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Abstract. Translations between different nonmonotonic formalisiwsigs have
been an important topic in the field, in particular to undandtthe knowledge-
representation capabilities those formalisms offer. Wigie such an investiga-
tion in terms of different semantics proposed for abstragtimentation frame-
works, a nonmonotonic yet simple formalism which receiveztéasing interest
within the last decade. Although the properties of theske@dint semantics are
nowadays well understood, there are no explicit resultsigibpbertranslatability.
We provide such translations wrt. different properties als give a few novel
complexity results which underlie some negative results.

1 Introduction

Studies on the intertranslatability of different approago nonmonotonic reasoning
have always been considered as an important contributitimetéield in order to un-
derstand the expressibility and representation capacéitiyeovarious formalisms. By
intertranslatability we understand a functi@h which maps theories from one formal-
ism into another such that intended models of a thebrfyom the source formalism
are in a certain relation to the intended model9ofA). Several desired properties for
such translation functions have been identified, includiinge polynomial {-(A) can
be computed in polynomial time wrt. the sizeAJ or to be modular (roughly speaking,
that allows to transform parts of the theory independeritlyach other). In particular,
the relationship between (variants of) default logic [2f@#lanonmonotonic modal log-
ics, in particular autoepistemic logic [26], has alwaysereed a lot of attention, see
e.g. [13, 23, 25]. Perhaps most notably, Gottlob [20] shothetia modular translation
from default logic to autoepistemic logic is impossibleh&timportant contributions
in this direction include translations between defaultidognd circumscription [21],
modal nonmonotonic logics and logic programs (see e.gojh overview and recent
applications) and the work by Janhunen [22].

In this work, we study translation functions within a panter formalism of non-
monotonic reasoning, Dung’s argumentation framework$, [i& wrt. to different se-
mantics proposed for this formalism (in the area of defangid, a similar research was
undertaken by Liberatore [24]). In a nutshell, such arguaitéan frameworks (AFs, for
short) represent abstract statements together with aorldénoting attacks between
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them. Different semantics provide different ways to sollve inherent conflicts be-

tween statements by selecting acceptable subsets of tleerabsuch semantics have
already been proposed by Dung in his seminal paper but asmative approaches
play a major role nowadays, see e.g. [3,5, 10, 16, 28]. Coetptr other nonmono-

tonic formalisms (which are build on top of classical logisgntax), argumentation

frameworks are a much simpler formalism (in the end, theyj@sedirected graphs).

However, this simplicity made them an attractive modelog tn several diverse areas,
like formalisations of legal reasoning [8] or multi-ageegotiation [1].

In the field of argumentation intertranslatability has nialreen studied in connec-
tion with generalizations of Dung’s argumentation framekgo Hereby, such transla-
tions were used to show that proposed semantics for the gezations are in a desired
relation with the same semantics of standard AFs. Suchlatioss have been dis-
cussed, for instance, in terms of bipolar AFs [11], valusdobAFs [7], and AFs with
recursive attacks [2]. A recent exception is the work by Banmand Brewka [6], where
they consider to enforce a desired extension in Dung AFs litglsing semantics.

We focus here exclusively on standard argumentation frarlesand have the fol-
lowing main objective: Given an AF' and argumentation semantiesands’, find a
function Tr such that ther-extensions off” are in certain correspondence to e
extensions oflr(F'). We believe that such results are important from differenin{s
of view. Firstly, consider one agent has modeled a certanaio in terms of an AF
F and she is reasoning over this representation using sersantn order to convince
a second agent (which uses a different semantigabout certain selections of argu-
ments, the first agent has to rephrase the framework in abteiiteay for the second
agent to find an agreement. To have a more concrete examplgseiAgent 1 uses
complete semantics while Agent 2 has a stable-semantiesilvaasoning engine (de-
tails about the different semantics are provided in Se@joihen, the transformation
has to capture the concept of admissibility (informally algeg, a set of arguments
has to defend itself) which is implicitly present in complesemantics by a suitable
introduction of new arguments, such that stable semangicgerform such a type of
reasoning. In other words, translatability results betwd#ferent semantics of AFs
yield an understanding how certain properties which areifpd within the seman-
tics can be made (syntactically) explicit within an AF in erdo make these properties
amenable to another semantics.

