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Abstract. Translations between different nonmonotonic formalisms always have
been an important topic in the field, in particular to understand the knowledge-
representation capabilities those formalisms offer. We provide such an investiga-
tion in terms of different semantics proposed for abstract argumentation frame-
works, a nonmonotonic yet simple formalism which received increasing interest
within the last decade. Although the properties of these different semantics are
nowadays well understood, there are no explicit results about intertranslatability.
We provide such translations wrt. different properties andalso give a few novel
complexity results which underlie some negative results.

1 Introduction

Studies on the intertranslatability of different approaches to nonmonotonic reasoning
have always been considered as an important contribution tothe field in order to un-
derstand the expressibility and representation capacity of the various formalisms. By
intertranslatability we understand a functionTr which maps theories from one formal-
ism into another such that intended models of a theory∆ from the source formalism
are in a certain relation to the intended models ofTr (∆). Several desired properties for
such translation functions have been identified, includingto be polynomial (Tr (∆) can
be computed in polynomial time wrt. the size of∆) or to be modular (roughly speaking,
that allows to transform parts of the theory independently of each other). In particular,
the relationship between (variants of) default logic [27] and nonmonotonic modal log-
ics, in particular autoepistemic logic [26], has always received a lot of attention, see
e.g. [13, 23, 25]. Perhaps most notably, Gottlob [20] showedthat a modular translation
from default logic to autoepistemic logic is impossible. Other important contributions
in this direction include translations between default logic and circumscription [21],
modal nonmonotonic logics and logic programs (see e.g. [9] for an overview and recent
applications) and the work by Janhunen [22].

In this work, we study translation functions within a particular formalism of non-
monotonic reasoning, Dung’s argumentation frameworks [15], but wrt. to different se-
mantics proposed for this formalism (in the area of default logic, a similar research was
undertaken by Liberatore [24]). In a nutshell, such argumentation frameworks (AFs, for
short) represent abstract statements together with a relation denoting attacks between
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them. Different semantics provide different ways to solve the inherent conflicts be-
tween statements by selecting acceptable subsets of them. Several such semantics have
already been proposed by Dung in his seminal paper but also alternative approaches
play a major role nowadays, see e.g. [3, 5, 10, 16, 28]. Compared to other nonmono-
tonic formalisms (which are build on top of classical logical syntax), argumentation
frameworks are a much simpler formalism (in the end, they arejust directed graphs).
However, this simplicity made them an attractive modeling tool in several diverse areas,
like formalisations of legal reasoning [8] or multi-agent negotiation [1].

In the field of argumentation intertranslatability has mainly been studied in connec-
tion with generalizations of Dung’s argumentation frameworks. Hereby, such transla-
tions were used to show that proposed semantics for the generalizations are in a desired
relation with the same semantics of standard AFs. Such translations have been dis-
cussed, for instance, in terms of bipolar AFs [11], value-based AFs [7], and AFs with
recursive attacks [2]. A recent exception is the work by Baumann and Brewka [6], where
they consider to enforce a desired extension in Dung AFs by switching semantics.

We focus here exclusively on standard argumentation frameworks and have the fol-
lowing main objective: Given an AFF and argumentation semanticsσ andσ′, find a
functionTr such that theσ-extensions ofF are in certain correspondence to theσ′-
extensions ofTr (F ). We believe that such results are important from different points
of view. Firstly, consider one agent has modeled a certain scenario in terms of an AF
F and she is reasoning over this representation using semanticsσ. In order to convince
a second agent (which uses a different semanticsσ′) about certain selections of argu-
ments, the first agent has to rephrase the framework in a suitable way for the second
agent to find an agreement. To have a more concrete example, suppose Agent 1 uses
complete semantics while Agent 2 has a stable-semantics based reasoning engine (de-
tails about the different semantics are provided in Section2). Then, the transformation
has to capture the concept of admissibility (informally speaking, a set of arguments
has to defend itself) which is implicitly present in complete semantics by a suitable
introduction of new arguments, such that stable semantics can perform such a type of
reasoning. In other words, translatability results between different semantics of AFs
yield an understanding how certain properties which are specified within the seman-
tics can be made (syntactically) explicit within an AF in order to make these properties
amenable to another semantics.

Another motivation of our work is based on the following observation. Consider,
there is an advanced argumentation engine for a semanticsσ′, but one wants to evaluate
an AFF wrt. to a different semanticsσ. Then, it might be a good plan to transformF in
such a way into an AFF ′ such that evaluatingF ′ wrt. semanticsσ′ allows for an easy
reconstruction of theσ-extensions ofF . If the required transformations are efficiently
computable, this leads to a potentially more successful approach than implementing a
distinguished algorithm for theσ-semantics from scratch.

