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Abstract

Abstract argumentation frameworks have received a lot-of in
terest in recent years. Most computational problems in this
area are intractable but several tractable fragments tese b
identified. In particular, Dunne showed that many problems
can be solved in linear time for argumentation frameworks
of bounded tree-width. However, these tractability result
which were obtained via Courcelle’s Theorem, do not disectl
lead to efficient algorithms. The goal of this paper is to turn
the theoretical tractability results into efficient alghms and

to explore the potential of directed notions of tree-width f
defining larger tractable fragments.

Introduction

Argumentation has evolved as an important field in Al with
abstract argumentation frameworks (AFs, for short) as in-
troduced by Dung (1995) being its most popular formaliza-
tion. Meanwhile, many semantics for AFs have been pro-
posed (for an overview see (Baroni and Giacomin 2009)).
Most computational problems in this area are intractable
(see e.g. (Dimopoulos and Torres 1996; Dunne and Bench-
Capon 2002)), but the importance of efficient algorithms
for tractable fragments has been clearly recognized (see
e.g. (Dix et al. 2009)). Such tractable fragments are,
for instance, symmetric argumentation frameworks (Coste-
Marquis, Devred, and Marquis 2005) or bipartite argumen-
tation frameworks (Dunne 2007).

An interesting approach to dealing with intractable prob-
lems comes from parameterized complexity theory and is
based on the following observation: Many hard problems
become tractable if some problem parameter is bounded
by a fixed constant. This property is referred tofixed-
parameter tractability(FPT). One important parameter of
graphs is the tree-width, which measures the “tree-likghes
of a graph. Indeed, Dunne (2007) showed that many prob-
lems in the area of argumentation can be solved in linear
time for argumentation frameworks of bounded tree-width.
This FPT-result was shown via a seminal result by Courcelle
(1990). However, as stated in (Dunne 2007), “rather than
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synthesizing methods indirectly from Courcelle’s Theorem
one could attempt to develop practicidect methods”. The
primary goal of this paper is therefore to present new, tlirec
algorithms for (skeptical and credulous) reasoning.

Clearly, the quest for FPT-results in argumentation should
not stop at the tree-width, and further parameters should
be analyzed. This may of course also lead to negative re-
sults. For instance, if we consider as parameter the degree
of an argument (i.e., the number of incoming and outgoing
attacks), Dunne (2007) showed that reasoning remains in-
tractable, even if we restrict ourselves to AFs with at most
two incoming and two outgoing attacks. A number of further
parameters is however, still unexplored. Hence, the second
major goal of this paper is to explore the potential of fur-
ther parameters for identifying tractable fragments ofiarg
mentation. In particular, since AFs are directed graphs, it
natural to consider directed notions of width to obtain éairg
classes of tractable AFs. To this end, we investigate the ef-
fect of bounded cycle-rank (Eggan 1963) (a precise defini-
tion will be given below) on reasoning in AFs. We show that
reasoning remains intractable even if we only consider AFs
of cycle-rank 2. Actually, many further directed notions of
width exist in the literature. However, it has been recently
shown in (Berwanger et al. 2006; Hunter and Kreutzer 2008;
Gruber 2008) that problems which are hard for bounded
cycle-rank remain hard when several other directed variant
of the tree-width are bounded. Hence, in the current state of
research, bounded tree-width seems to be the most general
parameter to obtain FPT.

Due to lack of space, we have to restrict ourselves here
to the preferred semantics. Roughly speaking, the preferre
extensions of an AF are maximal admissible sets of argu-
ments, where admissible means that the selected arguments
defend themselves against attacks. One reason for choos-
ing the preferred semantics is that it is widely used. More-
over, admissibility and maximality are prototypical prope
ties common in many other semantics, for instance complete
and stable (Dung 1995), stage (Verheij 1996), semi-stable
(Caminada 2006), and ideal semantics (Dung, Mancarella,
and Toni 2007). Hence, we expect that the methods devel-
oped here can also be extended to other semantics.

Structure of the paper and summary of results.

¢ After recalling some basic notions and results on AFs and
width-measures for graphs, we show that reasoning remains



intractable in AFs with bounded cycle-rank (Eggan 1963).

As has been mentioned above, this negative result carries

over to many other directed notions of width.

e A dynamic programming approach is developed to char-
acterize admissible sets of AFs. The time complexity of our
algorithm is linear in the size of the AFs (as expected by
Courcelle’s Theorem) with a multiplicative constant that i
singleexponential in the tree-width (which is in great con-
trast to algorithms derived via Courcelle’s Theorem).

¢ In case of credulous reasoning, the algorithm for admissi-

ble sets also applies to the preferred semantics. For slpti

Figure 1: A tree decomposition of the graph in Example 1.

Bench-Capon 2002)). The reason wéx is located on a
lower level of the polynomial hierarchy compared34, is

reasoning, we have to extend this algorithm so as 10 COVer the fact that it is sufficient to check whetheis contained
also the preferred semantics. Finally, we outline some di- i, at least one admissible set for the given AFThena is

rections of future research — notably the further extensfon
our algorithms to other semantics.

Argumentation Frameworks
In this section we introduce (abstract) argumentation &am

works (Dung 1995), recall the preferred semantics for such

frameworks, and highlight some known complexity results.

Definition 1. An argumentation framework (AR} a pair
F = (A, R) whereA is a set of argumentsanil C A x A

is the attack relation. We sometimes use the notatien b
instead of(a,b) € R, in case no ambiguity arises. Further,
for § C Aanda € A, we writeS — a (resp.a — S)
iff there exist$ € S, such thath — a (resp.a — b). An
argumenta € A is defendecby a setS C A iff for each

b € A, such thab — a, alsoS — b holds.

An AF can naturally be represented as a directed graph.
Examplel. Let F = (A, R) with A = {a,b,c,d,e, f,g}

andR = {(a,b), (¢,b), (c.d), (d.c), (d.e), (e.9), (f.e),
(g, f)}. The graph representation fis given as follows.

also contained in a preferred extensiorfofln other words,
the maximality requirement of preferred extensions doés no
come into play folCA. ForSA, the situation is different, and
maximality has to be taken into account, leading to an addi-
tional source of complexity.

Parameters for Graphs

In this section, we review several notions of parameters for
graphs (both directed and undirected). One of the most im-
portant concepts for FPT on graphs is the tree-width, which
was introduced by Robertson and Seymour (1986).

To start with, we recall the concept of an induced sub-
graph: given a graplir = (V, E) and a set4, we write
Gla = (VNA,EN(Ax A)) for the subgraph of induced
by A.

Definition 4. Let G = (V,E) be an undirected graph.
A tree decompositiof G is a pair (7,X) whereT =

(Vr, ET) is atree andY¥ = (X;)tcv, is a set of so-called
bags, which has to satisfy the following conditions:

1. Uiy, Xt =V, ie.XisacoverofV;
2. Foreachv € V, T|yvex,) is connected;
3. Foreach{v;,v;} € E, {v;,v;} C X, for somet € Vr.

