
Towards Fixed-Parameter Tractable Algorithms for Argumentation∗

Wolfgang Dvoř ák and Reinhard Pichler and Stefan Woltran
Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria.

email:{dvorak, pichler, woltran}@dbai.tuwien.ac.at

Abstract

Abstract argumentation frameworks have received a lot of in-
terest in recent years. Most computational problems in this
area are intractable but several tractable fragments have been
identified. In particular, Dunne showed that many problems
can be solved in linear time for argumentation frameworks
of bounded tree-width. However, these tractability results,
which were obtained via Courcelle’s Theorem, do not directly
lead to efficient algorithms. The goal of this paper is to turn
the theoretical tractability results into efficient algorithms and
to explore the potential of directed notions of tree-width for
defining larger tractable fragments.

Introduction
Argumentation has evolved as an important field in AI with
abstract argumentation frameworks (AFs, for short) as in-
troduced by Dung (1995) being its most popular formaliza-
tion. Meanwhile, many semantics for AFs have been pro-
posed (for an overview see (Baroni and Giacomin 2009)).
Most computational problems in this area are intractable
(see e.g. (Dimopoulos and Torres 1996; Dunne and Bench-
Capon 2002)), but the importance of efficient algorithms
for tractable fragments has been clearly recognized (see
e.g. (Dix et al. 2009)). Such tractable fragments are,
for instance, symmetric argumentation frameworks (Coste-
Marquis, Devred, and Marquis 2005) or bipartite argumen-
tation frameworks (Dunne 2007).

An interesting approach to dealing with intractable prob-
lems comes from parameterized complexity theory and is
based on the following observation: Many hard problems
become tractable if some problem parameter is bounded
by a fixed constant. This property is referred to asfixed-
parameter tractability(FPT). One important parameter of
graphs is the tree-width, which measures the “tree-likeness”
of a graph. Indeed, Dunne (2007) showed that many prob-
lems in the area of argumentation can be solved in linear
time for argumentation frameworks of bounded tree-width.
This FPT-result was shown via a seminal result by Courcelle
(1990). However, as stated in (Dunne 2007), “rather than

∗This work was supported by the Vienna Science and Technol-
ogy Fund (WWTF) under grant ICT08-028 and by the Austrian
Science Fund (FWF) under grant P20704-N18.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

synthesizing methods indirectly from Courcelle’s Theorem,
one could attempt to develop practicaldirect methods”. The
primary goal of this paper is therefore to present new, direct
algorithms for (skeptical and credulous) reasoning.

Clearly, the quest for FPT-results in argumentation should
not stop at the tree-width, and further parameters should
be analyzed. This may of course also lead to negative re-
sults. For instance, if we consider as parameter the degree
of an argument (i.e., the number of incoming and outgoing
attacks), Dunne (2007) showed that reasoning remains in-
tractable, even if we restrict ourselves to AFs with at most
two incoming and two outgoing attacks. A number of further
parameters is however, still unexplored. Hence, the second
major goal of this paper is to explore the potential of fur-
ther parameters for identifying tractable fragments of argu-
mentation. In particular, since AFs are directed graphs, itis
natural to consider directed notions of width to obtain larger
classes of tractable AFs. To this end, we investigate the ef-
fect of bounded cycle-rank (Eggan 1963) (a precise defini-
tion will be given below) on reasoning in AFs. We show that
reasoning remains intractable even if we only consider AFs
of cycle-rank 2. Actually, many further directed notions of
width exist in the literature. However, it has been recently
shown in (Berwanger et al. 2006; Hunter and Kreutzer 2008;
Gruber 2008) that problems which are hard for bounded
cycle-rank remain hard when several other directed variants
of the tree-width are bounded. Hence, in the current state of
research, bounded tree-width seems to be the most general
parameter to obtain FPT.

Due to lack of space, we have to restrict ourselves here
to the preferred semantics. Roughly speaking, the preferred
extensions of an AF are maximal admissible sets of argu-
ments, where admissible means that the selected arguments
defend themselves against attacks. One reason for choos-
ing the preferred semantics is that it is widely used. More-
over, admissibility and maximality are prototypical proper-
ties common in many other semantics, for instance complete
and stable (Dung 1995), stage (Verheij 1996), semi-stable
(Caminada 2006), and ideal semantics (Dung, Mancarella,
and Toni 2007). Hence, we expect that the methods devel-
oped here can also be extended to other semantics.

Structure of the paper and summary of results.
• After recalling some basic notions and results on AFs and
width-measures for graphs, we show that reasoning remains

intractable in AFs with bounded cycle-rank (Eggan 1963).
As has been mentioned above, this negative result carries
over to many other directed notions of width.

• A dynamic programming approach is developed to char-
acterize admissible sets of AFs. The time complexity of our
algorithm is linear in the size of the AFs (as expected by
Courcelle’s Theorem) with a multiplicative constant that is
singleexponential in the tree-width (which is in great con-
trast to algorithms derived via Courcelle’s Theorem).
• In case of credulous reasoning, the algorithm for admissi-
ble sets also applies to the preferred semantics. For skeptical
reasoning, we have to extend this algorithm so as to cover
also the preferred semantics. Finally, we outline some di-
rections of future research – notably the further extensionof
our algorithms to other semantics.

Argumentation Frameworks
In this section we introduce (abstract) argumentation frame-
works (Dung 1995), recall the preferred semantics for such
frameworks, and highlight some known complexity results.

Definition 1. An argumentation framework (AF)is a pair
F = (A, R) whereA is a set of arguments andR ⊆ A × A
is the attack relation. We sometimes use the notationa ֌ b
instead of(a, b) ∈ R, in case no ambiguity arises. Further,
for S ⊆ A and a ∈ A, we writeS ֌ a (resp.a ֌ S)
iff there existsb ∈ S, such thatb ֌ a (resp.a ֌ b). An
argumenta ∈ A is defendedby a setS ⊆ A iff for each
b ∈ A, such thatb ֌ a, alsoS ֌ b holds.

An AF can naturally be represented as a directed graph.
Example1. Let F = (A, R) with A = {a, b, c, d, e, f, g}
andR = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, g), (f, e),
(g, f)}. The graph representation ofF is given as follows.

a b c d e f g

Definition 2. Let F = (A, R) be an AF. A setS ⊆ A
is conflict-free (inF), iff there are noa, b ∈ S, such that
(a, b) ∈ R. A setS ⊆ A is admissiblefor F , if S is conflict-
free inF and eacha ∈ S is defended byS in F .

Definition 3. Let F = (A, R) be an AF. A setS is a pre-
ferred extensionof F , iff S is a maximal (wrt. subset inclu-
sion) admissible set forF . We denote the collection of all
preferred extensions ofF bypref (F).

For the AFF in Example 1, we get as admissible sets
{}, {a}, {c}, {d}, {d, g}, {a, c}, {a, d}, and{a, d, g}. Con-
sequently,pref (F) = {{a, c}, {a, d, g}}.

Next, we recall the complexity of reasoning over preferred
extensions. To this end, we define the decision problems of
credulous acceptance (CA) and skeptical acceptance (SA),
which have as input an AFF = (A, R) and an argument
a ∈ A:

• CA: Is a contained in someS ∈ pref (F)?

• SA: Is a contained in eachS ∈ pref (F)?

It is known thatCA is NP-complete, whileSA is ΠP
2 -

complete (see (Dimopoulos and Torres 1996; Dunne and

c, d

c, d

b, c

a, b

c, d

d, e

e, f, g

Figure 1: A tree decomposition of the graph in Example 1.

Bench-Capon 2002)). The reason whyCA is located on a
lower level of the polynomial hierarchy compared toSA, is
the fact that it is sufficient to check whethera is contained
in at least one admissible set for the given AFF . Thena is
also contained in a preferred extension ofF . In other words,
the maximality requirement of preferred extensions does not
come into play forCA. ForSA, the situation is different, and
maximality has to be taken into account, leading to an addi-
tional source of complexity.

Parameters for Graphs
In this section, we review several notions of parameters for
graphs (both directed and undirected). One of the most im-
portant concepts for FPT on graphs is the tree-width, which
was introduced by Robertson and Seymour (1986).