The organization of the remainder of the paper and its main contributions are as
follows: In Section 2, we introduce AFs and the different semantics we deal with in this
paper. We also review known complexity results which we complement in the sense
that we show some of the known tractable problems to beP -hard; a fact we will use for
some impossibility results in Section 5. Section 3 defines certain properties for transla-
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tions (basically along the lines of [22]) but we consider a few additional features which
are needed when dealing with AFs. Section 4 contains our mainresults, in particular
we provide translations between Dung’s original semantics(admissible, preferred, sta-
ble, complete, grounded), stage semantics, and semi-stable semantics. As mentioned,
Section 5 provides negative results, i.e. we show that certain translations between se-
mantics are not possible. Finally, in Section 6 we conclude the paper with a summary
of the presented results and an outlook to potential future work.

2 Argumentation Frameworks

In this section we introduce (abstract) argumentation frameworks [15] and recall se-
mantics we study in this paper (see also [4]). Moreover, we highlight and complement
complexity results.

Definition 1. An argumentation framework (AF)is a pair F = (A, R) whereA is a
non-empty set of arguments1 andR ⊆ A × A is the attack relation. For a given AF
F = (A, R) we useAF to denote the setA of its arguments andRF to denote its attack
relation R. We sometimes usea ֌R b instead of(a, b) ∈ R. For S ⊆ A anda ∈ A,
we also writeS ֌R a (resp.a ֌R S) in case there existsb ∈ S, such thatb ֌R a
(resp.a ֌R b). In case no ambiguity arises, we use֌ instead of֌R.

Semantics for argumentation frameworks assign to each AFF = (A, R) a set
σ(F ) ⊆ 2A of extensions. We shall consider here forσ the functionsstb, adm , prf ,
com , grd , stg, andsem which stand for stable, admissible, preferred, complete, ground
stage, and respectively, semi-stable semantics. Before giving the actual definitions for
these semantics, we require a few more formal concepts.

Definition 2. Given an AFF = (A, R), an argumenta ∈ A is defended(in F ) by a
setS ⊆ A if for eachb ∈ A, such thatb ֌ a, alsoS ֌ b holds. Moreover, for a set
S ⊆ A, we denote byS+

R the setS ∪ {b | ∃a ∈ S, such that(a, b) ∈ R}.

Definition 3. Let F = (A, R) be an AF. A setS ⊆ A is conflict-free (inF ), iff there
are noa, b ∈ S, such that(a, b) ∈ R. For such a conflict-free setS, it holds that

– S ∈ stb(F ), if for eacha ∈ A \ S, S ֌ a, i.e.S+
R = A;

– S ∈ adm(F ), if eacha ∈ S is defended byS;
– S ∈ prf (F ), if S ∈ adm(F ) and there is noT ∈ adm(F ) with T ⊃ S;
– S ∈ com(F ), if S ∈ adm(F ) and for eacha ∈ A defended byS, a ∈ S holds;
– S ∈ grd(F ), if S ∈ com(F ) and there is noT ∈ com(F ) with T ⊂ S;
– S ∈ stg(F ), if there is no conflict-free setT in F , such thatT +

R ⊃ S+
R ;

– S ∈ sem(F ), if S ∈ adm(F ) and there is noT ∈ adm(F ) with T +
R ⊃ S+

R .

For all semanticsσ, the sets defined above are the only ones inσ(F ).

1 For technical reasons we only consider AFs withA 6= ∅.
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We recall that for each AFF , stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F )
holds, and that for each of the considered semanticsσ (except stable)σ(F ) 6= ∅ holds.
Moreover,|grd(F )| = 1 holds for each AFF , and in case an AF has at least one stable
extension then its stable, semi-stable, and respectively,stage extensions coincide.

Example 1.Consider the AFF = (A, R), with A = {a, b, c, d, e} andR = {(a, b),
(c, b), (c, d), (d, c), (d, e), (e, e)}. The graph representation ofF is given as follows.

a b c d e

We havestb(F ) = stg(F ) = sem(F ) = {{a, d}}. Further we have as admissible
sets ofF the collection{},{a},{c},{d},{a, c},{a, d}, thusprf (F ) = {{a, c},{a, d}}.
Finally the complete extensions ofF are{a}, {a, c} and{a, d}, with {a} being the
grounded extension ofF . ♦

We now turn to the complexity of reasoning in AFs. To this end,we define the
following decision problems for the semanticsσ introduced in Definition 3.

– Credσ: Given AFF = (A, R) anda ∈ A. Is a contained in someS ∈ σ(F )?
– Skeptσ: Given AFF = (A, R) anda ∈ A. Is a contained in eachS ∈ σ(F )?
– Verσ: Given AFF = (A, R) andS ⊆ A. Is S ∈ σ(F )?
– Existsσ: Given AFF = (A, R). Is σ(F ) 6= ∅?
– Exists¬∅

σ : Given AFF = (A, R). Does there exist a setS 6= ∅ such thatS ∈ σ(F )?

Before giving an overview about known results, we provide a few lower bounds
which, to the best of our knowledge, have not been established yet.

Proposition 1. The problemsCredgrd = Skeptgrd = Skeptcom as well asVergrd are
P-hard (underL-reductions, i.e. reductions using logarithmic space).

Proof. We use a reduction from theP-hard problem to decide, given a propositional
definite Horn theoryT and an atomx, whetherx is true in the minimal model ofT .