Definition 2. Let F = (A,R) be an AF. AsetS C A
is conflict-free (in F), iff there are noa,b € S, such that
(a,b) € R. AsetS C Aisadmissibleor F, if S is conflict-
free inF and eachs € S is defended by in F.

Definition 3. Let F' = (A4, R) be an AF. A sef is apre-
ferred extensiowof F, iff S is a maximal (wrt. subset inclu-

sion) admissible set faF'. We denote the collection of all
preferred extensions df by pref (F).

For the AF F' in Example 1, we get as admissible sets
{}a {a}v {C}a {d}a {da g}a {av C}v {av d}’ and{a7 dv g} Con-
sequentlypref (F)) = {{a,c},{a,d, g}}.

The width of such a tree decomposition is given by
max{card(X,) | t € V7} — 1. Thetree-widthof a graphG
is the minimum width over all tree decompositiong:of

It was shown by Bodlaender (1996) that, for fixed> 1,
it can be decided in linear time if a graph has tree-width
at mostw. Moreover, in case of a positive answer, a tree
decomposition of widthyo can be computed in linear time.
Figure 1 shows a tree decomposition of widtfor the AF
from Example 1 (when considered as an undirected graph).

Many NP-hard problems on graphs have been shown to be
linear time computable on graphs of bounded tree-width. In

Next, we recall the complexity of reasoning over preferred particular, Courcelle’s Theorem (Courcelle 1990) proside
extensions. To this end, we define the decision problems of 3 powerful tool to obtain such results. It states that any

credulous acceptanc€A) and skeptical acceptancgX),
which have as input an AF' = (4, R) and an argument
a€ A

e CA: Isa contained in somé& € pref (F)?
e SA: Isa contained in eacl’ € pref (F)?
It is known thatCA is NP-complete, whileSA is 15

property over graphs which can be expressed in Monadic
Second-Order Logic, can be decided in linear time (wrt. to
the size of the graph) for graphs which have bounded tree-
width. Dunne (2007) used this result to show the FPT of the
problemsCA andSA wrt. the tree-width.

However, there is a certain problem when using tree-
width in the area of directed graphs. In fact, there are many

complete (see (Dimopoulos and Torres 1996; Dunne and digraphs which we intuitively consider as simply structlre



but already have high tree-width. As an example consider
the acyclic digraphs of the forrm(> 1)

Gn = ({al,.. .,an},{(ai,aj) | 1<i< ,] < TL})
Forn = 5, G,, looks as follows

® as aq
S~

Seen as undirected graph, e&gh turns into a clique of
sizen. Thus, the tree-width of the grapbs, (with increas-
ing n) cannot be bounded by a constant.

As AFs are directed graphs, it seems natural to consider
parameters exclusively defined for digraphs. Indeed, many
such measures exist like directed tree-width (Johnson et al
2001), DAG-width (Berwanger et al. 2006), and Kelly-
width (Hunter and Kreutzer 2008). An old but particularly
interesting parameter, which we shall focus on here, iseeycl
rank (Eggan 1963). One reason why there are many differ-

as

ent such notions is due to the fact that, so far, no analogue to

Courcelle’s Theorem has been found for digraph problems.

Definition 5. Let G = (V, E) be a directed graph. The

cycle-rankr(.) of G is defined as follows: an acyclic graph
hasr(G) 0; if G is strongly connected thenG) =

1 + minyevr(Gly\fvy)- If G is not strongly connected,

thenr(G) is the maximum cycle-rank among all strongly
connected components (SCCsibf

Note that the graph&,, introduced above are acyclic and,
thus, have cycle-rank for any n. The cycle-rank is of
particular interest because recent results (Berwangel et a
2006; Hunter and Kreutzer 2008; Gruber 2008) showed that
problems which are hard for bounded cycle-rank also remain

Figure 2: AFF for example CNFb.

For any CNF®, F3 can be constructed in polynomial
time, and® is satisfiable iff argumen® is credulously ac-
cepted inFg. This gives the NP-hardness f@A, first
shown by Dimopoulos and Torres (1996) and later rephrased
in terms of AFs by Dunne and Bench-Capon (2002). We
strengthen this result as follows.

Theorem 1. CA is NP-hard, even if the problem is restricted
to AFs which have cycle-rank

Proof. As discussed above, AHS of the form as given in
Definition 6 provide us with a valid reduction from SAT to
CA. To prove the assertion it is thus sufficient to show that
for each CNF®D, the corresponding AF' has at most cycle-
rank 1. Indeed, such an AF has the following SCCs:
F|;. 5 for eachz € Z and the singletong’, ..., Cp,
and®. Obviously, components’|. -, have cycle-rank
and all other components have cycle-ranidence, eacli’
constructed following Definition 6 has cycle-rahk O

We now turn our attention to thHZ'-hard problenSA.

hard when some of the other aforementioned parameters areThe following reduction from QBFs to AFs is used by

bounded. Further, the class of graphs with bounded cycle-
rank is incomparable with the class of graphs with bounded
in- and out-degree. The latter was analyzed in terms of AFs
by Dunne (2007), who showed th&@A andSA remain in-
tractable for AFs with bounded in- and out-degree.

Some Negative Results for Directed Graphs

We continue to prove that NP-hardness @@ holds, even

if we restrict ourselves to AFs with bounded cycle-rank. We
employ the reduction from (Dimopoulos and Torres 1996)
which maps each instance (i.e. a CNF) of the NP-hard prob-
lem SAT to an argumentation framework.

Definition 6. Given a CNF® = A", C; with C; being
clauses over variableg, defineFs = (A, R) with
A {,Cy,...,C,YUZUZ
R {(Cj,®)[1<j<m}u
{(2,2),(z,2) | z€ Z} U
{(#,C;) | zoceursinC;,1 < j <m}uU
{(2,C;) | ~z occursinC;,1 < j < m}

whereZ = {z | z € Z} is a set of fresh arguments.

Example2. For® = (21 V22 V z3) A (22 V =123 V —124) A
(21 V 22 V 24), Figure 2 illustrates the AFs. &

Dunne and Bench-Capon (2002).

Definition 7. Given a QBF¥ = VYY3Z A\7", C; over vari-
ablesX =Y U Z. We define the AE'y = (4, R) with

A = {U,0y,...,Cr,}UX UXU/{by,by, b3}
R = {(C;¥)[1<j<m}iu
{(z,z),(z,2) |z € X} U
{(z,C;) | x occursinC;,1 < j<m} U
{(z,C;) | ~z occursinC;,1 < j<m}uU
{(W,b1), (9, bo), (¥, bg)} U
{(blabQ)a(b25b3)a(b3abl)}u

{(b1,2),(b1,2) | 2 € Z}
whereX = {z | z € X} is a set of fresh arguments.