To start with, we recall the concept of an induced sub-
graph: given a graphG = (V, E) and a setA, we write
G|A = (V ∩A, E∩(A×A)) for the subgraph ofG induced
by A.

Definition 4. Let G = (V, E) be an undirected graph.
A tree decompositionof G is a pair (T ,X) whereT =
(VT , ET) is a tree andX = (Xt)t∈VT

is a set of so-called
bags, which has to satisfy the following conditions:

1.
⋃

t∈VT
Xt = V , i.e.X is a cover ofV ;

2. For eachv ∈ V , T |{t|v∈Xt} is connected;

3. For each{vi, vj} ∈ E, {vi, vj} ⊆ Xt for somet ∈ VT .

The width of such a tree decomposition is given by
max{card(Xt) | t ∈ VT } − 1. Thetree-widthof a graphG
is the minimum width over all tree decompositions ofG.

It was shown by Bodlaender (1996) that, for fixedw ≥ 1,
it can be decided in linear time if a graph has tree-width
at mostw. Moreover, in case of a positive answer, a tree
decomposition of widthw can be computed in linear time.
Figure 1 shows a tree decomposition of width2 for the AF
from Example 1 (when considered as an undirected graph).

Many NP-hard problems on graphs have been shown to be
linear time computable on graphs of bounded tree-width. In
particular, Courcelle’s Theorem (Courcelle 1990) provides
a powerful tool to obtain such results. It states that any
property over graphs which can be expressed in Monadic
Second-Order Logic, can be decided in linear time (wrt. to
the size of the graph) for graphs which have bounded tree-
width. Dunne (2007) used this result to show the FPT of the
problemsCA andSA wrt. the tree-width.

However, there is a certain problem when using tree-
width in the area of directed graphs. In fact, there are many
digraphs which we intuitively consider as simply structured

but already have high tree-width. As an example consider
the acyclic digraphs of the form (n ≥ 1)

Gn =
(

{a1, . . . , an}, {(ai, aj) | 1 ≤ i < j ≤ n}
)

.

Forn = 5, Gn looks as follows

a1 a2 a3 a4 a5

Seen as undirected graph, eachGn turns into a clique of
sizen. Thus, the tree-width of the graphsGn (with increas-
ing n) cannot be bounded by a constant.

As AFs are directed graphs, it seems natural to consider
parameters exclusively defined for digraphs. Indeed, many
such measures exist like directed tree-width (Johnson et al.
2001), DAG-width (Berwanger et al. 2006), and Kelly-
width (Hunter and Kreutzer 2008). An old but particularly
interesting parameter, which we shall focus on here, is cycle-
rank (Eggan 1963). One reason why there are many differ-
ent such notions is due to the fact that, so far, no analogue to
Courcelle’s Theorem has been found for digraph problems.

Definition 5. Let G = (V, E) be a directed graph. The
cycle-rankr(.) of G is defined as follows: an acyclic graph
has r(G) = 0; if G is strongly connected thenr(G) =
1 + minv∈V r(G|V \{v}). If G is not strongly connected,
then r(G) is the maximum cycle-rank among all strongly
connected components (SCCs) ofG.

Note that the graphsGn introduced above are acyclic and,
thus, have cycle-rank0 for any n. The cycle-rank is of
particular interest because recent results (Berwanger et al.
2006; Hunter and Kreutzer 2008; Gruber 2008) showed that
problems which are hard for bounded cycle-rank also remain
hard when some of the other aforementioned parameters are
bounded. Further, the class of graphs with bounded cycle-
rank is incomparable with the class of graphs with bounded
in- and out-degree. The latter was analyzed in terms of AFs
by Dunne (2007), who showed thatCA andSA remain in-
tractable for AFs with bounded in- and out-degree.

Some Negative Results for Directed Graphs
We continue to prove that NP-hardness forCA holds, even
if we restrict ourselves to AFs with bounded cycle-rank. We
employ the reduction from (Dimopoulos and Torres 1996)
which maps each instance (i.e. a CNF) of the NP-hard prob-
lem SAT to an argumentation framework.

Definition 6. Given a CNFΦ =
∧m

j=1 Cj with Cj being
clauses over variablesZ, defineFΦ = (A, R) with

A = {Φ, C1, . . . , Cm} ∪ Z ∪ Z̄

R = {(Cj , Φ) | 1 ≤ j ≤ m} ∪

{(z, z̄), (z̄, z) | z ∈ Z} ∪

{(z, Cj) | z occurs inCj , 1 ≤ j ≤ m} ∪

{(z̄, Cj) | ¬z occurs inCj , 1 ≤ j ≤ m}

whereZ̄ = {z̄ | z ∈ Z} is a set of fresh arguments.

Example2. ForΦ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧
(¬z1 ∨ z2 ∨ z4), Figure 2 illustrates the AFFΦ. 3

Φ

C1 C2 C3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4

Figure 2: AFFΦ for example CNFΦ.

For any CNFΦ, FΦ can be constructed in polynomial
time, andΦ is satisfiable iff argumentΦ is credulously ac-
cepted inFΦ. This gives the NP-hardness forCA, first
shown by Dimopoulos and Torres (1996) and later rephrased
in terms of AFs by Dunne and Bench-Capon (2002). We
strengthen this result as follows.

Theorem 1. CA is NP-hard, even if the problem is restricted
to AFs which have cycle-rank1.

Proof. As discussed above, AFsF of the form as given in
Definition 6 provide us with a valid reduction from SAT to
CA. To prove the assertion it is thus sufficient to show that
for each CNFΦ, the corresponding AFF has at most cycle-
rank 1. Indeed, such an AFF has the following SCCs:
F |{z,z̄} for eachz ∈ Z and the singletonsC1, . . . , Cm,
andΦ. Obviously, componentsF |{z,z̄} have cycle-rank1
and all other components have cycle-rank0. Hence, eachF
constructed following Definition 6 has cycle-rank1.

We now turn our attention to theΠP
2 -hard problemSA.

The following reduction from QBFs to AFs is used by
Dunne and Bench-Capon (2002).

Definition 7. Given a QBFΨ = ∀Y ∃Z
∧m

j=1 Cj over vari-
ablesX = Y ∪ Z. We define the AFGΨ = (A, R) with

A = {Ψ, C1, . . . , Cm} ∪ X ∪ X̄ ∪ {b1, b2, b3}

R = {(Cj , Ψ) | 1 ≤ j ≤ m} ∪

{(x, x̄), (x̄, x) | x ∈ X} ∪

{(x, Cj) | x occurs inCj , 1 ≤ j ≤ m} ∪

{(x̄, Cj) | ¬x occurs inCj , 1 ≤ j ≤ m} ∪

{(Ψ, b1), (Ψ, b2), (Ψ, b3)} ∪

{(b1, b2), (b2, b3), (b3, b1)} ∪

{(b1, z), (b1, z̄) | z ∈ Z}

whereX̄ = {x̄ | x ∈ X} is a set of fresh arguments.

Example3. ConsiderΨ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3) ∧
(¬y2 ∨ ¬z3 ∨ ¬z4) ∧ (¬y1 ∨ y2 ∨ z4). Figure 3 illustrates
the corresponding AFGΨ. 3

As shown by Dunne and Bench-Capon (2002), the follow-
ing holds for each QBFΨ of the above form:Ψ is valid iff
argumentΨ is contained in eachS ∈ pref (GΨ). SinceGΨ

can be constructed fromΨ in polynomial time, this showed
ΠP

2 -hardness of the problemSA. We strengthen this result
as follows.

b3 b2 b1

Ψ

C1 C2 C3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

Figure 3: AFGΨ for example QBFΨ.

Theorem 2. SA isΠP
2 -hard, even if the problem is restricted

to AFs which have cycle-rank2.

Proof. We can proceed similar as in the proof of Theorem 1.
Moreover, we are allowed to restrict ourselves to QBFsΦ of
the form∀Y ∃Z

∧m

j=1 Cj where eachCj contains at least
one occurrence of an atom fromZ; the validity problem for
such QBFs obviously remainsΠP

2 -hard. Each AFG which
follows Definition 7 has SCCs:

• G|{y,ȳ} for eachy ∈ Y ;

• G|S for S = {z, z̄ | z ∈ Z}∪{C1, . . . , Cm, Φ, b1, b2, b3}.