Let, for a definite Horn theoryT = {rl : bl,1 ∧ · · · ∧ bl,il
→ hl | 1 ≤ l ≤ n} over

atomsX and an atomz ∈ X , FT,z = (A, R) be an AF withA = T∪X∪{t}, wheret is
a fresh argument, andR = {(x, x), (t, x) | x ∈ X}∪{(z, t)}∪{(rl, hl), (bl,j , rl) | rl ∈
T, 1 ≤ j ≤ il)}. See Figure 1 for an example. Clearly the AFFT,z can be constructed
using only logarithmic space in the size ofT . One can show thatz is in the minimal
model ofT iff t is in the grounded extension ofFT,z iff grd(FT,z) = {T ∪ {t}}. ⊓⊔

→ x x ∧ y → z y ∧ z → x

x y z

t

Fig. 1. Argumentation frameworkFT,z for T = {→ x, x ∧ y → z, y ∧ z → x}
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t b

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

s

Fig. 2. AF F{c1,c2,c3} with c1 = {x1, x2, x3}, c2 = {x̄2, x̄3, x̄4}, c3 = {x̄1, x2, x4}.

Proposition 2. Verstg is coNP-hard.

Proof. We prove the assertion by reducing the (NP-hard) 3-SAT problem to the comple-
mentary problem ofVerstg . We assume that a 3-CNF formula is given as a set of clauses,
where each clause is a set over atoms and negated atoms (denoted byx̄). For such a CNF
ϕ over variablesX , define the AFFϕ = (A, R) with A = X ∪ X̄ ∪ C ∪ {s, t, b} and

R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | l ∈ c, c ∈ C} ∪

{(c, t) | c ∈ C} ∪ {(s, y), (y, s) | y ∈ A \ {s, b}} ∪ {(t, b), (b, b)}

whereX̄ = {x̄ | x ∈ X} ands, t, b are fresh arguments. See Figure 2 for an illustrating
example. It can be shown thatϕ is satisfiable iff{s} is not a stage extension ofFϕ. ⊓⊔

Together with results from the literature [12, 14, 15, 17–19], we obtain the comp-
lexity-landscape of abstract argumentation as given in Table 1.

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

grd P-c P-c P-c trivial in L

stb NP-c coNP-c in L NP-c NP-c

adm NP-c trivial in L trivial NP-c

com NP-c P-c in L trivial NP-c

prf NP-c ΠP
2 -c coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stg ΣP
2 -c ΠP

2 -c coNP-c trivial in L

Table 1.Complexity of abstract argumentation (C-c denotes completeness for classC)

3 Properties for Translations

In what follows, we understand as a translationTr a function which maps AFs to AFs.
In particular, we seek translations, such that for given semanticsσ, σ′, the extensions
σ(F ) are in a certain relation to extensionsσ′(F ) for each AFF . To start with, we
introduce a few additional properties which seem desirablefor such translations. To
this end, we define, for AFsF = (A, R), F ′ = (A′, R′), the union of AFs asF ∪F ′ =
(A ∪ A′, R ∪ R′), and inclusion asF ⊆ F ′ iff jointly A ⊆ A′ andR ⊆ R′.
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Definition 4. A translationTr is called

– efficientif for every AFF , the AFTr (F ) can be computed using logarithmic space
wrt. to |F |;

– coveringif for every AFF , F ⊆ Tr (F );
– embeddingif for every AFF , AF ⊆ ATr (F ) andRF = RTr (F ) ∩ (AF × AF );
– monotoneif of any AFsF, F ′, F ⊆ F ′ impliesTr (F ) ⊆ Tr (F ′);
– modularif of any AFsF, F ′, Tr (F ) ∪ Tr (F ′) = Tr (F ∪ F ′).

While the property of efficiency is clearly motivated, let usspend a few words on the
other properties. Being covering, ensures that the translation does not hide some original
arguments or conflicts. Being embedding, in addition, ensures that no additional attacks
between the original arguments are mocked. Monotonicity and modularity are crucial
when extending the source AF after translation: When arguing with another agent it
may be impossible to withdraw already interchanged arguments and attacks; hence, re-
translating the augmented source AF should respect the already existing translation.
Each modular transformation is also monotone and each embedding transformation is
also covering.

Next, we give two properties which refer to semantics. We note that our concept
of faithfulness follows the definition used by Janhunen [22]; while exactness is in the
spirit of bijective faithfulness wrt. equivalence as used by Liberatore [24].

Definition 5. For semanticsσ, σ′ we call a translationTr

– exactfor σ ⇒ σ′ if for every AFF , σ(F ) = σ′(Tr (F ));
– faithful for σ ⇒ σ′ if for every AFF , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F ))} and
|σ(F )| = |σ′(Tr (F ))|.

However, due to the very nature of the different semantics wewant to consider, we
need some less restricted notions. For instance, if we consider a translation from stable
to some other semantics, we have to face the fact that some AFsdo not possess a stable
extension, while other semantics always yield at least one extension.