Another motivation of our work is based on the following ohsdion. Consider,
there is an advanced argumentation engine for a semanitioat one wants to evaluate
an AF F wrt. to a different semantias. Then, it might be a good plan to transfo#iin
such a way into an AF” such that evaluating” wrt. semantice’ allows for an easy
reconstruction of the-extensions of¥'. If the required transformations are efficiently
computable, this leads to a potentially more successfulcgm than implementing a
distinguished algorithm for the-semantics from scratch.

The organization of the remainder of the paper and its mantritmtions are as
follows: In Section 2, we introduce AFs and the different aatics we deal with in this
paper. We also review known complexity results which we clemgnt in the sense
that we show some of the known tractable problems t&deard; a fact we will use for
some impossibility results in Section 5. Section 3 definetaeproperties for transla-
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tions (basically along the lines of [22]) but we considera &lditional features which

are needed when dealing with AFs. Section 4 contains our neainlts, in particular

we provide translations between Dung’s original semargtidsnissible, preferred, sta-
ble, complete, grounded), stage semantics, and semestablantics. As mentioned,
Section 5 provides negative results, i.e. we show that icettanslations between se-
mantics are not possible. Finally, in Section 6 we conclimgepaper with a summary
of the presented results and an outlook to potential futumekw

2 Argumentation Frameworks

In this section we introduce (abstract) argumentation &aorks [15] and recall se-
mantics we study in this paper (see also [4]). Moreover, wgalight and complement
complexity results.

Definition 1. An argumentation framework (AR} a pair FF = (A, R) where A is a
non-empty set of argumehtand R C A x A is the attack relation. For a given AF
F = (A, R) we useAr to denote the set of its arguments an® ¢ to denote its attack
relation R. We sometimes use—’ b instead of(a,b) € R. For S C Aanda € A,
we also writeS —% a (resp.a —T S) in case there exists € S, such that — q
(resp.a —* b). In case no ambiguity arises, we useinstead of—~.

Semantics for argumentation frameworks assign to eachFAE (A, R) a set
o(F) C 24 of extensions. We shall consider here fothe functionsstb, adm, prf,
com, grd, stg, andsem which stand for stable, admissible, preferred, completayd
stage, and respectively, semi-stable semantics. Befoiegghe actual definitions for
these semantics, we require a few more formal concepts.

Definition 2. Given an AFF' = (A, R), an argument. € A is defendedin F') by a
setS C A if for eachb € A, such thab — a, alsoS — b holds. Moreover, for a set
S C A, we denote by}, the setS U {b | Ja € S, such that(a, b) € R}.

Definition 3. Let F = (A, R) be an AF. A sef C A is conflict-free (inF), iff there
are noa, b € S, such that(a, b) € R. For such a conflict-free s, it holds that

— S € sth(F), ifforeacha € A\ S, S — a,i.e.5% = A4;

— S € adm(F), if eacha € S is defended by

— S eprf(F),ifS € adm(F) and thereis nd’ € adm(F) withT D S;

— S € com(F),if S € adm(F) and for eachu € A defended by, a € S holds;
— S egrd(F),if S € com(F)and thereisnd’ € com(F)withT C S;

— S € stg(F), if there is no conflict-free sé in F, such thatl’; > S};

— S € sem(F),if S € adm(F) and there is n@" € adm(F) with T/ > S}.

For all semanticsr, the sets defined above are the only ones(if).

! For technical reasons we only consider AFs with (.
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We recall that for each AF, stb(F') C sem(F) C prf(F) C com(F) C adm(F)
holds, and that for each of the considered semantiexcept stabley(F') # ( holds.
Moreover,|grd(F')| = 1 holds for each AR, and in case an AF has at least one stable
extension then its stable, semi-stable, and respectstalge extensions coincide.

Example 1.Consider the ARFF' = (A, R), with A = {a,b,¢,d,e} andR = {(a,b),
(¢,b), (¢,d), (d,c), (d,e), (e,e)}. The graph representation Bfis given as follows.

We havestb(F) = stg(F) = sem(F) = {{a,d}}. Further we have as admissible
sets ofF’ the collection{},{a}{c}.{d}{a,c},{a,d}, thusprf(F) = {{a,c},{a,d}}.
Finally the complete extensions &f are {a}, {a, ¢} and{a,d}, with {a} being the
grounded extension df. O

We now turn to the complexity of reasoning in AFs. To this ewd, define the
following decision problems for the semantieéntroduced in Definition 3.

