now

observe that any non-empty conflict-free set in Tr (F ) consists of arguments a ∈ A only.

Additional arguments of the form P ∈ PF ′ with F ′(dF are attacked by all a ∈ A, we can

thus restrict our investigation to the arguments a ∈ A ∪PF .
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a b

P1

P2

c d

P3

e

Figure 3.4.19: Illustration of Translation 3.4.17 (sem ⇒ prf ) as described in Example 3.4.18.

Now assume E to be some semi-stable extension of F . Since E \P 6= ∅ for any P ∈PF we

have that E attacks all P ∈PF in Tr (F ) and thus is a preferred extension of Tr (F ).

On the other hand we might look at some E ∈ prf (Tr (F )) and assume for a contradiction

that E 6∈ sem(F ). Then there has to be some P ∈ PF such that E ⊆ P . But now E is

attacked by the argument P in Tr (F ) and defended only by arguments a ∈ A \ P and thus

can not be admissible.

Example 3.4.18. Take into account the argumentation framework F from Example 2.1.6.

An application of Translation 3.4.17 is illustrated in Figure 3.4.19. Observe that this

example has on the whole 38 finite-diameter subframeworks, fortunately only three of them

possess differing semi-stable and preferred semantics:

• For F = ({a, b, c, d, e} , {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}) we have that P1 = {a, c}F is a

preferred but not a semi-stable extension.

• For F2 = ({b, c, d, e} , {(c, b), (c, d), (d, c), (d, e), (e, e)}) we have that P2 = {c}F2
is a preferred

but not a semi-stable extension.

• For F3 = ({c, d, e} , {(c, d), (d, c), (d, e), (e, e)}) we have that P3 = {c}F3
is a preferred but

not a semi-stable extension.

Now P1, P2 and P3 are self-attacking. Thus possible extensions of Tr (F ) consist of argu-

ments from AF only. Due to F2 and F3 being proper finite-diameter-subframeworks of F we

have that P2 and P3 are attacked by all a ∈ AF in Tr (F ). Thus the only additional argument

of significance is P1.

For Tr (F ) we have that a can be defended against P1 only by d, b can not be defended

against a, c can not be defended against P1 and d defends itself. Computing the semantics

in question thus results in sem(F ) = {{a, d}} = prf (Tr (F )).

We recall that by Lemmata 3.1.37 and 3.1.33 there is no embedding weakly faithful and

no efficient weakly exact translation for stg ⇒ prf .

Corollary 3.4.20 (Ec6: stg ⇒ prf ). Considering Translation 3.4.17 as Tr sem,prf and Transla-
tion 3.1.42 as Tr stg,sem the transformation Tr = Tr sem,prf ◦Tr stg,sem is a covering 1-component
local exact translation for stg ⇒ prf .
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a b

{b, d}

c

{a, c}

d

Figure 3.4.23: Illustration of Translation 3.4.21 (grd ⇒ σ) as described in Example 3.4.22.

Translation 3.4.21 (E: stg ⇒ stb). For an arbitrary argumentation framework F = (A,R)

we consider the transformation Tr0 (F ) = (A0, R0) with:

A0 = {a | a ∈ A, (a, a) 6∈ R} conflict-removal

R0 = {(a, b), (b, a) | a, b ∈ A0, (a, b) ∈ R} symmetry

We continue by specifying the set P = naive(Tr0 (F )) \ stg(F ) and by augmenting transfor-

mation Tr0 to the extension-enhancing Tr (F ) = (A′, R′) with:

A′ = A0 ∪P R′ = R0 ∪ {(a, P ), (P, P ) | P ∈P, a ∈ A0 \ P}

We claim that Tr is an exact translation for stg ⇒ stb.

Proof. We observe that prf (Tr (F )) and naive(F ) coincide. Furthermore stg(F ) 6= ∅ and

stg(F ) = {∅} only if (a, a) ∈ R for all a ∈ A, as a result Tr (F ) = (∅, ∅). In the following we thus

assume ∅ 6∈ stg(F ).

Now if E ∈ stg(F ) then for any P ∈ P there is some a ∈ E \ P , a � P and thus E is a

stable extension of Tr (F ). If on the other hand E is a stable extension of Tr (F ) it has to

attack all P ∈P and thus E has to be different from all P ∈P. Since E still needs to be a

naive extension of F it follows that also E ∈ stg(F ).