Definition 6. For semanticsσ, σ′, we call a translationTr

– weakly exactfor σ ⇒ σ′ if there exists a collectionS of sets of arguments, such
that for any AFF , σ(F ) = σ′(Tr (F )) \ S;

– weakly faithful for σ ⇒ σ′ if there exists a collectionS of sets of arguments, such
that for any AFF , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F )) \ S} and |σ(F )| =
|σ′(Tr (F )) \ S|.

We sometimes refer to the elements fromS as remainder sets. Note thatS depends
only on the translation, but not on the input AF. Thus, by definition, eachS ∈ S only
contains arguments which never occur in AFs subject to translation. In other words, we
reserve certain arguments for introduction in weak translations.

Finally, we mention that the properties from Definition 4 as well as being exact,
weakly exact and faithful are transitive, i.e. for two transformations satisfying one of
these properties, also the concatenation satisfies the respective property. However, tran-
sitivity is not guaranteed for being weakly faithful.
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4 Translations

In this section, we provide numerous faithful translationsbetween the semantics intro-
duced in Definition 3. As minimal desiderata, we want the translations to be efficient,
monotone, and covering (see Definition 4). Thus, in this section when speaking about
translations we tacitly assume that they satisfy at least these three properties.

We start with a rather simple such translation, which we willshow to be exact for
prf ⇒ sem andadm ⇒ com.

Translation 1. The translationTr1 is defined asTr1(F ) = (A∗, R∗), whereA∗ =
AF ∪A′

F andR∗ = RF ∪{(a, a′), (a′, a), (a′, a′) | a∈AF }, withA′
F = {a′ | a∈AF }.

a b c d e

a′ b′ c′ d′ e′

Fig. 3.Tr1(F ) for the AFF from Example 1.

Lemma 1. For an AF F and a setE of arguments, the following propositions are
equivalent: (1)E ∈ adm(F ); (2) E ∈ adm(Tr1(F )); and (3)E ∈ com(Tr 1(F )).

Proof. As all arguments inA′
F are self-conflicting, every conflict-free setE of Tr1(F )

satisfiesE ⊆ AF . Further, sinceTr1 is embedding,E is conflict-free inF iff E is
conflict-free inTr1(F ). Moreover, sinceTr1 only adds symmetric attacks against ar-
gumentsa ∈ AF , we have thatE defends its arguments inF iff E defends its argu-
ments inTr1(F ). Thus,adm(F ) = adm(Tr1(F )) and (1)⇔(2) follows. For (2)⇒(3),
let a ∈ A be an arbitrary argument andE ⊆ A. In Tr1 the argumenta is attacked bya′

anda is the only attacker (excepta′ itself) of a′. Hence, for eacha ∈ A, E defendsa
only if a ∈ E and thus every admissible set ofTr1(F ) is also a complete one. Finally,
(2)⇐(3) holds sincecom(F ) ⊆ adm(F ) is true for any AFF . ⊓⊔

Lemma 2. For an AF F and a setE of arguments, the following propositions are
equivalent: (1)E ∈ prf (F ); (2) E ∈ prf (Tr 1(F )); and (3)E ∈ sem(Tr1(F )).

Proof. For (1)⇔(2), it is sufficient to show thatE ∈ adm(F ) iff E ∈ adm(Tr1(F ))
holds for eachE. This is captured by Lemma 1. For (2)⇒(3), letD, E ∈ prf (Tr1(F ))
and, towards a contradiction, assume thatD+

R∗ ⊂ E+
R∗ , i.e. D /∈ sem(Tr1(F )). As

bothD andE are preferred extensions, we haveD 6⊆ E. Thus, there exists an argument
a ∈ D \E. By construction ofTr1(F ), we geta′ ∈ D+

R∗ buta′ /∈ E+
R∗ , a contradiction

to D+
R∗ ⊂ E+

R∗ . (2)⇐(3) follows from the factsem(F ) ⊆ prf (F ) for any AFF . ⊓⊔

Theorem 1. Tr1 is a modular, embedding, and exact translation forprf ⇒ sem and
adm ⇒ com .

Our next translation,Tr2, is concerned with stage and semi-stable semantics. In
addition toTr1, we make all attacks from the original AF symmetric (thusTr2 will not
be embedding) and add for each original attack(a, b) also an attack(a, b′).
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Translation 2. The translationTr2 is defined asTr2(F ) = (A∗, R∗), whereA∗ =
AF ∪A′

F andR∗ = RF ∪ {(b, a), (a, b′) | (a, b) ∈ RF } ∪ {(a, a′), (a′, a′) | a ∈ AF }.

a b c d e

a′ b′ c′ d′ e′

Fig. 4.Tr2(F ) for the AFF from Example 1.

Lemma 3. For an AF F and any setE of arguments, the following propositions are
equivalent: (1)E ∈ stg(F ); (2) E ∈ stg(Tr2(F )); and (3)E ∈ sem(Tr2(F )).