ComponentsG|{y,ȳ} have cycle-rank1, andH = G|S has
cycle-rank2. This can be seen as follows: RemovingΦ
leads to SCCsH |{z,z̄} (for eachz ∈ Z), H |{b1,b2,b3}, and
singletonsC1 ,. . . ,Cm. All these have cycle-rank1 or0.

Dynamic Programming for Argumentation
Before we introduce our algorithms, we need some more
notation for tree decompositions. In particular, it is useful to
reduce the number of different node types and to identify a
root node. The following concept serves this purpose.

Definition 8. A tree decomposition(T ,X) of a graphG is
callednice if T is a rooted tree and if each node1 t ∈ T is
of one of the following types:

1. LEAF:t is a leaf ofT
2. FORGET:t has only one childt′ andXt = Xt′∪̇{v}

3. INSERT:t has only one childt′ andXt∪̇{v} = Xt′

4. JOIN:t has two childrent′, t′′ andXt = Xt′ = Xt′′

Here the operatoṙ∪ denotes the disjoint union of two sets
andv denotes an arbitrary vertex inG.

Kloks (1994) showed that a tree decomposition(T ,X) of
a graphG whereT hasn nodes, can be transformed in time
O(n) into a nice tree decomposition(T ′,X ′) of G which
has the same width as(T ,X) and whereT ′ hasO(n) nodes.

As already mentioned, the concept of tree-width is de-
fined for undirected graphs but can also be applied to di-
rected graphs and thus to AFs.

1ForT = (VT , ET) we often writet ∈ T instead oft ∈ VT .

Definition 9. Let F = (A, R) be an AF. A tree decompo-
sition of the undirected graph(A, R′) whereR′ contains
the edges ofR without orientation is called atree decom-
positionof F . The tree-width of an AFF is given by the
minimum width over all tree decompositions ofF .

Definition 10. For a tree decomposition(T ,X) of an AFF
and t ∈ T , let X≥t be the union of all bagsXs such that
s occurs in the subtree ofT rooted att. Moreover, letX>t

denoteX≥t \ Xt. We also use the following terminology:
Ft = F |Xt

is thesub-framework int; F≥t = F |X≥t
is the

sub-framework induced by (the subtree rooted at)t.

Note that the sub-framework induced by the root of such
a decomposition of an AFF is F itself. W.l.o.g., we may
restrict ourselves to nice tree decompositions where the bag
of the root is empty. Unless stated otherwise, we assume be-
low that(T ,X) denotes a nice tree-decomposition for some
given AFF .
Example4. For the AFF from Example 1, we already de-
picted a tree decomposition in Figure 1. To obtain a nice tree
decomposition, we have to introduce some further nodes.
For instance, between the nodes with bags{a, b} and{b, c},
we insert a further node with bag{b}, etc. Moreover, we add
two forget-nodes above the{c, d}-node in order to have an
empty root. The resulting nice tree decomposition ofF is
illustrated in Figure 4, which has to be read as follows. In
each nodet, the bagXt contains the arguments in (solid)
cycles. In addition, we depicted in each nodet the AFFt,
i.e. the sub-framework int; adding the dotted parts of the
graphs, we obtainF≥t, the sub-framework induced byt. 3

Characterizing admissible sets. We first introduce a rel-
ativization of admissible sets to a given setB of arguments.

Definition 11. Let F = (A, R) be an AF andB a set of
arguments. A setE ⊆ A is aB-restricted admissible set for
F , if E is conflict-free inF andE defends itself inF against
all a ∈ A ∩ B.

Example5. An AF ({e, f, g}, {(e, g), (g, f), (f, e)}) has
{g}-restricted admissible sets∅, {e} and{g}. 3

Note that forA ⊆ B, B-restricted admissible sets of AFs
(A, R) are just the standard admissible sets; forA ∩ B = ∅,
B-restricted admissible sets are just the conflict-free sets.

We are now prepared to present the dynamic program-
ming algorithm. Therefore, we assign to each nodet ∈ T
a certain set of mappingsC : Xt → {in, out , att , def }. We
call such mappings also colorings fort. The rationale be-
hind a coloring fort is as follows: explicitly, a coloring
characterizes the set[C] = {a | C(a) = in} and the val-
uesout , att , def tell us about the relationship between[C]
and the remaining argumentsXt \ [C]. In fact,att will de-
note arguments which attack[C] but are not attacked by[C],
def denotes arguments attacked by[C], andout are those
which are in no relation with arguments from[C]. However,
we will define colorings in such a way that they character-
ize sets overX≥t, rather than overXt as sketched above.
Formally, this intuition is captured as follows:

Definition 12. Given a coloringC for a nodet ∈ T , define
et(C) as the collection ofX>t-restricted admissible setsS
for F≥t which satisfy the following conditions for eacha ∈

n0

a b c d e f g

n1

a b c d e f g

n2

a b c d e f g

n3

a b c d

n4

a b c

n5

a b c

n6

a b

n7

a b

n8

c d e f g

n9

d e f g

n10

d e f g

n11

d e f g

n12

e f g

n13

e f g

Figure 4: Tree decomposition ofF with sub-frameworks.

Xt: (i) C(a) = in iff a ∈ S; (ii) C(a) = def iff S ֌ a;
(iii) C(a) = att iff S 6֌ a anda ֌ S; (iv) C(a) = out iff
S 6֌ a anda 6֌ S. If et(C) 6= ∅ we callC a valid coloring
for t. The set of valid colorings fort is denoted byCt.
Example6. Consider the noden11 of our example tree
decomposition withXn11

= {d, e, f} (see the rhs of
the tree in Figure 4) and the coloringC with C(d) =
in and C(e) = C(f) = def . We have F≥t =
({d, e, f, g}, {(d, e), (e, g), (g, f), (f, e)}) andX>t = {g}.
The only set which isX>t-restricted admissible forF≥t

and satisfies the conditions from Definition 12 is{d, g}.
S = {d} would also beX>t-restricted admissible but vi-
olates Condition (ii), sinceC(f) = def andS 6֌ f . 3

Our ultimate goal is to efficiently computeCr for the root
noder. The reason for this is the fact that

⋃

C∈Ct
et(C)

gives exactly the set ofX>t-restricted admissible sets for
F≥t (as we show next). Since the rootr has an empty bag,
Cr thus characterizes the admissible sets ofF .

By definition, each element inet(C) is also anX>t-
restricted admissible set forF≥t. However, also the opposite
direction holds, as we show next.
Lemma 1. Let S be anX>t-restricted admissible set for
F≥t, then there is a coloringC ∈ Ct such thatS ∈ et(C).
Proof. Let S be anX>t-restricted admissible set forF≥t.
Then, for each argumenta ∈ Xt, one of the following con-
ditions hold: (i)a ∈ S, (ii) S ֌ a, (iii) S 6֌ a anda ֌ S,

or (iv) S 6֌ a anda 6֌ S. For these four cases, we defineC
as follows:

In case (i):C(a) = in,
in case (ii):C(a) = def ,
in case (iii):C(a) = att , and
in case (iv):C(a) = out .

By the construction ofC, the setS satisfies conditions (i) –
(iv) in Definition 12 and, sinceS is X>t-restricted admissi-
ble forF≥t, it holds thatS ∈ et(C).

Moreover, different colorings characterize different ex-
tensions.

Lemma 2. LetC, C′ be different colorings fort ∈ T . Then,
et(C) ∩ et(C

′) = ∅.

Proof. Suppose to the contrary that there is a setS ∈
et(C) ∩ et(C

′), whereC and C′ are different colorings
for t. Then there exists an argumenta ∈ Xt such that
C(a) 6= C′(a). It remains to inspect all possible pairs of
values ofC(a) andC′(a) and to derive a contradiction in
each case. For example, letC(a) = def andC′(a) = att .
By Definition 12,C(a) = def impliesS ֌ a. On the other
hand,C′(a) = att impliesS 6֌ a, a contradiction. Similar
arguments hold for the other combinations of colors.

To guarantee tractability, we want to compute the setsCt

in a bottom-up manner along the tree-decompositionwithout
an explicit computation ofet(·). Therefore, we recursively
define the concept of vcolorings which we afterwards show
to be equivalent to valid colorings. The operations on color-
ings used in the next definition are depicted in Figure 5.