— Cred,: Given AFF = (A, R) anda € A. Isa contained in somé& € o(F)?

— Skept,: Given AFF' = (A, R) anda € A. Isa contained in eacl' € o(F')?

— Ver,: Given AFF = (A,R)andS C A.IsS € o(F)?

— Exists,: Given AFF = (A, R). Isc(F) # 0?

— Exists;?: Given AFF = (A, R). Does there exist a sét+ () such thatS € o(F)?

Before giving an overview about known results, we providewa fower bounds
which, to the best of our knowledge, have not been estalligbe

Proposition 1. The problemsred . = Skepty,q = Skeptcom as well asVer,,q are
P-hard (unden_-reductions, i.e. reductions using logarithmic space).

Proof. We use a reduction from the-hard problem to decide, given a propositional
definite Horn theory” and an atonx, whetherz is true in the minimal model df.

Let, for a definite Horn theor§" = {r; : b1 A+ Aby, — hi | 1 <1 <n} over
atomsX and anatom € X, Fr, = (4, R) be an AF withA = TUX U{t}, wheret is
afreshargument, anl = {(z, z), (¢, z) | x € X }U{(z, ) }U{(ri, hr), (b1 j,70) | 71 €
T,1 < j <4;)}. See Figure 1 for an example. Clearly the A}, can be constructed
using only logarithmic space in the size Bf One can show that is in the minimal
model of T iff ¢ is in the grounded extension &% ., iff grd(Fr.) = {T U{t}}. O

@:

Fig. 1. Argumentation frameworlt’r . forT' = {— z, 2 ANy — 2,y Az — z}
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Fig. 2. AF F(¢, cy.c5y With c1 = {@1, 22, 23}, c2 = {Z2, T3, T4}, c3 = {Z1, T2, T4},

Proposition 2. Ver,,, is coNPhard.

Proof. We prove the assertion by reducing the (NP-hard) 3-SAT eratb the comple-
mentary problem o¥er,;,. We assume that a 3-CNF formula is given as a set of clauses,
where each clause is a set over atoms and negated atomsa@ibyo}. For such a CNF

¢ over variablesY, define the AFF, = (A, R) with A = X U X UC U {s,t,b} and

R=A{(z,%),(Z,2z) |z e X}U{(l,¢)|l €c,ce C}U
{(c.;t) [c e CYU{(s,9), (y,5) [y € A\ {s,0}} U{(t,0), (b, 0)}

whereX = {z | x € X} ands, ¢, b are fresh arguments. See Figure 2 for an illustrating
example. It can be shown thatis satisfiable iff{ s} is not a stage extension &f,. O

Together with results from the literature [12,14, 15, 174 obtain the comp-
lexity-landscape of abstract argumentation as given ieTab

o Cred, [Skepty,| Ver, |Existsy, Exists;0

grd || P-c | P-c | P-c |trivial | inL
stb || NP-c|coNP-¢ inL | NP-c| NP-c
adm|| NP-c| trivial | inL | trivial | NP-c
com||NP-c| P-c | inL | trivial | NP-c
prf || NP-c| TIZ-c |coNP-g trivial | NP-c
sem || £Z-c| II¥-c |coNP-¢ trivial | NP-c
stg || 2F-c| I -c |coNP-g trivial | inL

Table 1. Complexity of abstract argumentatiof-¢ denotes completeness for cl@ys

3 Properties for Translations

In what follows, we understand as a translatiina function which maps AFs to AFs.
In particular, we seek translations, such that for givena#ioso, ¢/, the extensions
o(F) are in a certain relation to extension§ F') for each AFF. To start with, we
introduce a few additional properties which seem desirfdniesuch translations. To
this end, we define, for AFE = (A, R), F’ = (A’, R’), the union of AFs ag' U F/ =
(AU A’ RUR'), and inclusion ag’ C F’ iff jointly A C A’andR C R'.
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Definition 4. A translation7’r is called

— efficientif for every AFF, the AF T (F') can be computed using logarithmic space
wrt. to | F|;

— coveringif for every AFF, F C Tr(F);

embeddindf for every AFF', Ar C A (py andRrp = Ryy(py N (Ar X AF);

monotondf of any AFsF, F’, F C F' implies Tr(F) C Tr(F’);

modularif of any AFSE, F', Tr(F)U Tr(F') = Tr(F U F').