Proof. First, we mention that every stage extension of an AFF is also maximal (wrt.⊆)
conflict-free inF . For (1)⇔(2), we again observe that a setE is conflict-free inF iff it is
conflict-free inTr2(F ). Moreover, we have(E+

RF
)′ ⊆ E+

R∗ , since for each(a, b) ∈ RF ,
we have(a, b′) ∈ R∗. Furthermore, for each maximal conflict-free setE in F (and thus
in Tr2(F )), it holds thatAF ⊆ E+

R∗ . Hence, for each maximal conflict-free setE ⊆ AF

in F , i.e. the candidates for stage extensions, it holds thatE+
R∗ = AF ∪(E+

RF
)′ and thus

E+
RF

is maximal (wrt. subset inclusion) iffE+
R∗ is maximal. For (2)⇔(3), observe that

eacha ∈ AF defends itself inTr2(F ) and all argumentsa′ ∈ A′
F are self-conflicting.

Thus, admissible and conflict-free sets coincide inTr2(F ). Consequently, the stage and
semi-stable extensions ofTr2(F ) coincide. ⊓⊔

Theorem 2. Tr2 is a modular and exact translation forstg ⇒ sem.

The next translations consider the stable semantics as source formalism. Recall that
not all AFs possess a stable extension, while this holds for all other semantics (also
recall we excluded empty AFs for our considerations). Thus we have to use weak trans-
lations as introduced in Definition 6. Our first such translation is weakly exact and uses
a single remainder set{t}.

Translation 3. The translationTr3(F ) is defined asTr3(F ) = (A∗, R∗) whereA∗ =
AF ∪ {t} andR∗ = RF ∪ {(t, a), (a, t) | a ∈ AF }.

a b c d e

t

Fig. 5.Tr3(F ) for the AFF from Example 1.

Lemma 4. LetF = (A, R) be an AF andE ⊆ A with E 6= ∅. Then the following state-
ments are equivalent: (1)E ∈ stb(F ); (2) E ∈ stb(Tr3(F )); (3) E ∈ sem(Tr3(F ));
and (4)E ∈ stg(Tr 3(F )).



On the Intertranslatability of Argumentation Semantics 9

Proof. As the translation does not modify the original AFF we have that for each
non-emptyE ⊆ AF , E is conflict-free inF iff E is conflict-free inTr3(F ). To show
(1)⇔(2) it is sufficient to observe thatE+

R∗ = A∗, sinceE+
RF

= AF andE ֌R∗

t;
andE+

RF
= AF , sinceE+

R∗ = A∗ andt /∈ E. For (2)⇔(3)⇔(4), we mention that{t} is
a stable extension ofTr3(F ) for any AFF . Furthermore, we know that if there exists a
stable extension for an AF, then stable, semi-stable and stage extensions coincide. ⊓⊔

By the lemma and the fact that for for eachE ∈ σ(Tr3(F )) with σ ∈ {stb, sem,
stg} eitherE = {t} or t 6∈ E holds, we obtain the desired result.

Theorem 3. Tr3 is modular, embedding and weakly exact forstb⇒σ, σ∈{sem , stg}.

We continue with a different translation from stable extensions to other semantics.

Translation 4. Tr4 is defined asTr4(F ) = (A∗, R∗) whereA∗ = AF ∪A′
F andR∗ =

RF ∪ {(b′, a) | a, b ∈ AF } ∪ {(a′, a′), (a, a′) | a ∈ AF } ∪ {(a, b′) | (a, b) ∈ RF }.

a b c d e

a′ b′ c′ d′ e′

Fig. 6.Tr4(F ) for the AFF from Example 1.

Lemma 5. LetF = (A, R) be an AF andE⊆A with E 6=∅. Then, the following state-
ments are equivalent: (1)E ∈ stb(F ); (2) E ∈ stb(Tr4(F )); (3) E ∈ adm(Tr4(F ));
(4) E∈prf (Tr4(F )); (5) E∈com(Tr4(F )); and (6)E∈sem(Tr4(F )).

Proof. First, for each conflict-free setE in Tr4(F ) it holds thatE ⊆ A. Since the
translation is embedding, any setE is conflict-free inF iff it is conflict-free inTr4(F ).
To show (1)⇒(2), let E ∈ stb(F ). Hence, for alla ∈ A \ E, E ֌R a, and thus
E ֌R∗

a. By construction, also for each argumenta ∈ A∗ \ E, E ֌R∗

a holds.
Together with our observations about conflict-free sets, wegetE ∈ stb(Tr4(F )). Vice
versa, to show (1)⇐(2) we get, forE ∈ stb(Tr4(F )), E ֌R∗

a, for eacha ∈ A∗ \E,
and thus, in particular, for eacha ∈ A\E. By definition ofTr4, we also haveE ֌R a
for eacha ∈ A \ E. ThusE ∈ stb(F ) follows. To show (2)⇐(3), letE be a nonempty
admissible extension ofTr4(F ) anda ∈ E. By construction, we have thata− := {b ∈
A∗ : (b, a) ∈ R∗} ⊇ A′. As E ∈ adm(F ), E ֌R∗

a′ for eacha′ ∈ A′. But E ֌ a′

only if eithera ∈ E or E ֌R∗

a. Thus for everya ∈ A∗ it holds that eithera ∈ E
or E ֌R∗

a; hence,E ∈ stb(Tr4(F )). The remaining implications follow by well-
known relations between the semantics. ⊓⊔

Theorem 4. Tr4 is an embedding and weakly exact translation forstb ⇒ σ with σ ∈
{adm , com, prf , sem}.
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Next we give a faithful translation from admissible semantics to stable, semi-stable
and stage semantics. The main idea is to use additional arguments for the attack rela-
tions from the source framework in order to capture admissibility.