Example3. ConsiderV = Vy y23z324(y1 V y2 V 23) A
(my2 V —z3 V —zg) A (b V y2 Vo z4). Figure 3 illustrates
the corresponding AE . <

As shown by Dunne and Bench-Capon (2002), the follow-
ing holds for each QBR of the above form¥ is valid iff
argument¥ is contained in eacl§ € pref(Gy). SinceGy
can be constructed from in polynomial time, this showed
117’ -hardness of the probleSA. We strengthen this result
as follows.



Figure 3: AFGy for example QBFRV.

Theorem 2. SA isI1%'-hard, even if the problem s restricted
to AFs which have cycle-rarik

Proof. We can proceed similar as in the proof of Theorem 1.
Moreover, we are allowed to restrict ourselves to QB

the formvY'3Z AL, C; where eaclC; contains at least
one occurrence of an atom froffy the validity problem for
such QBFs obviously remain§} -hard. Each ARG which
follows Definition 7 has SCCs:

e Glgy,5 foreachy € Y;

] GlstfS = {Z,Z | z € Z}U{Cl,...,Cm,q),bl,bg,bg}.

Componentgr|;, 5 have cycle-rank, andH = G|s has
cycle-rank2. This can be seen as follows: Removitkg
leads to SCCH{|. = (for eachz € Z), H|, b, 55}, and
singletong” ,...,C,,. Allthese have cycle-rankor(. [

Dynamic Programming for Argumentation

Before we introduce our algorithms, we need some more
notation for tree decompositions. In particular, it is uséd
reduce the number of different node types and to identify a
root node. The following concept serves this purpose.

Definition 8. A tree decompositiof, X') of a graphG is
called niceif 7 is a rooted tree and if each notle € 7 is
of one of the following types:

1. LEAF:tis aleaf of T

2. FORGET has only one child’ and X; = X, U{v}

3. INSERT? has only one child’ and X;U{v} = Xy

4. JOIN:t has two childrert’, ¢t and X; = Xy = Xy

Here the operatot) denotes the disjoint union of two sets
andv denotes an arbitrary vertex i@'.

Kloks (1994) showed that a tree decompositi@n X') of
a graphGG where7 hasn nodes, can be transformed in time
O(n) into a nice tree decompositiatY ', X’) of G which
has the same width &3, X') and whereZ”’ hasO(n) nodes.

As already mentioned, the concept of tree-width is de-
fined for undirected graphs but can also be applied to di-
rected graphs and thus to AFs.

'ForT = (Vr, E1) we often writet € 7 instead oft € V7.

Definition 9. Let F = (A4, R) be an AF. A tree decompo-
sition of the undirected grapbA4, R’) where R’ contains
the edges of? without orientation is called dree decom-
positionof F'. The tree-width of an AR is given by the
minimum width over all tree decompositionsfaf

Definition 10. For a tree decompositiof, X') of an AFF’
andt € 7, let X5, be the union of all bags(,; such that
s occurs in the subtree df rooted att. Moreover, letX -
denoteX>, \ X;. We also use the following terminology:
F, = F|x, is thesub-framework in; F~, = F|x., is the
sub-framework induced by (the subtree rooted at)

Note that the sub-framework induced by the root of such
a decomposition of an AF’ is F' itself. W.l.o.g., we may
restrict ourselves to nice tree decompositions where tge ba
of the root is empty. Unless stated otherwise, we assume be-
low that(7", X) denotes a nice tree-decomposition for some
given AFF.

Example4. For the AFF from Example 1, we already de-
picted a tree decompositionin Figure 1. To obtain a nice tree
decomposition, we have to introduce some further nodes.
For instance, between the nodes with bégs} and{b, ¢},

we insert a further node with bgg}, etc. Moreover, we add
two forget-nodes above the;, d}-node in order to have an
empty root. The resulting nice tree decompositionfofs
illustrated in Figure 4, which has to be read as follows. In
each node, the bagX; contains the arguments in (solid)
cycles. In addition, we depicted in each nadbe AF F},

i.e. the sub-framework im; adding the dotted parts of the
graphs, we obtai#, the sub-framework induced by <

Characterizing admissible sets. We first introduce a rel-
ativization of admissible sets to a given $&bf arguments.

Definition 11. Let FF = (A, R) be an AF andB a set of
arguments. A sell C A is a B-restricted admissible set for
F,if Eis conflict-free inf” and E defends itself ik’ against
alla e AN B.

Example5. An AF ({e, f,g}.{(e.9). (g, f), (f,e)}) has
{g}-restricted admissible sefis{e} and{g}. <&
Note that forA C B, B-restricted admissible sets of AFs
(A, R) are just the standard admissible sets;4an B = 0,
B-restricted admissible sets are just the conflict-free sets
We are now prepared to present the dynamic program-
ming algorithm. Therefore, we assign to each node 7
a certain set of mappings: X; — {in, out, att, def }. We
call such mappings also colorings far The rationale be-
hind a coloring fort is as follows: explicitly, a coloring
characterizes the s@f'] = {a | C(a) = in} and the val-
uesout, att, def tell us about the relationship betwegT|
and the remaining arguments \ [C]. In fact, att will de-
note arguments which attagk] but are not attacked B¢’],
def denotes arguments attacked [}, and out are those
which are in no relation with arguments frdri]. However,
we will define colorings in such a way that they character-
ize sets overX>;, rather than ovelX; as sketched above.
Formally, this intuition is captured as follows:

Definition 12. Given a coloringC for a nodet € 7, define
e+(C) as the collection of{ .. ;-restricted admissible sets
for F; which satisfy the following conditions for eache
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Figure 4: Tree decomposition &f with sub-frameworks.

X:: () Cla) = iniff a € S; (i) Cla) = def iff S — a;
(i) C(a) = attiff S~ aanda — S; (iv) C(a) = out iff
S aanda S, If e (C) # 0 we callC avalid coloring
for t. The set of valid colorings faris denoted by,.

Example6. Consider the nodei;; of our example tree
decomposition withX,,,, = {d,e, f} (see the rhs of
the tree in Figure 4) and the coloring with C(d)
in and C(e) = C(f) = def. We haveF>,
({d7 ¢, f7 g}v {(d7 6)7 (67 9)7 (97 f)a (fa 6)}) andX>t = {g}
The only set which isX.-restricted admissible fof>,
and satisfies the conditions from Definition 12{ig, g}.
S = {d} would also beX-,-restricted admissible but vi-
olates Condition (ii), sinc€'(f) = def andS »~ f. O

Our ultimate goal is to efficiently compuég for the root
noder. The reason for this is the fact thigf, . e:(C)
gives exactly the set oK - ,-restricted admissible sets for
F>; (as we show next). Since the raohas an empty bag,
C, thus characterizes the admissible set§'of

By definition, each element in,(C) is also anXs-
restricted admissible set fét... However, also the opposite
direction holds, as we show next.

Lemma 1. Let S be anX-;-restricted admissible set for
F>, then there is a colorin@” € C, such thatS € e,(C).
Proof. Let S be anX.-restricted admissible set fdr-;.