Definition 13. Let t ∈ T be a node and lett′, t′′ its possible
children. Depending on the node type oft, we define avcol-
oring for t as follows:
LEAF: Each coloringXt → {in, out , att , def } where

C(x) = in ⇒ C(y) ∈ {att , def } for all y ֌ x;

C(x) = att ⇒ ∃y : C(y) = in andx ֌ y;

C(x) = def ⇔ ∃y : C(y) = in andy ֌ x;

holds for allx ∈ Xt, is a vcoloring fort.
FORGET: IfC is a vcoloring fort′, Xt = Xt′ \ {a}, and
C(a) 6= att , thenC − a is a vcoloring fort.
INSERT: IfC is a vcoloring fort′ andXt = Xt′ ∪{a}, then
C + a is a vcoloring fort; if also a 6֌ a, [C] 6֌ a, and
a 6֌ [C] hold, thenC+̇a is a vcoloring fort as well.
JOIN: If C is a vcoloring fort′, D is a vcoloring fort′′, and
[C] = [D], thenC 1 D is a vcoloring fort.

Let us illustrate this idea on our running example.
Example7. Recall the AF from Example 1 and its tree de-
composition in Figure 4. Figure 6 illustrates the bottom-
up computation of the vcolorings. Consider, for instance,
the leaf noden13 with bag {e, f, g}. We have here four
vcolorings for n13 which correspond to the conflict-free
(and thus to the∅-restricted admissible) sets forF≥n13

=
({e, f, g}, {(e, g), (g, f), (f, e)}). The next noden12 above
n13 is of type FORGET and removes argumentg. Thus
X>n12

= {g}. The vcolorings forn12 are obtained from
the vcolorings forn13 with the exception of the coloringC

(C − a)(b) = C(b) for eachb ∈ A \ {a}

(C + a)(b) =











C(b) if b ∈ A
def if b = a and[C] ֌ a
att if b = a, [C] 6֌ a anda ֌ [C]
out otherwise

(C +̇ a)(b) =



























in if b = a or C(b) = in
def if a 6= b and

((a, b) ∈ Ft or C(b) = def)
out if a 6= b, C(b) = out ,

(a, b) /∈ Ft, (b, a) /∈ Ft

att otherwise

(C 1D)(b) =











in if C(b) = D(b) = in
out if C(b) = D(b) = out
def if C(b) = def or D(b) = def
att otherwise

Figure 5: Operations forC, D : A → {in, out , att , def }.

with [C] = {f}. Here we haveC(g) = att , which violates
the construction for theFORGETnode. The vcolorings for
n12 are now in accordance with theX>n12

-restricted admis-
sible sets forF≥n12

= F≥n13
(see also Example 5 where

we already analyzed exactly this situation). The next node
n11 is of type INSERTand addsd. Consider the coloring
C′ for n12 with C′(e) = att andC′(f) = def . We have
two possibilities to addd. In case we wantd to be in the
set, we obtain the coloringC with C(d) = in, C(e) = def ,
C(f) = def (note thate changes its color since it is now
a “defeated attacker”); we have seen this coloring already
in Example 6. The other possibility is to haved not in
the set, resulting in the coloringC′′ with C′′(d) = out ,
C′′(e) = att , C′′(f) = def .

Due to lack of space, we have to omit a full discussion of
the computation here. However, for a better understanding
we also added the# column in Figure 6 to show the cardi-
nalities of the setset(C), i.e. the number ofX>t-restricted
admissible sets forF≥t characterized by vcoloringC. In
particular, we see in the root that we end up with 8 such sets
which refer to the admissible sets from our example AF (see
Example 1). 3

Vcolorings provide us with exactly the same information
as valid colorings.

Theorem 3. For each coloringC for a nodet, it holds that
C is a valid coloring fort iff C is a vcoloring.

Proof. We proceed by structural induction. For the induc-
tion begin, we have to show that vcolorings and valid col-
orings coincide onLEAF nodes. For the induction step, we
show this property forFORGET, INSERT, andJOIN nodes.

LEAF. For aLEAFnodet, we haveX>t = ∅ and, therefore,
theX>t-restricted admissible sets forF≥t coincide with the
conflict-free sets.

First, let C be a vcoloring fort. We have to show that
thenC is a valid coloring fort. Suppose to the contrary that
it is not, i.e., either[C] is not conflict-free or[C] violates
one of the conditions (ii) – (iv) in Definition 12. It is easy to
check that, in both cases, one of the conditions forC being
a vcoloring is violated. For instance, if there is a conflict in
[C], then there exist argumentsx, y ∈ Xt with x ֌ y and

n0

− #

ǫ 8 X

n1

c #

in 2

def 4 X

out 2

n2

c d #

in def 2

def in 4 X

out out 2

n3

c d #

in def 2

def in 2 X

out out 2

n4

c #

in 2

out 2

n5

b c #

def in 2

def out 1

out out 1

n6

b #

def 1

out 1

n7

a b #

in def 1

att in 1

out out 1

n8

c d #

in def 1

def in 2 X

out out 1

n9

d #

in 2 X

out 1

n10

d e #

in def 2 X

out att 1

out out 1

n11

d e f #

att in att 1

in def def 1 X

out att def 1

in def out 1 X

out out out 1

n12

e f #

in att 1

att def 1

out out 1

n13

e f g #

in att def 1

def in att 1

att def in 1

out out out 1

Figure 6: Computation of vcolorings for the example AF.

C(x) = C(y) = in. Hence, the first condition in Definition
13 for vcolorings at aLEAF node is violated, a contradic-
tion.

Now suppose thatC is valid coloring fort, i.e.,C satisfies
the conditions (i) – (iv) of a coloring (see Definition 12) and
C is conflict-free inF≥t. ThenC satisfies the condition
of a vcoloring for aLEAF node according to Definition 13.
For instance, letx, y ∈ Xt with C(x) = in andy ֌ x.
Then, sinceC is a coloring, either case (ii) or case (iii) of
Definition 12 applies and, thus,C(y) ∈ {att , def } holds.

FORGET. Let t be aFORGETnode with successort′, such
thatXt = Xt′ \ {a}. Of course, then alsoX≥t = X≥t′ and
X>t = X>t′ ∪ {a} hold.

Let C be a valid coloring fort. We show that there exists

a valid coloringC′ for t′ with C′(a) 6= att andC = C′−a.
We defineC′ as follows: For allb ∈ Xt = Xt′ \ {a},
we setC′(b) = C(b). Hence, no matter which value of
{in, def , out} we assign toC′(a), we haveC = C′ − a.
In order to defineC′(a), we consider an arbitrary setS ∈
et(C) and distinguish two cases:
(1) If a ∈ S, then we setC′(a) = in . SinceS is X>t-
restricted admissible forF≥t, it is alsoX>t′-restricted ad-
missible forF≥t′ . Moreover,S ∈ et′(C

′), i.e.,C′ is a valid
coloring fort′. Hence, by the induction hypothesis,C′ is a
vcoloring fort′ and, therefore, alsoC = C′ − a is a vcolor-
ing for t.
(2) Now let a 6∈ S. If S ֌ a, we setC′(a) = def . If
S 6֌ a anda 6֌ S, we setC′(a) = out . In both cases,
S ∈ et′(C

′). Note that the caseS 6֌ a anda ֌ S cannot
occur since, by assumption,S is X>t-restricted admissible
for F≥t. As above, we may apply the induction hypothesis
to conclude thatC′ (and thus alsoC) is a vcoloring.

Now let C be a vcoloring fort, i.e., there exists a vcol-
oring C′ for t′ with C′(a) 6= att andC = C′ − a. By the
induction hypothesis,C′ is a valid coloring fort′. Hence,
there existsS ∈ et′(C

′), i.e.,S is X>t′-restricted admissi-
ble for F≥t′ = F≥t. SinceC′(a) 6= att , it cannot happen
that botha ֌ S andS 6֌ a hold. But thenS is alsoX>t-
restricted admissible forF≥t andS ∈ et(C). Thus,C ∈ Ct.
INSERT. Let t be anINSERTnode with successort′, such
thatXt = Xt′ ∪ {a}. Thus, we have thatX≥t = X≥t′ ∪
{a} andX>t = X>t′ . By properties (2) and (3) of tree-
decompositions, we know that there are no attacks between
the new argumenta and arguments inX>t.