Translation 5. The translationTr5(F ) is defined asTr5(F ) = (A∗, R∗) whereA∗ =
AF ∪ ĀF ∪ RF andR∗ = RF ∪ {(a, ā), (ā, a) | a ∈ AF } ∪ {(r, r) | r ∈ RF } ∪
{(ā, r) | r = (y, a) ∈ RF } ∪ {(a, r) | r = (z, y) ∈ RF , (a, z) ∈ RF }.

ā b̄ c̄ d̄ ē

a b c d e

(a, b) (c, b) (d, c) (c, d) (d, e) (e, e)

Fig. 7.Tr5(F ) for the AFF from Example 1.

Lemma 6. Let F = (A, R) be an AF,E ⊆ A and E∗ = E ∪ (A \ E). The fol-
lowing statements are equivalent: (1)E ∈ adm(F ); (2) E∗ ∈ stb(Tr 5(F )); (3)
E∗ ∈ sem(Tr5(F )); and (4)E∗ ∈ stg(Tr 5(F )).

Proof. To show (1)⇒(2), letE ∈ adm(F ). It is easy to see thatE∗ is conflict-free in
Tr5(F ) and further thatA∪Ā ⊆ (E∗)+R∗ . It remains to show that each argumentr ∈ A∗

for r ∈ R is attacked byE∗. Let (a, b) be such an argumentr. If b /∈ E thenb̄ ∈ E∗

and thusE∗ ֌R∗

r. Otherwise,b ∈ E (thusb ∈ E∗) and, by assumption,E defendsb
in F , i.e. (c, a) ∈ R for somec ∈ E (thusc ∈ E∗). By construction,(c, r) ∈ R∗ and
E∗ ֌R∗

r. To show (1)⇐(2), let E∗ ∈ stb(Tr5(F )). E∗ is conflict-free, thus have
R ∩ E∗ = ∅ and{a, ā} 6⊆ E∗ for all a ∈ A. By construction,E is conflict-free in
F . It remains to show thatE defends all its arguments inF . Let b ∈ A \ E such that
b ֌R a for somea ∈ E. Then there exists an argument(b, a) in Tr5(F ) attacked by
E. As a ∈ E we have that̄a /∈ E∗ and thus there existsc ∈ E such that(c, b) ∈ R.
The remaining implications follow by the fact that the emptyset is always admissible
and thusĀ is always a stable extension ofTr5(F ). Hence, stable, semi-stable and stage
extensions coincide for anyTr5(F ). ⊓⊔

Together with the fact that each stable extension ofTr5(F ) is of the formE ∪
(A \ E) with E ⊆ AF we can show the following result.

Theorem 5. Tr5 is an embedding and faithful translation foradm ⇒ σ, with σ ∈
{stb, sem, stg}.

In our faithful translation from complete to stable semantics we extend the given
AF by arguments that represent whether an argument is attacked in the corresponding
extension or not. Further we add arguments that ensure admissibility and completeness.
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Translation 6. The translationTr6(F ) is defined asTr6(F ) = (A∗, R∗) where
A∗ = AF ∪ ĀF ∪ A↓

F ∪ Ā↓
F ∪ R′

F ∪ A′
F

R∗ = RF ∪ {(a, ā), (ā, a), (ā↓, a↓), (a, a′) | a ∈ AF } ∪ {(x′, x′) | x ∈ AF ∪ RF }
∪{(a, b̄↓), (ā↓, b′) | (a, b) ∈ RF } ∪ {(ā, r′), (b↓, r′) | r = (b, a) ∈ RF }.

ā b̄ c̄ d̄ ē

a b c d e

a′ b′ c′ d′ e′

ā↓ b̄↓ c̄↓ d̄↓ ē↓

a↓ b↓ c↓ d↓ e↓

(a, b) (c, b) (d, c) (c, d) (d, e) (e, e)

Fig. 8.Tr6(F ) for the AFF from Example 1.

Lemma 7. LetF = (A, R) be an AF,E ⊆ A andE∗ = E ∪ (A \ E) ∪ {a↓ | E ֌R

a} ∪ {ā↓ | E 6֌R a}. Then the following statements are equivalent: (1)E ∈ com(F );
(2) E∗ ∈ stb(Tr 6(F )); (3) E∗ ∈ sem(Tr6(F )); and (4)E∗ ∈ stg(Tr6(F )).