Then, for each argumente X, one of the following con-
ditions hold: (i)a € 5, (ii) S — a, (iii) S »~ a anda — S5,

or(iv) S »~ a anda »~~ S. For these four cases, we defifie
as follows:

In case (i):C(a) = in,

in case (ii):C(a) = def,

in case (iii):C(a) = att, and

in case (iv):C(a) = out.
By the construction of’, the setS satisfies conditions (i) —
(iv) in Definition 12 and, since' is X~ ;-restricted admissi-
ble for F~,, it holds thatS € ¢,(C). O

Moreover, different colorings characterize different ex-
tensions.

Lemma 2. LetC, C’ be different colorings fot € 7. Then,
et(C) n et(C’) = (Z)

Proof. Suppose to the contrary that there is a Sete
e:(C) N e (C"), whereC and C’ are different colorings
for t. Then there exists an argumente X, such that
C(a) # C'(a). It remains to inspect all possible pairs of
values ofC(a) andC’(a) and to derive a contradiction in
each case. For example, [8f{a) = def andC’(a) = att.
By Definition 12,C'(a) = def impliesS — a. On the other
hand,C’(a) = att impliesS »~ a, a contradiction. Similar
arguments hold for the other combinations of colors. [

To guarantee tractability, we want to compute the Sets
in a bottom-up manner along the tree-decompositithout
an explicit computation oé,(-). Therefore, we recursively
define the concept of vcolorings which we afterwards show
to be equivalent to valid colorings. The operations on color
ings used in the next definition are depicted in Figure 5.

Definition 13. Lett € 7 be anode and let, t” its possible
children. Depending on the node typetpive define acol-
oringfor ¢ as follows:

LEAF: Each coloringX; — {in, out, att, def } where

C(x)=in = C(y) € {att, def} forall y — z;

C(z) =att = 3Fy:C(y) =1inandz — y;

C(x) =def < Fy:C(y)=inandy — z;
holds for allz € X4, is a vcoloring fort.
FORGET: IfC is a vcoloring fort’, X; = Xy \ {a}, and
C(a) # att, thenC — a is a vcoloring fort.
INSERT: IfC is a vcoloring fort’ and X; = Xy U{a}, then
C + a is a vcoloring for¢; if also a %~ a, [C] #~ a, and
a »~ [C] hold, thenC'+a is a vcoloring fort as well.

JOIN: If C is a vcoloring fort’, D is a vcoloring fort”, and
[C] = [D], thenC X D is a vcoloring fort.

Let us illustrate this idea on our running example.

Example7. Recall the AF from Example 1 and its tree de-
composition in Figure 4. Figure 6 illustrates the bottom-
up computation of the vcolorings. Consider, for instance,
the leaf noden,3 with bag{e, f,¢g}. We have here four
vcolorings forni3 which correspond to the conflict-free
(and thus to thd-restricted admissible) sets fét.,,,, =

({e, f,9},{(e;9),(g, ), (f,e)}). The next node:,, above
niz is of type FORGET and removes argument Thus
Xsn,, = {g}. The vcolorings fom, are obtained from
the vcolorings fom;3 with the exception of the coloring'



(b) foreachb € A\ {a}

C)ifbe A

def if b =a and[C] —

att ifb=a,|[C ]>7L>aanda>—> [C]
out otherwise

=C(
(C+a) {
in ifb=aorC(b) =1in
def if a # band
((a,b) € FyorC(b) = def)
(O +a)( out if Etayé% C’(t)—o(ut), -
((L b ¢ Ft, (b,a) §§ Ft
att otherwise
in if C(b)=D()=1in
out if C(b) = D(b) = out
def if C(b) = def or D(b) =
att otherwise

Figure 5: Operations faf', D : A — {in, out, att, def }.

with [C] = {f}. Here we hav&’(g) = att, which violates
the construction for thEORGETnode. The vcolorings for
n12 are now in accordance with tbé.,,,,-restricted admis-
sible sets forfs,,, = F>,,, (see also Example 5 where
we already analyzed exactly this situation). The next node
ny1 IS of typeINSERTand addsi. Consider the coloring

C’ for ni2 with C’(e) = att andC’(f) = def. We have
two possibilities to addl. In case we want to be in the
set, we obtain the coloring with C'(d) = in, C(e) = def,
C(f) = def (note thate changes its color since it is now

a “defeated attacker”); we have seen this coloring already
in Example 6. The other possibility is to havkenot in

the set, resulting in the coloring” with C”(d) = out,
C"(e) = att, C"(f) = def.

Due to lack of space, we have to omit a full discussion of
the computation here. However, for a better understanding
we also added thgt column in Figure 6 to show the cardi-
nalities of the sets;(C), i.e. the number ofX . ;-restricted
admissible sets foF; characterized by vcoloring’. In
particular, we see in the root that we end up with 8 such sets
which refer to the admissible sets from our example AF (see
Example 1). O

Vcolorings provide us with exactly the same information
as valid colorings.

Theorem 3. For each coloringC for a nodet, it holds that
C is a valid coloring fort iff C'is a vcoloring.

(CHD)(b) =

Proof. We proceed by structural induction. For the induc-
tion begin, we have to show that vcolorings and valid col-
orings coincide oi.EAF nodes. For the induction step, we

show this property foFORGET INSERT andJOIN nodes.

LEAF. ForaLEAFnodet, we haveX-,; = () and, therefore,
the X ;-restricted admissible sets fék.; coincide with the
conflict-free sets.

First, letC be a vcoloring fort. We have to show that
thenC is a valid coloring fort. Suppose to the contrary that
it is not, i.e., eithef{C] is not conflict-free offC] violates
one of the conditions (ii) — (iv) in Definition 12. It is easy to
check that, in both cases, one of the conditiongfdreing
a vcoloring is violated. For instance, if there is a conflict i
[C], then there exist argumentsy € X; with © — y and
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Figure 6: Computation of vcolorings for the example AF.

C(z) = C(y) = in. Hence, the first condition in Definition
13 for vcolorings at d EAF node is violated, a contradic-
tion.

Now suppose that' is valid coloring fort, i.e.,C satisfies
the conditions (i) — (iv) of a coloring (see Definition 12) and
C' is conflict-free inF>;. Then(C satisfies the condition
of a vcoloring for aLEAF node according to Definition 13.
For instance, let,y € X; with C(z) = in andy — .
Then, sinceC is a coloring, either case (ii) or case (ii) of
Definition 12 applies and, thu€(y) € {att, def } holds.

FORGET. Lett be aFORGETnode with successaf, such
thatX, = X, \ {a}. Of course, then als& >, = X>,» and
>t = X>t/ U {a} hold.
Let C be a valid coloring fo¢. We show that there exists



a valid coloringC” for ¢’ with C’(a) # att andC = C’ —a.
We defineC’ as follows: For allb € X, = Xy \ {a},
we setC’(b) = C(b). Hence, no matter which value of
{in, def, out} we assign taC’(a), we haveC = C' — a.