Example 3.4.22. Take into account the argumentation framework F with arguments a,

b, c, d and e from Example 2.1.6. An application of Translation 3.4.21 is illustrated in

Figure 3.4.23. Observe that the argument e is removed. Now E = {a, d} is the only stage

extension of F , and a stable extension of Tr (F ). Since {b, d} is attacked only by a and c,

one of a or c has to be a member of any stable extension of Tr (F ). The same holds for b

and d. Since a is in conflict with b, b is in conflict with c and c is in conflict with d, we have

that E is the only stable extension of Tr (F ).

3.5 Overview - Contributions to the Realm of Argumentation

Throughout this thesis we have presented a lot of new results, impossibilities, translations

and generalizations. We have covered insights ranging from strong (embedding modular

exact) to weak (oracle weakly faithful) translations, from strong (oracle) impossibilities to

weak (modular) impossibilities.
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Impossibilities and categorized translations are summarized in Table 3.5.1. We recall that

by Definition 3.1.14, E denotes exactness, E denotes weak exactness, F denotes faithfulness

and F denotes weak faithfulness; Ee refers to some exact embedding translation, F c refers

to some weakly faithful covering translation, Ei refers to some weakly exact translation

where the value of i is resolved by:

0 modular 4 finite-diameter local

1 strictly local 6 1-component local

2 finitely local 7 monotone

3 efficient 1-component local e efficient

Furthermore each cell in Table 3.5.1 is composed of an upper (translations) and a lower

part (impossibilities), parentheses are used to denote applicability of the respective result

only to selected argumentation frameworks.

Selected intertranslatability results are visualized also by Figures 3.5.2 till 3.5.7 where

an arrow represents directed translatability, sharing of some node represents undirected

translatability, dotted arrows represent potential translations and impossibilities are

presented by omission of other relations. We note that the represented relations are

transitive, e.g. from weakly exact translations cf ⇒ adm and adm ⇒ com a weakly exact

translation cf ⇒ com is implied.

We would also like to hint to selected results not being covered by Table 3.5.1:

• Efficiency of finitely local (Theorem 3.1.4), strictly local and modular (Corollary 3.1.5)

translations.

• Equality of stage and semi-stable semantics implies equality also of stable semantics

for argumentation frameworks without self-attacks (Corollary 3.2.32).

• Possibility of
⋃
stg(F ) ∩⋃ prf (F ) = ∅, even if ∅ 6∈ prf (F ) (Example 3.2.29).

Furthermore due to importance, complexity or elegance we would like to highlight the

following results:

• Impossibility of weakly faithful translations (stb|stg |sem|prf |com|adm)⇒ (cf |naive)

• Impossibility of weakly exact translations sem ⇒ stg

• Impossibility of weakly exact translations (sem|prf |com|adm)⇒ (cf |naive|stg)

• Impossibility of finite-diameter local weakly faithful translations (sem|prf )⇒ stg

• Impossibility of efficient exact translations grd ⇒ stg

• Impossibility of finite-diameter local weakly exact translations grd ⇒ (sem)

• Impossibility of finite-diameter weakly faithful translations grd ⇒ (stg |stb|prf |com|adm)

• Possibility of embedding modular faithful translations com ⇒ (stg |stb|sem|prf )

• Possibility of embedding modular faithful translations grd ⇒ sem

• Possibility of embedding oracle exact translations sem ⇒ prf

• Possibility of finitely local faithful translations (sem|prf )⇒ stg for directed circles
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Figure 3.5.2: Results for strictly local intertranslatability.
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Figure 3.5.3: Results for efficient intertranslatability.
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Figure 3.5.4: Results for inefficient intertranslatability.
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Figure 3.5.5: Results for covering intertranslatability.
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Figure 3.5.6: Results for monotone intertranslatability.
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4 Discussion

The last chapter of this thesis is dedicated to related work, a short summary of achieve-

ments, implications and thoughts about future work and open questions. We will proceed

in this very order.