Let C be a valid coloring fort, i.e., there exists an
X>t-restricted admissible setS ∈ et(C) for F≥t. By
X>t = X>t′ , S is alsoX>t′-restricted admissible forF≥t.
Moreover, sincea cannot attack any argument inX>t′ , also
S \ {a} is X>t′-restricted admissible forF≥t′ (of course, if
a 6∈ S, thenS \ {a} = S and the latter admissibility prop-
erty is trivial). As in the proof of Lemma 1, we construct a
coloringC′ for t′ with S \ {a} ∈ et′(C

′) as follows. For
arbitraryb ∈ Xt′ , we define:

C′(b) = in if b ∈ S \ {a},
C′(b) = def if b 6∈ S andS \ {a} ֌ b,
C′(b) = att if b 6∈ S, b ֌ S \ {a}, andS \ {a} 6֌ b,
C′(b) = out if b 6∈ S, b 6֌ S \ {a}, andS \ {a} 6֌ b.

Thus,C′ ∈ Ct′ , and by the induction hypothesis, a vcoloring
for t′. Moreover, it is easy to check that eitherC = C′ + a
holds (ifa 6∈ S) or C = C′+̇a holds (ifa ∈ S).

Now letC be a vcoloring fort, i.e., there exists a vcolor-
ing C′ for t′ with eitherC = C′ + a or C = C′+̇a. By the
induction hypothesis,C′ is a valid coloring, i.e. there ex-
ists anX>t′-restricted (and, hence,X>t-restricted) admis-
sible setS et′(C

′) for F≥t′ . It is easy to check that then
S ∈ et(C

′ + a). Moreover if the setS ∪ {a} is conflict-free
thenS ∪ {a} ∈ et(C

′+̇a) as well. Thus,C (which is either
C′ + a or C′+̇a) is a valid coloring fort.
JOIN. Due to the lack of space, we give only a sketch for
this case.

Let t be aJOIN node with successorst′ and t′′. Then
Xt = X ′

t = X ′′
t and X≥t′ ∩ X≥t′′ = Xt and X≥t =

X≥t′ ∪ X≥t′′ . So we can partitionX≥t into three disjoint
setsX>t′ , X>t′′ andXt. Thus every setS ⊆ X≥t can be
seen as the union of two setsS1 ⊆ X≥t′ andS2 ⊆ X≥t′′

with S1 ∩ Xt = S2 ∩ Xt.
To show that each vcoloringC for t is also a valid col-

oring for t, we proceed as follows: by definition, we have
vcoloringsC′ for t′ and respectivelyC′′ for t′′, such that
C = C′

1 C′′ and[C′] = [C′′]. By the induction hypoth-
esis,C′ andC′′ are also valid colorings for the respective
nodes. Hence, there exists anX>t′-restricted admissible set
S1 ∈ et′(C

′) for F≥t′ and anX>t′′ -restricted admissible set
S2 ∈ et′′(C

′′) for F≥t′′ . Using [C′] = [C′′], one can now
show thatS = S1∪S2 is thenX>t-restricted admissible for
F≥t. It then remains to show thatS ∈ et(C), which can be
done by checking thatS satisfies the conditions (i) – (iv) in
Definition 12 for everya ∈ Xt.

Now assume thatC ∈ Ct, i.e., there exists anX>t-
restricted admissible setS ∈ et(C) for F≥t. We define
S1 = S ∩ X≥t′ andS2 = S ∩ X≥t′′ . One can now show
thatS1 is X>t′ -restricted admissible forF≥t′ , S2 is X>t′′-
restricted admissible forF≥t′′ , andS1 ∩ Xt = S2 ∩ Xt.
As in the proof of Lemma 1, we can define a coloringC′

for t′ and a coloringC′′ for t′′, such thatS1 ∈ et′(C
′) and

S2 ∈ et′′(C
′′). ThenC′ ∈ Ct′ , C′′ ∈ Ct′′ , and, therefore, by

the induction hypothesis,C′ andC′′ are vcolorings. Now
define the vcoloringC∗ = C′

1 C′′ for nodet. We claim
thatC∗ = C holds. To prove this claim, we have to show
thatC∗(a) = C(a) for everya ∈ Xt. This equality is shown
by distinguishing the 4 possible values{in, def , att , out}
and by exploiting the conditions (i) – (iv) in Definition 12 as
well as the definition of the1 operator in Figure 5.

Let us briefly describe how credulous acceptance can now
be performed via vcolorings: We just have to mark each col-
oring which assigns the valuein to the argument we are in-
terested in and accordingly pass this mark up to the root.
If the coloring of the root has the mark, then we know that
credulous acceptance for this argument holds

Example8. Recall the computation from Example 7 in Fig-
ure 6. We now consider the problem of deciding if the ar-
gumentd is credulously accepted. The argumentd is intro-
duced in the nodesn3 andn11 thus we mark all their vcol-
oringsC satisfyingC(d) = in and illustrate this with aXin
the last column of the table. In the remaining nodes of the
tree-decomposition we mark a coloring iff it is constructed
using at least one marked coloring. Consider, for instance,
the noden8 with the coloringsC1(c) = in , C1(d) = def ,
C2(c) = def , C2(d) = in andC3(c) = out , C3(d) = out .
The successor noden9 has coloringsC′

1(d) = in and
C′

2(d) = out , the first marked for credulous acceptance. As
C2 is constructed via the markedC′

1 (C2 = C′
1 + {c}) it is

also marked and asC1 andC3 are both constructed viaC′
2

(C1 = C′
2+̇{c}, C3 = C′

2 + {c}) they are not marked. 3

Since vcolorings can be computed efficiently (for
bounded bag size) we obtain the following result for such an
algorithm, assuming that AFs come together with a nice tree
decomposition of suitable width. The upper bound on the
time complexity is obtained by considering the maximum
number of vcolorings per node and assuming a straightfor-

ward method (e.g., nested loops) for computing a node’s
vcolorings from the vcolorings at the child node(s).
Theorem 4. DecidingCA for an AFF = (A, R) of tree-
widthk−1 can be done in timeO(10k · k · |A|).
Proof. First, we observe that the number of colorings for
each bag is bounded by4k, since there at mostk arguments
in a bag and there are only 4 colors{in, out , def , att} to
assign to these arguments. We assume that the set of vcolor-
ings for a nodet is stored in a table with4k rows. Each row
contains a coloring plus an additional bit which indicates if
this coloring is a vcoloring. We assume that, given a color-
ing C, we can find the corresponding row in this table within
time O(k). We have to show that computing the vcolorings
at each nodet ∈ T is feasible in timeO(10k · k) in a single
bottom-up traversal ofT . Since the number of nodes ofT
may be assumed to be bounded byO(|A|), the desired up-
per bound of the theorem follows immediately. We prove
the upper boundO(10k ·k) for the time needed at each node
t ∈ T by distinguishing the four types of nodes in a nice
tree-decomposition.

At a LEAFnodet, we inspect each coloringC in the table
att and check in timeO(k2) if C is a vcoloring, i.e., conflict-
free. To this end, we simply consider all pairs of arguments
in the bag. This yields the boundO(4k · k2).

For aFORGETnodet, we iterate over all vcoloringsC′

for the successor nodet′ and check for each suchC′ if
C′(a) 6= att . If this is the case, we compute the coloring
C = C′ − a in timeO(k). Then we access in timeO(k) the
coloringC in the table att and set the vcoloring-bit. In total,
we can compute the vcoloring-table att in time O(4k · k).
An INSERTnodet is treated similarly.

In a JOIN nodet, the vcolorings are computed by com-
bining two colorings of the successorst′ andt′′. In a naive
implementation, up to4k ·4k = 42k = 16k pairs exist. How-
ever, we show that only10k pairs have to be considered. By
using appropriate data structures, we can implement the join
such that we only consider pairs(C′, C′′) with [C′] = [C′′].
For instance, we can sort the colorings in the tables att′ and
t′′ in lexicographical order by treatingin as 1 and the other
values (i.e.,def , att , out) as 0. In the sorted table, the col-
oringsD, D′ with [D] = [D′] are in contiguous rows. This
sorting requires timeO(4k · k).