In order to define”’(a), we consider an arbitrary sét €
e+(C) and distinguish two cases:

(1) If a € S, then we set’’(a) = in. SinceS is Xs,-
restricted admissible faF,, it is also X -restricted ad-
missible forF~,. Moreover,S € e,/ (C’), i.e.,C’ is a valid
coloring fort’. Hence, by the induction hypothess) is a
vcoloring fort’ and, therefore, als6' = C’ — a is a vcolor-
ing for¢.

(2) Now leta ¢ S. If S — a, we setC’(a) = def. If
S /= aanda ~ S, we setC’(a) = out. In both cases,
S € ey (C"). Note that the cas# /~ a anda — S cannot
occur since, by assumptiof,is X ;-restricted admissible
for F>;. As above, we may apply the induction hypothesis
to conclude that”’ (and thus als@) is a vcoloring.

Now let C' be a vcoloring fott, i.e., there exists a vcol-
oring C’ for ¢’ with C’(a) # att andC = C’ — a. By the
induction hypothesis(” is a valid coloring fort’. Hence,
there existsS € e (C”), i.e., S is X~ -restricted admissi-
ble for F>;, = F>,. SinceC’(a) # att, it cannot happen
that botha — S andS & a hold. But thenS is also X~ ;-
restricted admissible faf-; andsS € e,(C). Thus,C € C;.

INSERT. Lett be anINSERTnode with successaf, such
that X;, = X, U {a}. Thus, we have thak>, = X>, U
{a} and X5; = Xsy. By properties (2) and (3) of tree-

X>p U X>ypr. SO we can partitions, into three disjoint
setsXsy, X5 and X,. Thus every sef C X, can be
seen as the union of two sefs C X>, andSy; C X>u»
with Sl n Xt = SQ ﬂXt.

To show that each vcoloring for ¢ is also a valid col-
oring for ¢, we proceed as follows: by definition, we have
vcoloringsC” for t' and respectively>” for ¢/, such that
C = C" X C"” and[C’] = [C"]. By the induction hypoth-
esis,C’ andC” are also valid colorings for the respective
nodes. Hence, there exists &R.,.-restricted admissible set
S1 € ey (C') for > and anX s -restricted admissible set
Sy € e (C") for F>yr. Using[C'] = [C”], one can now
show thatS = S, U S, is thenX < ;-restricted admissible for
Fs,. It then remains to show th&t € ¢,(C), which can be
done by checking thaf satisfies the conditions (i) — (iv) in
Definition 12 for everys € X;,.

Now assume that € (,, i.e., there exists at,-
restricted admissible st € e,(C) for F>;. We define
S1 =85NX>y andSy = SN Xy, One can now show
thatS; is X~ -restricted admissible faF>,/, Sy is X -
restricted admissible foF>.., andS; N X; = Sp N X;.
As in the proof of Lemma 1, we can define a colorifig
for ¢ and a coloringC” for ¢, such thatS; € e (C’) and
Sy € ep(C"). ThenC’ € Cy, C”" € Cyv, and, therefore, by
the induction hypothesig;” andC” are vcolorings. Now
define the veoloring>* = ¢’ X C” for nodet. We claim
thatC* = C holds. To prove this claim, we have to show
thatC*(a) = C(a) for everya € X;. This equality is shown
by distinguishing the 4 possible valu¢sn, def, att, out}

decompositions, we know that there are no attacks between gng by exploiting the conditions (i) — (iv) in Definition 12 as

the new argument and arguments itX <. ;.

Let C be a valid coloring fort, i.e., there exists an
Xs-restricted admissible sef € ¢,(C) for F>;. By
X>¢ = Xsv, Sis also X -restricted admissible faf,.
Moreover, since: cannot attack any argumentin. ., also
S\ {a} is X5 -restricted admissible faf, (of course, if
a ¢ S, thenS \ {a} = S and the latter admissibility prop-
erty is trivial). As in the proof of Lemma 1, we construct a
coloring C’ for ¢’ with S'\ {a} € e (C”) as follows. For
arbitraryb € X,,, we define:

C'(b) =inifbe S\ {a},

C'(b) = def if b¢ SandS \ {a} — b,

C'(b)=attifbeg S, b— S\ {a},andS \ {a} /b,

C'(b) = outif b S, b~ S\ {a},andS \ {a} /~ b.
Thus,C’ € Cy, and by the induction hypothesis, a vcoloring
for ¢’. Moreover, it is easy to check that eith@r= C’ + a
holds (ifa ¢ S) or C = C’+a holds (ifa € S).

Now let C be a vcoloring fot, i.e., there exists a vcolor-
ing C’ for ¢’ with eitherC = C’ + a or C = C’'+a. By the
induction hypothesis(’ is a valid coloring, i.e. there ex-
ists an X -restricted (and, henceX - ;-restricted) admis-
sible setS e,/ (C') for F~,. It is easy to check that then
S € ¢,(C’ 4 a). Moreover if the seS U {a} is conflict-free
thenS U {a} € e;(C'+a) as well. Thus(C' (which is either
C’ + a or C'+a) is a valid coloring fort.

JOIN. Due to the lack of space, we give only a sketch for
this case.

Let ¢t be aJOIN node with successons andt”. Then
Xy = X{ = Xé/ andXZt/ mXZt” = X; andXZt =

well as the definition of thed operator in Figure 5. O

Let us briefly describe how credulous acceptance can now
be performed via vcolorings: We just have to mark each col-
oring which assigns the value to the argument we are in-
terested in and accordingly pass this mark up to the root.
If the coloring of the root has the mark, then we know that
credulous acceptance for this argument holds

Example8. Recall the computation from Example 7 in Fig-
ure 6. We now consider the problem of deciding if the ar-
gumentd is credulously accepted. The arguméeri$ intro-
duced in the nodess; andn; thus we mark all their vcol-
oringsC satisfyingC(d) = in and illustrate this with &'in
the last column of the table. In the remaining nodes of the
tree-decomposition we mark a coloring iff it is constructed
using at least one marked coloring. Consider, for instance,
the nodens with the coloringsCy (¢) = in, C1(d) = def,
Cs(c) = def ,Ca(d) = in andCs(c) = out, C5(d) = out.
The successor nodey has coloringsCi(d) = in and
C}(d) = out, the first marked for credulous acceptance. As
Cs is constructed via the marked (Cy = Cf + {c})itis
also marked and a8; andCs are both constructed via)
(C1 = Ch+{c}, C3 = C% + {c}) they are not marked. &
Since vcolorings can be computed efficiently (for
bounded bag size) we obtain the following result for such an
algorithm, assuming that AFs come together with a nice tree
decomposition of suitable width. The upper bound on the
time complexity is obtained by considering the maximum
number of vcolorings per node and assuming a straightfor-



ward method (e.g., nested loops) for computing a node’s setting the vcoloring-bit of”). In total, the vcolorings for a

vcolorings from the vcolorings at the child node(s).
Theorem 4. DecidingCA for an AFF = (A, R) of tree-
width k—1 can be done in tim&(10* - k - | A|).