Proof. To show (1)⇒(2), letE ∈ com(F ). Then by constructionE∗ is conflict-free in
Tr6(F ) and we have thatA∪ Ā∪A↓ ∪ Ā↓ ⊆ (E∗)

+
R∗ . Further for eachr = (b, a) ∈ R

it holds thatE∗ ֌ r′ iff either a /∈ E or E ֌ b. As E is admissible we have that
r′ ∈ (E∗)

+
R∗ . Fora′ ∈ A′ it holds thatE∗ ֌ a′ iff either a ∈ E or E does not defend

a. Thus asE is a complete extension,a′ ∈ (E∗)
+
R∗ holds. Hence we have thatA′ ⊆

(E∗)
+
R∗ and thusE∗ is a stable extension. To show (1)⇐(2), let E∗ ∈ stb(Tr6(F )).

One can show thatE∗ is of the desired form. FurtherE ∈ adm(F ), because otherwise
there existsa ∈ E, r = (b, a) ∈ R, E 6֌ b which impliesā /∈ E∗, b↓ 6∈ E∗ and
thusr′ /∈ (E∗)

+
R∗ , a contradiction. A similar argument holds for the completeness ofE

using the argumentsA′. The remaining implications follow by the fact that there always
exists a complete extension forF and thus a stable extension forTr6(F ). ⊓⊔

Theorem 6. Tr6 is a modular, embedding and faithful translation forcom ⇒ σ (σ ∈
{stb, sem, stg}).

Finally we present a translation from grounded semantics tomost of the other se-
mantics under our focus, i.e. to all semantics except admissible semantics. The main
idea is to simulate the computation of the characteristic function within the target AF.
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Translation 7. The translationTr7(F ) is defined asTr7(F ) = (A∗, R∗) where
A∗ = AF,1 ∪ Ā↓

F,1 ∪ . . . ∪ AF,l ∪ Ā↓
F,l; R∗ = RF ∪ {(ā↓

i , bi) | (a, b) ∈ R, i ∈ [l]} ∪

{(ai, b̄
↓
i+1) | (a, b) ∈ R, i ∈ [l − 1]}; AF = AF,l; and l = ⌈ |AF |

2 ⌉.

ā
↓
1

b̄
↓
1

c̄
↓
1

d̄
↓
1

ē
↓
1

a1 b1
c1 d1

e1

ā
↓
2

b̄
↓
2

c̄
↓
2

d̄
↓
2

ē
↓
2

a2 b2
c2 d2

e2

ā
↓
3

b̄
↓
3

c̄
↓
3

d̄
↓
3

ē
↓
3

a b c d e

Fig. 9.Tr7(F ) for the AFF from Example 1.

Lemma 8. Let F = (A, R) be an AF andE∗ the grounded extension ofTr7(F ) then
E∗ ∩ A is the grounded extension ofF . We further have that onTr7(F ) the grounded,
stable, complete, preferred, semi-stable and stage extensions coincide.

Proof. Recall the characteristic functionFF of an AF F , defined asFF (S) = {x ∈
AF | x is defended byS}, and that the grounded extension ofF is the least fix-point of
FF . One can show that for arbitrarya ∈ A we have (1)ai ∈ E∗ iff a ∈ F i

F (∅); (2) ā↓
i ∈

E∗ iff F i−1
F (∅) 6֌R a; and (3)A∗ ⊆ (E∗)

+
R∗ . The proof is by structural induction.

Furthermore when applying theFF operator we either add a new argument to the set
and attack an additional argument or we reach the fix-point. So in each step we make
a decision about at least two arguments and thusF l

F (∅) = grd(F ). In combination
with (1), we get thatal ∈ E∗ iff a ∈ grd(F ). Moreover by (3) it holds thatgrd(F ∗) =
stb(F ∗) = com(F ∗) = prf (F ∗) = sem(F ∗) = stg(F ∗), whereF ∗ = Tr7(F ). ⊓⊔

Theorem 7. Tr7 is an embedding and faithful translation forgrd ⇒ σ (σ ∈ {stb,
com , prf , stg, sem}).

5 Negative Results

In this section we present results, fortifying that for several semantics there does not
exist any translations with the desired properties. The first result relies on the fact that
the grounded semantics always has a unique extension.

Proposition 3. There is no (weakly) faithful translation forσ ⇒ grd with σ ∈ {sem,
stg, prf , com , stb, adm}.

Further results are based on complexity gaps between different semantics (see Table 1).
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Theorem 8. There is no efficient (weakly) faithful translation for (1)σ ⇒ prf (σ ∈
{sem, stg}); (2) σ ⇒ σ′ (σ∈{sem, stg, prf }, σ′∈{com, stb, adm}); unlessΣP

2 = NP.