Let C be a coloring overk arguments withm ≤ k
arguments mapped toin. Then, for each argument with
C(a) 6= in , we can choose any color in{out , def , att}
without effecting the set[C]. Thus there exist at most3k−m

different coloringsC′ such that[C] = [C′]. For everym,
there are

(

k
m

)

different choices ofm arguments and thus
there are

(

k
m

)

·3k−m coloringsC in the first table mappingm
arguments toin. Each of these colorings can be combined
with 3k−m colorings from the second table. Hence we have
at most

(

k
m

)

3k−m · 3k−m join pairs produced by colorings
that mapm arguments toin . The sum over all possiblem
yields the desired upper bound for the total number of join
pairs:

∑k
m=0

(

k
m

)

· 3m · 3m =
∑k

m=0

(

k
m

)

· 9m = 10k.
The latter equality follows from the combinatorial identity
∑n

i=0

(

n
i

)

· (l)i = (l + 1)n. Each joinable pair(C′, C′′) can
be handled in timeO(k) (for computingC = C′

1 C′′ and

setting the vcoloring-bit ofC). In total, the vcolorings for a
JOIN node can thus be computed in timeO(10k · k).

As hinted at in Example 7, our dynamic programming ap-
proach can be easily extended so as tocount the number of
admissible sets. In fact, we just need to add the computation
of the# column to our algorithm (which is straightforward
due to Lemma 2). Finally, we also emphasize the possibility
of enumerating (with linear delay) all admissible sets(using
a second top-down pass of the tree).
Characterizing preferred extensions. So far, we have
solved the credulous acceptance problem via admissible
sets. For skeptical reasoning, we have to characterize pre-
ferred extensions rather than the admissible sets. We thus
need a more complicated data structure. Instead of color-
ings for nodest we shall use pairs(C, Γ) whereC is a col-
oring for t andΓ is a set of colorings fort. The setΓ of
“certificates” contains further colorings which characterize
X>t-restricted admissible sets strictly larger than theX>t-
restricted admissible sets characterized byC. Intuitively, Γ
represents thoseX>t-restricted admissible sets which may
ultimately keep the elements inet(C) from being maximal.
Definition 14. Givent ∈ T and a pair(C, Γ) for t, define
et(C, Γ) as the collection of setsS which satisfy the follow-
ing conditions: (i)S ∈ et(C); (ii) ∀C′ ∈ Γ ∃E ∈ et(C

′)
such thatS ⊂ E; (iii) for all X>t-restricted admissible (for
F≥t) setsE such thatS ⊂ E it holds that∃C′ ∈ Γ with
E ∈ et(C

′). If et(C, Γ) 6= ∅, (C, Γ) is avalid pair fort.

The following technical lemmas mirror Lemma 1 and
Lemma 2.

Lemma 3. Let S be anX>t-restricted admissible set for
F≥t, then there is a pair(C, Γ) with S ∈ et(C, Γ).
Proof. Let S be anX>t-restricted admissible set forF≥t.
By Lemma 1, there exists a coloringC with S ∈ et(C).
Now let E = {E | E is X>t-restricted admissible forF≥t

andS ⊂ E}. Moreover, letΓ = {C′ | ∃E ∈ E , s.t.E ∈
et(C

′)}. We claim thatS ∈ et(C, Γ). To prove this, we
check the conditions (i) – (iii) from Definition 14: (i)S ∈
et(C) by the selection ofC. (ii) For all C′ ∈ Γ, there exists
E ∈ et(C

′) with S ⊂ E; this follows by the construction
of Γ from E . (iii) For all X>t-restricted setsE admissible
in F≥t with S ⊂ E, there existsC′ ∈ Γ with E ∈ et(C

′);
again this follows by the construction ofΓ from E .

Lemma 4. Let (C, Γ), (C′, Γ′) be different pairs fort (but
not necessarilyC 6= C′). Then,et(C, Γ) ∩ et(C

′, Γ′) = ∅.
Proof. If C 6= C′ then, by Lemma 2,et(C) ∩ et(C

′) = ∅
and our claim follows. Thus, it remains to consider pairs
(C, Γ), (C, Γ′) with Γ 6= Γ′. W.l.o.g., we assume that there
exists a coloringC̄ for t such thatC̄ ∈ Γ but C̄ /∈ Γ′. In
order to show thatet(C, Γ) ∩ et(C, Γ′) = ∅, we prove that
none of the setsS ∈ et(C, Γ) is contained inet(C, Γ′).

Let S be an arbitrary set inet(C, Γ). Suppose to the
contrary thatS is also contained inet(C, Γ′). By Defini-
tion 14 (applied toet(C, Γ)), there exists anX>t-restricted
admissible setE ∈ et(C̄) for F≥t such thatS ⊂ E. By
Definition 14 (applied toet(C, Γ′)), there exists a coloring
C∗ ∈ Γ′ such thatE ∈ et(C

∗). By Lemma 2, the colorings
C̄ andC∗ coincide. Thus,̄C ∈ Γ′, a contradiction.

Hence, each elementS ∈ et(C, Γ) is anX>t-restricted
admissible set forF≥t and eachX>t-restricted admissible
set forF≥t is characterized by some valid pair fort.

Now that we have augmented valid colorings with sets of
valid colorings, we can identify the preferred extensions of
F in the root node. Recall that the root noder of T has
an empty bag, thus there are only two possible pairs for
r, namely(ǫ, ∅) and (ǫ, {ǫ}), whereǫ is the empty color-
ing. Only the first pair is in relation to preferred extensions
(see Definition 14) and we haveer(ǫ, ∅) = pref (F). Thus,
our pairs have the desired property to characterize preferred
extensions. It remains to find an efficient way to compute
them. As we did for admissible sets, we shall employ vcolor-
ings for this purpose. However, the bottom-up computation
now has to be applied to certificates as well, which makes
the definition more involved. To handle the certificates, we
have to extend the definition of the operators for vcolorings
(see Figure 5) tosets of vcolorings. By slight abuse of nota-
tion, we overload the operators−, +, +̇, and1 as follows:

Γ − a = {C − a | C ∈ Γ andC(a) 6= att},
Γ + a = {C + a | C ∈ Γ},
Γ+̇a = {C+̇a | C ∈ Γ, a 6֌ a, [C] 6֌ a, anda 6֌ [C]},
Γ 1 ∆ = {C 1 D | C ∈ Γ, D ∈ ∆, and[C] = [D]}.

Definition 15. Let t ∈ T be a node witht′, t′′ its possible
children. Depending on the node type oft we define avpair
for t as follows:
LEAF: Each(C, Γ) whereC ∈ Ct andΓ the set of allC′ ∈
Ct with [C] ⊂ [C′], is a vpair fort.
FORGET: If(C′, Γ′) is a vpair fort′, Xt = Xt′ \ {a}, and
C′(a) 6= att , then(C′ − a, Γ′ − a) is a vpair fort.
INSERT: If(C′, Γ′) is a vpair for t′ andXt = Xt′ ∪ {a},
then(C′ + a, (Γ′ + a)∪ (Γ′+̇a)∪ ({C′}+̇a)) is a vpair for
t; if C′+̇a is a vcoloring then(C′+̇a, Γ′+̇a) is a vpair fort
as well.
JOIN: If (C′, Γ′) is a vpair for t′, (C′′, Γ′′) is a vpair for
t′′, and[C′] = [C′′], then(C′

1 C′′, (Γ′
1 Γ′′) ∪ ({C′} 1

Γ′′) ∪ (Γ′
1 {C′′})) is a vpair fort.