Proof. First, we observe that the number of colorings for

each bag is bounded B, since there at mogt arguments
in a bag and there are only 4 colof#n, out, def , att} to

JOIN node can thus be computed in tiG¢10* - k). O

As hinted at in Example 7, our dynamic programming ap-
proach can be easily extended so asdant the number of
admissible setdn fact, we just need to add the computation
of the # column to our algorithm (which is straightforward
due to Lemma 2). Finally, we also emphasize the possibility

assign to these arguments. We assume that the set of vcolor-of enumerating (with linear delay) all admissible s@ising

ings for a node is stored in a table with* rows. Each row
contains a coloring plus an additional bit which indicafes i
this coloring is a vcoloring. We assume that, given a color-
ing C, we can find the corresponding row in this table within
time O(k). We have to show that computing the vcolorings
at each node € 7 is feasible in timeD(10* - k) in a single
bottom-up traversal of . Since the number of nodes Bf
may be assumed to be bounded®{} A|), the desired up-
per bound of the theorem follows immediately. We prove
the upper bound@(10* - k) for the time needed at each node
t € T by distinguishing the four types of nodes in a nice
tree-decomposition.

At aLEAF nodet, we inspect each coloring in the table
att and checkin timé (k?) if C'is a vcoloring, i.e., conflict-
free. To this end, we simply consider all pairs of arguments
in the bag. This yields the bourt@(4” - £2).

For aFORGETnodet, we iterate over all vcolorings”
for the successor nodé and check for each such” if
C'(a) # att. If this is the case, we compute the coloring
C = ' —aintimeO(k). Then we access in tim@(k) the
coloringC' in the table at and set the vcoloring-bit. In total,
we can compute the vcoloring-tabletain time O (4% - k).

An INSERTnodet is treated similarly.

In a JOIN nodet, the vcolorings are computed by com-
bining two colorings of the successafsandt”. In a naive
implementation, up ta* - 4% = 42k = 16* pairs exist. How-
ever, we show that only0* pairs have to be considered. By
using appropriate data structures, we can implement the joi
such that we only consider paif§”, C") with [C'] = [C"].
For instance, we can sort the colorings in the tablesatd
t” in lexicographical order by treating as 1 and the other
values (i.e.def, att, out) as 0. In the sorted table, the col-
oringsD, D’ with [D] = [D’] are in contiguous rows. This
sorting requires timé (4% - k).

Let C be a coloring overk arguments withm < k
arguments mapped t. Then, for each argument with
C(a) # in, we can choose any color ifout, def, att}
without effecting the s€iC]. Thus there exist at most—""
different coloringsC’ such thafC] = [C’]. For everym,

there are(fl) different choices ofn arguments and thus
there arg( ") -3¥=" coloringsC' in the first table mapping:
arguments tan. Each of these colorings can be combined
with 3*~™ colorings from the second table. Hence we have
at most(*)3k=™ . 3*=™ join pairs produced by colorings
that mapm arguments tan. The sum over all possible

yields the desired upper bound for the total number of join
pairs: S5 _, (£) - 3m - 3m = 3 (5) - om = 10k,
The latter equality follows from the combinatorial identit
> (1) - ()" = (14 1)™. Each joinable paifC’,C”) can

be handled in tim& (k) (for computingC = C’ X C” and

a second top-down pass of the tree).

Characterizing preferred extensions. So far, we have
solved the credulous acceptance problem via admissible
sets. For skeptical reasoning, we have to characterize pre-
ferred extensions rather than the admissible sets. We thus
need a more complicated data structure. Instead of color-
ings for nodeg we shall use pairéC, I') whereC'is a col-
oring for ¢t andT" is a set of colorings fot. The setl" of
“certificates” contains further colorings which charaer

X< -restricted admissible sets strictly larger than #e,-
restricted admissible sets characterized’byintuitively, I’
represents thos& - ,-restricted admissible sets which may
ultimately keep the elements in(C') from being maximal.

Definition 14. Givent € 7 and a pair(C,T") for ¢, define
e:(C,T') as the collection of setS which satisfy the follow-
ing conditions: (i)S € e;(C); (i) VC' € T3IE € e(C")
such thatS c E; (iii) for all X~ ;-restricted admissible (for
F-,) setsE such thatS C E it holds that3C” € T with
E € e(C). Ife,(C,T) # 0, (C,T) is avalid pair fort.

The following technical lemmas mirror Lemma 1 and
Lemma 2.

Lemma 3. Let.S be an X ,-restricted admissible set for
F>,, then there is a pai(C,T') with S € ¢,(C,T).

Proof. Let S be anX..-restricted admissible set fdrs;.
By Lemma 1, there exists a coloring with S € ¢,(C).
Now let€ = {E | E is X-,-restricted admissible faF>,
andS C E}. Moreover, lefl’ = {C' | 3F € &, st.E €
e(C")}. We claim thatS € ¢,(C,T"). To prove this, we
check the conditions (i) — (iii) from Definition 14: (i €
e+(C') by the selection of’. (ii) For all C" € T, there exists
E € ¢(C") with S C E; this follows by the construction
of I' from &. (iii) For all X~ -restricted set# admissible
in F>; with S C E, there exists?’ € T with E € ¢,(C");
again this follows by the construction bffrom £. O

Lemma 4. Let (C,T), (C’,T") be different pairs for (but
not necessarily’ # C’). Then,e,(C,T) N e (C’,T") = 0.
Proof. If C' # C’ then, by Lemma 2¢;(C) Ne;(C') =
and our claim follows. Thus, it remains to consider pairs
(C,1),(C,TV) with T" # I''. W.L.o.g., we assume that there
exists a coloring”' for ¢ such thatC € T' butC ¢ I". In
order to show that:(C,T') N e;(C,T”) = 0, we prove that
none of the set§' € e;(C,T) is contained ire;(C,T").