While the property of efficiency is clearly motivated, letypend a few words on the
other properties. Being covering, ensures that the traasldoes not hide some original
arguments or conflicts. Being embedding, in addition, essthrat no additional attacks
between the original arguments are mocked. Monotonicityrandularity are crucial
when extending the source AF after translation: When aguiith another agent it
may be impossible to withdraw already interchanged argusraerd attacks; hence, re-
translating the augmented source AF should respect thadglrexisting translation.
Each modular transformation is also monotone and each afiigettansformation is
also covering.

Next, we give two properties which refer to semantics. Weerntbat our concept
of faithfulness follows the definition used by Janhunen [2#]ile exactness is in the
spirit of bijective faithfulness wrt. equivalence as usgd_beratore [24].

Definition 5. For semanticsr, o’ we call a translationT’r

— exactfor o = o' if for every AFF, o(F) = o/ (Tr(F));
— faithful for o = o' if for every AFF, o(F) = {ENAp | E € o/(Tr(F))} and
o (E)| = |o" (Tr (F))].

However, due to the very nature of the different semanticsvewat to consider, we
need some less restricted notions. For instance, if we denaitranslation from stable
to some other semantics, we have to face the fact that somd@d\kst possess a stable
extension, while other semantics always yield at least atension.

Definition 6. For semanticsr, ¢/, we call a translation?r

— weakly exacffor o = o' if there exists a collectio$ of sets of arguments, such
that for any AFF, o(F) = o' (Tr(F)) \ S;

— weaklyfaithful for 0 = ¢ if there exists a collectios of sets of arguments, such
that for any AFF, o(F) = {ENAp | E € o/(Tr(F)) \ S} and |o(F)| =
|0’ (Tr (F)) \ S|

We sometimes refer to the elements fréhas remainder sets. Note thidepends
only on the translation, but not on the input AF. Thus, by dédin, eachS € S only
contains arguments which never occur in AFs subject to éios. In other words, we
reserve certain arguments for introduction in weak traisia.

Finally, we mention that the properties from Definition 4 asllivas being exact,
weakly exact and faithful are transitive, i.e. for two trimisations satisfying one of
these properties, also the concatenation satisfies theatdspproperty. However, tran-
sitivity is not guaranteed for being weakly faithful.
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4 Translations

In this section, we provide numerous faithful translatibesveen the semantics intro-
duced in Definition 3. As minimal desiderata, we want the dtations to be efficient,
monotone, and covering (see Definition 4). Thus, in thisiseavhen speaking about
translations we tacitly assume that they satisfy at le&stetthree properties.

We start with a rather simple such translation, which we shilbw to be exact for
prf = sem andadm = com.

Translation 1. The translationr, is defined asl’r (F) = (A*, R*), whereA* =
ApUAz andR* = RpU{(a,d’),(d,a),(a',a’) | a€ Ap}, with A = {d' | a€ Ap}.

C?D
cffolicYclc

Fig. 3. Tr1(F) for the AF F from Example 1.

Lemma 1. For an AF F' and a setFE of arguments, the following propositions are
equivalent: (1)E € adm(F); (2) E € adm(Tr,(F)); and (3)E € com(Tr,(F)).

Proof. As all arguments iM’. are self-conflicting, every conflict-free sBtof Tr(F')
satisfiesk C Ap. Further, sincel’r; is embeddingF is conflict-free inF iff E is
conflict-free in Tr1 (F). Moreover, sincelr; only adds symmetric attacks against ar-
gumentse € Ar, we have thatr defends its arguments if iff £ defends its argu-
ments inTry (F). Thus,adm(F) = adm(Tr,(F)) and (1)=(2) follows. For (2}=(3),
leta € A be an arbitrary argumentael C A. In Try the argument is attacked by’
anda is the only attacker (except itself) of «’. Hence, for each € A, F defends:
only if ¢ € E and thus every admissible set @, (F') is also a complete one. Finally,
(2)<=(3) holds sincecom (F') C adm(F) is true for any AFF'. O

Lemma 2. For an AF F' and a setF of arguments, the following propositions are
equivalent: (1)E € prf (F); (2) E € prf(Tri(F)); and (3)E € sem(Tr,(F)).