A few words about the certificates ofC′ + a in the above
definition are in order. We consider here a new argument
a but do not add it to[C]. Now each certificateE′ ∈ Γ′

may give rise to two certificates ofC′ + a. First, if we do
not adda to [E′], we get thatE′ + a is still a certificate for
C′ + a. But we possibly also get a certificate forC′ + a if
we do adda to [E], namelyE′+̇a – hence the union with
(Γ′+̇a). Finally, we may also get a new certificate ofC′ + a
if we takeC′ itself and adda to it – hence the union with
{C′}+̇a. Similar considerations underly the certificates of
C′

1 C′′.
Example9. Recall the AF from Example 4. The computa-
tion of vpairs for nodest is illustrated in Figure 7. Observe
that we indeed have pairs(C, Γ) and(C, Γ′) with Γ 6= Γ′

for the same node. An example is noden5 with bag{b, c}
on the lhs branch and the coloringC1 with C1(b) = def
and C1(c) = in , i.e. [C1] = {c}. Note thatet(C1) =
{{c}, {a, c}}. However,et(C1, {C1}) = {{c}} (since we
have{a, c} as certificate), whileet(C1, ∅) = {{a, c}}. 3

Theorem 5. For each pair(C, Γ) for a nodet, it holds that
(C, Γ) is a valid pair fort iff (C, Γ) is a vpair fort.

n0

− Γ #

C1 ǫ {C1} 6 E

ǫ ∅ 2

n1

c Γ #

C1 in {C1} 1 E

in ∅ 1

C2 def {C2} 3 E

def ∅ 1

C3 out {C1,C2,C3} 1 E

out {C1,C2} 1

n2

c d Γ #

C1 in def {C1} 1 E

in def ∅ 1

C2 def in {C2} 3 E

def in ∅ 1

C3 out out {C1,C2,C3} 1 E

out out {C1,C2} 1

n3

c d Γ #

C1 in def {C1} 1 E

in def ∅ 1

C2 def in {C2} 1 E

def in ∅ 1

C3 out out {C1,C2,C3} 1 E

out out {C1,C2} 1

n4

c Γ #

C1 in {C1} 1 E

in ∅ 1

C2 out {C1,C2} 1 E

out {C1} 1

n5

b c Γ #

C1 def in {C1} 1 E

def in ∅ 1

C2 def out {C1} 1

C3 out out {C1,C2} 1 E

n6

b Γ #

C1 def ∅ 1

C2 out {C1} 1 E

n7

a b Γ #

C1 in def ∅ 1

C2 att in ∅ 1 E

C3 out out {C1,C2} 1 E

n8

c d Γ #

C1 in def ∅ 1

C2 def in {C2} 1

def in ∅ 1

C3 out out {C1,C2} 1

n9

d Γ #

C1 in {C1} 1

in ∅ 1

C2 out {C1} 1

n10

d e Γ #

C1 in def {C1} 1

in def ∅ 1

C2 out att {C1} 1

C3 out out {C1,C2} 1

n11

d e f Γ #

C1 att in att ∅ 1

C2 in def def ∅ 1

C3 out att def {C2} 1

C4 in def out {C2} 1

C5 out out out {C1−C4} 1

n12

e f Γ #

C1 in att ∅ 1

C2 att def ∅ 1

C3 out out {C1,C2} 1

n13

e f g Γ #

C1 in att def ∅ 1

C2 def in att ∅ 1

C3 att def in ∅ 1

C4 out out out {C1,C2,C3} 1

Figure 7: Computation of vpairs for the example AF.

Proof. As in Theorem 3, the proof proceeds by structural in-
duction. For the induction begin, we have to show that vpairs
and valid pairs coincide onLEAF nodes. For the induction
step, we have to show this property for the remaining nodes.
We give the details forLEAF andFORGETnodes.INSERT
andJOIN nodes can be treated analogously.

LEAF. For a LEAF nodet, the X>t-restricted admissible
sets forF≥t coincide with the sets[C] for the valid colorings
C for t. Moreover, the valid colorings and vcolorings for
t coincide by Theorem 3. Now let(C, Γ) be a valid pair
for t. Then, by Definition 14,[C] ∈ et(C, Γ). Hence, by
Definition 15,(C, Γ) is a vpair fort. Conversely, let(C, Γ)
be a vpair fort and letS = [C]. By Definition 13,S is X>t-
restricted admissible forF≥t. Hence, by Definition 14 and
Definition 15,S ∈ et(C, Γ). (C, Γ) is thus a valid pair fort.

FORGET. Let t be aFORGETnode with successort′ such
thatXt = Xt′ \ {a}. Let (C, Γ) be a valid pair fort. Then
there existsS ∈ et(C, Γ). In particular,S is X>t-restricted
admissible forF≥t and, hence, alsoX>t′-restricted admis-
sible for F≥t′ = F≥t. Thus, by Lemma 3, there exists a
valid pair(C′, Γ′) for t′ with S ∈ et′(C

′, Γ′). By the induc-
tion hypothesis,(C′, Γ′) is a vpair fort′. SinceS is X ′

>t-
restricted admissible andS ∈ et′(C

′), we haveC′(a) 6= att .
Then (C′ − a, Γ′ − a) is a vpair for t. We claim that
(C′ − a, Γ′ − a) = (C, Γ) holds. The equalityC′ − a = C
is shown as in the proof of Theorem 3.

To showΓ′ − a = Γ, we first consider the inclusionΓ′ −
a ⊆ Γ: Let D′ ∈ Γ′ with D′(a) 6= att . By condition (ii) of
Definition 14, there exists anX>t′-restricted admissible set
E for F≥t′ with S ⊂ E andE ∈ et′(D

′). By D′(a) 6= att ,
we know thatE is alsoX>t-restricted admissible. Hence,
by condition (iii) of Definition 14, there existsD ∈ Γ with
E ∈ et(D). As in the proof of Theorem 3, we thus have
D = D′ − a. Hence,Γ′ − a ⊆ Γ.

Now consider an arbitraryD in Γ. By condition (ii) of
Definition 14, there exists anX>t-restricted admissible set
E for F≥t with S ⊂ E andE ∈ et(D). By condition (iii) of
Definition 14 and sinceE is alsoX>t′-restricted admissible,
there existsD′ ∈ Γ′ with E ∈ et′(D

′). As in the proof of
Theorem 3, we thus haveD = D′ − a. Hence,Γ ⊆ Γ′ − a.

We now show that every vpair for aFORGETnode is a
valid pair. Let(C, Γ) be a vpair fort, i.e., there exists a vpair
(C′, Γ′) for nodet′ with C′(a) 6= att and(C, Γ) = (C′ −
a, Γ′ − a). By the induction hypothesis,(C′, Γ′) is a valid
pair for t′. Hence, there existsS ∈ et′(C

′, Γ′). We claim
that alsoS ∈ et(C, Γ) holds. As in the proof of Theorem 3,
S ∈ et(C) holds sinceC = C′ − a. It remains to show that
also conditions (ii) and (iii) of Definition 14 are fulfilled:

To show condition (ii), letD ∈ Γ, i.e.,D is of the form
D = D′ − a for someD′ ∈ Γ′ with D′(a) 6= att . Since
S ∈ et′(C

′, Γ′), there existsE ∈ et′(D
′) with S ⊂ E. As

in the proof of Theorem 3, then alsoE ∈ et(D
′ − a). To

show condition (iii), letE beX>t-restricted admissible for
F≥t with S ⊂ E. ThenE is alsoX>t′-restricted admissible
and, therefore, there existsD′ ∈ Γ′ with E ∈ et′(D

′). Since
E is X>t-restricted admissible, we haveD′(a) 6= att . But
then, as in the proof of Theorem 3, alsoE ∈ et(D

′−a).

Thus, we now have a handle to efficiently decide skeptical

acceptance for bounded tree-width. We just have to mark
all pairs (C, Γ) where the considered argumenta satisfies
C(a) 6= in and pass this mark accordingly towards the root
node. If(ǫ, ∅) carries this mark, then we know that skeptical
acceptance does not hold.
Example10. Let us now consider the problem of deciding if
the argumenta is skeptically accepted in our example AF. In
Figure 7 we illustrate the vpairs which are marked as con-
tradictory for skeptical acceptance with aE in the last col-
umn of the table. Note that for a vpair(C, Γ) to be marked
it is sufficient that for one setS ∈ et(C, Γ) it holds that
a 6∈ S. The counter# in Figure 7 still refers toall X>t-
admissible sets (forF≥t) in et(·, ·). Thus, the number of
such setsS ∈ et(·, ·) with a 6∈ S is, in general, smaller. 3

Theorem 6. DecidingSA for an AF F = (A, R) of tree-
widthk−1 can be done in timeO(222k+1+8k · |A|).