Let S be an arbitrary set ir,(C,T"). Suppose to the
contrary thatS is also contained ir;(C,I"). By Defini-
tion 14 (applied tae,(C,I")), there exists atks-restricted
admissible set? € ¢,(C) for F>; such thatS ¢ E. By
Definition 14 (applied ta;(C,T”)), there exists a coloring
C* € I" such thatt’ € ¢,(C*). By Lemma 2, the colorings
C andC* coincide. Thus(C' € I, a contradiction. O



Hence, each elemesst € ¢,(C,T") is an X -restricted
admissible set fof; and eachX.-restricted admissible
set for F>, is characterized by some valid pair for

Now that we have augmented valid colorings with sets of orle {CFI} f 7
valid colorings, we can identify the preferred extensiofis o o |2
F'in the root node. Recall that the root nodef 7" has -
an empty bag, thus there are only two possible pairs for ; lr m
r, namely (e, ) and (¢, {€}), wheree is the empty color- oilin 7 1
ing. Only the first pair is in relation to preferred extension in 0 1
(see Definition 14) and we havg(e, }) = pref (F). Thus, Coldef| f{C2y  |3|f
our pairs have the desired property to characterize pegferr def ) 1
extensions. It remains to find an efficient way to compute Cs|out|{C1,C2,C3}|1|#
them. As we did for admissible sets, we shall employ vcolor- out| {C1,Ca} |1
ings for this purpose. However, the bottom-up computation no
now has to be applied to certificates as well, which makes c d r #
the definition more involved. To handle the certificates, we Cilin def| {Ci} |1}¢
have to extend the definition of the operators for vcolorings in  def 0 1
(see Figure 5) tgets of vcoloringsBy slight abuse of nota- Cz|def in {C2}  |3]|f
tion, we overload the operators +, -+, andi as follows: c iii " c CQ) . 1 ,
I'—a= {C —a | CeTl andC(a’) 7& (ltt}, ’ out out {81 ,2’2}3 1
F't+a={C+al|CeT}, 7 N
I'ta={C+a|C e€T,a > a,[C] /~ a, anda / [C]}, ns ns
I'KA={CXD|CeTl,DeA, and|C] = [D]}. c d T # c d r |#
Definition 15. Lett € 7 be a node with’, ¢” its possible @ . ZZ'; {C@]} 1 ! 21 ld’;f f:f {g} i
children. Depending on the node typetate define aspair Coldef in | {Ca}  |1]|# ’ def in 0 |
for ¢t as follows: def in 0 1 Cs oult out |[{C1,C2}| 1
LEAF: Each(C,T') whereC € C; andT the set of allC’ € Cs|out out|{C1,C2,C3}|1|# n'g
C, with [C] C [C"], is a vpair fort. out_out I{ChCz} 1 T T %
FORGET: If(C’,T") is a vpair fort’, X; = X¢ \ {a}, and na Cilin [{C1}|1
C'(a) # att, then(C’ — a,T” — a) is a vpair fort. c T |# in | 0 |1
INSERT: If(C”,T") is a vpair fort’ and X; = Xy U {a}, Cijin | {Ci} |14 Calout]{Ci}|1
then(C’ + a, (T" + a) U (I"4a) U ({C"}+a)) is a vpair for |0t nio
t; if C’+ais a veoloring ther(C’+a, T'+a) is a vpair fort Czfout \{Ch,Ca}| 11 d_c r_[#
as well. out {Icl} ! Cilin def| {Ciy |1
JOIN: If (C",T”) is a vpair fort/, (C”,I") is a vpair for ns I C@’ !
t”, and[C’] _ [C”], then(C’ > C”, (F/ % F//) U ({Cl} % b ¢ T # Cg ouz attt {é g} 1
F//) U (1—\/ ¥ {C//})) is a vpair fort. 1 def: m {C1} |1]¢ 3| out ou | 1,02
A few words about the certificates 6f + a in the above Cy ZZ:. :Zt {c@l} 1 y Lt =
definition are in order. We consider here a new argument Cs |out out|{Cr,00}| 14| feTom ; 'Ztt 5 ’f
a but do not add it tgC]. Now each certificate?” € I” | ol def def| 0 1
may give rise to two certificates @¢f’ + a. First, if we do s cz out att def| {Ca} |1
not adda to [E’], we get thatE’ + « is still a certificate for b | T |# Calin def out| {Car |1
C’ + a. But we possibly also get a certificate 6f + a if Cujdef| 0 1 Cs|out out out|{C1—Cu}|1
we do addu to [E], namelyE’+a — hence the union with Ca|out {|01} L R
(I'"+a). Finally, we may also get a new certificate@f+ a nr e 7 T Z
if we take C” itself and adds to it — hence the union with a b r |# ol el 0 N1
{C’}+a. Similar considerations underly the certificates of Cy|in  def 0 1 Cs|att def 0 1
c'x . Cz|att in 0 114 Cs|out out|{C1,C2}|1
Example9. Recall the AF from Example 4. The computa- Cs|out out|{C1,Ca}|1 ]! o
tion of vpairs for nodes is illustrated in Figure 7. Observe e f g T #
that we indeed have paif€,T") and (C,I) with T" # T Cilin  att def 0 1
for the same node. An example is nodewith bag{b, ¢} Cs|def in att 0 1
on the Ihs branch and the coloririgy with C1(b) = def Cs|att def in 0 1
andCi(¢) = in, i.e. [C1] = {c}. Note thate;(C;) = Ca|out out out|{C:1,C5,Cs}|1
{{c},{a,c}}. However,e:(Cy,{C1}) = {{c}} (since we
have{a, c} as certificate), while,(C1,0) = {{a,c}}. < Figure 7: Computation of vpairs for the example AF.

Theorem 5. For each pair(C,T') for a nodet, it holds that
(C,T) is a valid pair fort iff (C,T') is a vpair fort.



Proof. Asin Theorem 3, the proof proceeds by structural in-
duction. For the induction begin, we have to show that vpairs
and valid pairs coincide ohEAF nodes. For the induction
step, we have to show this property for the remaining nodes.
We give the details fot EAF andFORGETnodesINSERT
andJOIN nodes can be treated analogously.

LEAF. For aLEAF nodet, the X ;-restricted admissible
sets forF, coincide with the setf”] for the valid colorings
C for t. Moreover, the valid colorings and vcolorings for
t coincide by Theorem 3. Now I€iC,T") be a valid pair
for ¢. Then, by Definition 14[C] € ¢,(C,T). Hence, by
Definition 15,(C,T") is a vpair fort. Conversely, le{C,T")

be a vpair for and letS = [C]. By Definition 13,5 is X5,-
restricted admissible faF;. Hence, by Definition 14 and
Definition 15,5 € ¢,(C,T"). (C,T") is thus a valid pair fot.

FORGET. Lett be aFORGETnode with successaf such
thatX; = Xy \ {a}. Let(C,T') be a valid pair fort. Then
there existsS € ¢;(C,T). In particular,S is X~ -restricted
admissible forF>; and, hence, als& - -restricted admis-
sible for F~, = F>;. Thus, by Lemma 3, there exists a
valid pair (C’,I) for ¢’ with S € ey (C',I"). By the induc-
tion hypothesis(C’,I") is a vpair fort’. SincesS is X{,-
restricted admissible ar§l € e,/ (C'), we haveC’(a) # att.
Then (C' — a,T’ — a) is a vpair fort. We claim that
(C"—a,I" —a) = (C,T) holds. The equality —a = C
is shown as in the proof of Theorem 3.

To showI” — a =T, we first consider the inclusidif —

a CT: LetD’ € IV with D’(a) # att. By condition (ii) of
Definition 14, there exists aN ..,/ -restricted admissible set
E for F>,y with S € EandE € ey (D'). By D'(a) # att,
we know thatF is also X ;-restricted admissible. Hence,
by condition (iii) of Definition 14, there exist® € I" with

E € e/(D). Asin the proof of Theorem 3, we thus have
D=D"—a.Hencel" —a CT.