Proof. For (1%=(2), it is sufficient to show thak € adm (F) iff E € adm(Tr1(F))
holds for eact¥. This is captured by Lemma 1. For €2)3), letD, E € prf(Tr1(F))
and, towards a contradiction, assume that. C E}.,i.e. D & sem(Tri(F)). As
both D andE are preferred extensions, we haveZ E. Thus, there exists an argument
a € D\ E. By construction oflr; (F), we geta’ € D}.. buta’ ¢ E};., a contradiction
to Df. C Ef.. (2)<(3) follows from the factsem(F) C prf(F) forany AFF. O

Theorem 1. Tr; is a modular, embedding, and exact translation fof = sem and
adm = com.

Our next translation,I'r5, is concerned with stage and semi-stable semantics. In
addition to7r;, we make all attacks from the original AF symmetric (thitrs will not
be embedding) and add for each original attack) also an attacka,d’).
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Translation 2. The translationTr; is defined aslry(F) = (A*, R*), where A* =
ApUAR andR* = RpU{(b,a),(a,b") | (a,b) € Rr}U{(a,d’),(d,ad') | a € Ar}.

Fig. 4. Tro(F) for the AF F from Example 1.

Lemma 3. For an AF F' and any sety of arguments, the following propositions are
equivalent: (1)E € stg(F); (2) E € stg(Tr2(F)); and (3)E € sem(Tro(F)).

Proof. First, we mention that every stage extension of anFAB also maximal (wrtC)
conflict-free inF. For (1x=(2), we again observe that a gets conflict-free inF' iff it is
conflict-free inTry (F). Moreover, we hav(an,EF)’ C Ei,., since foreacla, b) € R,
we have(a, b') € R*. Furthermore, for each maximal conflict-free &gin F' (and thus
in Tro(F)), itholdsthatdp C Eg*. Hence, for each maximal conflict-free &tC Ar

in F, i.e. the candidates for stage extensions, it holdsitat= Ar U(E}; )’ and thus
E}‘F is maximal (wrt. subset inclusion) iff’;;. is maximal. For (2=(3), observe that
eacha € A defends itself inTr,(F') and all arguments’ € A’ are self-conflicting.
Thus, admissible and conflict-free sets coincid@in(F). Consequently, the stage and
semi-stable extensions @2 (F') coincide. O

Theorem 2. Trs is @ modular and exact translation fetg = sem.

The next translations consider the stable semantics asestarmalism. Recall that
not all AFs possess a stable extension, while this holds|fatlaer semantics (also
recall we excluded empty AFs for our considerations). Thediawve to use weak trans-
lations as introduced in Definition 6. Our first such traristats weakly exact and uses
a single remainder st }.

Translation 3. The translationTrs(F) is defined aslrs(F') = (A*, R*) whereA* =
ApU{t} andR* = Rp U{(t,a), (a,t) | a € Ap}.

O~ D—ED
()

Fig.5. Trs(F) for the AF F from Example 1.

Lemma 4. LetF = (A, R) be an AF and® C A with E # (). Then the following state-
ments are equivalent: (1§ € stb(F); (2) E € stb(Tr3(F)); (3) E € sem(Trs(F));
and (4)E € stg(Trs(F)).
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Proof. As the translation does not modify the original AFwe have that for each
non-emptyE C Ap, FE is conflict-free inF iff F is conflict-free inTr3(F'). To show
(1)<(2) it is sufficient to observe thdf}. = A*, sinceE}; = Ap andE —f t;
andE}; = Ap,sinceEf. = A*andt ¢ E. For (2)=(3)<(4), we mention thaft} is

a stable extension dfr3(F') for any AF F. Furthermore, we know that if there exists a
stable extension for an AF, then stable, semi-stable ag@ st&tensions coincide. O

By the lemma and the fact that for for eaghe o(Tr3(F)) with o € {stb, sem,
stg} eitherE = {t} ort ¢ E holds, we obtain the desired result.

Theorem 3. Tr3 is modular, embedding and weakly exactftr=-o, o € { sem, stg}.
We continue with a different translation from stable exiens to other semantics.

Translation 4. Tr, is defined adry(F') = (A*, R*) whereA* = ApUAz andR* =
Rp U{(t),a) | a,be Ap} U{(d/,d'),(a,d’) | a € Ap} U{(a,V) | (a,b) € Rp}.

Fig. 6. Tr4(F) for the AF F from Example 1.