4.1 Related Work

4.1.1 Intertranslatability in a Very Wide Context of Argumentation

In the field of abstract argumentation and similar logical systems the use of collections of

various semantics is widespread. Naturally comparison of these semantics is a common

task and intertranslatability as presented in this thesis can be understood as such. Prior

to [39] however comparison was mostly based on various semantical properties, quite

similar to Section 2.3. Proof procedures for ideal semantics are presented in [30] with

the aim of comparing abstract and assumption-based argumentation. Starting from

set-inclusion properties in [7] the authors present and use partially new semantical

characteristics for the single purpose of comparing the most common argumentation

semantics.

Semantics responding to strongly connected components are introduced in [9], the

authors present the concept of SCC-recursiveness and transform semantical principles to

express genuinely new semantics. A comparison of stable models in logic programs is to

be found in [52]. In [19] a labelling approach is presented and used to interlock abstract

argumentation semantics with modal logic models.

A generalization of labellings and higher level attacks is to be found in [43] introducing

equational semantics. Higher level attacks also play a major role for AFRA [6] (drawing

a line to Dung-style argumentation frameworks) as well as EAF [58] (formalizing logic

programming).

Prior to [39] intertranslatability in the field of abstract argumentation was bound to

comparison of logical systems rather than models in these systems. Thus mappings from

frameworks to frameworks were mostly used to interlock different kinds of frameworks.

Taking into account abstract dialectical frameworks [17], which allow arbitrary acceptance

conditions, this form of coupling also applies to [16].

4.1.2 Graph Transformations

Similarities between argumentation frameworks and graph theory are obvious but not of

practical nature. Similarly we can think of relations between graph transformations and

101



4 Discussion

grd
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naive

(b) oracle weakly faithful

Figure 4.2.1: Summary of the most restricted and the most free forms of intertranslatability.

framework translations. In plain theory a graph transformation is a mapping from graphs

to graphs, applying certain rules, thus being actually close to our definition of framework

transformation.

Practically spoken however graph transformations as used for various computational

purposes operate more on a semantical level, while framework transformations as used in

this thesis (compare Remark 2.6.3 on predictability) operate on highly abstracted graphs

only. Thus e.g. a graph transformation maps UML graphs by mainly investigating relations

of specifically named nodes. It seems to better suit the needs of abstract argumentation to

treat each argument the same, thus we did restrict ourselves to predictable translations.

Still for the definition of locality graph transformations served as a source of inspiration.

We refer to [66] and [49] for further reading.

4.2 Summary and Implications

In the preceding work we have investigated various intertranslatability results for selected

argumentation semantics. We built upon [39] yet expanded semantics of interest to

also include conflict-free and naive semantics. Furthermore we introduced a notion of

locality, enabling classification of existing translations and we also investigated inefficient

intertranslatability.

A detailed overview of gained results can be found in Section 3.5. Although there are still

open questions as far as efficient translations are concerned, we managed to complete the

big picture for the subclass of strictly local translations as well as for the superclass of

oracle translations. As far as possible yet unknown efficient translations are concerned we

managed to restrict these to transformations not being finite-diameter local and thus most

likely complicated in definition.

As a side result the surprising relation of stage, semi-stable and stable semantics in

self-attack-free argumentation frameworks (Corollary 3.2.32), as well as the relation of

efficiency and modularity (Corollary 3.1.5) was discovered respectively pointed out.
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4.3 Open Questions - Future Research

⇒ stg stb sem prf com adm

stg Fe4 Fe4, Ec4 F e4 F e4

sem Fe2, Fee Fe4 Ee4 F e4 F e4

prf Fe2, Fee Fe4 F e4 F e4

grd Ece, Fe2 Fe2 Ee2, Eee Ee2, Eee, Fe2 Fe2 F e2

Table 4.3.1: Missing results, still open questions as far as focus of this thesis is concerned.
See Definition 3.1.14 for decryption.

This thesis can be seen as a book of reference for intertranslatability of argumenta-

tion semantics, as well as an introduction to abstract argumentation. The concept of

finite-diameter locality turned out to be an extensive tool for impossibility proofs where

corresponding efficiency results are still hidden in the depths of “The Book”.

4.3 Open Questions - Future Research

4.3.1 Evident Future Work

Although Table 3.5.1 grew quite big, there are still enough semantics out there to be

checked against intertranslatability. CF2 [9], ideal [30] and prudent [25] semantics come

to mind pretty soon, others might follow.