Now consider an arbitraryp in I'. By condition (ii) of
Definition 14, there exists a -;-restricted admissible set
E for F~, with S C EandE € e;(D). By condition (jii) of
Definition 14 and sinc& is alsoX .,/ -restricted admissible,
there existsD’ € I with E € e (D’). As in the proof of
Theorem 3, we thus hav®@ = D’ — a. Hencel’ C IV — a.

We now show that every vpair for RORGETnode is a
valid pair. Let(C, T") be a vpair fot, i.e., there exists a vpair
(C',17) for nodet’ with C’(a) # att and(C,T) = (C' —
a,I" — a). By the induction hypothesigC’, T") is a valid
pair fort’. Hence, there existS € e, (C’,I"). We claim
that alsoS € ¢;(C,T') holds. As in the proof of Theorem 3,
S € ¢,(C) holds since” = C’ — a. It remains to show that
also conditions (ii) and (iii) of Definition 14 are fulfilled:

To show condition (i), letD € T, i.e., D is of the form
D = D' — a for someD’ € TV with D’(a) # att. Since
S € ep(C',TV), there existd € ey (D) with S C E. As
in the proof of Theorem 3, then aldd € e.(D’ — a). To
show condition (iii), letE’ be X+ ;-restricted admissible for
Fs.with S C E. ThenFE is alsoX . -restricted admissible
and, therefore, there exist¥ € IV with E € e, (D'). Since
E is X, -restricted admissible, we have/(a) # att. But
then, as in the proof of Theorem 3, alBoc e;(D' —a). O

Thus, we now have a handle to efficiently decide skeptical

acceptance for bounded tree-width. We just have to mark
all pairs (C,T") where the considered argumentatisfies
C(a) # in and pass this mark accordingly towards the root
node. If(e, ) carries this mark, then we know that skeptical
acceptance does not hold.

Examplel0. Let us now consider the problem of deciding if
the argument is skeptically accepted in our example AF. In
Figure 7 we illustrate the vpairs which are marked as con-
tradictory for skeptical acceptance witt/an the last col-
umn of the table. Note that for a vpdi€, I") to be marked

it is sufficient that for one set € e,(C,I") it holds that

a ¢ S. The counter# in Figure 7 still refers taall X+ ,-
admissible sets (fof>;) in e:(-,-). Thus, the number of
such setsS € e;(+,-) with a ¢ S'is, in general, smaller. &

Theorem 6. DecidingSA for an AF F' = (A, R) of tree-
width k—1 can be done in tim@(22”" "' 8k . | A|).

Proof. Recall that the number of colorings for each node
is bounded byt*. In order to maintain the vpairs for each
node, we consider all possible pai(s, I'), whereC'is a col-
oring andl" is a set of colorings. Hence, we have to consider

atmostt* 24" = 27 pairs at each node, whete= 22¢ + 2k
(we use abbreviation throughout the proof). Analogously
to the proof of Theorem 4, we can store the vpairs for a node
t in a table with one row per possible p&r, T"). In an addi-
tional bit we indicate if this row represents a vpair. Given a
pair(C,T"), we can find the corresponding row in tirtén,).

We have to show that computing the vpairs at each node

t € T is feasible in timeD (22" +8%) in a single bottom-
up traversal of7. Since the number of nodes @f may be
assumed to be bounded B)(|4|), the desired upper bound
of the theorem follows immediately. We prove the upper

boundO (22" " +8k) for the time needed at each nade 7

by distinguishing the four types of nodes. As in the proof of
Theorem 4, the computationally most expensive node type
is the JOIN node, which is the one we shall focus below.
Other node types are treated similarly.

Lett be aJOIN node with successotsandt”. To com-
pute the table of vpairs fatr we iterate in a nested loop over
all pairs(C’,T”) in the table at’ and all pairs(C”,T") in
the table at” and do the following: check ifC’,I") is a
vpair and(C"”,T") is a vpair andC’] = [C"]. If this is
the case, we compute the vpafr,T') = (C' X C”,(TV X
"y u (I X {C"})u ({C"} X T")) and set the vpair-bit in
the row corresponding t6C,T') in the table at node.. As
in the proof of Theorem 4, the join-operation can be carried
outin timeO(10* - k). The access to the appropriate row in
the table at nodeis feasible in timeD(22* - k). In total, we
have to process at mo&")? combinations of vpairéC, T")
and(C’,T"). Moreover, the action required for each combi-
nations of vpairs fits int@(10% - k + 22k . k) = O(2%).
We thus end up with the upper boud(22°" +2k)2. 24k) —
O((222k+1+4k) L 24k) = 0(222’““+8k)_ 0

Conclusion

In this paper, we turned some theoretical tractability itesu
for argumentation frameworks of bounded tree-width into
efficient algorithms. Moreover, we showed that some further



graph parameters (which, in contrast to tree-width, apply t
directed graphs), do not lead to similar tractability résuin
future work, we will investigate clique-width (Courcellad
Olariu 2000) which can be considered as more general than
tree-width since there are sets of graphs of bounded clique-
width but arbitrarily high tree-width, while sets of grapdfs
bounded tree-width also have bounded clique-width.

Several algorithms for the problems discussed in this pa-
per have been presented in the literature. We mention the
work by Doutre and Mengin (2001) here which relies on
set-enumeration techniques exploring a binary tree. Al-
though this tree is conceptually different from the tree-
decompositions we use, a number of short-cuts for acceler-
ating the enumeration is provided, which could be applied to
our algorithms as well. Recall that our algorithms relied on
the concept of colorings. They look similar to labellingsds
(Caminada and Gabbay 2009; Modgil and Caminada 2009)).
However, labellings are defined for complete frameworks,
while we require here a concept which also applies to sub-
frameworks (recall that for our complexity results in Theo-
rem 4 and Theorem 6, it was essential that colorings are de-
fined over a small number of arguments); in other words, we
do not know in advance, whether an argument will eventu-
ally be defended; this also explains why we need four colors,
whereas the number of labels is usually three. Nonetheless,
known results about relations between labellings for diffe
ent semantics might help us in extending our algorithms to
other semantics, which is indeed a major topic for future
work. In fact, we plan to adapt our algorithms for complete,
stable, stage, semi-stable, and ideal semantics.

Another important aspect of future work is to analyze if
typical argumentation scenarios naturally lead to AFswaf lo
tree-width. Note that graphs containing big cliques have
high tree-width. However, for argumentation scenarios we
would rather expect graphs with small cliques or cycles,
which are harmless as far as the tree-width is concerned.

Finally, we plan to implement the presented algorithms.
Note that our description of the actions required along the
bottom-up traversal of a tree-decomposition is alreadtequi
close to an implementation in a functional programming lan-
guage. For instance, see (Jakl, Pichler, and Woltran 2009)
for such a realization in the area of answer-set programming
via Haskell.
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