Lemma5. LetF' = (A, R) be an AF andE C A with E # (). Then, the following state-
ments are equivalent: (1 € stb(F); (2) E € stb(Tr4(F)); (3) E € adm(Tra(F));
(4) E€prf(Try(F)); (5) E€com(Try(F)); and (6) E € sem(Tra(F)).

Proof. First, for each conflict-free sef in Tr4(F) it holds thatE C A. Since the
translation is embedding, any géts conflict-free inF’ iff it is conflict-free in Tr4(F).
To show (13=(2), let E € stb(F). Hence, foralla € A\ E, E —% q, and thus
E —%" q. By construction, also for each argument A*\ E, E —%" 4 holds.
Together with our observations about conflict-free setsgetdr € stb( Tr4(F)). Vice
versa, to show (B-=(2) we get, forE € stb(Tr4(F)), E —* a, foreacha € A*\ E,
and thus, in particular, for eaehe A\ E. By definition of T4, we also haves — q
for eacha € A\ E. ThusE € stb(F) follows. To show (2)=(3), let E be a nonempty
admissible extension dfr4(F') anda € E. By construction, we have that := {b €
A* :(bya) € R*} D A'.ASE € adm(F), E —%" o foreacha’ € A’. ButF ~— d
only if eithera € F or E —%" a. Thus for everys € A* it holds that either, € F
or E —%" a; hence,E € stb(Try(F)). The remaining implications follow by well-
known relations between the semantics. O

Theorem 4. Tr, is an embedding and weakly exact translationdtir = o with o €
{adm, com, prf, sem}.
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Next we give a faithful translation from admissible semesitd stable, semi-stable
and stage semantics. The main idea is to use additional @mfsrfor the attack rela-
tions from the source framework in order to capture admilgsib

Translation 5. The translationTrs (F) is defined aslrs (F)) = (A*, R*) whereA* =
ApUAp URp andR* = Rp U {(a,a),(G,a) | a € Ap} U{(r,7) | 7 € Rp} U
{(d,?‘) | r= (y7a) € RF} U {(aar) | r= (Zay) € RF,(G,Z) € RF}

Fig. 7. Trs(F) for the AF F from Example 1.

Lemma6. Let F = (A,R) be an ARE C AandE* = E U (A\ E). The fol-
lowing statements are equivalent: (E) € adm(F); (2) E* € stb(Tr5(F)); (3)
E* € sem(Trs(F)); and (4) E* € stg(Tr5(F)).

Proof. To show (1}=(2), let E € adm(F). It is easy to see thdl* is conflict-free in
Tr5(F) and further thalUA C (E*)7.. It remains to show that each argumer A*
for r € Ris attacked by&*. Let (a,b) be such an argument If b ¢ E thenb € E*
and thust* —%" r. Otherwisep € E (thusb € E*) and, by assumptior; defends
in ', i.e.(c,a) € R for somec € E (thusc € E*). By construction(c,r) € R* and
E* —T 1. To show (1)=(2), let E* € stb(Trs(F)). E* is conflict-free, thus have
RN E* = () and{a,a} ¢ E* for all a € A. By construction/E is conflict-free in
F'. It remains to show thaFE' defends all its arguments ifi. Letb € A\ E such that
b —1 a for somea € E. Then there exists an argumehta) in Trs(F) attacked by
E.Asa € E we have that ¢ E* and thus there existse E such that(c,b) € R.
The remaining implications follow by the fact that the empét is always admissible
and thusA is always a stable extension @f 5 (F). Hence, stable, semi-stable and stage
extensions coincide for angirs(F). O

Together with the fact that each stable extensiorfof(F') is of the formE U
(A\ E)with E C Ar we can show the following result.

Theorem 5. Tr5 is an embedding and faithful translation fadm = o, with o €
{stb, sem, stg}.

In our faithful translation from complete to stable sememtive extend the given
AF by arguments that represent whether an argument is atfankhe corresponding
extension or not. Further we add arguments that ensure sithitity and completeness.



On the Intertranslatability of Argumentation Semantics 11

Translation 6. The translationTr¢(F) is defined aslr¢(F') = (A*, R*) where

A* = ApUApUAL U AL URL U AL

R* = Rr U{(a,a),(a,a), (@, al),(a,a') | a € Ap} U{(a’,2') | 2 € Ar URp}
U{(a,b"), (@', v') | (a,b) € Rr} U {(a,r"), (b*,r") | r = (b,a) € Rr}.