Proof. 1.) LetTr be an efficient (weakly) faithful translation fromσ ∈ {sem, stg} to
prf . By definition this translation is L-computable and as we show next reducesCredσ

to Credprf : Let F = (A, R) be an arbitrary AF,x ∈ A an argument, and suppose
x ∈ E holds for someE ∈ σ(F ). As Tr is a weakly faithful translation, there is an
E∗ ∈ prf (Tr (F )), such thatE∗ ∩A = E. Thusx ∈ E∗, i.e.x is credulously accepted
wrt. preferred semantics inTr (F ). So assumex ∈ E∗ for someE∗ ∈ prf (Tr (F )). By
x ∈ E∗ ∩ A we can conclude thatE∗ is not a remainder set ofTr . As Tr is a weakly
faithful translation we have thatE = E∗ ∩ A is in σ(F ), and thusx is credulously
accepted inF wrt. σ. Thus,Tr is a L-reduction from theΣP

2 -hard problemCredσ to
the NP-easy problemCredprf .

2.) Given an efficient weakly faithful translationTr with remainder setS for σ ⇒
σ′ we have thatSkeptσ is translated to the problemSkeptSσ′ , that is deciding whether
an argument is in eachσ′-extension which is not in the setS. One can show that the
problemSkeptSσ′ remains in coNP. ThusTr would be an L-reduction from theΠP

2 -hard
problemSkeptσ to the coNP-easy problemSkeptSσ′ , which impliesΣP

2 = NP. ⊓⊔

One might prefer (weakly) exact over (weakly) faithful translations. As we have
seen in Section 4, several of our translations are not exact but only faithful. In these
cases we are interested in finding an evidence that an exact translation is not possible.

Theorem 9. There is no (weakly) exact translation forσ ⇒ σ′ whereσ ∈ {adm , com}
and σ′ ∈ {stb, prf , sem, stg}, as well as forcom ⇒ adm . Moreover, there is no
efficient such translation forgrd ⇒ σ whereσ ∈ {stb, adm , com}, unlessL = P.

Proof. We first argue that there is no weakly exact translation forσ ⇒ σ′ with σ ∈
{adm , com} andσ′ ∈ {stb, prf , sem, stg}. This is by the fact that two admissible
/ complete extensions may be in a⊂-relation while this is never the case for stable,
preferred, semi-stable and stage extensions. It remains toshow that there is no weakly
exact translation forcom ⇒ adm . We observe that for every AFF it holds that∅ ∈
adm(F ), but there are AFs where∅ /∈ com(F ). Thus for a weakly exact translationTr ,
with remainder setS, it holds that∅ ∈ S. But then, given an AFF with ∅ ∈ com(F ),
we can conclude that∅ ∈ adm(Tr (F )) \ S, a contradiction.

Translationsgrd ⇒ σ would immediately give an L-reduction from theP-hard
problemVergrd (see Proposition 1) toVerσ (σ ∈ {stb, adm , com}) which is in L. ⊓⊔

6 Conclusion

In this work, we investigated intertranslations between different semantics for abstract
argumentation. We focused on translations which are efficiently computable and faith-
ful (with a few relaxations due to certain differences implicit to the semantics). An
overview of our results is given in Table 2. The entry in rowσ and columnσ′ is to read
as follows: “–” states that we have shown (Section 5) that no efficient faithful (even
weakly faithful) translation forσ ⇒ σ′ exists. If the entry refers to a translation (or
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grd adm stb com prf sem stg

grd id Tr4 ◦ Tr7 / - Tr7 / - Tr7 / - Tr7 / ? Tr7 / ? Tr7 / ?
adm – id Tr5 / - Tr1 Tr4 ◦ Tr5 / - Tr5 / - Tr5 / -
stb – Tr4 id Tr4 Tr4 Tr4 Tr3

com – Tr4 ◦ Tr6 / - Tr6 / - id Tr4 ◦ Tr6 / - Tr6 / - Tr6 / -
prf – – – – id Tr1 ?
sem – – – – – id ?
stg – – – – – Tr2 id

Table 2.Results about (weak) faithful / exact translations

a concatenation of translations), we have found an efficient(weakly) exact translation
for σ ⇒ σ′. An entry which is split into two parts, e.g. “Tr7 / -”, means that we have
found an efficient (weakly) faithful translation, but thereis no such exact translation.
“?” indicates an open problem. We mention that all the concatenated translations are
weakly faithful as they are built from a weakly exact translationTr4 (which has as only
remainder set the empty set) and a faithful translation (eitherTr5, Tr6, or Tr7).

semi-stable

preferred stage

admissible, complete, stable

grounded

Fig. 10. Intertranslatability of argumentation semantics

Figure 10 illustrates our intertranslatability results atone glance. Here, a solid arrow
expresses that there is an efficient faithful translation while a dotted arrow depicts that
there may exist such a translation, but so far we have neitherfound one nor have an
argument against its existence. Furthermore, if for two semanticsσ, σ′ there is no path
from σ to σ′ then it is proven (partly under typical complexity theoretical assumptions)
that there is no efficient faithful translation forσ ⇒ σ′. One conclusion, we can draw
from this picture is that semi-stable semantics is the most expressive one, since each of
the other investigated semantics can be efficiently embedded.

For future work, we want to solve the few open slots in Table 2.As well, we plan to
extend our considerations to other important semantics (ase.g. proposed in [3, 5, 16]).
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