As mentioned in Section 4.1 mappings of different kinds of frameworks and logics have

been investigated already. However we believe that the principles of intertranslatability as

introduced in [39] are also adaptable to AFRA [6], EAF [58], ADF [17] as well as labelling-

based approaches [19] and related logical systems.

4.3.2 Open Questions

We hereby summarize the still open intertranslatability questions for semantics cf , naive,

stg, stb, sem, prf , com, adm, grd , the gaps between translations and impossibilities as far as

our definitions are concerned. On the one hand we have cases where provably no efficient

translation exists and we could come up with some 1-component local translation, thus

leaving us with the question for existence of an oracle finite-diameter local translation. On

the other hand we have cases where provably no finite-diameter local translation exists

and we could come up with some (sometimes even efficient) 1-component local translation,

thus leaving us with the question for existence of efficient or even finitely local translations.

We refer to Table 3.5.1 for a chart with actual results and Table 4.3.1 for a chart with

missing results. Observe that these two tables do not leave any gaps with respect to locality

and the other introduced translational properties. For instance grd ⇒ stg might still be

possible with some weakly exact efficient transformation Tr . If so Tr is not exact, not

embedding and not local.

We observe that although the difference between oracle 1-component local and oracle

finite-diameter local seems to be minimal, this differentiation might still be of practical
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use. We only need to think about sparsely populated argumentation frameworks, e.g. with

a limited amount of attached attacks for each argument, where finite-diameter locality

implies efficiency. Also if we think about stage semantics and an arbitrary argumentation

framework F , E ∈ stg(F ), and any maximal subframework F ′ ⊆ F with diameter 2 and

center a such that a ∈ AF ′ , (a, a) 6∈ RF ′ and from b ∈ AF with dist(a, b) = 1 it follows that also

b ∈ AF ′ . It follows that AF ′ ∩E 6= ∅. Inefficient finite-diameter local translations thus might

be possible and useful.

Finally, as mentioned in Remark 3.1.7, it remains an open question whether the re-

lation between existence of finitely local and efficient 1-component local translations is

bidirectional. In any case we could conclude interesting efficiency results.

4.3.3 Strong Intertranslatability

We refer to labellings as an alternative as opposed to the extensional approach. A labelling

is a mapping from arguments to the set {in, out,undecided}, where intuitively “in” refers

to arguments in the extension, “out” refers to arguments attacked by the extension and

“undecided” refers to the remaining arguments (see also [73]). Strengthening our definitions

we could think about translations preserving not only extensions but also labellings.

Intuitively embedding weakly exact translations are label-preserving translations.

The concept of ideal semantics (see [30, 36, 32]) generalizes the relation of complete

and grounded semantics, thus providing one unique ideal extension for any reasonable

semantics. Translations preserving ideal semantics demonstrate another strengthening

to our definitions. Intuitively embedding exact translations are already ideal-preserving

translations.

We might also think of translations preserving other semantical properties or even specific

graph theoretical properties such as being connected, acyclic or of limited treewidth [64].

4.3.4 Weak Intertranslatability

By restricting the argumentation frameworks or the semantical properties of interest, a

weakening of the introduced concepts of intertranslatability can be achieved. Examples

already used in this thesis are, for instance, restrictions to symmetric argumentation

frameworks and frameworks without self-attacks.

We have presented some results applying only to non-empty argumentation frameworks.

As touched in Remark 3.0.2 we abstained from thinking of these translations as being

general due to the belief of principle-equality of empty semantics and empty extensions.

Thus a weakening for our definitions of intertranslatability might be achieved by taking

into account only argumentation frameworks for which the semantics of choice provides

non-empty extensions. However argumentation frameworks of this kind most likely exceed

the concept of efficiency.

As touched in Subsection 3.2.3 translations preserving only some reasoning problems

might be more easy to achieve than general translations. Such partial translations might

on the one hand serve special needs, on the other hand guide the path to full translations

one day.
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4.3 Open Questions - Future Research

4.3.5 Extending Locality

With the definition of locality in mind we think about modifications. A first such modification

might be to restrict the notion of isomorphic subframeworks to a more strict version.

Tr (F ) =
⋃

L∈L ,A′⊆AF ,L∼=F |A′
Tr (F |A′)

Thus allowing for instance removal of self-attacking arguments. Of course such a definition

of restricted locality breaks the bidirectional relation of locality and monotonicity. Conven-

tional local translations however can still be defined by this notion of restricted locality but

|L | most likely blows up.