®
£6
d7®
45
a

Tn

ig. 8. Tre(F) for the AF F from Example 1.

Lemma7. LetF = (A,R)bean AFE C AandE* = EU (A\ E) U {a! | E —F
ayU{a' | E /% a}. Then the following statements are equivalent: 1§ com(F);
(2) E* € stb(Tre(F)); (3) E* € sem(Trg(F)); and (4)E* € stg(Tre(F)).

Proof. To show (13(2), let E' € com(F'). Then by constructio* is conflict-free in
Tre(F) and we have that U AU AL U Al C (E*)}.. Further for each = (b,a) € R
it holds thatE* — o' iff eithera ¢ E or E — b. As E is admissible we have that
' € (E*)f.. Fora’ € A’ it holds thatE* — o iff either a € E or E does not defend
a. Thus asE is a complete extension, € (E*). holds. Hence we have tha’ C
(E*);* and thusE™ is a stable extension. To show )2), let E* € stb(Trg(F)).
One can show that™* is of the desired form. Furthé? € adm(F'), because otherwise
there existss € E,r = (b,a) € R, E »~ b which impliesa ¢ E*,b! ¢ E* and
thusr’ ¢ (E*)}., a contradiction. A similar argument holds for the compiets ofF2
using the argument4’. The remaining implications follow by the fact that therevays
exists a complete extension férand thus a stable extension forg (F'). O

Theorem 6. Trg is a modular, embedding and faithful translation farm = o (o €
{stb, sem, stg}).

Finally we present a translation from grounded semanticadst of the other se-
mantics under our focus, i.e. to all semantics except adlolgssemantics. The main
idea is to simulate the computation of the characteristicfion within the target AF.
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Translation 7. The translationTr7(F) is defined asTr;(F) = (A*, R*) where
A= Ap UAL U, UAp UAL; R = RpU{(a},b;) | (a,b) € R,i €[]} U
{(aib51) | (a,0) € Ryi € [l = 1]}; Ap = Apy; andl = [A2]],

Fig.9. Tr7(F) for the AF F from Example 1.

Lemma 8. Let F' = (A, R) be an AF ande™* the grounded extension Gl (F') then
E* N Alis the grounded extension &% We further have that off-; (F") the grounded,
stable, complete, preferred, semi-stable and stage artensoincide.

Proof. Recall the characteristic functioRy of an AF F', defined asFr(S) = {z €

Ar | z is defended by}, and that the grounded extensionfofs the least fix-point of
Fr. One can show that for arbitraye A we have (1)i; € E* iff a € FL(0); (2)a} €
E*iff FiH(0) 4R a; and (3)A* C (E*)}.. The proof is by structural induction.
Furthermore when applying thEr operator we either add a new argument to the set
and attack an additional argument or we reach the fix-pomin®ach step we make

a decision about at least two arguments and tAl$f)) = grd(F). In combination
with (1), we get thaty, € E* iff a € grd(F). Moreover by (3) it holds thagrd (F*) =
stb(F™*) = com(F*) = prf (F*) = sem(F*) = stg(F*), whereF* = Tr;(F). O

Theorem 7. Tr; is an embedding and faithful translation fgrd = o (o € {stb,
com, prf, stg, sem}).

5 Negative Results

In this section we present results, fortifying that for sa¥esemantics there does not
exist any translations with the desired properties. Therasult relies on the fact that
the grounded semantics always has a unique extension.

Proposition 3. There is no (weakly) faithful translation fer = grd with o € {sem,
stg, prf, com, stb, adm}.

Further results are based on complexity gaps betweendiffsemantics (see Table 1).
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Theorem 8. There is no efficient (weakly) faithful translation for (@)= prf (o €
{sem, stg}); (2) 0 = o' (c€{sem, stg, prf}, o’ €{com, stb, adm}); unlesss? = NP.

Proof. 1.) Let Tr be an efficient (weakly) faithful translation frome {sem, stg} to
prf. By definition this translation is L-computable and as wevshext reduce€red,,
to Cred,,s: Let FF = (A, R) be an arbitrary AFz € A an argument, and suppose
x € E holds for someE € o(F). As Tr is a weakly faithful translation, there is an
E* € prf(Tr(F)), suchthatt* N A = E. Thusz € E*, i.e.x is credulously accepted
wrt. preferred semantics ifi- (F'). So assume € E* for someE™* € prf(Tr(F)). By
x € E* N A we can conclude thal* is not a remainder set dfr. As Tr is a weakly
faithful translation we have thal = E* N A is in o(F'), and thusz is credulously
accepted inF wrt. o. Thus, Tr is a L-reduction from th&2l’-hard problenCred,, to
the NP-easy probler@ired,, .