Proof. Recall that the number of colorings for each node
is bounded by4k. In order to maintain the vpairs for each
node, we consider all possible pairs(C, Γ), whereC is a col-
oring andΓ is a set of colorings. Hence, we have to consider
at most4k ·24k

= 2n pairs at each node, wheren = 22k+2k
(we use abbreviationn throughout the proof). Analogously
to the proof of Theorem 4, we can store the vpairs for a node
t in a table with one row per possible pair(C, Γ). In an addi-
tional bit we indicate if this row represents a vpair. Given a
pair(C, Γ), we can find the corresponding row in timeO(n).

We have to show that computing the vpairs at each node
t ∈ T is feasible in timeO(222k+1+8k) in a single bottom-
up traversal ofT . Since the number of nodes ofT may be
assumed to be bounded byO(|A|), the desired upper bound
of the theorem follows immediately. We prove the upper
boundO(222k+1+8k) for the time needed at each nodet ∈ T
by distinguishing the four types of nodes. As in the proof of
Theorem 4, the computationally most expensive node type
is the JOIN node, which is the one we shall focus below.
Other node types are treated similarly.

Let t be aJOIN node with successorst′ andt′′. To com-
pute the table of vpairs fort, we iterate in a nested loop over
all pairs(C′, Γ′) in the table att′ and all pairs(C′′, Γ′′) in
the table att′′ and do the following: check if(C′, Γ′) is a
vpair and(C′′, Γ′′) is a vpair and[C′] = [C′′]. If this is
the case, we compute the vpair(C, Γ) = (C′

1 C′′, (Γ′
1

Γ′′) ∪ (Γ′
1 {C′′}) ∪ ({C′} 1 Γ′′)) and set the vpair-bit in

the row corresponding to(C, Γ) in the table at nodet.. As
in the proof of Theorem 4, the join-operation can be carried
out in timeO(10k · k). The access to the appropriate row in
the table at nodet is feasible in timeO(22k · k). In total, we
have to process at most(2n)2 combinations of vpairs(C, Γ)
and(C′, Γ′). Moreover, the action required for each combi-
nations of vpairs fits intoO(10k · k + 22k · k) = O(24k).
We thus end up with the upper boundO((222k+2k)2 ·24k) =

O((222k+1+4k) · 24k) = O(222k+1+8k).

Conclusion
In this paper, we turned some theoretical tractability results
for argumentation frameworks of bounded tree-width into
efficient algorithms. Moreover, we showed that some further

graph parameters (which, in contrast to tree-width, apply to
directed graphs), do not lead to similar tractability results. In
future work, we will investigate clique-width (Courcelle and
Olariu 2000) which can be considered as more general than
tree-width since there are sets of graphs of bounded clique-
width but arbitrarily high tree-width, while sets of graphsof
bounded tree-width also have bounded clique-width.

Several algorithms for the problems discussed in this pa-
per have been presented in the literature. We mention the
work by Doutre and Mengin (2001) here which relies on
set-enumeration techniques exploring a binary tree. Al-
though this tree is conceptually different from the tree-
decompositions we use, a number of short-cuts for acceler-
ating the enumeration is provided, which could be applied to
our algorithms as well. Recall that our algorithms relied on
the concept of colorings. They look similar to labellings (see
(Caminada and Gabbay 2009; Modgil and Caminada 2009)).
However, labellings are defined for complete frameworks,
while we require here a concept which also applies to sub-
frameworks (recall that for our complexity results in Theo-
rem 4 and Theorem 6, it was essential that colorings are de-
fined over a small number of arguments); in other words, we
do not know in advance, whether an argument will eventu-
ally be defended; this also explains why we need four colors,
whereas the number of labels is usually three. Nonetheless,
known results about relations between labellings for differ-
ent semantics might help us in extending our algorithms to
other semantics, which is indeed a major topic for future
work. In fact, we plan to adapt our algorithms for complete,
stable, stage, semi-stable, and ideal semantics.

Another important aspect of future work is to analyze if
typical argumentation scenarios naturally lead to AFs of low
tree-width. Note that graphs containing big cliques have
high tree-width. However, for argumentation scenarios we
would rather expect graphs with small cliques or cycles,
which are harmless as far as the tree-width is concerned.

Finally, we plan to implement the presented algorithms.
Note that our description of the actions required along the
bottom-up traversal of a tree-decomposition is already quite
close to an implementation in a functional programming lan-
guage. For instance, see (Jakl, Pichler, and Woltran 2009)
for such a realization in the area of answer-set programming
via Haskell.

References
Baroni, P., and Giacomin, M. 2009. Semantics of abstract
argument systems. In Rahwan, I., and Simari, G., eds.,
Argumentation in Artificial Intelligence. Springer. 25–44.
Berwanger, D.; Dawar, A.; Hunter, P.; and Kreutzer, S.
2006. DAG-width and parity games. InProc. STACS’06,
volume 3884 ofLNCS, 524–536. Springer.
Bodlaender, H. L. 1996. A linear-time algorithm for find-
ing tree-decompositions of small treewidth.SIAM J. Com-
put.25(6):1305–1317.
Caminada, M., and Gabbay, D. M. 2009. A logical account
of formal argumentation.Studia Logica93(2-3):109–145.
Caminada, M. 2006. Semi-stable semantics. InProc.
COMMA’06, volume 144 ofFrontiers in Artificial Intel-
ligence and Applications, 121–130. IOS Press.

Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005.
Symmetric argumentation frameworks. InProc. EC-
SQARU’05, volume 3571 ofLNCS, 317–328. Springer.
Courcelle, B., and Olariu, S. 2000. Upper bounds to the
clique-width of graphs.Discr. Appl. Math.101(1-3):77–
114.
Courcelle, B. 1990. The monadic second-order logic of
graphs. I. Recognizable sets of finite graphs.Inf. Comput.
85(1):12–75.
Dimopoulos, Y., and Torres, A. 1996. Graph theoretical
structures in logic programs and default theories.Theor.
Comput. Sci.170(1-2):209–244.
Dix, J.; Parsons, S.; Prakken, H.; and Simari, G. R. 2009.
Research challenges for argumentation.Computer Science
- R&D 23(1):27–34.
Doutre, S., and Mengin, J. 2001. Preferred extensions of
argumentation frameworks: Query answering and compu-
tation. In Proc. IJCAR’01, volume 2083 ofLNCS, 272–
288. Springer.
Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Com-
puting ideal sceptical argumentation.Artif. Intell. 171(10-
15):642–674.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games.Artif. Intell. 77(2):321–
358.
Dunne, P. E., and Bench-Capon, T. J. M. 2002. Coherence
in finite argument systems.Artif. Intell. 141(1/2):187–203.
Dunne, P. E. 2007. Computational properties of argument
systems satisfying graph-theoretic constraints.Artif. Intell.
171(10-15):701–729.
Eggan, L. C. 1963. Transition graphs and the star height of
regular events.Michigan Math. J.10:385–397.
Gruber, H. 2008. Digraph complexity measures and appli-
cations in formal language theory. InProc. MEMICS’08,
60–67.
Hunter, P., and Kreutzer, S. 2008. Digraph measures: Kelly
decompositions, games, and orderings.Theor. Comput. Sci.
399(3):206–219.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. InProc. IJCAI’09,
816–822. AAAI Press.
Johnson, T.; Robertson, N.; Seymour, P. D.; and Thomas,
R. 2001. Directed tree-width.J. Comb. Theory, Ser. B
82(1):138–154.
Kloks, T. 1994.Treewidth, Computations and Approxima-
tions, volume 842 ofLecture Notes in Computer Science.
Springer.
Modgil, S., and Caminada, M. 2009. Proof theories and
algorithms for abstract argumentation frameworks. InAr-
gumentation in Artificial Intelligence. Springer. 105–129.
Robertson, N., and Seymour, P. D. 1986. Graph minors. II.
Algorithmic aspects of tree-width.J. Algorithms7(3):309–
322.
Verheij, B. 1996. Two approaches to dialectical argumen-
tation: Admissible sets and argumentation stages. InProc.
NAIC’96, 357–368.