Another variation that comes to mind is the restriction to connected components, allowing

1-component local translations with finitely local definitions. Also strongly connected

components, limited distance or other graph properties might be of interest.

In Definition 3.1.15 we have presented the union of transformations, allowing different

transformations being applied to some argumentation framework at the same time. If we

think of an ordering of these applications, subsequently applied transformations might as

well remove previously added arguments, thus allowing some kind of add-remove modus

operandi, operating upon one original argumentation framework.

4.3.6 Back to the Real World

Intertranslatability was introduced with the concept of efficiency in mind, thus application

of encountered translations to practical problems seems to be apparent. By implementing

efficient transformations, solvers for semantical issues can be reused. Comparisons of

actual argumentation frameworks and corresponding semantics gain a new notion of

equivalence, as put into practice in Chapter 1 and the following.

Example 4.3.2 (Strudel of the Day). Back in the days of glory Pallas Athena and Pál Erdős

decided to bake a strudel. They had a look at their cookbook and soon cut down the strudels

of interest to apple strudel, cream strudel and poppy-seed strudel. Erdős volunteered to

check presence of necessary ingredients in the larder. For some reason on the way back he

got lost and partially forgot his findings. Finally back to the kitchen he said, “We only have

to choose between two strudels, for we are missing either apples or cream or poppy-seed, I

just do not remember which.” “Well you know,” Athena replied, “I think it is still an option

to bake any of the three strudels.”

What appears to be a strange story, actually reveals insights into intertranslatability for

abstract argumentation semantics. Assuming Athena goes with naive semantics and Erdős

goes with stable semantics, we only have to agree on the following

no apples attacks apple strudel, no cream and no poppy-seed

no cream attacks cream strudel, no apples and no poppy-seed

no poppy-seed attacks poppy-seed strudel, no apples and no cream

Upon inspection this interpretation as an abstract argumentation framework is isomorphic

to the framework used for the proof of Theorem 3.2.4. Thus due to choice of semantics
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na
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nc
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np
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na
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nc

cs

np

ps

Figure 4.3.3: A graphical representation of matters from Example 4.3.2.

Athena can not agree with Erdős with the choice of extensions. Anyhow due to Transla-

tion 3.1.47 Erdős can reconceive the common knowledge base to understand Athena’s

point of view, in this case simply by symmetrizing the attacks.

We present an illustration of this transformation in Figure 4.3.3 where the arguments

are referred by:

no apples = na apple strudel = as

no cream = nc cream strudel = cs

no poppy-seed = np poppy-seed strudel = ps

To the glorious minds who keep being curious, searching and naive! To “The Book”

of all strudel recipes. To the universe, spirituality and science, who keep

surprising each other!

Figure 4.3.4: An Illustration of Pál Erdős and Pallas Athena. [44]
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and M. Truszczyński, editors, Proceedings of the 12th International Conference on

Principles of Knowledge Representation and Reasoning (KR 2010), pages 102–111.

AAAI Press, 2010.

[18] M. Caminada. Semi-stable semantics. In P. E. Dunne and T. J. M. Bench-Capon,

editors, Proceedings of the 1st Conference on Computational Models of Argument

(COMMA 2006), volume 144 of Frontiers in Artificial Intelligence and Applications,

pages 121–130. IOS Press, 2006.

[19] M. Caminada and D. M. Gabbay. A logical account of formal argumentation. Studia

Logica, 93(2):109–145, 2009.

[20] M. Caminada and B. Verheij. On the existence of semi-stable extensions. In

Proceedings of the 22nd Benelux Conference on Artificial Intelligence, 2010.

[21] C. Cayrol and M.-C. Lagasquie-Schiex. Bipolar abstract argumentation systems. In

I. Rahwan and G. R. Simari, editors, Argumentation in Artificial Intelligence, chapter 4,

pages 65–84. Springer, 2009.

[22] F. Cerutti. Decision support through argumentation-based practical reasoning. In

T. Walsh, editor, Proceedings of the 22nd International Joint Conference on Artificial

Intelligence (IJCAI 2011), pages 2786–2787. AAAI Press, 2011.
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