2.) Given an efficient weakly faithful translatidf- with remainder sef for o =
o’ we have thafkept, is translated to the probleﬁkeptf,, that is deciding whether
an argument is in each -extension which is not in the sé&t One can show that the
problemSkept3, remains in coNP. Thugr would be an L-reduction from thig2 -hard
problemSkept, to the coNP-easy probleBkeptS,, which implies:f = NP. O

o’

One might prefer (weakly) exact over (weakly) faithful tstations. As we have
seen in Section 4, several of our translations are not exaabrdy faithful. In these
cases we are interested in finding an evidence that an egastdtion is not possible.

Theorem 9. There is no (weakly) exact translation fer= ¢’ whereo € {adm, com}
and o’ € {stb, prf, sem, stg}, as well as forcom = adm. Moreover, there is no
efficient such translation fogrd = o whereo € {stb, adm, com}, unlessd. = P.

Proof. We first argue that there is no weakly exact translationsfos ¢’ with o €
{adm, com} ando’ € {stb, prf, sem, stg}. This is by the fact that two admissible
| complete extensions may be incarelation while this is never the case for stable,
preferred, semi-stable and stage extensions. It remastsoie that there is no weakly
exact translation forom = adm. We observe that for every AF it holds that) €
adm(F'), but there are AFs whefle¢ com(F). Thus for a weakly exact translatidfr,
with remainder sef, it holds that) € S. But then, given an AF" with § € com(F),
we can conclude th@te adm(Tr(F)) \ S, a contradiction.

Translationsgrd = o would immediately give an L-reduction from tHi&-hard
problemVer ,,; (see Proposition 1) tier,, (o € {stb, adm, com}) whichisinL. 0O

6 Conclusion

In this work, we investigated intertranslations betwedfedént semantics for abstract
argumentation. We focused on translations which are efigieomputable and faith-
ful (with a few relaxations due to certain differences inojtlto the semantics). An
overview of our results is given in Table 2. The entry in rewand columny’ is to read
as follows: “~" states that we have shown (Section 5) that fficient faithful (even
weakly faithful) translation forr = o’ exists. If the entry refers to a translation (or
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grd adm stb com prf sem stg
grd Id T?“4OT)”7/- T?“7/- T?“7/- T)”7/’) T)”7/’) T?“7/?
adm | — id Trsl-| Tr1 |Trao Trsl-| Trs/-| Trs/-
stb - Try id Try Try Try Trs
com| — | Trao Trel-| Tre !l - id Traoo Trel-| Trel-| Tre ! -
prf | — - - - id Trq ?
sem | — - - - - id ?
stg - - - - - Tro id

Table 2. Results about (weak) faithful / exact translations

a concatenation of translations), we have found an effi¢igadkly) exact translation

for o = ¢'. An entry which is split into two parts, e.gT*7 / -", means that we have
found an efficient (weakly) faithful translation, but théseno such exact translation.
“?” indicates an open problem. We mention that all the coewatied translations are
weakly faithful as they are built from a weakly exact tratiska 74 (which has as only

remainder set the empty set) and a faithful translationéeit’rs, Trg, or Tr7).

semi-stable

.

.......................

preferred

[admissible, complete, stab}

( grounded )

Fig. 10. Intertranslatability of argumentation semantics

Figure 10 illustrates our intertranslatability resulteaé glance. Here, a solid arrow
expresses that there is an efficient faithful translatiofendn dotted arrow depicts that
there may exist such a translation, but so far we have néifitherd one nor have an
argument against its existence. Furthermore, if for twoa®@msc, o’ there is no path
from o to ¢’ then it is proven (partly under typical complexity theotatiassumptions)
that there is no efficient faithful translation fer=- ¢’. One conclusion, we can draw
from this picture is that semi-stable semantics is the mxstessive one, since each of
the other investigated semantics can be efficiently emlzbdde

For future work, we want to solve the few open slots in Tablawell, we plan to
extend our considerations to other important semantics.¢aproposed in [3, 5, 16]).
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